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Abstract

This paper presents polynomial time algorithms for three extensions of the classical capac-
itated lot sizing problem (CLSP). We consider a constant batch size production with a fixed
cost associated to each batch, additionally to the production setup cost and a unit holding
cost. The production cost can then be considered as a step-wise function where the step
length corresponds to the batch size. We can no more use the efficient methods proposed for
the CLSP with concave costs in order to solve the CLSP with step-wise costs. We propose
several properties of optimal solutions. Based on these properties, three polynomial time al-
gorithms are provided under the assumptions of constant production capacity and constant
batch sizes, as well as linear and non-increasing production costs over time. The uncapacitated
case is solved in time complexity O(T"). For the constant capacitated case, with a production
capacity multiple of the batch size, the algorithm has a time complexity in O(7*). The final
algorithm concerns the general constant capacitated case, and has a time complexity in O(T°).

keywords: Single-item capacitated lot sizing problem, step-wise costs, polynomial time dynamic
programming algorithm.

1 Introduction

We study an extension of the well known single-item capacitated lot sizing problem (CLSP). CLSP
deals with defining the optimal production quantities so as to satisfy the customer demands while
minimizing the total production and storage costs and respecting the production capacity. The
production cost function of the classical lot sizing problem is composed of a fixed cost, which is
independent of the quantity, a unit production and a unit holding cost per period, function of
the quantity produced and stored, respectively. Single-item LSP arises in many production and
inventory planning problems in practical situations and is used to solve more complex systems.
Many extensions of the single-item LSP have been studied in the literature. Despite the simplicity
of its description, the computational complexity of LSP depends on many parameters. Even for
the special case in which demands are stationary (which means constant) each period, all storage
costs are zero, and the production cost functions are either concave with arbitrary capacity limits
or convex with additionnal unit setup costs, LSP has been proven to be NP-hard by Florian et al.
(1980).

In this paper, we consider a constant batch production which generates a fixed cost per batch
in addition to the previous cost assumptions for the classical CLSP. A fixed cost per batch is
very common in the real cases where a machine is to be setup for a batch production. The aim
is again to satisfy the deterministic and discrete customer demands over a finite horizon without
backlogging. The two fixed production costs can be aggregated which makes the new production
cost discontinuous with a step-wise structure (see Figure 1). In literature such a cost structure
is called stair-case, multiple setup or step-wise cost. Our problem can be stated as “Single-item
capacitated lot sizing problem with step-wise production costs”, for short CLSP-SW. As one can
remark, the only difference between CLSP-SW and the classical CLSP is the production cost



function. However the discontinuities in the function do not allow the use of the methods proposed
for the classical case.

This problem can also be encoutered in other industrial applications, for instance production
and transportation planning problem in a serial supply chain. Consider the situation of a man-
ufacturer producing a single-item with a limited capacity and shipping the finished products to
a warehouse, where a fixed cost is paid for each vehicle shipped. The deterministic and discrete
demands are known at the warehouse level over a finite horizon. The aim is to satisfy demands
without backlogging so as to minimize the total production, transportation and storage costs. Due
to space constraints, storage is only possible in the warehouse. Since shipments to the warehouse
occur immediately after production, in the same period, the fixed transportation cost per vehicle
can be aggregated into the production setup cost, resulting in a step-wise production cost function
identical to a CLSP-SW problem. In recent years, firms have paid more attention to the coor-
dination of different activities in their supply chains for potential cost savings. In this setting,
transportation and multi-echelon storage decisions can be taken into account while planning the
production activities in a simultaneous manner. Although such approaches may lead to significant
cost reduction, the integration of various activities constraints into the same optimization model
can make the search of the optimal solution harder. In the literature many theoretical studies have
been developed on the integrated models, covering different coordinated levels and different solving
techniques (see Geunes and Pardalos (2003) for instance). There is also an increasing number of
real-case studies showing the cost saving benefits of an integrated approach (see Gnoni et al. (2003)
and Matta and Miller (2004)). A part of the literature review presented in section 2 on CLSP uses
a transportation costs terminology rather than batch production.

Our focus is on the non-trivial polynomial cases for CLSP-SW making some assumptions on the
production capacity, on the costs and also on the batch sizes. We provide a review of the relevant
literature in Section 2. In Section 3, we present a mathematical formulation of the problem. In
Section 4 we give some dominance properties, either arising from the literature or introduced for
our problem. A polynomial time algorithm in time complexity O(T3) is presented in Section 5
for the uncapacitated production case. Two polynomial time algorithms are given for the constant
capacitated case in Section 6. The first deals with the case where the production capacity is a
multiple of the batch size and has a time complexity in O(T#). The second, dealing with arbitrary
production capacity, has a time complexity in O(7°). In Section 7 we summarize our results and
present some concluding remarks.

2 State of the art

The following state of the art is organized into two parts. Firstly, we introduce relevant studies on
the classical LSP, especially on the single-item CLSP solved by dynamic programming. Secondly,
we present more specifically the literature on the single-item CLSP with piece-wise cost structure,
arising from the addition of the batch production.

The seminal papers of Manne (1958) and Wagner and Whitin (1958) can be cited as the first
studies on the LSP. The model they propose is for the uncapacitated single-item case and is used
by many researchers to solve more complex production and inventory problems. Florian and Klein
(1971) characterize the extreme points of the feasible domain of the capacitated lot sizing problem
(CLSP) with the assumption of concave cost functions. They use the notion of production sequence
Suv With zero entering inventory levels (s, = s, = 0) in order to efficiently decompose the problem
and apply dynamic programming. This paper will be detailed later in Section 4 in order to describe
dominances. Baker et al. (1978) study CLSP where they consider unit production and holding costs
which are linear function of the amount produced and stored. They propose an optimal solution
property which will be stated in Section 4. This property has been extended to the CLSP with
non-increasing unit production cost by Bitran and Yanasse (1982).

The first complexity studies on LSP began with the paper by Florian et al. (1980). The authors
provide a complexity classification of the problems for different values of the parameters. They also
provide a polynomial time algorithm in O(T*) for the constant capacitated CLSP with concave
costs. Hoesel and Wagelmans (1996) improve the algorithm complexity to O(T?), under the linear
holding cost assumption. Bitran and Yanasse (1982) classify some lot sizing problems based upon
their complexities and demonstrate different classes of LSP complexity. They introduce some
notations in the literature to make classification easier.

Several papers propose fully polynomial time approximation schemes (FPTAS) for the single-



item CLSP. Gavish and Johnson (1990) present algorithms which approximate the optimal pro-
duction schedule with an error of . Hoesel and Wagelmans (2001) also give an FPTAS for the
single-item CLSP with concave backlogging and production cost functions and arbitrary holding
cost. Another study on FPTAS is presented by Chubanov et al. (2006) for the monotone cost
structures.

Other studies concern multi-echelon lot sizing problems arising in the supply chain. In their
paper, Hoesel et al. (2005) consider a serial supply chain of L levels, including a capacitated man-
ufacturer, L — 2 intermediate warehouses and a retailer. They propose non-trivial polynomial
time algorithms under various cost structures. Kaminsky and Simchi-Levi (2003) study a system
composed of two stages of capacitated production and fixed cost transportation activity between
them. They present polynomial time algorithms under various transportation cost structures and
capacity assumptions. An important difference between our model and theirs is the transportation
cost structure which has only one fixed component in their model, independently of the quantity
shipped. Hence this setup cost is charged by transportation period, not by vehicle.

We will now present the studies on the LSP with piece-wise costs. As far as we know, one of
the first studies on the integration of fixed transportation costs into the inventory control policy
was performed by Lippman (1969). The author takes into account a fixed transportation cost
associated to each vehicle sent, and a variable transportation cost which is assumed concave.
Holding and production costs are assumed to be non-decreasing functions of the amount stored
and produced. Under these assumptions, the author gives some optimal solution properties which
will be detailed in Section 4. We can point out as a significant difference with the model of Lippman
that we consider a production cost having both fixed and variable components. Swoveland (1975)
considers a single product, multi-period production planning model where production and holding-
backorder cost functions are assumed to be piece-wise concave. Some optimal schedule properties
and a dynamic programming algorithm are given using production (inventory) breakpoints which
are the endpoints of the intervals over which the production (inventory) cost functions are concave.

Akbalik and Pochet (2007) study the same structure analyzed in this paper making the same
assumptions on the capacity and cost configurations. Different from this paper in which we propose
polynomial time dynamic programming algorithms, Akbalik and Pochet (2007) use the polyhedral
approach in order to solve the mixed integer linear program associated to CLSP-SW in an efficient
manner. They propose a new class of valid inequalities derived from integer flow cover inequalities
by alifting procedure. They show that the addition of different flow cover inequalities together with
the new ones reduces very significantly the total number of nodes explored in a Branch&Bound
procedure and the total execution time. Pochet and Wolsey (1993) propose extended formulations
for the constant batch production problem. They study some cases where matrices are totally
unimodular. For the first case, the production capacity is assumed to be constant and a setup cost
is paid for each positive amount produced. For the second case, the production capacity in each
period is assumed to be multiple of some batch size and a fixed cost is generated for each batch
produced. In another paper, Pochet and Wolsey (1994) give the convex hull of the uncapacitated
LSP under Wagner-Within (WW?!) cost structure using the stock minimal solution (for which it is
optimal to produce as late as possible). The complete description of the convex hull necessitates
O(T?) x O(T) constraints and variables.

There are other studies focusing on the mixed integer linear programming (MILP) formu-
lations to solve the piece-wise linear cost LSP. Diaby and Martel (1993) study an arborescent,
multi-echelon distribution system to determine optimal purchasing and shipping quantities. They
consider general piecewise linear procurement cost and linear holding costs. They formulate the
problem as a MILP and propose a Lagrangean relaxation to solve it. Another study was done on
the staircase facility location problem by Holmberg (1994). The author formulates the problem as
a MILP and investigates solution methods based on convex piece-wise linearization and Benders’
decomposition. Chan et al. (2000) study the less-than-truckload shipments problem integrated
with production and inventory activities. The cost function is piece-wise linear and concave. They
model the problem as a concave cost multi-commodity network flow problem. They formulate it
as a MILP using a set-partitioning approach, and characterize structural properties. Chan et al.
(2002) study a special class of piece-wise linear ordering cost LSP, which they refer to as modified
all-unit discount cost function. This function arises when the transportation is done with less-than-
truckload carriers. It is a non-decreasing function of the amount shipped and the marginal cost is
non-increasing. They prove this problem to be NP-hard and give some performance guarantee on

For WW cost structure, producing and storing one unit in period ¢ costs more than producing it later.



the optimal cost.

We now present the studies using a dynamic programming approach. Lee et al. (2003) study an
integrated inventory replenishment and outbound dispatch scheduling problem. They consider a
structure composed of a manufacturer supplying a warehouse, which in turn delivers to downstream
distribution centers. In the first echelon transportation problem there is only one fixed cost, but
between the warehouse and DCs, each vehicle generates a fixed transportation cost. The authors
consider also pre-shipping and late-shipping penalties in their model. They propose a network
approach to solve the problem and propose polynomial time algorithms using some optimal solution
properties.

Li et al. (2004) study two variants of the dynamic economic lot sizing problem. In the first,
the production is restricted to a multiple of a fixed batch size, backlogging is allowed and all cost
parameters are time varying. A polynomial time algorithm in O(Tlog(T)) is proposed for the
latter, and a O(T) time algorithm is proposed for additional non-speculative motive conditions.
In the last setting, a general form of product order cost structure, which includes a fixed charge
for each order, a variable cost and a freight cost for each truck sent with a truckload discount
structure is studied. A polynomial time algorithm in O(T3log(T')) is proposed for the latter, and
a O(T?) time algorithm is proposed for additional non-speculative motive conditions.

Jin and Muriel (2005) study a system composed of one warehouse receiving a single product
from a supplier and replenishing the inventory of n retailers with direct shipments. The process of
ordering from the supplier and shipping to the retailers generates full truckload transportation costs
with cargo capacity constraints. Giving some optimal solution properties, they study decentralized
and centralized systems. In the decentralized system, each retailer and the warehouse decide how
and when to replenish independently. Authors propose an algorithm in O(nT?) with n being the
number of retailers. For the centralized system and single retailer case they propose an algorithm
with complexity in O(T?). They use Lagrangean decomposition to solve the multi-retailer model.

Shaw and Wagelmans (1998) provide a pseudo-polynomial time dynamic programming algo-
rithm with a complexity in O(T%gd) for the CLSP with piece-wise linear cost. In the equation,  is
the number of pieces in the production cost function and d is the average demand. For the classical
case where the production cost has only one setup component, the complexity becomes O(T2d)
with ¢ = 1. This is a significant improvement compared to the first pseudo-polynomial dynamic
programming algorithm proposed by Florian et al. (1980) with a complexity in O(T?Pd), where
P refers to the average production capacity. The improvement is achieved via a clever algorithmic
computation of the recursive steps. A detailed review can be found in Brahimi et al. (2006) on the
single-item LSP. The reader can refer to Pochet and L.A.Wolsey (2006) for a comprehensive liter-
ature survey, particularly for a detailed information on the mixed integer programming approach
to solve production planning problems. Among all these studies from literature, anyone makes the
same assumptions as ours. We describe in the following section the problem we study in detail.

3 Problem formulation

The problem consists in scheduling a single-item production to meet discrete and deterministic
demands d over a finite time horizon {1,...,7}. We consider a production capacity P; (eventually
P, = +00) at the plant where a batch production takes place. The batch size is denoted by B.
The aim is thus to propose a production planning which satisfies demands without backlogging,
with a minimum cost of production and storage.

A production schedule z, or a planning, is a vector of size T' corresponding to the amount z; to
produce each period. Hence a planning « is feasible iff (i) 0 < x; < P; and (ii) 22:1 Ty > 22:1 dy,
for all t € {1,...,T}. We consider the following general cost structures:

Production

Production cost p;(z) of producing the amount z at period ¢ includes a discrete and a continuous
part. The discrete part is composed of a setup cost p{ paid whatever the amount z > 0 and of a
fixed cost per batch p? paid for each batch produced. We call unit production cost the continuous
part p;* of the production cost, which is assumed to be concave with z.

X

51+ pa)

pr(z) = 1ign0y pf + 15[
We also assume that B, is lower than production capacity P;. Although natural, this assumption
can be raised for stationnary (constant) capacities. In this case, if B > P, one knows that the
problem becomes polynomial (see Florian et al. (1980)).



Figure 1 gives the shape of production costs for the classical CLSP and CLSP-SW studied in
this paper. Notice that p; appears as a function on [0, B;] duplicated with a vertical step of p!
every B, units. The resulting function is not concave even if p} is, but step-wise concave, possibly
with discontinuity every B; units. When the unit production cost p} is linear, p; is said to be
step-wise linear. In what follows, we first restrict our attention to step-wise concave costs to derive
dominant properties. Then we propose polynomial time algorithms for the case of step-wise linear
production costs.

Figure 1: Shape of the costs for classical CLSP and CLSP-SW for a given period.

Storage

To a planning x, one can associate the auxiliary vector s = (s1,...,s7) where s; denotes the
inventory level at the beginning of period t. The classical material balance equation writes down as
St41 = S¢+x¢—d;. We consider wlog that initial and final inventory levels are zero (s; = spy1 = 0).
Thus, condition (ii) can be replaced by (ii’) s; > 0. There is no capacity limit on the inventory
level. The cost to keep quantity s in stock from period ¢ — 1 to t is hi(s). Wlog we assume h > 0.

The problem is then to find a production schedule (21, ..., z7) minimizing :

Z pe(@e) 4+ he(se)

t=1
respecting the production capacity :
OS.’L‘t SPt Vt=1,7T

and the classical inventory flow conservation :

St+1:St+l’t7dt Vt:1,7T
81:ST+1:0
s¢ >0 Vt=1,...,T

We will now introduce some dominance properties for the purposes of developing polynomial time
algorithms under various assumptions.

4 Dominance properties

Dynamic programming approaches for LSP are based on decomposition properties on the inventory
level in order to apply sub-optimality principle of Bellman. Indeed, if in a certain optimal produc-
tion schedule the inventory level has a value of s in period ¢, the problem can be decomposed into
two parts: Finding the best planning between 1 and ¢ with a final inventory level s, and finding
the best planning between ¢ and T' with an initial inventory level s. In this setting, regeneration
points introduced by Manne and Veinott (1967) play a central part (see this definition in Florian
and Klein (1971)). For a given planning, a period ¢ is said to be a regeneration point if its initial
inventory is zero, i.e. s; = 0. Florian and Klein (1971) define a subplan as a sub-sequence of
production between two consecutive regeneration points.

Definition 1 (Subplan) Given a planning, a sub-sequence of production on periods u,--- ,v — 1
is a subplan, denoted S (), if 5. =8, =0, and sy >0 for allt =u+1,--- v —1.



Notice that at least 2 regeneration points exist in any planning, since s; = sy11 = 0. Florian
and Klein (1971) use the notion of subplans to decompose the time horizon into sub-sequences
which start and end with zero stock. The optimum can then be computed in O(T?) as a shortest
path problem, given the costs of the O(T?) possible subplans. To efficiently compute the optimal
planning on a subplan, Florian and Klein (1971) introduce the following definition:

Definition 2 (Capacity constrained subplan) A subplan is capacity constrained if it contains
at most one period with a production neither null nor at production capacity.

Assuming concave unit production costs, Florian and Klein (1971) prove the following charac-
terization property:

Property 1 (Florian and Klein (1971)) When cost functions are concave, a planning belongs
to the set of extreme points of solutions if and only if it can be decomposed into capacity constrained
subplans.

This property can be seen as a generalization of the ZIO dominance property used by Wagner
and Whitin (1958) to design their algorithm. Recall that ZIO (Zero Inventory Ordering) policies
consist in ordering only when inventory level drops to zero. A similar property has also been stated
by Lippman (1969) as regeneration point property. Notice that Florian and Klein (1971) consider
no step-wise production cost, contrary to Lippman who in turn considers no production setup
cost. We now demonstrate with a simple example that Property 1 does not hold when considering
step-wise production costs.

Example 1 Consider a time horizon of 3 periods with demands (1,2,3) to satisfy. Production
capacity 1s 3 and batch size is 2 units. Set-up costs are set to 2 for production, and 5 per batch. A
unit holding cost of 0.5 is paid per product and per unit of time. Other costs are null.

- B E 3 E
o @

t

3 t ¢! 2
planning (a) planning (b)
X A X A
P=3 P=3
I:l ] H > | B >
@ 2 3 t 1 2 3 t
planning () planning (d)

Figure 2: Best capacity constrained planning for each subplan decomposition in Example 1.

Clearly there exist 4 possible subplan decompositions: (1)(2)(3), (1-2)(3), (1)(2-8), (1-2-8). In
the first one, each period forms a subplan; in the second, the first two periods 1 and 2 constitute a
subplan, etc. The best capacity constrained plannings associated to each decomposition are given in
Figure 2. In fact there is only one possible capacity constrained schedule for each decomposition.
Their costs are respectively: (a) 26, (b) 25, (c) 26.5, (d) 26.5. Hence the best planning respecting
the capacity constrained property for the instance is (b). However the optimal planning consists
of producing 2 units at each period, resulting in a cost of 22. This example shows that capacity
constrained subplans are not dominant with step-wise linear production costs.



Notice that in the example, the optimal solution has only one subplan, but with 3 periods with
production not at full capacity. With step-wise production costs, Property 1 is not verified any
more due to the fact that it can be preferable to produce only full batch sizes to save fixed cost
per batch instead of saturating the production capacity. For CLSP-SW we introduce the following
definitions on production levels:

Definition 3 (Saturated and fractional periods) For a given planning, a period t is said to
be:

e P-saturated if production is at full capacity (xi = P;)

o B-saturated if production corresponds to the maximum number of full batches, without any
fractional batch (xy = |P./Bi|B:)

o Fractional, if there exists a fractional batch (v; mod B # 0 and x; < P;)

e FBS (Fully Batch Size) finally if the period is neither P-saturated, B-saturated, null (zero
production) nor fractional. This corresponds to a production of only full batches (x; mod By =

0).

Let us remark that in a fractional period an empty space remains in a batch as well as an
unused production capacity. Hence, at least one more unit can be produced with no additional
fixed cost. This situation should be quite rare in an optimal schedule, which is expressed formally
in Property 2. First, we introduce the following definition which generalizes Definition 2:

Definition 4 (Batch Constrained Subplan) A subplan is batch constrained if it contains at
most one fractional period.

The following property generalizes the property of Lippman (1969) which assumes only fixed
transportation costs (in CLSP-SW, fixed transportation cost corresponds to the fixed cost per
batch). It stands that between two consecutive regeneration points, there is at most one fractional
batch production.

Property 2 (Decomposition Property) When production costs are step-wise concave, there
exists an optimal planning which can be decomposed into batch constrained subplans.

Proof. We use an interchange argument to prove the property. Consider an optimal schedule
7, containing a subplan S(,,) with two fractional periods ¢’ and t”, t" < t”. By the definition of a
subplan, the inventory levels s; at the beginning of each period ¢ € [t'+1,t"] is strictly positive. We
will compare the cost of anticipating a part of the production of ¢’ at ¢’ with the cost of delaying
a part of the production of ¢’ until ¢”.

Let us denote by Ap;(x) the marginal cost of producing one extra unit at period ¢ in surplus of
an amount x, i.e. Api(x) = pi(x+1)—pi(x). In a similar way we denote Ahyp(s) to be the holding
cost incurred by one additional unit in stock from the end of period a till the beginning of period b.
While p and h remain concave (i.e. while no new fixed cost appears or disappears), these functions
are non-increasing. Now let us introduce Af(q) = Apy (xy +q)+ Ay (Sp41+q) — Appr (e —q—1).
From the preceding statements, A f(q) is a non-increasing function of ¢ while no setup costs appear.
It represents exactly the overcost induced by anticipating one unit from ¢’ to ¢/, knowing that ¢
units have already been anticipated compared to planning .

e If Af(0) < 0, then it is more economical to transfer one unit from ¢” to ', keeping it in
stock between the two periods. Such a planning is feasible since ¢’ cannot be P-saturated
(t' is a fractional period). Its cost has decreased by at least —A f(0), which contradicts the
optimality of 7.

e If Af(0) > 0, then it is more economical to delay one extra unit from period ¢’ to ¢t”. Such
planning is feasible since the inventory level is strictly positive between ¢’ and ", and t”
cannot be a P-saturated period (¢’ is considered a fractional period). The resulting sched-
ule cost has decreased by at least Af(0) (possibly one setup inventory cost may disappear
between ¢’ and t”), which contradicts the optimality of 7.



Thus, we must have A f(0) = 0. Both transformations do not affect the cost of the schedule. We
chose to apply the first transformation by anticipating one production unit at period ¢'. However,
since Af is non-increasing, Af(¢q) < 0 for ¢ > 0, and thus we can anticipate a second, a third,
... unit, until a setup cost appears or the planning becomes infeasible. Since the inventory level
is strictly positive between ¢’ and t”, such a setup appears when the fractional batch at period '
becomes full. Thus, we can anticipate up to the amount ¢ = min{By — (zy mod By ), xy, Py — x4 }.
At this time, either ¢ or ¢t” is not any more a fractional period in the new planning. Repeating
this process, we can then transform 7 into another optimal schedule that verifies the property. O

We now introduce another dominance property inspired by Baker et al. (1978) who states that
there exists an optimal planning such that for each period ¢, s;(P; —x¢)x; = 0. This property means
that if the inventory level at the beginning of period ¢ is strictly positive, the production is either
null or at maximum capacity. Baker demonstrates this property with time varying production
capacity and setup costs, but stationary linear production and holding costs. Bitran and Yanasse
(1982) have extended this result to linear functions non-increasing over time. We generalize this
dominance to step-wise linear functions (linearity is based on the quantities) non-increasing over
time:

Property 3 If the unit production cost py is linear (function of the quantity produced) and non-
increasing over time, then there exists an optimal schedule which verifies for each period t

St(Pt — zt)(xt mod Bt) =0

As a consequence, if the inventory level is strictly positive, period ¢ cannot be a fractional period.
Hence a fractional period can only appear as the first period of a subplan.

Proof. We will show how to transform an arbitrary planning into a planning of lower cost
which verifies the property. Let m be an optimal planning, and consider ¢ to be the latest period
such that s; > 0, z; mod B # 0, and z; < P;. Let us write ¢ = x; mod B; the fractional batch
size.

Consider one unit in stock at the beginning of period ¢. This unit has been produced at the
first preceeding period t' such that zy > 0 (we can assume that the demand is satisfied using the
first-in-first-out principle, i.e. production at a period is assigned to the first unsatisfied demand).
Notice that, inventory level can only decrease between t’ and t.

If we transfer this production unit from ¢’ to ¢, then the resulting planning remains feasible:
stock levels are positive or null, and production capacity at ¢ is necessarily respected (¢ was not P-
saturated). When we compare costs, no additional setup cost appears, since a setup for production
and for batch is already paid at t for ¢q. The variable part can only decrease due to the linear and
non-increasing cost assumptions over time. Finally, holding cost also decreases, as one unit less is
stored between t’ and .

Hence, we have obtained a better planning. We can then repeat this transformation, till the
planning becomes infeasible or a setup cost appears. This corresponds to delay an amount of
min{B; — q, P; — ¢, 51} at period t. In each case the new schedule verifies the property for period ¢.

Delaying the production of a part of s; at period ¢ may create new periods which do not satisfy
Property 3. However such periods can only appear before t. We can therefore repeat this process
on the new latest fractional period with positive stock, till the beginning of the planning is reached.
It shows that we can transform any schedule to verify the property on a sub-sequence 1, ..., ¢ with-
out modifying the end of the schedule on ¢+1,...,T. We will use this fact for proof of Property 4. O

Notice that we only require the unit production costs py' to be non-increasing over time, without
making any assumption on the fixed cost per batch. Indeed no new setup cost is involved in the
transformation. As a corollary, if the fixed costs per batch are non-increasing over time and
assuming that the batch sizes are stationary, we have the following property:

Property 4 If unit production cost py' is step-wise linear and non-increasing over time and By = B
is stationary, then in addition to Property 3, there exists an optimal schedule which verifies for
each period t,

St Z B = It(Pt - Z't)(LPt/BJB - l’t) =0

The property implies that if the inventory level is higher than the batch size, then the production
can only be null, P-saturated or B-saturated.



Proof. We consider an optimal planning verifying the Property 3. Again, we use a simple
interchange argument. Consider the latest period ¢t of a schedule m which does not verify the
implication: s; > B while the production at period ¢ is neither null, nor saturated. As inventory
level is strictly positive, ¢ must be an FBS period due to Property 3. Let ¢’ be the last period
preceeding ¢ where production occurs (zy > 0). We now show that we can delay a full batch from
t’ to ¢t without increasing the cost of the planning.

First notice that at least B units are produced at time ¢'. Indeed, if inventory level sy is strictly
positive, Property 3 again imposes that at least a full batch size is produced. Otherwise sy = 0
and we necessarily have xv = dy +--- 4+ dy + s; > s¢ > B.

We can therefore delay B units from ¢’ to ¢ maintaining the feasibility of the schedule: inventory
levels between ¢’ and ¢ are greater than s; and hence greater than B, and an additional batch can
always be produced in an FBS period without violating production capacity constraint. This
interchange can only decrease the cost of the schedule, due to the linear and non-increasing over
time assumptions: it is always more economical to delay the production of a full batch size to a
period whose setup production cost is already paid.

Notice that since exactly a quantity B has been delayed, period ¢ remains an FBS period, and
hence still fulfills Property 3. It may be a different matter for period t' if it was P-saturated in
the planning. However, in this case we can modify the new schedule only on sub-sequence 1, ... ¢
such that it verifies Property 3 (cf the proof of this property).

Repeating the transformation leads to either a B-saturated period at ¢, or to a drop in the
inventory level s, below B, verifying the property at t. We then iterate the same process on
previous periods till the beginning of the schedule is reached. O

Sub-intervals

In order to efficiently detect FBS periods in a subplan, we introduce the notion of sub-interval. Let
us assume that the batch size is stationary, B; = B. As a result of Property 4, the periods with an
inventory level lower than B play a particular role. This role is analogous to that of regeneration
points when no fixed costs per batch are involved. Indeed only 3 production possibilities exist for
other periods with an inventory level greater or equal than B, namely 0, P; and |P;/B|B. We
define, similarly to Definition 1, a sub-interval as follows:

Definition 5 (Sub-interval) Given a planning, a sub-sequence of production on periodsk, - -- , f—
1 is a sub-interval, denoted Siiys), if sk and sy are strictly lower than B, and s, > B for all
t=k+1,---,f—1.

Notice that a sub-interval is necessarily included in a subplan. We denote a sub-interval S(,
when inventory level is null at u, i.e. u is the begining of the subplan. The same notation stands
for Sy, with v the end of a subplan.

We assume throughout the paper the additional assumptions of Property 4:
e B, = B is stationary.

e p; is a step-wise linear function of the quantity produced, non-increasing over time. Fixed
production cost ptf can take arbitrary positive values.

e h; is a non-decreasing concave function of the quantity stored, for each period t.

Instead of making the last two assumptions, one can also say that the variable part of the
production cost is based on Wagner-Whitin (WW) cost structure. For WW cost structure, pro-
ducing and storing one unit in period ¢ costs more than producing it later. This assumption is
often referred to as the absence of speculative motive for early production. Under these assump-
tions, we have the following corollary of Property 4, underlying the similarity between subplan and
sub-interval:

Corollary 1 (Fractional & FBS periods) Fractional periods can only take place at the begin-
ning of a subplan, while FBS periods can only take place at the beginning of a sub-interval.

In next section, under these assumptions, we present a polynomial time algorithm to find an
optimal planning for the uncapacitated case. Then, assuming a stationary capacity P; = P, we
propose two other polynomial time algorithms in Section 6.



5 Polynomial algorithm for uncapacitated production

In this section we consider an uncapacitated production, P; = +oco. With step-wise linear pro-
duction costs, the best ZIO policy found by Wagner and Whitin (1958) is no more necessarily
optimal. We illustrate in the following example the fact that ZIO policies are no more dominant
with step-wise cost structure.

Example 2 Consider 3 periods with demands (4,10,7) to meet (see Figure 3). The batch size is
3 units and generates o fized cost of p® = 4. Production set-up cost is p! = 2, and holding cost
is linear, with a unit cost of h = 0.5. All other cost parameters are null. The best ZIO planning
(computed using Wagner- Whitin’s algorithm) is (4,17,0), with a cost of 39.5. However the optimal
cost (computed using a MILP formulation with ILOG Cplex Solver) is 35.5, realized by the planning
(6,9,6).

x
17 ]
d 4 ] X
10 ] -
| 9 |
7 L
] 6 ]
4 4 N N
t "t Tt
demands to meet best ZIO planning, cost=39.5 optimal planning, cost=35.5

Figure 3: Non-optimality of ZIO policies in Example 2.

The search for an optimal schedule will be based on the decomposition of the time horizon into
batch constrained subplans. We will use the notion of sub-interval introduced in Section 4 in order
to compute efficiently such an optimal schedule. We first rewrite the different properties presented
in Section 4 for the uncapacitated case.

5.1 Structure of an optimal solution
With infinite production capacity, Properties 3 and 4 can be rewritten simply as follow:

Property 5 If production is uncapacitated, then there exists an optimal schedule, such that, for
any t
st(zy mod B) =0 and s; > B=2;=0

Indeed, saturated periods are not possible any more with P, = 4oco0. Hence we have a quite
simple situation, where production can only occur at the beginning of a sub-interval, i.e. when
inventory level is lower than B. This property generalizes the dominance of ZIO policies for concave
cost functions, for which production can only occur at the beginning of a subplan, cf Figure 4.
Notice that regeneration points still have a particular role, since they are the only periods when a
fractional production can happen. As a consequence, we can compute easily the inventory level at
the beginning of each sub-interval:

Property 6 The inventory level at the beginning of a sub-interval Sjy), included in a subplan
S(uv), 18 given by

. { 0 if k= (k is the beginning of the subplan)

S, =
» ( f:_kl d;) mod B otherwise

10



Z10 policy (u [k ] V)

Figure 4: Inventory levels in an optimal solution.
Comparison of inventory level evolution of an optimal policy with concave cost functions (left) and with step-wise linear

cost function (right). Regeneration points are marked with black dots on the time axis.

As underlined by the notation, this inventory level only depends on the next regeneration point v.

Proof. By definition of a subplan S,,), the inventory level at the beginning of each period,
except u and v, is strictly positive. Property 5 implies that there exists an optimal planning 7 where
only FBS production can take place inside the subplan. If we write inventory flow conservation in
Zg, we have 5141 = §; — d; [B] since Z; = 0 mod B. Summing up these equations between periods
k and v we immediately get s, = 5, + Zf:_kl d; [B]. As 5, = 0 by definition of a subplan, we know
the value of s, modulo B. By definition of a sub-interval, 5, must be equal to §; mod B, which
gives the expected formula. O

As a corollary, using again inventory flow conservation, we can deduce the amount of production
at the beginning of a sub-interval:

Corollary 2 The production at the beginning of a sub-interval Sjy), included in a subplan S,.),
is given by Ty = Zf:_kl dy + §} —5}. This quantity is o multiple of B if k is not the beginning of
the subplan.

To synthetise the different dominances, we give in Figure 5 the structure of a batch constrained
subplan for the uncapacitated production case. We have only sketched the different levels of
production possible at each period, without giving a complete list. We develop in the next section

LTL

FTL

(u no production V)

Figure 5: Structure of a batch constrained subplan for P = +oc.
In the figure, (uv) denotes a subplan and [kf] a sub-interval. We have represented the different types of production that

are possible at each period.
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a dynamic programming algorithm to find an optimal schedule in time complexity O(T?), based
on previous dominance properties.

5.2 Dynamic Programming Algorithm

The principle of the algorithm, quite classically, is to compute the minimum cost Z7,(u, v) associated
to each possible batch constrained subplan S, .). Using the decomposition property 2, the cost of
an optimal schedule can then be computed in O(T?) by a shortest-path like dynamic programming
algorithm. The computation of the optimum cost of a subplan relies on the notion of sub-interval.
Our approach takes advantage of the dominance properties proven in the previous section to focus
our search on the periods having an entering inventory level less than the batch size B. The reason
is that these periods are the only ones which can have a positive production quantity (Property 5).

Consider that u and v are two consecutive regeneration points, and let S5 be a sub-interval
inside this subplan. As stated by Property 6 and Corollary 2, the production planning in the
sub-interval S|, is entirely known for a certain optimal planning, since it depends only on v. Let
us denote by C”[k, f] the cost of this optimal planning on the sub-interval S}, s}, assuming v as the
next regeneration point. This cost includes production at period & plus inventory holding till the
beginning of period f. The way to compute efficiently in O(v?) the costs C’[k, f] of all possible
sub-intervals for a fixed regeneration point v will be detailed in Algorithm 2.

To compute dynamically Zj;(u,v), we introduce Z}[k,v) the cost of an optimal planning be-
tween the first period k of a sub-interval and v, the next regeneration point. If we know that the
sub-interval ends at period f (possibly f = v), since the planning is fixed by v on S} ¢}, Bellman’s
sub-optimality principle applies and we have Z*[k,v) = CV[k, f]+ ZX[f,v). Figure 6 gives a picture
of these different notations. Hence we can compute dynamically Z*[k,v) based on the recursive
equation:

Zi[k,v) = min{ C°[k, ]+ Z[f,v) | k< f<wv}

Similarly to the computing of C*[k, f], we can compute C”(u, k], the cost of the first sub-interval of

[k fl v) ot
CV[Kf] Z% [f.v)

Z* [k,v)

Figure 6: Dynamic computation of Z7[k,v).

the subplan, simply changing the initial inventory level condition (i.e. s¥ = 0). Hence we get the
equation Z%,(u,v) = min{ C"(u, k| + Z}[k,v) | u < k < v }. The different steps of the computation
of Z},(u,v) are summarized in pseudo-code in Algorithm 1. In the last step, the cost of an optimal
schedule OPT'[u] on sub-sequence u,...,T + 1 is dynamically computed as a shortest path in the
graph where nodes are the regeneration points and arcs are weighted with the cost Zj;(u,v) to

pass from node u to node v.
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Algorithm 1 Principle steps of the algorithm for P = +o00
INPUTS: An instance to schedule
OUTPUT: The optimal planning cost
for v =1 to T'+ 1 do {Computation of the array Z}, of Z};(u,v) costs}
C" «— SUBINTERVALS(v) {Algorithm 2 provides the array of all C*[k, f] for k < f < v}
for k = v downto 1 do {Computation of the array Z* of all Z*[k,v) costs}
Zz[k) = ming_pn,...o{ C°lk, £ + Z:1f] }

end for
C% «— FIRSTSUBINTERVALS(v) {Provides the array of all C"(u, k] for u < k < v}
for u = v downto 1 do {Computation of Z}[u,v] for u=1,...,v—1}
Zu, v] — ming—yy1,.. o{ Chlu, k] + Z¥[k] }
end for
end for

for u = T downto 1 do {Computation of the optimal cost OPT'[u] on sub-sequence u, ..., T+1}
OPTu] « miny—yy1,.74+1{ Z5[u,v] + OPT[v] }

end for

return OPT[1]

.....

Determination of C'[k, f].

We detail how to compute the cost C"[k, f] of each sub-interval S}, ;) when the next regeneration
point v is fixed. Algorithm 2 SUBINTERVALS is based on the following remark: In a dominant
planning, constituted of batch constrained subplans, the inventory level at the end of a period t in
a sub-interval (k < t < f) is independent of the production periods anterior to t. Indeed, since
production can take place only at the first period of a sub-interval, the stock level at the end of
t, St+1, must be equal to Zj:_tlﬂ dj + s} whatever the production periods anterior to ¢. This
property allows us to compute efficiently the inventory holding costs of sub-intervals. Let H(t) be
the total holding cost between the end of period ¢ till the beginning of period f of a planning with
no production on sub-sequence t + 1,..., f — 1, ending with inventory level §'} Imagine that the
value of H(t + 1) has already been determined. From what precedes, to compute H (t) knowing
H(t + 1), we only need to add the cost of keeping in stock a quantity §;y; = Z]f.:—tlﬂ dj + 5%
between periods t and t + 1. Hence we have for ¢t < f — 1:

f—1
H(t) = he(3e1) + H(t + 1), with § = > d; + 5} = 5141+ ds
j=t

with the initial conditions H(f) = 0 and 5y = 5%. Memorizing the inventory level 3;, the com-
putation of H(¢) can be done in time O(1). We assume that arithmetic operations to determine
p(xz) or h(x) for a quantity 2 can be done in constant time. The cost CV[k, f] of the sub-interval
can then be decomposed into the production cost pi(Zx) at period k, plus the holding costs H (k).
Since Ty = Tpq1 +di + 5}, — 5}, and 5}, = (8], + di) mod B, memorizing these values from the
previous step allows again to compute cost CV[k, f] in constant time knowing the value of H (k).
Figure 7 illustrates the computation of CV[k, f]. Algorithm FIRSTSUBINTERVAL for computing the
cost of all first intervals of the potential subplans (i.e. all S(, ;) for u < k < v) is similar, except
that inventory level ¥ is null by definition, which changes only the expression of z,,.

Complexity Analysis.

Finally we provide a complexity study in time and space of each step of Algorithms 1 and 2.
For a given v, the time and space complexities to determine the cost of all sub-intervals C?[k, f]
and C"(u, k] are in O(v?). Indeed, by maintaining the different values 5V, Z, 5 of the schedule, the
determination of H (k) and C”[k, f] only requires O(1) arithmetic computations.

The quantities Z7[k,v) and Z%(u,v) are then dynamically computed in time O(v?) and space
O(v) for all k,u < v: for a given k or u, the computation consists in the search for next sub-interval
period f among k+1,...,v minimizing the cost. Hence the overall computing of Z7,(u,v) for all
potential subplans can be done in time O(T?) and in space O(T?). The last step being clearly
negligible in comparison, in total the algorithm complexity is in O(T®) time and O(T?) space.
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Figure 7: Illustration of C¥[k, f] computing.

Algorithm 2 SUBINTERVALS
INPUTS: v, the next regeneration point
OUTPUT: C, a 2 dimensional array containing costs C[k, f] for each sub-interval Sy,
Initialize 5% < 0
for f = v downto 1 do
Initialize H[f] < 0, § < 5% , Tk, 5}, {5 is the current inventory level}
for k= f — 1 downto 1 do
H[k] < hi(3) + H[k + 1] and Clk, f] < pr(Zx) + H[k]
Update § «— 5+ di, T, S},

end for

Update 8% « (8} + dy) mod B
end for
return C

6 Polynomial time algorithms for constant capacitated pro-
duction case

We have proposed in Section 5 a polynomial time algorithm in O(T3) for the uncapacitated produc-
tion case. We consider in this section a constant production capacity (P, = P). Compared to the
uncapacitated case, difficulties arise as production periods are now possible inside a sub-interval.
Figure 8 gives the production structure of a batch constrained subplan, based on Properties 3 and 4:
inside a sub-interval, only saturated periods can be encountered. The entering inventory level s}
and the production T}, at the beginning of a sub-interval now depend on the number of P-saturated
and B-saturated periods in the subplan. We will use the following notations:

Pla,p) : number of P-saturated periods on sub-sequence a,...,b— 1 for a given schedule.
V[q,p) : number of B-saturated periods on sub-sequence a,...,b— 1 for a given schedule.

We also denote by @ = | P/B|B the production quantity of a B-saturated period. We first present
a polynomial time algorithm in O(T*) for the special case when the production capacity P is a
multiple of the batch size B. We then propose a polynomial time algorithm in O(7'®) for the general
case with no assumption on the value of P. Similar to the previous section, these algorithms are
based on the decomposition of the planning into batch constrained subplans, decomposed in their
turn into sub-intervals. The computation of the cost of sub-intervals constitutes hence the heart
of our approach. We use the same idea of splitting this cost into the production cost at period &
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Figure 8: Structure of a batch constrained subplan with stationary production capacity P.
In the figure, (uv) denotes a subplan and [kf] a sub-interval. We have represented the different types of production that

are possible at each period.

plus the cost inside the sub-interval, where dominant schedules have a very simple structure, with
only a constant number of potential production levels.

6.1 Case with P multiple of B

In this case P-saturated and B-saturated periods coincide and we have Q = P. As a consequence,
all production quantities inside a subplan are multiple of the batch size. The expression of the in-
ventory level 5} remains hence unchanged compared to the uncapacitated case: si has to represent
exactly the total demand until the next regeneration point modulo B. However the production
quantity at period k depends on the number of B-saturated periods in the sub-interval. Using the
inventory flow conservation on Sy ), we have:

f—1

T + Vg1, Q = Zdt + 55— g
t=k

Let us remark that the number 9y, 5 of B-saturated periods is (almost) fixed for given inventory
levels s; and si. Indeed let us denote by (g, ) the quotient and the rest of the Euclidean division of
the right side of the previous equation by Q. If x;, < @, we have by definition (J(x41,4), 2) = (¢, 7).

Otherwise we have r;, = Q, r = 0 and Y311 5] = ¢ — 1. Hence the number ;5 in a dominant
schedule is given by |( {;kl di + 5% —53)/QJ. We can state the following proposition:

Proposition 1 The production at the beginning of a sub-interval S|y, included in a subplan S(,.),
depends only on periods f and v, and is given by

N ( f:_kl di + (/S\l‘; — :9\%) mod @)  if this quantity is not null (FBS period)
0or@ otherwise (no production or B-saturated period)
0 if kK = wu (k is the beginning of the subplan)

with 5} = o1
( t—k dt) mod B otherwise

In addition we must have Ty, + 5}, > dj, for the planning to be feasible.

Algorithm 1 to compute the cost of subplans remains unchanged, since the entering inventory
of a sub-interval is still entirely determined by the next regeneration point. On the contrary, we
need a new way to compute the cost C[k, f] of sub-intervals. Notice that with the possibility
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of having production inside the sub-interval, the inventory level at a period ¢t (k < t < f < v)
now depends on the number of saturated periods between t and f. Let us denote by $:(J) the
entering inventory level at ¢ if exactly ¥ B-saturated periods occur in ¢,..., f — 1. Inventory flow
conservation gives:

-1
5(9) =) di+5; - 9Q
i=t
Let us introduce G(t,?) the minimum cost of a planning between the end of period ¢ till the
beginning of period f, such that exactly ¥ B-saturated periods occur in sub-sequence t+1,..., f—1,
with no other production, and the final inventory level at f is §’J”c In addition we require that the
inventory level at each period is greater than B. Due to our dominances we clearly have

p(@r) + Gk, Vi p)) if 7, < Q
P(Q)+ Gk, Uy — 1) ifzp=0Q

For fixed f, the computation of all C*[k, f] can be achieved in linear time by a backward iteration,
since quantities 7 and ;¢ can be clearly deduced from their values at & + 1 in constant time.
This stands, of course, if G(t,9) are precomputed first for all values t = 1,...,f — 1 and ¢ =
0,...,f —t— 1. Since only 2 production levels are possible (0 or @Q)), we can express recursively
this quantity with the simple equation:

Clk, f] = min{

Gt +1,9) if 5141 (9) > doga

// no production at t + 1

Pey1(Q) + G+ 1,9 = 1) if 5,11 (0 — 1) > di1
// t+ 1 is B-saturated

+00 if s141(Y¥) < B and t+1<f

// not valid

G(t,9) = hy(31+1(9)) + min

As initial conditions we have G(f,0) = 0 and G(f,?¥) = +oo for ¢ > 0. Since §; can be deduced in
constant time from §;41, for given f and v, one can compute G for all ¢t and p with a complexity in
O(T?). Tt results that for a given regeneration point v, the computation of the cost of all the sub-
intervals before v take a time complexity in O(T?) for a space in O(T?). The overall complexity
of Algorithm 1 becomes hence in time complexity O(T*) and space complexity O(T?).

6.2 General Case

In this case, the periods inside a sub-interval can be either with no production, B-saturated or
P-saturated. These latter periods (P # Q) are not multiple of batch size B, and thus the entering
inventory level of the sub-interval will depend on them. Let us denote by pj,) the number of
P-saturated periods on the sub-sequence k, ..., v — 1. The inventory flow conservation can be
written now as:

<v

0 if k = u (k is the beginning of the subplan)
Sk (p[kv)) =

(X4 di — ppwyP) mod B otherwise

Consider a sub-interval S|y included in a subplan S(,.). Since inventory level at period k is
function of the number of P-saturated periods till next regeneration point, the cost C[k, f] is no
more entirely determined by v. For given py; . and pis,), we can compute inventory levels sy
and sy and thus decompose the problem into computing the best planning on the sub-interval
respecting those inventory levels. Let us note C*[k, f](p[x, ], P[f,v)) the minimum cost of a schedule
on the sub-interval that admits exactly p(; s P-saturated periods on S5 and p(y.) P-saturated
periods on sub-sequence f,...,v—1. In such a schedule, production at period k corresponds to the
total demand in sub-interval Sy, s which is not satisfied by saturated periods (neither P-saturated
nor B-saturated), knowing that the entering inventory is 57 (pjrs) + p[f,»)) and the final inventory
at fis s}(p(s.)). With material balance constraint we have only 3 possibilities for z:

P (kis P-saturated
Zp =< @ (kis B-saturated
(Z{;kl dy +53(pi10) = 5K (Pks) + PLf0)) — P[kf]P) mod @

), or
), or
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with the additionnal constraints to fullfill the demand at k, and to be a multiple of B if not the
be§inning of the subplan. We denote for short by ; the quotient in the Euclidian division of
th_kl di +3%(p11.0)) — 33 (Plkv))) — Ples1 P by Q- Based on the 3 potential productions at k, we then
have the formula:
F(k,@—l,p[kf]—l) if%k:P
Clk, (o, g1s Pip0) = Dr(@x) + min$ F(k, 9 — 1, ppy) if 7, = Q
F(k,9, pirg) otherwise
where F(t,9,p) is the minimum cost of a planning from the end of period ¢ till the beginning
of period f, with no fractional nor FBS periods, but with exactly 9 B-saturated periods and p

P-saturated periods. The inventory level at each period must be greater than B and the final
inventory at f must be E}(p[ f,v)). Notice that the inventory level at period ¢ is hence equal to the

quantity §.(¢, p) = Z{;} di +5%(pf.v)) —¥Q — pP. We have the following recursive expression for
F:

Ft+1,9,p) if 5119, p) 2 di1a

Pe+1(Q) + F(t+ 1,9 = 1,p) if 5:1(0 — 1,p) > di1
De(P)+ F+1,9,p— 1) if Si41(9,p = 1) = dyg

F(t,9,p) = hi(se41(0, p)) + min

For given f, v and p[f,v), computing F for all possible triplets (¢, v, p) is achievable in time O(T3),
since §; can be deduced in constant time from preceeding values. The time complexity of algorithm
SUBINTERVALS becomes in O(7) in order to compute all possible costs C’[k, f] (Plk,f]> P1#,0]) Of sub-
intervals for a given regeneration point v. The space complexity is simply in O(7?) to store each
value.

The recursive formula to compute Z7 [k, v)(p), which is the optimal planning cost over k,...,v—
1 with exactly p P-saturated periods is given by:

Z:[k,v)(p) = min glki;]l{ C*lk, fl(pw,p1p = Piie,s) + Z5[f,0) (0 — P py) 3

The computation of all these costs for a given v can be done in space O(T?) and time O(T*), if
costs C”[k, f] are provided. The optimal cost of the subplan S, is then:

Zp(u,v) = min{ Zg(u,v)(p) }

wich requires a complexity in O(T?) time to determine these values for given u and v. In total,
the algorithm has a time complexity in O(T°) for a space in O(T?).

7 Conclusion and perspectives

In this paper we have presented polynomial time algorithms to solve the single-item lot sizing
problem with step-wise costs for the uncapacitated and constant capacitated cases. In order to
find polynomially solvable exact algorithms, we made additional assumptions on the production
and holding costs. The particularity of our model lies in the production cost structure which is
assumed to be equal length step-wise due to the fixed costs per batch. The discontinuities in the
cost function makes the lot sizing problem more difficult to solve.

We introduced several dominance properties inspired from those already existing in the liter-
ature. Based on these properties, we have proposed three polynomial time algorithms under the
assumptions of constant production capacity and constant batch sizes and also linear and non-
increasing over time production costs. In Table 1 we give time and space complexities of the three
dynamic programming algorithms presented in this paper.

Table 1: Complexities of the polynomial time dynamic programming algorithms.

Assumptions Complexity (time) Complexity (space)

b g P =+o00 o(T?) O(T?)
, B=constant, — 1 5
b, NI and lineqe P m0d B=0 o) o(1?)

P arbitrary O(T") O(T®)
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Without any additional assumptions on the cost structures, the same problem with constant
production capacities, constant batch sizes and concave costs has a complexity still open. It
is clearly an interesting question to determine if the problem becomes AP-hard with step-wise
concave costs. The problem is also open for step-wise linear costs but with variable capacities.
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