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Abstract In this paper, we propose an optimal algorithm for the Multiple-choice
Multidimensional Knapsack Problem MMKP. The main principle of the approach is
twofold: (i) to generate an initial feasible solution as a starting lower bound, and (ii) at
different levels of the search tree to determine an intermediate upper bound obtained
by solving an auxiliary problem called MMKPaux and perform the strategy of fixing
items during the exploration. The approach which we develop is of best-first search
strategy. The method was able to optimally solve the MMKP. The performance of the
exact algorithm is evaluated on a set of small and medium instances, some of them
are extracted from the literature and others are randomly generated. This algorithm is
parallelizable and it is one of its important feature.

Keywords Combinatorial optimization . Branch and bound . Sequential algorithm .

Knapsack

1 Introduction

In this article, we are concerned with a more harder variant of the knapsack prob-
lem KP: the Multipe-choice Multidimensional Knapsack Problem namely MMKP.
MMKP is an NP-hard optimization problem (as a generalization of the single Knap-
sack Problem KP) which models many practical and real life problems. We cite the
problem of quality adaptation and admission control for interactive multimedia sys-
tems (Chen et al., 1999), or service level agreement management in telecommuni-
cation networks problems (Watson, 2001). In the MMKP, we are given a set N of
items divided into n classes Ji , where each class Ji , i = 1, . . . , n, has ri = |Ji |
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items such that ∀ 1 ≤ p, q ≤ n and p �= q, Jp ∩ Jq = ∅ and ∪n
p=1 Jp = N . Each

item j, j = 1, . . . , ri , of class Ji has the nonnegative profit value vi j , and requires re-
sources given by the weight vector Wi j = (w1

i j , w
2
i j , . . . , wm

i j ) and where each weight
component wk

i j , k = 1, . . . , m also is a nonnegative value. The amounts of available

resources are given by a vector C = (C1, C2, . . . , Cm). The aim of the MMKP is to
pick exactly one item from each class in order to maximize the total profit value of
the pick, subject to the resource constraints. Formally, the MMKP can be stated as
follows:

(MMKP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize Z (X ) =
n∑

i=1

ri∑
j=1

vi j xi j

subject to
n∑

i=1

ri∑
j=1

wk
i j xi j ≤ Ck, k ∈ {1, . . . , m}

ri∑
j=1

xi j = 1, i ∈ {1, . . . , n}

X = (xi j )i j , xi j ∈ {0, 1}, i ∈ {1, . . . , n},
j ∈ {1, . . . , ri }.

The variable xi j is either equal to 0, implying item j of the i-th class Ji is not
picked, or equal to 1 implying item j of the i-th class Ji is picked.

This problem may be considered as a generalization of the well known Multiple-
Choice Knapsack Problem namely MCKP by adding the multidimensionality in the
capacity constraint (for more details, see Nauss (1978) and Pisinger (1995)).

The remaining of the paper is organized as follows. First (Section 2), we present
a brief reference of some related works on the classical knapsack problem and its
most known variants dealing with sequential exact and approximate algorithms. Sec-
ond (Section 3), we present a method showing how to compute intermediate upper
bounds at each developed node of the search tree for the MMKP. For this purpose we
start by modifying (reducing) the original problem MMKP to an auxiliary problem
called MMKPaux. This transformation allowed to compute an upper bound UB for
the auxiliary problem MMKPaux. We establish the result for which an upper bound
for MMKPaux also is an upper bound for the original problem MMKP. Third (Section
4), we prove the finitude of the approach and present the principle of the search tree
exploration. We, then, present the main principles of the branch and bound algorithm
EMKP and we prove its optimality. Fourth and last (Section 5) the performance of the
proposed approach is tested on a set of problem instances extracted from the literature
that have small sizes and which have been solved optimally and on others generated
one.

2 Literature survey

There exist several approaches for solving the knapsack problem KP and its variants.
For the (un)bounded single constraint KP, a large variety of resolution methods have
been proposed (Martello et al., 1999; Balas and Zemel, 1980; Fayard and Plateau,
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1982; Pisinger, 1997). The problem has been solved optimally and approximately
by dynamic programming, or by different search tree procedures or other hybrid
approaches.

Most exact algorithms for solving the knapsack problem (KP) variants are mainly
based on (i) branch and bound search using depth-first search strategy (Balas and
Zemel, 1980; Fayard and Plateau, 1982; Martello and Toth, 1988), (ii) dynamic pro-
gramming techniques (see Pisinger, 1997), and (iii) hybrid algorithms combining
dynamic programming and branch and bound procedures (Martello et al., 1999).

Research has been developed on some KP variants and different exact and ap-
proximate approaches have been tailored especially for these problems. One of the
most famous is the Multi-Dimension Knapsack Problem (MDKP) which is one kind
of KP where the constraints are multidimensional (Chu and Beasley, 1998; Shih,
1979). The Multiple-Choice Knapsack Problem (MCKP) is another variant of KP
where the picking criterion of items is more restrictive (Nauss, 1978; Pisinger, 1995;
Sinha and Zoltners, 1979). For the MCKP variant there are one or more disjoint
classes of items. For the MDKP, Toyoda (1975) used the aggregate resources con-
sumption. The solution of the MDKP needs iterative picking of items until the re-
source constraint is violated. Other approaches have been used with great success,
achieved via the application of local search techniques and metaheuristics to MDKP.
Among these approaches, we can cite the tabu search, genetic algorithms, simulated
annealing and hybrid algorithms (for more details the reader can refer to Chu and
Beasley (1998)). We can also cite the Multiple Knapsack Problem MKP as another
type of knapsack problem which is a special case of the Generalized Assignment
problem (GAP) (for more details see Shmoys and Tardos (1993)) and where the
profit and the weight of an item can vary based on the specific knapsack that it is
assigned to.

To our knowledge, very few papers dealing directly with the MMKP are available.
Moser et al. (1997) have designed an approach based upon the concept of grace-
ful degradation from the most valuable items based on Lagrange multipliers. Khan
et al. (2002) have tailored an algorithm based on the aggregate resources already in-
troduced by Toyoda (1975) for solving the MDKP. Finally, Hifi et al. (2004, 2005)
proposed two different approximate approaches. The first approach is a guided lo-
cal search-based heuristic in which the trajectories of the solutions were oriented
by increasing the cost function with a penalty term; it penalizes bad features of
previously visited solutions. The second approach is a reactive local search and
where an explicit check for the repetition of configurations is added to the local
search. The algorithm starts by an initial solution and improved by using a fast it-
erative procedure. Later, both deblocking and degrading procedures are introduced
in order (i) to escape to local optima and, (ii) to introduce diversification in the
search space. Finally, a memory list is applied in order to forbid the repetition of
configurations.

In this paper, we present a branch and bound algorithm to optimally solve the
MMKP problem. The main principle of the approach is twofold: (i) on one hand
to generate an initial solution which is a lower bound for the MMKP, and (ii) to
determine a new upper bound for each level of the exploration with a best-first search
strategy.
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3 An upper bound for the Multiple-choice Multidimensional Knapsack
Problem

First, we consider the following modified problem of MMKP which we call an auxil-
iary problem to the MMKP and which we note MMKPaux:

(MMKPaux)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize Z (X ) =
n∑

i=1

ri∑
j=1

vi j xi j

subject to
n∑

i=1

ri∑
j=1

wi j xi j ≤ C

ri∑
j=1

xi j = 1, i ∈ {1, . . . , n}

X = (xi j )i j , xi j ∈ {0, 1}, i ∈ {1, . . . , n},
j ∈ {1, . . . , ri }.

where C = ∑m
k=1 Ck represents the sum of the m capacity constraints and wi j =∑m

k=1 wk
i j represents the m weigths sum of the j-th item belonging to the i-th class

Ji . Also, let N f = |N | − n = ∑n
i=1 ri − n representing the total of the remaining

items when fixing an item by class.
We also can remark that the above MMKPaux formulation also represents the MCKP
problem.

Now, let UB be the expression which we compute with relation to the MMKPaux

as follows:

1. For each class Ji , i = 1, . . . , n, we select the item j ∈ Ji , j = 1, . . . , ri , which
realizes the most valuable (the biggest) ratio of the profit by weight

vi j

wi j
. Next, we

consider in the solution vector this item noted jmax for each class Ji .
2. Let Rmax = ∑n

i=1 wi jmax
(resp. Vmax = ∑n

i=1 vi jmax
) be the cumulated used weights

(resp. the cumulated used profits) of all the fixed items noted jmax belonging to
each class Ji , i = 1, . . . , n. We can then distinguish two cases:

• Rmax > C . In this case, the UB value defined above is computed for MMKPaux

as follows:

UB =
n∑

i=1

vi jmax
×

(
C∑n

i=1 wi jmax

)
.

• Rmax ≤ C . In this case, we consider all the remaining items as belonging to only
one class (we merge all the classes Ji , i = 1, . . . , n, into one class J ). We obtain
a single class J = {1, . . . , j, . . . , N f } with items indexed by j = 1, . . . , N f .
Then, we sort the items in the classical decreasing order of the ratio

v j

w j
for j =

1, . . . , N f . The problem generated by the set of these items represents a knapsack
problem KP(C − Rmax) with a capacity constraint equals to C − Rmax. We, then,
compute UBd as the relative Dantzig (1957) upper bound of KP(C − Rmax). This
means that we fill the knapsack with the ordered items j until its constraint is
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violated.
Let, now � such that 1 ≤ � ≤ N f be a particular item which violates the capacity
constraint C − Rmax and defined in the following:

� = min

{
j :

�−1∑
j=1

w j ≤ C − Rmax <

�∑
j=1

w j

}
.

This item � is called the critical item of the knapsack KP(C − Rmax).
With relation to the critical element �, the Dantzig upper bound UBd of
KP(C − Rmax) is computed as follows:

UBd =
�−1∑
j=1

v j +
(

(C − Rmax) − ∑�−1
j=1 w j

w�

)
× v�.

After computing the Dantzig upper bound UBd for the knapsack problem with
the remaining items, the UB value for the MMKPaux is computed, in this case,
in the following:

UB = Vmax + UBd .

Proposition 1. UB is an upper bound for the auxiliary problem MMKPaux.

Proof: We will show by contradiction the first case (Rmax > C) of this proposition.
Indeed, we may recall the following property:
Let (a, c, x, z) be some nonnegative numbers and (b, d, y, t) be some strictely non-
negative numbers.

If
a

b
≥ c

d
and

x

y
≥ z

t
then

a + x

b + y
≥ c + z

d + t
(1)

One supposes that there exists a solution X = (x1 j1 , . . . , xi ji , . . . , xn jn ) for the
MMKPaux with objective value V = ∑n

i=1 vi ji such that Vmax × ( C
Rmax

) < V . Thus
Vmax

Rmax
< V

C . This implies V
C ≤ V

R
, since R = ∑n

i=1 wi ji ≤ C and Vmax

Rmax
< V

C ≤ V
R
. The

last double inequality implies that Vmax

Rmax
< V

R
.

According to the relation (1) and to the decreasing order of the profits by weights
ratios of the items:∑n

i=1 vi jmax∑n
i=1 wi jmax

≥
∑n

i=1 vi ji∑n
i=1 wi ji

since
vi jmax

wi jmax

≥ vi ji

wi ji

∀i = 1, . . . , n.

Consequently, having V
R

is the biggest ratio and by the same UB ≤ V is contradictory.
For the second case (R ≤ C), it is easy to see that the remaining items represent a

single knapsack problem and, by the continuation, the calculated upper bound is the
Dantzig (1957) upper bound. �
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Proposition 2. UB is an upper bound for the original problem MMKP.
The proof is naturally obvious.

Besides, we applied the MRLS heuristic that we have proposed in Hifi et al. (2005)
in order to determine an initial feasible solution that we consider as a starting lower
bound (noted LB) for the problem. The reader may refer to Hifi et al. (2005) for more
details about MRLS heuristic. Here we recall the main principle of the MRLS algorithm.

TheMRLS approach can be summarized as follows: (i) starting with an initial solution
for the MMKP, obtained by applying a fast constructive procedure, (ii) improving the
current solution by running a complementary constructive procedure which applies
a swapping criterion and, (iii) using the reactive strategy composed by a degrading
procedure and finally, a tabu list is introduced in order to avoid some cycling during
the search process (Hifi et al., 2005).

4 A branch and bound algorithm

In this section let us propose a branch and bound algorithm to solve the MMKP
problem.

The principle of the algorithm is to develop a search tree allowing to enumerate the
sorted solutions in the order X̂ p, X̂ p−1, . . . , X̂max, . . . , X̂1 (of respective values taken
in the order Z p ≥ Z p−1 ≥ · · · ≥ Zmax ≥ · · · ≥ Z1 with Zq = Z (X̂q ), q = 1, . . . , p)
until finding the first feasible solution that we note by X̂max and of value Z (X̂max).

4.1 The branching strategy

Each developed node in the search tree corresponds to a fixed item in the solution
vector. A branch of the search tree corresponds to a solution (solution vector). We
note by ni j the developed node corresponding to the item j of the class Ji .

The classes are considered one by one, and for each class Ji , i = 1, . . . , n, one
sorts the items j , j = 1, . . . , ri , according to the decreasing order of their respective
profits, i.e.:

vi1 > vi2 > · · · > vi j > · · · > viri .

If two items have the same profit value, we consider in first the one corresponding to

the smallest
∑m

k=1

wk
i j

Ck .
While developing the search tree and for a current node ni j , we develop two nodes:� the son’s node ni+1,1 which corresponds to the first item of the class Ji+1 if the

(i + 1)-th class which comes next, exists;� the brother’s node ni, j+1 which corresponds, if it exists to the item that comes next
in the same classe Ji ;

This is illustrated by the following outline: (Fig. 1)
The development of a node allows:� on one hand, to generate a partial solution while developing the brother’s node;
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Fig. 1 Development of the
arborescence

Fig. 2 Developing a node
outline

� on the other hand, to continue to build the partial running solution while developing
the son’s node.

This is illustrated in the Fig. 2.
The algorithm approach uses the best-first search strategy. The algorithm selects

which node to develop regarding the value of the better solution (feasible or not) and
which is able to be obtained from this node. The value of this better solution is easy to
compute. In fact, for a given node ni, j , the solution with the bigger value from this node
is the solution obtained while adding the items (i + 1, 1), (i + 2, 1), . . . , (n, 1) (the
first item 1 of each class Ji ), since all the every class items were considered according
to the decreasing order of their respective profits.

4.2 Principle of the algorithm

Let Z p = Z (X̂ p), p ≥ 1, be the values of the obtained solutions X̂ p, p ≥ 1, and
which are feasible and/or not feasible for the MMKP. We ordered these values in the
decreasing order such that:

Z (X̂1) ≤ Z (X̂2) ≤ · · · ≤ Z (X̂�) ≤ · · · ≤ Z (X̂ p).

Lemma 1. Let Z (X̂max), 1 ≤ max ≤ p, be the biggest value such that X̂max is feasible,
then X̂max is an optimal solution for the MMKP.

If such a solution does not exist (all the solutions X̂� are not feasible, for 1 ≤ � ≤ p),
then the set of feasible solutions for MMKP is an empty one.
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Proof: If X̂max is feasible, then Z (X̂max) is value of an optimal solution since it is the
biggest obtained value for a feasible solution. We will therefore have:

Z (X̂max) ≤ Z (X̂max+1) ≤ · · · ≤ Z (X̂ p), for 1 ≤ max ≤ p.

With X̂max+1, . . . , X̂ p, p ≥ 1, are not feasible solutions. �

Proposition 3. The EMKP search tree algorithm develops all the solutions. Adding to
this, the first obtained feasible solution realizes the optimum for the MMKP.

Proof:

1. To show that EMKP develops all the solutions, it suffices to show that for each node
ni, j , EMKP allows developing all its son’s nodes.
When the node ni, j is considered, we develop its son’s node ni+1,1. In the same
way, when the node ni+1,1 is treated, we develop, adding to its son’s node, its
brother’s node ni+1,2. In all the same, when the node ni+1,2 is considered, we
develop its brother’s node ni+1,3 and so on until developing the last node ni+1,ri+1

.
EMKP therefore allows to develop all the son nodes ni+1,1, ni+1,2, . . . , ni+1,ri+1

of
the current node ni, j .

2. To show that the obtained first feasible solution is an optimal one for the MMKP, it
is enough to show that the solutions which are generated by EMKP are obtained in the
order X̂ p, X̂ p−1, . . . , X̂max, 1 ≤ max ≤ p (with the respective values taken in the
order Z (X̂ p) ≥ Z (X̂ p−1) ≥ · · · ≥ Z (X̂max)). This is true since the algorithm con-
siders the nodes with regards to the best first strategey of exploration and regarding
the better obtained solution with respect to this node.

Thus by the Lemma 1, we can affirm that the obtained first feasible solution (if
it exists) realizes the optimum for the MMKP. �

4.3 Reduction of the search space

In order to make the search for solutions more efficient and fast, some reductions of the
space of search are necessary to reduce to the maximum the combinatorial explosion.
These reductions consist with pruning the useless branches of the tree and which do
not lead to the solutions which could be elite.

To perform the pruning in the tree, EMKP realizes these reductions thanks to the
evaluation functions. In fact, for a given node ni j , two types of tree pruning can be
performed:

1. A son’s node developed from a father’s node such that the latter corresponds to a
non feasible solution is removed (see Fig. 3).

A son’s node corresponding to an infeasible solution while the father’s node
corresponds to a feasible one might not be truncated (see Fig. 4).

Just as a developed brother node and which corresponds to a nonrealizable so-
lution may not be truncated either. In fact, the truncature of these nodes can non
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Fig. 3 First outline of a
fathoming node in the search tree

Fig. 4 Second case of a node
truncature

efficiently reduce the search space of the feasible solutions since the brother’s node
of these nodes can correspond to a feasible solution.

2. For this second case, we need to have as input entry the value of a lower bound
LB for MMKP. We apply the MRLS heuristic (Hifi et al., 2005) and we consider
the solution value as the starting lower bound LB for MMKP. Before developing
a node ni j corresponding to a partial solution with a value Ẑ (this means EMKP
has up to now treated the i first classes J1, . . . , Ji ), we compute the upper bound
UB described in the Section 3 for the MMKP subproblem constituted with the
remaining (n − i) non yet treated classes Jp, for p = i + 1, . . . , n.

If UB + Ẑ < LB, it is sure that any feasible solution which shall be developed
from this node will have a strictly lower value to LB (feasible solution) and therefore
it does not realize the optimum to the MMKP.

4.4 The EMKP algorithm

The EMKP algorithm starts by developing the first node n1,1 that corresponds to the
first item 1 of the first class J1. It takes as input entry the MRLS heuristic solution value
as a lower bound. All the class items are taken according to the decreasing order of
their respective profits, (vi1 ≥ · · · ≥ vi j · · · ≥ viri , ∀ i ∈ {1, . . . , n}).

The main steps of theEMKPbranch and bound algorithm for the MMKP are described
in the Fig. 5.

Here UB(Node) denotes the upper bound calculated at the best current node by the
MMKPAux strategy developed in the Section 3. X denotes the optimal solution and
Z = Z (X ) the value of the optimal solution obtained by EMKP.

EMKP algorithm terminates as soon as one finds a feasible solution that is the optimal
solution according to the Proposition 3.

Springer



346 J Comb Optim (2007) 13:337–351

Fig. 5 A branch and bound EMKP algorithm for the MMKP

5 Computational results

In this section, we detail the computational results carried out within EMKP in order
to optimally solve the MMKP. First, we tailor EMKP on the instances extracted from
the litertaure. We report the results obtained for this first set. Second, we randomly
generate several problem instances of various sizes and densities.

On one hand, the proposed EMKP algorithm optimally solves all the instances
of small size given by Khan et al. (2002). Indeed, EMKP necessitated a “shortly”
execution time (three seconds to the maximum on a SUN UltraSparc10) to ob-
tain the optimal solution. We present bellow the computational results and the
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performance comparison between EMKP and the Khan et al. approach, here noted
KLMA. We can remark that our approach is more efficient and able to reach ex-
act solutions in small times of execution. Also, EMKP ouperforms Khan et al.
algorithm. For the few available instances, hereafter the results given by both
approaches.

On the other hand, EMKP was incapable to solve the other large instances (as,
besides, the algorithm developed by Khan et al. (2002)). This is principally because
of the RAM memory of the used machine.

5.1 Instances generation

For that, we have tested the EMKP algorithm on another set of instances of small and
medium size. These instances were randomly generated, divided up on four groups.
Each of the groups represents the instances having the same number of classes. For
these several groups, the number of items as well as the number of constraints are
different. Besides, we generate each group instance as follows: (i) to fix the number of
classes, (ii) to fix the number of items in each class, (iii) to fix the number of constraints
and (iv) to randomly generate the profits in the interval [0, 150] and weights in the
interval [0, 50].

The number of classes is set up in the discrete set {10, 25, 50}, the number of items
of the classes is set up in the discrete set {5, 10, 15, 20} and the number of constraints
by instance is set up in the set {5, 7, 10}. The capacity vector (Ck)(1≤k≤m) of each
instance constraint is put equals to:

Ck = (1/2) ×
(

n∑
i=1

min
1≤ j≤ri

{
wk

i j

} +
n∑

i=1

max
1≤ j≤ri

{
wk

i j

})
, k = 1, . . . , m.

The performance of the proposed algorithm tested on these instances is reported in
the Tables 2–5.

For each table, we report:� the number n of classes (column 2);� the number ri = r of items in each class Ji , i = 1, . . . , n (column 3);� the number m of constraints (column 4);

Table 1 Performances comparison between EMKP and KLMA

# Inst. n r m TKLMA (sec) TEMKP (sec)

I1 5 5 5 1.4 0.1

I2 10 5 5 1.8 0.4

I3 15 10 10 115.934 0.6

I4 20 10 10 288.687 1.1

I5 25 10 10 1073.236 2.1

I6 30 10 10 5905.536 15.3

I7 100 10 10 12983.339 37.6
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Table 2 Numerical results of the first group

# Inst. n r m LB Opt UB T (sec)

I1a1 10 5 5 1420 1482 1558 0.1

I1a2 10 5 5 1392 1475 1513 0.1

I1a3 10 5 5 1375 1436 1562 0.1

I1a4 10 5 5 1387 1433 1520 0.1

I1a5 10 5 5 1442 1548 1598 0.1

I1b1 10 5 10 1559 1559 1602 0.1

I1b2 10 5 10 1553 1573 1623 0.1

I1b3 10 5 10 1461 1539 1569 0.1

I1b4 10 5 10 1049 1609 1635 0.1

I1b5 10 5 10 1371 1456 1502 0.1

Table 3 Numerical results of the second group

# Inst. n r m LB Opt UB T (sec)

I2a1 10 10 5 1662 1662 1662 0.3

I2a2 10 10 5 1649 1658 1679 0.8

I2a3 10 10 5 1592 1600 1623 1.2

I2a4 10 10 5 1426 1453 1493 0.9

I2a5 10 10 5 1461 1534 1582 0.5

I2b1 10 10 10 1665 1665 1682 0.4

I2b2 10 10 10 1655 1672 1723 0.5

I2b3 10 10 10 1629 1629 1723 0.2

I2b4 10 10 10 1598 1614 1722 0.5

I2b5 10 10 10 1591 1637 1682 0.4

Table 4 Numerical results of the third group

# Inst. n r m LB Opt UB T (sec)

I3a1 25 10 5 4089 4137 4163 0.6

I3a2 25 10 5 4201 4245 4286 0.8

I3a3 25 10 5 4007 4043 4076 0.8

I3a4 25 10 5 4010 4045 4052 0.8

I3a5 25 10 5 4092 4123 4163 0.9

I3b1 25 10 10 4160 4177 4232 1.3

I3b2 25 10 10 4272 4278 4352 1.9

I3b3 25 10 10 3877 3982 4019 2.2

I3b4 25 10 10 4072 4105 4136 1.9

I3b5 25 10 10 4011 4071 4116 0.8

� the lower bound LB (feasible solution) obtained while applying the MRLS heuristic
proposed by Hifi et al. (2004) (column 5);� the upper bound UB proposed in the Proposition 2 (column 6);� the optimal solution Z produced by the EMKP algorithm (column 7);� the execution time (noted T and measured in secondes: column 8) that EMKP neces-
sitates to obtain the optimal solution.

Springer



J Comb Optim (2007) 13:337–351 349

Table 5 Numerical results of the fourth group

# Inst. n r m LB Opt UB T (sec)

I4a1 50 20 5 8514 8542 8569 7

I4a2 50 20 5 8561 8564 8589 6.5

I4a3 50 20 5 8619 8635 8676 8

I4a4 50 20 5 8443 8459 8489 7.3

I4a5 50 20 5 8432 8456 8482 15

I4b1 50 20 5 8575 8590 8623 12

I4b2 50 20 7 8561 8569 8587 9

I4b3 50 20 7 8545 8551 8586 10

I4b4 50 20 7 8526 8542 8583 11

I4b5 50 20 7 8438 8473 8529 13

I4c1 50 15 10 8289 8340 8369 22

I4c2 50 15 10 8303 8345 8372 20

I4c3 50 15 10 8472 8511 8568 35

I4c4 50 15 10 8529 8582 8613 28

I4c5 50 15 10 8323 8324 8392 18

5.2 Performance of the exact algorithm

Previously, we were interested in the behavior of the algorithms while varying the
number of items by class and the number of constraints (the two first groups). In a
second time, we increased the number of classes. Finally, we considered a group while
increasing the number of classes, while varying the number of items by class and while
doing another variation on the number of constraints. The latter case is represented by
the fourth group for which one wished to see the limits (on the used machine) of the
proposed algorithm.

The two first groups are composed of ten instances each. For each of the groups,
the half of the instances possesses five constraints and the other half possesses ten
constraints. The number of classes of the group of these instances is set up to ten and
we apply a variation on the number of items for each class.

We considered the instances of the two first groups as being instances of small size.
For the set of these instances, EMKP converged towards the optimal solution while
consuming an execution time less than 1.2 s (the maximal execution time realized by
the algorithm on the instances of these groups). From Fig. 2, we can notice that the
variation on the number of constraints is not signifcative for these instances, since
we can consider them as instances of small size (the number of variables does not
significantly increase). After increasing the number of items by class, we notice that,
from Fig. 3, the execution time increased for the instances of the second group. In this
case, one can notice that the execution time is a growing function of the number of
items.

For the second case, we considered the third group composed from ten instances
where the number of classes by instance were increased. This increase allows also to
increase the number of variables by instance. In this case, we can note that from Fig.
4 the execution time practically doubled.

Finally, we considered the fourth group (composed from fifteen instances) in which
the number of classes was set up to 50 while we applied variations on the number of
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items by class and on the number of constraints by instance. Let us note that this
group possesses instances having 1000 items divided up on 50 classes of 20 items and
subject to 7 constraints. From Fig. 5 one can notice that the execution time increases
with the number of constraints.
Of more, we note than despite the decrease of the number of items by class on the five
last instances, the execution time remains more important because of the number of
constraints on these instances.

6 Conclusion

In this paper, we proposed an exact algorithm for the multiple-choice multidimensional
knapsack problem. The algorithm applied a branch and bound procedure using the
best-first strategy search. Previously, we used a lower bound as a starting solution
(feasible solution) computed by the application of the heuristic developed by Hifi et
al. (2004). In a second time, we carried out the reduction of the initial problem in the
form of a multiple-choice knapsack problem MCKP and we called MMKPaux. The
latter problem allowed us to calculate an upper bound UB for the original problem as
well as intermediary upper bounds for the proposed method. Besides, the combination
between the initial lower bound and the intermediary upper bounds allowed to fathom
many branches of the search tree. The experimental study showed that the proposed
method was able to solve instances of small and medium sizes of which the number
of variables being able to include is up to 1000 items, divided up on 50 classes with
20 items and subject up to 7 constraints.
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