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CLUSTER CATEGORIES FOR ALGEBRAS OF GLOBAL DIMENSION 2

AND QUIVERS WITH POTENTIAL

CLAIRE AMIOT

ABSTRACT. Let k be a field and A a finite-dimensional k-algebra of global dimension < 2.
We construct a triangulated category C4 associated to A which, if A is hereditary, is triangle
equivalent to the cluster category of A. When C4 is Hom-finite, we prove that it is 2-CY and
endowed with a canonical cluster-tilting object. This new class of categories contains some of
the stable categories of modules over a preprojective algebra studied by Geiss-Leclerc-Schroer
and by Buan-Iyama-Reiten-Scott. Our results also apply to quivers with potential. Namely,
we introduce a cluster category Cq ) associated to a quiver with potential (Q,W). When it
is Jacobi-finite we prove that it is endowed with a cluster-tilting object whose endomorphism
algebra is isomorphic to the Jacobian algebra J(Q, W).
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INTRODUCTION

The cluster category associated with a finite-dimensional hereditary algebra was introduced in
[BMRT0G] (and in [[CCS0q] for the A, case). It serves in the representation-theoretic approach
to cluster algebras introduced and studied by Fomin and Zelevinsky in a series of articles (cf.

[FZ02), [FZ0J, [FZ07 and [BFZ03] with Berenstein). The link between cluster algebras and
cluster categories is in the spirit of ‘categorification’. Several articles (e.g. [MRZ03], [BMR70q],

[CK0g], [CCO0q], [BMR07], [BMROg], [BMRT07], [CK0OG]) deal with the categorification of the
cluster algebra Ay associated with an acyclic quiver () using the cluster category Cp associated
with the path algebra of the quiver (). Another approach consists in categorifying cluster alge-
bras by subcategories of the category of modules over a preprojective algebra associated to an
acyclic quiver (cf. [GLS074], [GLS064], [GLS06H|, [GLS07H], [BIRS01]). In both approaches the
categories C (or their associated stable categories) satisfy the following fundamental properties:

- C is a triangulated category;

- C is 2-Calabi-Yau (2-CY for short);

- there exist cluster-tilting objects.
It has been shown that these properties alone imply many of the most important theorems
about cluster categories, respectively stable module categories over preprojective algebras (cf.
[[Y0d], [KRO4], [KROT|, [Kel084], [Pal], [Tab07]). In particular by [[Y0§], in a category C with
such properties it is possible to ‘mutate’ the cluster-tilting objects and there exist exchange
triangles. This is fundamental for categorification.

Let k£ be a field. In this article we want to generalize the construction of the cluster category
replacing the hereditary algebra k(@) by a finite-dimensional algebra A of finite global dimension.
A candidate might be the orbit category D°(A)/v[—2], where v is the Serre functor of the derived
category D’(A). By [Kel0], such a category is triangulated if A is derived equivalent to an
hereditary category H. However in general, it is not triangulated. Thus a more appropiate
candidate is the triangulated hull C4 of the orbit category D°(A)/v[—2]. It is defined in [Kel0]
as the stabilization of a certain dg category and contains the orbit category as a full subcategory.
More precisely the category C4 is a quotient of a triangulated category 7 by a thick subcategory
N which is 3-CY. This leads us to the study of such quotients in full generality. We prove that
the quotient is 2-CY if the objects of 7 are ‘limits’ of objects of N (Theorem [.J). In particular
we deduce that the cluster category C4 of an algebra of finite global dimension is 2-CY if it is
Hom-finite (Corollary 7).

We study the particular case where the algebra is of global dimension < 2. Since kQ is a
cluster-tilting object of the category Cg, the canonical candidate to be a cluster-tilting object
in the category C4 would be A itself. Using generalized tilting theory (cf. [Kel94]), we give
another construction of the cluster category. We find a triangle equivalence

C4 — perII/D"II

where II is a dg algebra in negative degrees which is bimodule 3-CY and homologically smooth.
This equivalence sends the object A onto the image of the free dg module II in the quotient.
This leads us to the study of the categories perI'/D'T" where I is a dg algebra with the above
properties. We prove that if the zeroth cohomology of I is finite-dimensional, then the category
per['/D'T is 2-CY and the image of the free dg module I is a cluster-tilting object (Theorem
B.1)). We show that the algebra HT is finite-dimensional if and only if the quotient perI'/D'T
is Hom-finite. Thus we prove the existence of a cluster-tilting object in cluster categories Cy4
associated with algebras of global dimension 2 which are Hom-finite (Theorem [L.1(). Moreover,
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this general approach applies to the Ginzburg dg algebras [Gin06] associated with a quiver with
potential. Therefore we introduce a new class of 2-CY categories C(g,w) endowed with a cluster-
tilting object associated with a Jacobi-finite quiver with potential (), W) (Theorem B.G).

In [GLSO07H|, Geiss, Leclerc and Schréer construct subcategories Cps of mod A (where A = Ag
is a preprojective algebra of an acyclic quiver) associated with certain terminal k@Q-modules M.
We show in the last part that the stable category of such a Frobenius category Cj; is triangle
equivalent to a cluster category C4 where A is the endomorphism algebra of a postprojective
module over an hereditary algebra (Theorem f.15). Another approach is given by Buan, Iyama,
Reiten and Scott in [BIRS07]. They construct 2-Calabi-Yau triangulated categories SubA/Z,
where Z,, is a two-sided ideal of the preprojective algebra A = A associated with an element
w of the Weyl group of ). For certain elements w of the Weyl group (namely those coming
from preinjective tilting modules), we construct a triangle equivalence between SubA/Z,, and
a cluster category C4 where A is the endomorphism algebra of a postprojective module over a
concealed algebra (Theorem [.2]).

Plan of the paper. The first section of this paper is devoted to the study of Serre functors
in quotients of triangulated categories. In Section 2, we prove the existence of a cluster-tilting
object in a 2-CY category coming from a bimodule 3-CY dg algebra. Section 3 is a direct
application of these results to Ginzburg dg algebras associated with quivers with potential.
In particular we give the definition of the cluster category Cigw) of a Jacobi-finite quiver
with potential (Q, ). In section 4 we define cluster categories of algebras of finite global
dimension. We apply the results of Sections 1 and 2 in subsection 4.3 to the particular case
of global dimension < 2. The last section links the categories introduced in [[GLSO7H] and in
IBIRS07] with these new cluster categories Cy4.

Acknowledgements. This article is part of my Ph. D. thesis under the supervision of Bern-
hard Keller. I deeply thank him for his patience and availability. I thank Bernard Leclerc,
Yann Palu and Jan Schréer for interesting and helpful discussions and Idun Reiten for kindly
answering my questions. I also would like to thank the referee for his interesting comments and
remarks.

Notations. Throughout let k£ be a field. By triangulated category we mean k-linear triangu-
lated category satisfying the Krull-Schmidt property. For all triangulated categories, we will
denote the shift functor by [1]. For a finite-dimensional k-algebra A we denote by mod A the
category of finite-dimensional right A-modules. More generally, for an additive k-category M
we denote by mod M the category of finitely presented functors M — modk. Let D be
the usual duality Homy (7, k). If A is a differential graded (=dg) k-algebra, we will denote by
D = DA the derived category of dg A-modules and by DA its full subcategory formed by the
dg A-modules whose homology is of finite total dimension over k. We write per A for the cat-
egory of perfect dg A-modules, i.e. the smallest triangulated subcategory of DA stable under
taking direct summands and which contains A.

1. CONSTRUCTION OF A SERRE FUNCTOR IN A QUOTIENT CATEGORY

1.1. Bilinear form in a quotient category. Let 7 be a triangulated category and A a thick
subcategory of 7 (i.e. a triangulated subcategory stable under taking direct summands). We
assume that there is an auto-equivalence v in 7 such that v(N) C N. Moreover we assume
that there is a non degenerate bilinear form:
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ﬁN,X : T(N,X) X T(X, I/N) — k
which is bifunctorial in N € N and X € 7.
Construction of a bilinear form in T /N. Let X and Y be objects in 7. The aim of this section
is to construct a bifunctorial bilinear form:
By : T/N(X,Y) x T/N(Y,vX[-1]) — k.

We use the calculus of left fractions [Ver77)| in the triangle quotient 7 /N. Let s7lof : X - Y
and t7' o g : Y — vX[—1] be two morphisms in 7 /N. We can construct a diagram

where the cone of ¢ is isomorphic to the cone of s. Denote by NJ[1] the cone of w. It is in N
since N is v-stable. Thus we get a diagram of the form:

u

N X X" N[1]
k |

Y’ w

N

vX|[—1] ml/X”[—l] vN vX,

where the two horizontal rows are triangles of 7. We define then JY - as follows:
/Gg(,Y(S_l o fa t_l o g) = ﬁN,Y’(U> 'lU)
Lemma 1.1. The form (' is well-defined, bilinear and bifunctorial.

Proof. 1t is not hard to check that /3’ is well-defined (cf. [[Ami0g]). Since 3 is bifunctorial and
bilinear, 3" satisfies the same properties. O

1.2. Non-degeneracy. In this section, we find conditions on X and Y such that the bilinear
form ' is non-degenerate.

Definition 1.2. Let X and Y be objects in 7. A morphism p : N — X is called a local
N -cover of X relative to Y if N is in N and if it induces an exact sequence:

0——=T(X,Y) 2~ T(N,Y).

Let Y and Z be objects in 7. A morphism 7 : Z — N’ is called a local N -envelope of Z
relative to Y if N’ is in N and if it induces an exact sequence:
0—=T(Y,Z) —=T(Y,N").

Theorem 1.3. Let X and Y be objects of T. If there exists a local N -cover of X relative to
Y and a local N -envelope of vX relative to Y, then the bilienar form (', constructed in the
previous section is non-degenerate.
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For a stronger version of this theorem see also [CR]].

Proof. Let f : X — Y be a morphism in 7 whose image in 7 /N is in the kernel of 5'. We
have to show that it factorizes through an object of N.
Let p: N — X be a local N-cover of X relative to Y, and let X’ be the cone of p. The

morphism f is in the kernel of ', thus for each morphism ¢ : Y — v N which factorizes through
vX'[-1], B(fp, g) vanishes.

N X X’ N[1]
|’
Y \
vX[-1] — VX’V[—l] vN vX

This means that the linear form 3( fp, ?) vanishes on the image of the morphism 7 (Y, v X'[—1]) —
7 (Y,vN). This image is canonically isomorphic to the kernel of the morphism 7 (Y,vN) —
T(Y,vX).

Let vi: vX — vN’ be a local N-envelope of vX relative to Y. The sequence

0—T Y, vX)—=T(Y,vN')
is then exact. Therefore, the form ((fp,?) vanishes on Ker(7 (Y,vN) — T(Y,vN’)).

N—"—=X X' — N[1]
f N’
/’/
Y
g
vX'[—1] vN vX vX'

Now [ is non-degenerate on
Coker(T(N')Y) — T(N,Y)) x Ker(T(Y,vN) — T(Y,vN")).

Thus the morphism fp lies in Coker(7 (N',Y) — 7 (N,Y)), that is to say that fp factorizes
through ip. Since p : N — X is a local A -cover of X, f factorizes through N'. O

Proposition 1.4. Let X and Y be objects in T . If for each N in N the vector spaces T (N, X)
and T (Y, N) are finite-dimensional, then the existence of a local N -cover of X relative to'Y is
equivalent to the existence of a local N -envelope of Y relative to X .

Proof. Let g : N — X be a local N-cover of X relative to Y. It induces an injection

0——T(X,Y) -2~ T(N,Y).
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The space 7 (N, Y) is finite-dimensional by hypothesis. Fix a basis (fi, fa, ..., f;) of this space.
This space is in duality with the space 7(Y,vN). Let (f{, f5,..., f/) be the dual basis of the
basis (f1, fa,..., fr). We show that the morphism

Y

is a local N-envelope of Y relative to X. We have a commutative diagram:

7, v) Ll ey rix oy

g* lg*
!

~ -~ @ T(N,vN).

If f is in the kernel of (f],..., f!)., then for all : = 1,...,r, the morphism f] o f o g is zero.
Thus f o g is orthogonal on the vectors of the basis f1,..., f. and therefore vanishes. Since g
is a local AV -cover of X relative to Y, f is zero, and the morphism

(i i)

D T(X,vN)
is injective. Therefore, the morphism

v (F1sef7)

D vN
is a local M-envelope of Y relative to X. The proof of the converse is dual. O

Ezamples. Let A be a finite-dimensional self-injective k-algebra. Denote by 7 the derived cate-
gory D°(mod A) and by A the triangulated category per A. Since A is finite-dimensional, there
is an inclusion N' C 7. Moreover A is self-injective so of infinite global dimension. Therefore
the inclusion is strict. By [KV8&7], there is an exact sequence of triangulated categories:

0 — per A —— D’(mod A) — mod A — 0.

The derived category D°(mod A) admits a Serre functor v =? é 4 DA which stabilizes per A.
Thus there is an induced functor in the quotient mod A that we will also denote by v. Let 3 be
the suspension of the category mod A. One can easily construct (cf. [Ami0g]) local N-covers
and local A-envelopes, so we can apply theorem [ and the functor 7! o v is a Serre functor
for the stable category mod A.

An article of G. Tabuada [[[ab07] gives an example of the converse construction. Let C be an
algebraic 2-Calabi-Yau category endowed with a cluster-tilting object. The author constructs a
triangulated category 7" and a triangulated 3-Calabi-Yau subcategory N such that the quotient
category 7 /N is triangle equivalent to C. It is possible to show (cf. [Ami0g]) that the categories
7 and N satisfy the hypotheses of theorem [[.3.

2. EXISTENCE OF A CLUSTER-TILTING OBJECT
Let A be a differential graded (=dg) k-algebra. We denote by A¢ the dg algebra A% ® A.
Suppose that A has the following properties:

e A is homologically smooth (i.e. the object A, viewed as an A°-module, is perfect);
e for each p > 0, the space HP A is zero;
e the space H°A is finite-dimensional;
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e A is bimodule 3-CY, i.e. there is an isomorphism in D(A°)
RHom 4 (A, A%) ~ A[-3].

Since A is homologically smooth, the category D°A is a subcategory of per A (see [Kel08d],
lemma 4.1). We denote by 7 the canonical projection functor = : per A — C = per A/D°A.
Moreover, by the same lemma, there is a bifunctorial isomorphism

DHomp (L, M) ~ Homp(M, L[3])

for all objects L in DA and all objects M in per A. We call this property the CY property.
The aim of this section is to show the following result:

Theorem 2.1. Let A be a dg k-algebra with the above properties. The category C = per A/D’A
is Hom-finite and 2-CY. Moreover, the object w(A) is a cluster-tilting object. Its endomorphism
algebra is isomorphic to HYA.

2.1. t-structure on per A. The main tool of the proof of theorem P.J] is the existence of a
canonical t-structure in per A.

t-structure on DA. Let D« be the full subcategory of D whose objects are the dg modules X
such that H?X vanishes for all p > 0.

Lemma 2.2. The subcategory D<g is an aisle in the sense of Keller-Vossieck [KV8Y].

Proof. The canonical morphism 7<gA — A is a quasi-isomorphism of dg algebras. Thus we can
assume that A? is zero for all p > 0. The full subcategory D« is stable under X — X|[1] and
under extensions. We claim that the inclusion D<y“—— D has a right adjoint. Indeed, for
each dg A-module X, the dg A-module 7<(X is a dg submodule of X, since A is concentrated
in negative degrees. Thus 7<( is a well-defined functor D — D<j. One can check easily that

T<p is the right adjoint of the inclusion.
OJ

Proposition 2.3. Let 'H be the heart of the t-structure, i.e. 'H is the intersection D<o N Dxy.
We have the following properties:

(i) The functor H® induces an equivalence from H onto Mod HYA.

(ii) For all X andY in H, we have an isomorphism Exto,(X,Y) ~ Homp (X, Y1]).

Note that it is not true for general i that Ext,(X,Y) =~ Homp (X, Y[i]).

Proof. (i) We may assume that A? = 0 for all p > 0. We then have a canonical morphism
A — HC°A. The restriction along this morphism yields a functor ® : Mod H°A — ‘H such that
H°o ® is the identity of Mod H°A. Thus the functor H° : H — Mod H°A is full and essentially
surjective. Moreover, it is exact and an object N € ‘H vanishes if and only if H°N vanishes.
Thus if f: L — M is a morphism of H such that H°(f) = 0, then ImH°(f) = 0 implies that
H(Imf)=0and Imf =0,s0 f =0. Thus H° : H — Mod H°A is also faithful.

(i) By section 3.1.7 of there exists a triangle functor D*(H) — D which yields for
X and Y in ‘H and for n < 1 an isomorphism (remark (ii) section 3.1.17 p.85)

Hompy (X, Y [n]) ~ Homp (X, Y[n]).
Applying this for n = 1 and using (i), we get the result.
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Hom-finiteness.
Proposition 2.4. The category per A is Hom-finite.
Lemma 2.5. For each p, the space HP A is finite-dimensional.

Proof. By hypothesis, HP A is zero for p > 0. We prove by induction on n the following state-
ment: The space H™ ™A is finite-dimensional, and for all p > n+1 the space Homp(7<_, A, M|[p])
is finite-dimensional for each M in mod HCA.
For n = 0, the space H°A is finite-dimensional by hypothesis. Let M be in mod H°A. Since
T<oA is ismorphic to A, Homp(7<gA, M[p]) is isomorphic H°(M|p]), and so is zero for p > 1.
Suppose that the property holds for n. Form the triangle:

(H"A)n -1 —> 1< pn 1A —= 1< A —— (H "A)[n]
Let p be an integer > n+1. Applying the functor Homp(?, M|[p]) we get the long exact sequence:
-+ = Homp(7<_, A, M[p]) = Homp(7<_,,_1 A, M[p]) = Homp((H"A)[n — 1], M[p]) = - -

By induction the space Homp(7<_, A, M|[p]) is finite-dimensional.
Since M|[p] is in D*A we can apply the CY property. If p is > n + 3, we have isomorphisms:
Homp ((H™"A)[n — 1], M[p]) ~ Homp((H™"A), M[p —n +1])
~ DHomp(M[p —n —2|,H "A).
Since p —n — 2 is > 1, this space is zero.
If p =n + 2, we have the following isomorphisms.
Homp((H "A)[n — 1], M[n+2]) ~ Homp((H™A), M[3])
~ DHomp(M,H "A)
~ DHompos(M,H™ "A).
The last isomorphism comes from lemma (7). By induction, the space H™"A is finite-

dimensional. Thus for p > n + 2, the space Homp((H " A)[n — 1], M[p]) is finite-dimensional.
If p =n + 1 we have the following isomorphisms:

Homp((H "A)[n — 1], M[n+1]) ~ Homp((H "A), M|2])
~ DHomp(M, H "A[l})
~ DExtpo,(M,H "A)
The last isomorphism comes from lemma .3 (i¢). By induction, since H " A is finite-dimensional,

the space Homp((H " A)[n—1], M[n+1]) is finite-dimensional and so is Homp(7<_,—1 A, M[n+
1]).

Now, look at the triangle

T<n-24d ——=Tc n g A—— (H " A)n + 1] — (Tz-n24)[1] .
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The spaces Homp(7<_p_2A, M[n+1]) and Homp((7<_,—2A4)[1], M [n+ 1]) vanish since M[n+1]
is in D>_,_;. Thus we have
Homp(T<_n_1A[n — 1], M[n +1]) ~ Homp((H " 'A)[n + 1], M[n + 1))
~ Homp(H " 'A, M)
~ Hompyoa(H " 1A, M).
This holds for all finite-dimensional H° A-modules M. Thus it holds for the compact cogenerator

M = DHPA. The space Hompos(H ™" 1A DH°A) ~ DH ™ 'A is finite-dimensional, and
therefore H~ ("1 A is finite-dimensional. O

Proof. (of proposition .4) For each integer p, the space Homp(A, Alp]) ~ HP(A) is finite-
dimensional by lemma .. The subcategory of (per A)” x per A whose objects are the pairs
(X,Y) such that Homp(X,Y') is finite-dimensional is stable under extensions and passage to
direct factors. O

Restriction of the t-structure to per A.

Lemma 2.6. For each X in per A, there exist integers N and M such that X belongs to D<y
and J‘DSM.

Proof. The object A belongs to D<,. Moreover, since for X in DA, the space Homp(A, X) is
isomorphic to H°X, the dg module A belongs to “D<_;. Thus the property is true for A. For
the same reasons, it is true for all shifts of A. Moreover, this property is clearly stable under
taking direct summands and extensions. Thus it holds for all objects of per A. O

This lemma implies the following result:
Proposition 2.7. The t-structure on DA restricts to per A.
Proof. Let X be in per A, and look at the canonical triangle:
T<oX —= X —— 750X — (T<0X)[1].

Since per A is Hom-finite, the space H?X ~ Homp(A, X|[p]) is finite-dimensional for all p € Z
and vanishes for all p > 0 by lemma P.6. Thus the object 750X is in D’A and so in per A.
Since per A is a triangulated subcategory, it follows that 7<¢X also lies in per A. O

Proposition 2.8. Let m be the projection w : per A — C. Then for X andY in per A, we have
Home (7 X, 7Y) = lim Homp(7<, X, 7<,Y)

Proof. Let X and Y be in per A. An element of limHomp(7<, X, 7<,,Y") is an equivalence class

of morphisms 7<,X — 7<,Y. Two morphisms f : 7<, X — 7<,Y and g : 7<, X — 7<,,Y with
m > n are equivalent if there is a commutative square:

TSnX —f> TSnY

L,

g
TSmX —_— TSmY
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where the vertical arrows are the canonical morphisms. If f is a morphism f : 7, X — 7Y,
we can form the following morphism from X to Y in C:

TenX ety

N

X Y,

where the morphisms 7<, X — X and 7<,Y — Y are the canonical morphisms. This is a
morphism from 7X to 7Y in C because the cone of the morphism 7, X — X is in DA,
Moreover, if f : 7<, X — 7<,Y and g : 7, X — 7<,,Y are equivalent, there is an equivalence
of diagrams:

TSHX ...... f) TSHY

TemX I . TemY
Thus we have a well-defined map from limHomp(7<, X, 7<,Y") to Hom¢ (7 X, 7Y") which is in-

jective.

Now let X', be amorphism in Home (X, 7Y). Let X” be the cone of s. It is an
PN
X Y

object of DA, and therefore lies in D-,, for some n < 0. Thus there are no morphisms from
T<nX to X" and there is a factorization:

We obtain an isomorphism of diagrams:

/
PRI
X Y

~ 7
T- SnX !
The morphism f : 7<, X — Y induces a morphism f’ : 7<,X — 7<,Y which lifts the given

morphism. Thus the map from liinHome(TSnX, T<nY) to Home(w X, 1Y) is surjective. O

2.2. Fundamental domain. Let F be the following subcategory of per A:
F =D N lD§_2 N per A.
The aim of this section is to show:

Proposition 2.9. The projection functor w : per A — C induces a k-linear equivalence between
F and C.
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add(A)-approximation for objects of the fundamental domain.
Lemma 2.10. For each object X of F, there exists a triangle
P Py X Pi1]

with Py and Py in add(A).
Proof. For X in per A, the morphism
Homp(A, X) — Homy(HYA, H'X)
fo= Hf)
is an isomorphism since Homp(A, X) ~ H°X. Thus it is possible to find a morphism Py — X,

with Py a free dg A-module, inducing an epimorphism H°P) —s fox . Now take X in F
and Py — X as previously and form the triangle

Py B X Py

Step 1: The object Py is in D<o N *D<_y.
The objects X and Py are in D<g, so P is in D<;. Moreover, since H°Py — H°X is an
epimorphism, H'(P;) vanishes and P; is in D<.

Let Y be in D<_;, and look at the long exact sequence:

-+ ——Homp(Fy,Y) —= Homp(P;,Y) — Homp(X[-1],Y) — - --
The space Homp(X[—1],Y") vanishes since X is in *D< 5 and Y is in D<_;. The object P is

free, and H°Y is zero, so the space Homp (P, Y) also vanishes. Consequently, the object P; is
in J‘Dg_l.
Step 2: HP, is a projective H° A-module.
Since P; is in D« there is a triangle
T<-1Pt —= P —= H'P, — (1<-1 1)[1].
Now take an object M in the heart H, and look at the long exact sequence:

-+ —— Homp((7<—1 P1)[1], M[1]) — Homp(H° Py, M[1]) — Homp (P, M[1]) —---.

The space Homp ((7<—1 Py)[1], M[1]) is zero because Homp(D<_o, D> _1) vanishes in a t-structure.
Moreover, the space Homp( Py, M[1]) vanishes because P; is in *D<_;. Thus Homp(H° Py, M[1])
is zero. But this space is isomorphic to the space Ext%{(H 0Py, M) by proposition .3. This proves
that HOP, is a projective H°A-module.

Step 3: Py is isomorphic to an object of add(A).
As previously, since HP, is projective, it is possible to find an object P in add(A) and a
morphism P — P; inducing an isomorphism H°P — HYP,. Form the triangle
Since P and P are in D<y and H(v) is surjective, the cone @ lies in D<g. But then w is zero

since P is in *D<_;. Thus the triangle splits, and P is isomorphic to the direct sum P; & Q.
Therefore we have a short exact sequence:

0— H°Q — H'p — H'P, — 0,
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and H°Q vanishes. The object @ is in D<_;, the triangle splits, and there is no morphism
between P and D<_4, so () is the zero object.
O

Equivalence between the shifts of F.
Lemma 2.11. The functor 7<_; induces an equivalence from F to F[1]

Proof. Step 1: The image of the functor T<_y restricted to F is in FI1].

Recall that F is D<o N D<o Nper A so F[1] is D<_y N *D<_3Nper A. Let X be an object in
F. By definition, 7<_; X lies in D<_; and there is a canonical triangle:

TS—IX — X — HOX —_— Tg_lX[l] .
Now let Y be an object in D<_3 and form the long exact sequence
-+ —=Homp(X,Y) —= Homp(7<_1 X,Y) —= Homp((H°X)[-1],Y) — - - -

Since X is in *D<_,, the space Homp(X,Y") vanishes. The object H°X[—1] is of finite total
dimension, so by the CY property, we have an isomorphism
Homp(H°X[~1],Y) ~ DHomp(Y, H'X[2]).
But since Homp(D<_3, D> _) is zero, the space Homp((H°X)[—1],Y) vanishes and 7« 1 X lies
in J‘Dg_g.
Step 2: The functor T<_y : F — F[1] is fully faithful.
Let X and Y be two objects in F and f: 7<_1.X — 7<_1Y be a morphism.

HX[-1] —= 1< X —= X — HX

HY[-1] —> <Y >y ——> goy

The space Homp(H°X[—1],Y)) is isomorphic to DHomp (Y, H°X[2]) by the CY property. Since
Y is in +D<_,, this space is zero, and the composition i o f factorizes through the canonical
morphism 7<_; X — X. Therefore, the functor 7<_; is full.

Let X and Y be objects of 7 and f : X — Y a morphism satisfying 7<_; f = 0. It induces
a morphism of triangles:

HOX[-1] —>7< 1 X > X —> [OX
s
HY [-1] — 7)Y —=Y —— HOy

The composition f o ¢ vanishes, so f factorizes through H°X. But by the CY property the
space of morphisms Homp(H°X,Y) is isomorphic to DHomp (Y, H°X[3]) which is zero since Y
is in 2D~ _,. Thus the functor 7<_; restricted to JF is faithful.

Step 3: The functor T<_1 : F — F[1] is essentially surjective.
Let X be in F[1]. By the previous lemma there exists a triangle

Py[1] Fy[1] X P2
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with Py and P; in add(A). Denote by v the Nakayama functor on the projectives of mod H°A.
Let M be the kernel of the morphism vH°P, — vH°P,. It lies in the heart H.

Substep (i): There is an isomorphism of functors: Hom(?, X[1]),, &~ Hom(?, M)
Let L be in H. We then have a long exact sequence:

-+ = Homp(L, Py[2]) = Homp(L, X[1]) = Homp(L, P1[3]) = Homp(L, F[3]) = - .

The space Homp(L, Py[2]) is isomorphic to DHomp(Fy, L[1]) by the CY property, and vanishes
because Py is in 1 D<_;. Moreover, we have the following isomorphisms:

Homp (L, P1[3]) ~ DHomp(FPy, L)
~ DHomy(H°P;, L)
~ Homy(L,vH"P)).
Thus Homp(?, X[1])},, is isomorphic to the kernel of Homy(?,vHP;) — Homy(?,vH'F,),
which is just Homy (7, M).
Substep (ii): There is a monomorphism of functors: Exty,(?, M)~ Homp(?, X2]),, .

For L in H, look at the following long exact sequence:
-+ = Homyp(L, P;[3]) = Homp(L, P1[3]) = Homp (L, X[2]) = Homp(L, Pi[4]) = - - - .

The space Homp(L, P;[4]) is isomorphic to DHomp(P;[1], L) which is zero since Pi[1] is in
D<_; and L is in Dsg. Thus the functor Homp(?, X[2])),, is isomorphic to the cokernel of
Homy (7, vHPy) — Homy(?,vHP,). By defninition, Exty,(?, M) is the first homology of a
complex of the form:

00— HomH(?, VHOPl) — HomH(?’ ]/HOPO) — HomH(?’ ]) —
where I is an injective H°A-module. Thus we get the canonical injection:
Exty, (?, M)—— Homp(?, X[2])},,.

Now form the following triangle:

X —=Y —M— X[1].

Substep (iii): Y is in F and 7<_1Y is isomorphic to X.

Since X and M are in D<g, Y is in D<j. Let Z be in D<_5 and form the following long exact
sequence:

-+ +Homp(X[1], Z) = Homp(M, Z) = Homp (Y, Z) = Homp (X, Z) — Homp(M[-1], Z) - - -
By the CY property and the fact that Z[2] is in D<j, we have isomorphisms
Homp(M[-1],Z) =~ DHomp(Z[-2], M)
~ DHomy(H2Z M).
Moreover, since X is in *D<_3, we have
Homp(X, Z) ~ Homp(X,(H 22)[2])
DHomy,(H™2Z, X[1]).

12
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By substep (i) the functors Homy (7, M) and Homp (7, X[1])},, are isomorphic. Therefore we
deduce that the morphism Homp(X, Z) — Homp(M[—1], Z) is an isomorphism.
Now look at the triangle
T<3Z —= 7 —= H?Z[2] — (1<—3Z)[1]
and form the commutative diagram

Homp(M, 7<_3Z) —= Homp (M, Z) —= Homp (M, H2Z[2]) — Homp (M, 7<_5Z[1])

| | | |
Homp(X 1], 7<_3Z) = Homp(X[1], Z) = Homp(X|[1], H 2Z[2]) = Homp(X[1], 7<_3Z[1])
By the CY property and the fact that (7<_3Z)[—3] is in D<(, we have isomorphisms
Homp(M[—1],7<_3Z[—1]) ~ DHomp(r<_3Z[—3], M)

~ DHomy(HZ, M).

Since X is in 1D« _3, we have

Homp (X, (7<—3Z)[—1]) =~ Homp(X, H Z[-2])

~ DHomy(H*Z, X[1]).

Now we deduce from substep (i) that a[—1] is an isomorphism.

The space Homp(X[1], 7<_3Z[1]) is zero because X is 1D<_3. Moreover there are isomor-
phisms

Homp(M, H?Z[2]) ~ DHomp(H 27, M[1])
~ DExt;,(H*Z, M).
The space Homp (X 1], H2Z[2]) is isomorphic to DHomp(H2Z, X[2]). And by substep (ii),
the morphism Exty,(?, M) — Homp(?, X[2])},, is injective, so c is surjective. Therefore using a

weak form of the five-lemma we deduce that b is surjective.
Finally, we have the following exact sequence:

Homp(X[1], Z) = Homp(M, Z) — Homp (Y, Z) — Homp (X, Z) == Homp(M[-1], Z)

Thus the space Homp (M, Z) is zero, and Z is in 1 D<_,.
It is now easy to see that there is an isomorphism of triangles:

Tg_ly —Y —— gy —— T§_1Y[1]

| ]

X Y M X|[1].

O

Proof of proposition [2.9. Step 1: The functor m restricted to F is fully faithful.

Let X and Y be objects in F. By proposition R.3 (iii), the space Hom¢(7 X, 7Y") is isomorphic
to the direct limit limHomp(7<, X, 7<,Y"). A morphism between X and Y in C is a diagram of

the form
TSnX

Ve AN
X Y.
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The canonical triangle
(TonX)[-1] == T<cn X — X —> 70 X
yields a long exact sequence:
-+ = Homp(7-,X,Y) = Homp(X,Y) = Homp(7<, X, Y) - Homp((75, X )[-1],Y) = - -

The space Homp((7-,X)[—1],Y) is isomorphic to the space DHomp(Y, (75, X)[2]). The object
X is in D«g, thus so is 7-,X, and the space DHomp(Y, (7-,X)[2]) vanishes. For the same
reasons, the space Homp (7>, X,Y") vanishes. Thus there are bijections

Homp(7<n X, 7<,Y) — Homp(7<, X, Y) ——= Homp(X,Y)
Therefore, the functor 7 : F — C is fully faithful.

Step 2: For X in per A, there exists an integer N and an object Y of F[—N] such that mX
and 7Y are isomorphic in C.

Let X be in per A. By lemma P.6, there exists an integer /N such that X is in J_DSN_2. For an
object Y in D<y_s, the space Homp((t-nyX)[—1],Y) is isomorphic to DHomp (Y, (75 X)[2])
and thus vanishes. Therefore, 7« X is still in “D<y_o, and thus is in F[—N]. Since 7onX is
in DYA, the objects <y X and X are isomorphic in C.

Step 3: The functor w restricted to F is essentially surjective.

Let X be in perA and N such that 7<yX is in F[—N]. By lemma R.11, 7<_; induces an
equivalence between F and F[1]. Thus since the functor 7o 7<_; : per A — C is isomorphic to
7, there exists an object Y in F such that 7(Y") and 7(X) are isomorphic in C. Therefore, the
functor 7 restricted to F is essentially surjective.

Proposition 2.12. If X and Y are objects in F, there is a short exact sequence:
0 — Extp(X,Y) — Ext}(X,Y) — DExtp(Y, X) — 0.
Proof. Let X and Y be in F. The canonical triangle
TooX —= X —— 750X —— (70 X)[1]
yields the long exact sequence:
Homp ((750X)[—1], Y[1]) <= Homp (70X, Y[1]) <= Homp (X, Y[1]) <= Homp(750 X, Y[1]) .

The space Homp(X[—1], Y[1]) is zero because X is in *D<_5 and Y is in D<j. Moreover, the
space Homp (750X, Y[1]) is zero because of the CY property. Thus this long sequence reduces
to a short exact sequence:

0 —= Exth (X, Y) —= Homp (<X, Y[1]) —= Homp ((720X)[—1], Y[1]) —=0 .

Step 1: There is an isomorphism Homp((750X)[~1],Y) ~ DExtp (Y, X).
The space Homp ((150X)[—1], Y[1]) is isomorphic to DHomp (Y, 750X [1]) by the CY property.
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But since Homp (Y, (7<0X)[1]) and Homp(Y, (7<0X)[2]) are zero, we have an isomorphism
Homp (150X [—1],Y) ~ DExtp(Y, X).

Step 2: There is an isomorphism Exts (7 X, 7Y) =~ Homp(1<_1 X, Y[1]).

By lemma P.T7], the object 70X belongs to F[1] and clearly Y'[1] belongs to F[1]. By propo-
sition B.9 (applied to the shifted t-structure), the functor 7 : per A — C induces an equivalence

from F[1] to C and clearly we have (70X, Y[1]) = (X ). We obtain bijections

Homp(7-0X, Y[1]) — Homp (770X, 7Y [1]) —= Homp (7 X, 7Y'[1]).

Proof of theorem [2.1. Step 1: The category C is Hom-finite and 2-CY.

The category F is obviously Hom-finite, hence so is C by proposition B.9. The categories
T = perA and N/ = DA C per A satisfy the hypotheses of section 1. By [Kel08d], thanks to
the CY property, there is a bifunctorial non degenerate bilinear form:

/GN,X : HomD(N, X) X HomD(X,N[?)]) — k’
for N in D*A and X in per A. Thus, by section 1, there exists a bilinear bifunctorial form
By : Home(X,Y) x Home (Y, X[2]) — K

for X and Y in C = per A/D*A. We would like to show that it is non degenerate. Since per A
is Hom-finite, by theorem [[.3 and proposition [[4, it is sufficient to show the existence of local
N-envelopes. Let X and Y be objects of per A. Therefore by lemma P-4, X is in *D<y. Thus
there is an injection

0 — Homp(X,Y) —= Homp (X, 7= nY)
and Y — 7o nY is a local N-envelope relative to X. Therefore, C is 2-CY.

Step 2: The object wA is a cluster-tilting object of the category C.

Let A be the free dg A-module in per A. Since H'A is zero, the space Ext},(A, A) is also zero.
Thus by the short exact sequence

0 — Extp(A, A) — Ext(7A, mA) — DExtp (A, A) —=0

of proposition .19, m(A) is a rigid object of C. Now let X be an object of C. By proposition
.9, there exists an object Y in F such that 7Y is isomorphic to X. Now by lemma , there
exists a triangle in per A

P P Y P[1]

with P; and Py in add(A). Applying the triangle functor = we get a triangle in C:

7TP1 7TP() X 7TP1[1]

with 7P, and 7P, in add(rA). If Ext}(mA, X) vanishes, this triangle splits and X is a direct
factor of mF,. Thus, the object wA is a cluster-tilting object in the 2-CY category C.
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3. CLUSTER CATEGORIES FOR JACOBI-FINITE QUIVERS WITH POTENTIAL

3.1. Ginzburg dg algebra. Let ) be a finite quiver. For each arrow a of ), we define the
cyclic deriwative with respect to a 0, as the unique linear map

0 kQ/[kQ, kQ] — kQ

which takes the class of a path p to the sum Zp:uav vu taken over all decompositions of the
path p (where u and v are possibly idempotents e; associated to a vertex i of Q).

An element W of kQ/[kQ, kQ)] is called a potential on Q. It is given by a linear combination
of cycles in Q.

Definition 3.1 (Ginzburg). [[Gin0d](section 4.2) Let () be a finite quiver and W a potential
on ). Let ) be the graded quiver with the same vertices as () and whose arrows are

e the arrows of @) (of degree 0),

e an arrow a* : jJ — 1 of degree —1 for each arrow a : ¢ — j of @,

e aloop t; : © — 1 of degree —2 for each vertex i of Q.
The Ginzburg dg algebra I'(Q, W) is a dg k-algebra whose underlying graded algebra is the
graded path algebra kQ. Its differential is the unique linear endomorphism homogeneous of

degree 1 which satisfies the Leibniz rule
d(uv) = (du)v + (—1)Pudv,

for all homogeneous u of degree p and all v, and takes the following values on the arrows of @:

e da = 0 for each arrow a of @),

e d(a*) = 0,W for each arrow a of @,

o d(t;) = e;(D>_,la,a*])e; for each vertex i of () where e; is the idempotent associated to i
and the sum runs over all arrows of ().

The strictly positive homology of this dg algebra clearly vanishes. Moreover B. Keller showed
the following result:

Theorem 3.2 (Keller). [KelO8H] Let @ be a finite quiver and W a potential on Q). Then the
Ginzburg dg algebra T'(Q, W) is homologically smooth and bimodule 3-CY.

3.2. Jacobian algebra.

Definition 3.3. Let ) be a finite quiver and W a potential on ). The Jacobian algebra
J(Q, W) is the zeroth homology of the Ginzburg algebra I'(Q), W). This is the quotient algebra

]{JQ/<8GW, a < Q1>
where (0,W,a € (1) is the two-sided ideal generated by the J,V.
Remark: We follow the terminology of H. Derksen, J. Weyman and A. Zelevinsky ([DWZ07]
definition 3.1).
In recent works, B. Keller [Kel08H] and A. Buan, O. Iyama, I. Reiten and D. Smith

have shown independently the following result:

Theorem 3.4 (Keller, Buan-Tyama-Reiten-Smith). Let T be a cluster-tilting object in the clus-

ter category Cq associated to an acyclic quiver (). Then there exists a quiver with potential
(Q', W) such that Endc, (T) is isomorphic to J(Q',W).
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3.3. Jacobi-finite quiver with potentials. The quiver with potential (@), W) is called Jacobi-
finite if the Jacobian algebra J(Q, W) is finite-dimensional.

Definition 3.5. Let (Q, W) be a Jacobi-finite quiver with potential. Denote by I" the Ginzburg
dg algebra I'(Q,W). Let perT’ be the thick subcategory of DI' generated by I' and DT the
full subcategory of DI" of the dg I'-modules whose homology is of finite total dimension. The
cluster category Cig,w associated to (@, W) is defined as the quotient of triangulated categories

per['/D'T.
Combining theorem B.J] and theorem B.9 we get the result:

Theorem 3.6. Let (Q, W) be a Jacobi-finite quiver with potential. The cluster category Cigw)
associated to (Q, W) is Hom-finite and 2-CY. Moreover the image T of the free module " in
the quotient perI' /DT is a cluster-tilting object. Its endomorphim algebra is isomorphic to the
Jacobian algebra J(Q,W).

As a direct consequence of this theorem we get the corollary:

Corollary 3.7. Each finite-dimensional Jacobi algebra J(Q, W) is 2-C'Y-tilted in the sense of
L. Reiten (cf. [Rei07]), i.e. it is the endomorphism algebra of some cluster-tilting object of a
2-C'Y category.

Definition 3.8. Let (Q, W) and (Q', W’) be two quivers with potential. A triangular extension
between (Q, W) and (Q',W') is a quiver with potential (¢, W) where

® Qo= QoUQy;

o ()1 =Q1UQU{a; i € I}, where for each 7 in the finite index set I, the source of a; is

in Qo and the tail of a; is in Q;

o W =W+W".
Proposition 3.9. Denote by JF the class of Jacobi-finite quivers with potential. The class
JF satisfies the properties:

(1) it contains all acyclic quivers (with potential 0);
(2) it is stable under mutation of quivers with potential defined in [DWZ07|;
(3) it is stable under triangular extensions.

Proof. (1) This is obvious since the Jacobi algebra J(@,0) is isomorphic to kQ.

(2) This is corollary 6.6 of [DWZ07]. -
(3) Let (Q, W) and (@', W') be two quivers with potential in JF and (Q, W) a triangular

extension. Let Q; = @, U Q) U F be the set of arrows of (). We have then
kQ = kQ ®p (R ®kF © R) ®r kQ
where R is the semi-simple algebra k@ and R’ is kQj. Let W be the potential W + W’

associated to the triangular extension. If @ is in @y, then oW = 9,W, if a is in Q]
then 9, W = 9,W' and if a is in F', then 9,W = 0. Thus we have isomorphisms

J(@QW) = kQ/(0.W,a€ Q)

~ kQ' Qpr (R ®kF & R)®grkQ/{(0,W,a € Q1,0,W' b e Q)
kQ' /(0 W' b e Q) @p (R @& kF & R) ®r kQ/(0,W,a € Q1)
~ JQ W) ®r (R ®kF®R)®rJ(Q,W).

Thus if J(Q',W’) and J(Q, W) are finite-dimensional, J(Q,W) is finite-dimensional
since F' is finite.

12
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In a recent work [KY0§], B. Keller and D. Yang proved the following:

Theorem 3.10 (Keller-Yang). Let (Q, W) be a Jacobi-finite quiver with potential. Assume
that Q) has no loops nor two-cycles. For each vertex i of QQ, there is a derived equivalence

where 11;(Q, W) is the mutation of (Q, W) at the vertez i in the sense of [DWZ0T].

Remark: in fact Keller and Yang proved this theorem in a more general setting. This also true
if (Q, W) is not Jacobi-finite, but then there is a derived equivalence between the completions
of the Ginzburg dg algebras.

An other link between mutation of quivers with potential and mutations of cluster-tilting
objects is given in [BIRS0§ (theorem 5.1):

Theorem 3.11 (Buan-Iyama-Reiten-Smith). Let C be a 2-CY triangulated category with a
cluster-tilting object T'. If the endomorphism algebra Ende(T) is isomorphic to the Jacobian
algebra J(Q, W) for some quiver with potential (QQ, W), and if no 2-cycles start in the vertex i
of Q, then we have an isomorphism

Ende(1:(T)) = J(1:(Q, W)).
Combining these two theorems with theorem B.6, we get the corollary:

Corollary 3.12. (1) If Q is an acyclic quiver, and W = 0, the cluster category Cow) is
canonically equivalent to the cluster category Cg.
(2) Let Q be an acyclic quiver and T a cluster-tilting object of Cq. If (Q', W) is the quiver
with potential associated with the cluster-tilted algebra Ende, (T') (cf. [Kel0O8H] [BIRSO0Y]),
then the cluster category Cqw) is triangle equivalent to the cluster category Cq .

Proof. (1) The cluster category Cq,0 is a 2-CY category with a cluster-tilting object whose
endomorphism algebra is isomorphic to kQ. Thus by [KRO7|, this category is triangle
equivalent to Cq.

(2) In a cluster category, all cluster-tilting objects are mutation equivalent. Thus there
exists a sequence of mutations which links k() to T. Moreover the quiver of a cluster-
tilted algebra has no loops nor 2-cycles. Thus by theorem 5.1 of [BIRS0§|, the quiver
with potential (), W) is mutation equivalent to (@’,0). Then the theorem of Keller and
Yang [KYO0§| applies and we have an equivalence

DI(Q, W) ~ DI'(Q,0).
Thus the categories C(g,w) and C(q o) are triangle equivalent. By (1) we get the result.
O

4. CLUSTER CATEGORIES FOR NON HEREDITARY ALGEBRAS

4.1. Definition and results of Keller. Let A be a finite-dimensional k-algebra of finite global

L
dimension. The category D°A admits a Serre functor v4 =? ®4 DA where D is the duality
Homy (7, k) over the ground field. The orbit category

DAjvyo0[-2]

is defined as follows:
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e the objects are the same as those of DYA;
e if X and Y are in D’A the space of morphisms is isomorphic to the space

@B Homp (X, (v}, Y [-2i]).
i€z
By Theorem 1 of [Kel0F], this category is triangulated if A is derived equivalent to an hereditary
category. This happens if A is the endomorphism algebra of a tilting module over an hereditary
algebra, or if A is a canonical algebra (cf. [HROZ], [HapO1]).
In general it is not triangulated and we define its triangulated hull as the algebraic triangu-
lated category C4 with the following universal property:

e There exists an algebraic triangulated functor 7 : D*A — Cy.
e Let B be a dg category and X an object of D(A? ® B). If there exists an isomorphism

L
in D(A” ® B) between DA ®4 X[—2] and X, then the triangulated algebraic functor

L
?®4 X : D*A — DB factorizes through 7.

Let B be the dg algebra A @ DA[—-3]|. Denote by p : B — A the canonical projection. It
induces a triangulated functor p, : D°A — D’B. Let (A)p be the thick subcategory of D*B
generated by the image of p,. By Theorem 2 of (cf. also [Kel08d)), the triangulated
hull of the orbit category D°A/v4 o [—2] is the category

Ca = (A)p/per B.

We call it the cluster category of A. Note that if A is the path algebra of an acyclic quiver,
there is an equivalence

Co = D(kQ)/v o [~2) = (kQ) u/per B.

4.2. 2-Calabi-Yau property. The dg B-bimodule DB is clearly isomorphic to B[3], so it is
not hard to check the following lemma:

Lemma 4.1. For each X in per B and Y in DB there is a functorial isomorphism
DHompB(X, Y) ~ HompB(Y, X[?)])

So we can apply results of section 1 and construct a bilinear bifunctorial form:

By : Home, (X, Y) x Home, (Y, X[2]) — k.

Theorem 4.2. Let X andY be objects in D = D°B. If the spaces Homp(X,Y) and Homp(Y, X[3])
are finite-dimensional, then the bilinear form

By : Home, (X,Y) x Home, (Y, X[2]) — k
1s non-degenerate.
Before proving this theorem, we recall some results about inverse limits of sequences of

vector spaces that we will use in the proof. Let ---—=1V, 4 Vo—1 LA /A Vo be an

inverse system of vector spaces (or vector space complexes) inverse system. We then have the
following exact sequence

where @ is defined by ®(v,) = v, — ¢(v,) € V,, & V,_1 where v, is in V.
Recall two classical lemmas due to Mittag-Lefter:
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Lemma 4.3. If, for all p, the sequence of vector spaces W; = Im(V,+; — V},) is stationary, then
liml\/p vanishes.
This happens in particular when all vector spaces V,, are finite-dimensional.

Lemma 4.4. Let - -- Vi i Vo-1 LN v —

dimensional vector spaces such that Vo, = imVj, is also finite-dimensional. Let V) be the image

Vo be an inverse system of finite-

of Voo in Vp,. The sequence V), is stationary and we have V., = limV, = V.

Proof. (of theorem [[.3) Let X and Y be objects of D*B such that Hompz(X,Y) is finite-
dimensional. We will prove that there exists a local per B-cover of X relative to Y.

Let P,:...— P, P, P, o P, be a projective resolution of X.
The complex P, has components in per B, and its homology vanishes in all degrees except in
degree zero, where it is X. Let P<,, and P-,, be the natural truncations, and denote by T'ot(P)
the total complex associated to P,. For all n € N, there is an exact sequence of dg B-modules:

0 — Tot(P<,) — Tot(P) —= Tot(Ps,) —= 0

The complex T'ot(P) is quasi-isomorphic to X, and the complex T'ot(P<,,) is in per B. Moreover,
Tot(P) is the colimit of Tot(P<,). Thus by definition, we have the following equalities

Hom%(Tot(P),Y) = Hom%(colimTot(P<,),Y)
= limHom%y(Tot(P<,),Y).

Denote by V,, the complex Hom%(Tot(P<,),Y). In the inverse system

L e (e (O
all the maps are surjective, so by lemma [£.3, there is a short exact sequence
>
0—> Voo —IL Vo —1II; Vo —0
which induces a long exact sequence in cohomology
I HY HO(Vec) [THV, =TI HV, -

lim' H~1V, limH°V,

We have the equalities

5
£
I

H(Hom%(Tot(P),Y))
Homy (Tot(P),Y)
= Homp(X,Y).

Denote by W), the complex Homp (T0t(P<,),Y") and by U, the complex H~*(V,) = Homp(Tot(P<,),Y|
The spaces (U,), are finite-dimensional, so by lemma .3, lim* U, vanishes and we have an iso-

morphism
H°(limV},) = H°(V,,) ~ limH°(V,).

The system (WV),), satisfies the hypothesis of lemma [L.4. In fact, for each integer p, the space
Homp(T'ot(P<,),Y) is finite-dimensional because T'ot(P<,) is in per B. Moreover, by the last two
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equalities W, = limW),, is isomorphic to Homp (X, Y") which is finite-dimensional by hypothesis.
By lemma [, the system (W), formed by the image of W, in W, is stationary. More
precisely, there exists an integer n such that W, = limW . Moreover W, is a subspace of

W,, = Homp(Tot(P<,),Y) and there is an injection
Homp (X, Y )~ Homp(Tot(P<,),Y) .

This yields a local per B-cover of X relative to Y.

The spaces Homp(N, X) and Homp(X, N) are finite-dimensional for N in per B and X in
D’B. Thus by proposition [, there exists local per B-envelopes. Therefore theorem applies
and (3’ is non-degenerate.

O

Corollary 4.5. Let A be a finite-dimensional k-algebra with finite global dimension. If the
cluster category C4 is Hom-finite, then it is 2-C'Y as a triangulated category.

Proof. Denote by p, : D*A — DB the restriction of the projection p : B — A.
Let X and Y be in D°(A). By hypothesis, the vector spaces

P Hompea (X, v4Y[~2p]) and @) Homps (Y, 4 X [—2p + 3))

PEL PEZL
are finite-dimensional. But by [Kel0F], the space Homps5(p. X, p.Y’) is isomorphic to
@D Homp 4 (X, 4Y [—2p]),

p=>0

so is finite-dimensional. For the same reasons, the space Hompsg(Y, X[3]) is also finite-dimensional.
Applying theorem f.J, we get a non-degenerate bilinear form B,.xp.v- The non-degeneracy

property is extension closed, so for each M and N in (A)p, the form (3}, is non-degenerate.
O]

4.3. Case of global dimension 2. In this section we assume that A is a finite-dimensional
k-algebra of global dimension < 2.

Criterion for Hom-finiteness. The canonical t-structure on the derived category D = DA
satisfies the property:

Lemma 4.6. We have the following inclusions v(Dso) C D>_5 and v~ (D<g) C D<y. More-
over, the space Homp(U, V') vanishes for all U in Dsq and all V' in D<_s.

Proposition 4.7. Let X be the A-A-bimodule Ext’ (DA, A). The endomorphism algebra A =
Endc, (A) is isomorphic to the tensor algebra TaX of X over A.

Proof. By definition, the endomorphism space End¢, (A) is isomorphic to
@B Homp (A, 17 A|~2p))
PEL

For p > 1, the object P A[—2p] is in Dss since vA is in Dsg. So since A is in D<y, the space
Homp (A, v? A[—2p]) vanishes.
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L L
The functor v =? ® 4 DA admits an inverse v~! = — @4 RHoma(DA, A). Since the global
dimension of A is < 2, the homology of the complex RHom (DA, A) is concentrated in degrees
0,1 and 2 :
H°(RHoma(DA,A)) = Homp(DA, A)
H'(RHoma(DA, A)) = Ext}(DA,A)
H*(RHoma(DA, A)) = Ext}(DA, A).

Let us denote by Y the complex RHom (DA, A)[2]. We then have

v PA2pl = A Q%A (Yé“‘p) = Yé*“p.
Therefore we get the following equalities
Hompa(A, SPA[=2p]) — Hompa(A,Y®4)
_ o (Yémp).
Since H°(Y) = X, we conclude using the following easy lemma. O

Lemma 4.8. Let M and N be two complexes of A-modules whose homology is concentrated in
negative degrees. Then there is an isomorphism

H(M éA N) ~ H(M)®4 H°(N).

Proposition 4.9. Let A be a finite-dimensional algebra of global dimension 2. The following
properties are equivalent:

(1) the cluster category Ca is Hom-finite;

(2) the functor ? @4 Ext>(DA, A) is nilpotent;

(3) the functor Tory'(?, DA) is nilpotent;

(4) there exists an integer N such that there is an inclusion ®~(Dsy) C D>y where ® is
the autoequivalence va|—2| of the category D = DA and Dsq is the right aisle of the
natural t-structure of DPA.

Proof. 1 = 2: It is obvious by proposition [L.7.

2 & 3 & 4: Let ® be the autoequivalence v4[—2] of D’A. The functor Tor’(?, DA) is
isomorphic to H° o ® and ? ®4 Ext} (DA, A) is isomorphic to H° o ®~!. Thus it is sufficient to
check that there are isomorphisms

H°® o H'® ~ H'®? and H°® ' o H'® ' ~ H'®2,

This is easy using Lemma since the algebra A has global dimension < 2 .

4 = 1: Suppose that there exists some N > 0 such that ®V(Dsg) is included in D<;.
For each object X in C4, the class of the objects Y such that the space Home, (X,Y) (resp.
Hom, (Y, X)) is finite-dimensional, is extension closed. Therefore, it is sufficient to show that
for all simples S, S, and each integer n, the space Hom¢, (S, S’[n]) is finite-dimensional.

There exists an integer py such that for all p > py ®P(S’) is in D>, 41. Therefore, because of
the defining properties of the t-structure, the space

@ Homp (S, ®P(S")[n])

P>Ppo
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vanishes. Similary, there exists an integer gy such that for all ¢ > qo, we have ®4(S) € D> _,, 3.
Since the algebra A is of global dimension < 2, the space

@ Homp (9%(S), S"[n])

vanishes. Thus the space

&B Homp (S, @7(5")[n]) = €D Homp (S, 27(5")[n])

PEZ pP=—qo

is finite-dimensional. O

Cluster-tilting object. In this section we prove the following theorem:

Theorem 4.10. Let A be a finite-dimensional k-algebra of global dimension < 2. If the functor
Tor‘;(?, DA) is nilpotent, then the cluster category Ca is Hom-finite, 2-C'Y and the object A is
a cluster-tilting object.

We denote by © a cofibrant resolution of the dg A-bimodule RHom% (DA, A). Following
[Kel08d| and [Kel08H], we define the 3-derived preprojective algebra as the tensor algebra

II5(A) = Ta(6[2]).

The complex RHom% (DA, A)[2] has its homology concentrated in degrees —2, —1 and 0, and
we have

H72(0[2]) ~ Hompa (DA, A), H(0]2]) ~ Ext} (DA, A)
and H°(0[2]) ~ Ext} (DA, A).
Thus the homology of the dg algebra II3(A) vanishes in strictly positive degrees and we have
HCTI3A = T4Ext} (DA, A) = A.

By proposition [L.9, it is finite-dimensional. Moreover, Keller showed that II3(A) is homologi-
cally smooth and bimodule 3-CY [Kel08H]. Thus we can apply theorem and we have the
following result:

Corollary 4.11. The category C = perIlsA/D°TI3A is 2-CY and the free dg module 1I3A is a
cluster-tilting object in C.

To complete the proof of Theorem we now construct a triangle equivalence between Cy4
and C sending A to II3A.
Let us recall a theorem of Keller ([Kel99], or theorem 8.5, p.96 [AHHKO7)):

Theorem 4.12. [Keller] Let B be a dg algebra, and T an object of DB. Denote by C the
dg algebra RHom%(T,T). Denote by (T)p the thick subcategory of DB generated by T'. The
functor RHom%(T,?) : DB — DC induces an algebraic triangle equivalence

RHom$%(T,?) : (T)p —— perC.

Let us denote by Ho(dgalg) the homotopy category of dg algebras, i.e. the localization of
the category of dg algebras at the class of quasi-isomorphisms.

Lemma 4.13. In Ho(dgalg), there is an isomorphism between II3A and RHomp(Ag, Ag).
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Proof. The dg algebra B is A @ (DA)[—3]. Denote by X a cofibrant resolution of the dg A-
bimodule DA[—2]. Now look at the dg submodule of the bar resolution of B seen as a bimodule
over itself (see the proof of theorem 7.1 in [Kel03]):

bar(X,B):- - —=B®4 X®2 @, B—=B®s X @1 B—=B®sB—0
This is a cofibrant resolution of the dg B-bimodule B. Thus A ®p bar(X, B) is a cofibrant
resolution of the dg B-module A. Therefore, we have the following isomorphisms
RHom%(Ap, Ag) ~ Hom%(A®p bar(X, B), A)
~ [[Homy(A®s X5 @4 B, Ap)

n>0
H Hom% (X®4™ Homp (B, Ap)a)
n>0
H Hom% (X ®A™, Ay),
n>0
where the differential on the last complex is induced by that of X®4™ Note that
Hom% (X, A) = RHom%(DA[-2],A)
= RHom%(DA, A)2] = ©]2].

We can now use the following lemma:

12

12

Lemma 4.14. Let A be a dg algebra, and L and M dg A-bimodules such that M, is perfect as
right dg A-module. There is an isomorphism in D(A%? & A)
L L
RHom% (L, A) ®4 RHom% (M, A) ~ RHom% (M ®4 L, A).
Proof. Let X and M be dg A-bimodules. The following morphism of D(A% ® A)

L
X ®4 RHoma(M,A) — RHomu(M,X)
r@p —  (m—xp(m))
is clearly an isomorphism for M = A. Thus it is an isomorphism if M is perfect as a right dg
A-module. Applying this to the right dg A-module RHom (L, A), we get an isomorphism of
dg A-bimodules
L
RHomu (L, A) @4 RHoma(M, A) ~ RHoma(M, RHom (L, A)).

Finally, by adjunction we get an isomorphism of dg A-bimodules

L L
RHoma(L, A) @4 RHoma(M, A) ~ RHoma(M ®4 L, A).
U

Therefore, the dg A-bimodule Hom?% (X ®4™, A4) is isomorphic to (©[2])®4", and there is an
isomorphism of dg algebras

RHomy(Ap, Ap) ~ ED(012])*" = TI5(A)

L

because for each p € Z, the group H?(0[2]®4™) vanishes for all n > 0. O
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By theorem (.12, the functor RHom%(Ag,?) induces an equivalence between the thick sub-
category (A)p of DB generated by A, and perIl3(A). Thus we get a triangle equivalence that
we will denote by F':

~

F = RHom%(Ag,?) : (A)p perll3A

This functor sends the object A of D°B onto the free module IIsA and the free B-module B
onto RHom%(Agp, B) ~ RHom%(Ag, DB[—3]), that is to say onto (DA)[—3]m,4. So F induces

an equivalence
F :perB = (B)g ——= (DA[-3])1,4 = (A)11,4.

Lemma 4.15. The thick subcategory (A)m, 4 of DI3A generated by A is DTI3A.

Proof. The algebra A is finite-dimensional, thus (A), 4 is obviously included in D’TI3A. More-
over, the category D’II3A equals (mod H(II3A)),4 by the existence of the t-structure. The
dg algebra II3A is the tensor algebra T)4(6[2]) thus there is a canonical projection 1134 — A
which yields a restriction functor DA — D(II3A) respecting the t-structure:

mod HOH3A = H(—> Db(HgA)

! T

mod A— Db 4

This restriction functor induces a bijection in the set of isomorphism classes of simple modules
because the kernel of the map H°(IT3A) — A is a nilpotent ideal (namely the sum of the tensor
powers over A of the bimodule Ext (DA, A)). Thus each simple of mod H°TI5A is in (A),4
and we have
<A>H3A ~ <mod HO(HgA)>H3A ~ DbH3A.
O

Proof. (of theorem [[.1(]) By proposition .9 and corollary [I.], the cluster category is Hom-finite
and 2-CY. Furthermore, the functor F' = RHom%(Ag,?) induces the following commutative
square:

F:(A)g ——= perll3A

J

per B

~

D'II3A

Thus F' induces a triangle equivalence

Ca = (A)p/per B

~

perI3A/DTI3A =C

sending the object A onto the free module II3A. By theorem P.1], A is therefore a cluster-tilting
object of the cluster category Cj4. U

Quiver of the endomorphism algebra of the cluster-tilting object. Let A = kQ/I be a finite-
dimensional k-algebra of global dimension < 2. Suppose that I is an admissible ideal generated
by a finite set of minimal relations r;, ¢ € J where for each ¢ € J, the relation r; starts at the
vertex s(r;) and ends at the vertex #(r;). Let @ be the following quiver:

e the set of the vertices of @ equals that of @Q);
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e the set of arrows of @ is obtained from that of @) by adding a new arrow p; with source
t(r;) and target s(r;) for each 7 in J.
We then have the following proposition, which has essentially been proved by I. Assem, T.
Briistle and R. Schiffler [ABS0{q] (thm 2.6). The proposition is also proved in [Kel0O8H].

Proposition 4.16. If the algebra Endc, (A) = A is finite-dimensional, then its quiver is Q.

Proof. Let B be a finite-dimensional algebra. The vertices of its quiver are determined by the
quotient B/rad(B) and the arrows are determined by rad(B)/rad?*(B). Denote by X the A-
A-bimodule Ext% (DA, A). Since X ®4 X is in rad?(B), the quiver of A = T4 X is the same as
the quiver of the algebra A x X. The proof is then exactly the same as in [[ABS0d] (thm 2.6).

0]

Example. We refer to [[GLS07q| for this example. Let ) be a Dynkin quiver. Let A be its
Auslander algebra. The algebra A is of global dimension < 2. The category mod A is equivalent
to the category mod (mod kQ) of finitely presented functors (mod Q) — mod k. The projective
indecomposables of mod A are the representable functors U" = Homyq(?,U) where U is an
indecomposable kQ-module. Let S be a simple A-module. Since A is finite-dimensional, this
simple is associated to an indecomposable U of mod kQ. If U is not projective, then it is easy
to check that in D°(A) the simple Sy is isomorphic to the complex:

— 0 —(tO)" EN Un 0
-3 —9 -1 0 1

where () U E U 0 is the Auslander-Reiten sequence associated to U.
Thus ®(Sy) = vSy[—2] is the complex:

.—= 0 —=(70)Y EY U 0
-1 0 1 2 3
where UV is the injective A-module DHomq(U, 7). It follows from the Auslander-Reiten for-
mula that this complex is quasi-isomorphic to the simple S,y .
If U is projective, then Sy is isomorphic in D(A) to

.— 0 — (radU)" UnN 0
-2 0 1

Y

and then ®(Sy) is in Ds;. Since for each indecomposable U there is some N such that 7VU
is projective, there is some M such that ®¥ (D) is included in Ds;. By proposition .9, the
cluster category C4 is Hom-finite, and 2-CY by corollary 5.

The quiver of A is the Auslander-Reiten quiver of modk(@. The minimal relations of the
algebra A are given by the mesh relations. Thus the quiver of A is the same as that of A in
which arrows 7o — x are added for each non projective indecomposable .

For instance, if () is A, with the orientation 1 2 3 4 , then the quiver of the

algebra A is the following
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5. STABLE MODULE CATEGORIES AS CLUSTER CATEGORIES

5.1. Definition and first properties. Let B be a concealed algebra [Rin84], i.e. the endo-
morphism algebra of a preinjective tilting module over a finite-dimensional hereditary algebra.
Let H be a postprojective slice of mod B. We denote by add(H) the smallest subcategory of
mod B which contains H and which is stable under taking direct summands. Let ) be the
quiver such that Endg(H) is the path algebra £Q and let Qg = {1,--- ,n} be its set of vertices.

By Happel [Hap87], there is a triangle equivalence:

DRHomp(?,H)
D*(B) D (kQ).

L
(D)®reH

Notice that these functors induce quasi-inverse equivalences between add(H) and the sub-
category of finite-dimensional injective kQ)-modules.
Define M as the following subcategory of mod B:

M ={X € modB | Extz(X,H) =0} = {X € mod B | X is cogenerated by H}
We denote by 75 the AR-translation of the category mod B and by 7p the AR-translation of
D'B.
The following proposition is a classical result in tilting theory (see for example [Rin84)]).

Proposition 5.1. (1) For each X in M there exists a triangle
X Hy H, X[1]

in D(mod B) functorial in X with Hy and Hy in add(H);

(2) M C mod B is closed under kernels so in particular, M is closed under Tp;

(3) for each indecomposable X in M there exists a unique ¢ > 0 such that 759X is in
add(H);

(4) the category M has finitely many indecomposables.

Hom-finiteness. Let M be the quotient M /add(H). Denote by p : M — M the canonical
projection. Since H is a slice, we have the following properties.

Proposition 5.2. (1) The category M is equivalent to the full subcategory of M whose
objects do nmot have non zero direct factors in add(H). We denote by i : M — M the
associated inclusion.

(2) The category M C mod B is closed under kernels, and hence under 1.
(3) The right exact functor i : mod M — mod M induced by i : M — M is isomorphic to
the restriction along p.

Proposition 5.3. Let A be the endomorphism algebra Endp(€D,,cinaz M)- The global dimen-
sion of A is at most 2.

Proof. There is an equivalence of categories between mod A and mod M. Since M is stable
under kernels, the global dimension of A is < 2. O

Theorem 5.4. The cluster category Ca is a Hom-finite, 2-C'Y category, and the object A is a
cluster-tilting object in Cya.

Proof. Using corollary [ and theorem [J, we just have to check that the functor Tor%(?, DA)
is nilpotent. Since there are finitely many indecomposables in M, the proof is the same as for
an Auslander algebra (cf. the examples of section [.J). O
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Construction of the functor F' : mod M — f.l.A. Denote by Z(kQ) the subcategory of the
preinjective modules of mod £Q).

Proposition 5.5. There exists a k-linear functor P : T(kQ) — M unique up to isomorphism
such that

e P restricted to subcategory of the injective kQ-modules is isomorphic to the restriction
of the functor D(?) ®ro H;
e for each indecomposable X in IT(kQ) such that P(X) is not projective, the image

0—— P(mpX) L P(E) L2 P(X) ——0

of an Auslander-Reiten sequence in mod kQ) ending at X

7 p

0 TpX E X 0

is an Auslander-Reiten sequence in mod B ending at P(X).

Moreover, the functor P is full, essentially surjective, and satisfies P o p >~ 1 0 P.

Proof. The Auslander-Reiten quivers I'z of Z(kQ) and Ty of M are connected translation
quivers. Each vertex of I'z is of the form 7z with ¢ > 0 and 2 indecomposable injective. Each
vertex of 'y is of the form 75 where x is in add(H) ((3) of proposition B.1). Moreover, there
is a canonical isomorphism of quivers P : T’ pkQ — Dadd(ry. Thus we can inductively construct
a morphism of quivers (that we will still denote by P) P : 't — I'y( extending P such that:

o P(rpx) = 13 P(x) for each vertex x of I'z ;
e P(opa) = opP(a) for each arrow o : & — y of I'z, where opa (resp. op3/3) denotes the
arrow 7py — x (resp. Ty — x) such that the mesh relations in I'z (resp. in I"y) are
of the form -, ,,_, op(a)a (resp. 3,5 _, 05(5)0).
Clearly, this morphism of translation quivers induces surjections in the sets of vertices and the
sets of arrows.

The categories Z(kQ) and M are standard, i.e. k-linearly equivalent to the mesh categories of
their Auslander-Reiten quivers. Up to isomorphism, an equivalence k(I'7) — Z(kQ) is uniquely
determined by its restriction to a slice. Thus there exists a k-linear functor P : Z(kQ) — M
unique up to isomorphism which is equal to D(?) ®yo H on the slice of the injectives and such
that the square

k(Tz) —Z(kQ)
J{P lp
k(T pm) —— M
is commutative. This functor P sends Auslander-Reiten sequences

7 p

0 TpX E X 0

to Auslander-Reiten sequences

0——15P(X) L P(E) 2 P(X) ——0

if P(X) is not projective. Since P is surjective, P is full and essentially surjective. O
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Lemma 5.6. Let X andY be indecomposables in Z(kQ). The kernel of the map Homyo(X,Y) —
Homp(PX, PY) is generated by compositions of the form X — Z — Y where Z is indecom-
posable and P(Z) is zero.

Proof. If P(X) or P(Y) is zero this is obviously true. Suppose they are not. The mesh re-
lations are minimal relations of the k-linear category M and P is full. Thus the kernel of

the functor P is the ideal generated by the morphisms of the form U/ oy oW where
0 P(U)

P(U) is isomorphic to 75 P(W), the indecomposable U is isomorphic to 7p(W). By the con-
struction of P, V is a direct factor of the middle term of the Auslander-Reiten sequence ending

ro P(V) L P(W)——= 0 is an Auslander-Reiten sequence in M. Since

at W, and we can ‘complete’ the composition 7pW -y "o W into an Auslander-Reiten

sequence
() (h )
0 —— W VeV W 0
with P(V’) = 0 and P(¢’) = P(h') = 0. Thus the morpism hg = —h'g’ factors through an
object in the kernel of P. OJ

Now let A be the preprojective algebra associated to the acyclic quiver (). It is defined as
the quotient kQ/(c) where @ is the double quiver of @ which is obtained from @Q by adding to
each arrow a : i — j an arrow a* : j — ¢ pointing in the opposite direction, and where (¢) is
the ideal generated by the element

c= Z (a*a+ aa®)
ac@Qq
where ()1 is the set of arrows of (). We denote by e; the idempotent of A associated with the
vertex i. We then have a natural functor
projA  — ZI"(kQ)
e — Hp>0 71,

where Z"(kQ) is the closure of Z(kQ) under countable products. Composing this functor with
the natural extension of P to Z%(kQ), we get a functor:

projA — M
e — @pzo o H;.

Therefore the restriction along this functor yields a functor F' : mod M — modA. More-
over, since M has finitely many indecomposables, the functor F' takes its values in the full
subcategory f.1.A formed by the A-modules of finite length.

This is an exact functor since it is a restriction. If M is an M-module, then the vector space
F(M)e; is isomorphic to -, M (75 Hj). For X in M, there exists i € Qy and ¢ > 0 such that
79H; = X. Tt is then easy to check that the image F(Sx) of the simple associated to X is the
simple A-module S;.

Fundamental propositions.

Proposition 5.7. For X in M, there exists a functorial sequence in mod A of the form

0 —— Foi,(X") —= F(H}) — F(H}) —— Foi,(X¥) —0
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where i, : mod M — mod M is the right exact functor induced by i : M — M, and where Hy
and Hy are in add(H).

Proof. Let X bein M, and iX its image in M. By (1) of proposition .1}, there exists a triangle
functorial in X:
1X Hy H,y (1X)[1]

with Hy and Hy in add(H). It yields a long exact sequence in mod M:

0 — (iX)" —= Hy — H{ Extp(?,iX)),, — Extp(?, o)) — -

By definition, the functor Exty(?, Hp)|,, is zero. The Auslander-Reiten formula gives us an
isomorphism
Exty(?,iX)|,, ~ DHomp(r5'iX,?),,,/proj B.

Since F'is an exact functor, we get the following exact sequence in f.[.A:
0 — F((iX)") —= F(H§) —= F(H{) — F((15"iX)" /proj B) —= 0
By definition, we have F((iX)") ~ (F o,)(X"). For j =1,--- ,n, we have an isomorphism:
F((r5'iX)" /proj B)e; ~ @DHomB(TB iX,mhH;)/proj B.
p>0

For p > 0, we have 75(H;) = 75 (757 H;) if and only if 75 H; is not projective. Thus we have
a vector space isomorphism

F((r5'iX)Y /proj B)e; ~ @DHomB(TB iX, 5 T ;) /proj B.
p>0

A morphism f: 771X — 771V factorizes through a projective object if and only if 7(f) : X —
Y is not zero. Thus we have:

F((r5"iX)" /proj B)e; ~ @D DHomp(iX,7hH;)

p>1

@DHomB(X mhH;)/ladd(H))

p>0
~ (Fop")(XY)e; ~ (Foi.)(X")e;
Therefore we get this exact sequence in f.[.A, functorial in X:

0 — (Fow)(X") — F(Hg) — F(H) — (Foi)(X") —=0

12

Proposition 5.8. Let U and V be indecomposables in M. We have an isomorphism

Home, (U", V") =~ @ MU, V) /addr? H]

p=>0
where M(TRU, V') /laddThH] is the cokernel of the composition map
M(TRU, TR H) @ M(ThH, V) — M(T5U, V).

We first show the following lemma:
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Lemma 5.9. Let ey and ey be the idempotents of A associated to the indecomposables U and
V. We have an isomorphism

evExty (DA, Aey ~ M(1U, V) /[addrpH]
where M(tpU, V') /[addTgH] is the cokernel of the composition map
M(rgU,75H) @ M(15H,V) — M(mgU, V).
Proof. We have the following isomorphisms:
evExty (DA, AJey = Ext)(D(epA), Aey)
~  Homp ) (DM(U, ?), M(?,V)[2]).

Denote by M the category M /projB. The functor 75 induces an equivalence of k-linear
categories 75 : M — M. Thus we get the following isomorphisms

Homp oy (DM(U, ), M(?,V)[2]) =~ Homps) (DM(15 U, 75'7), M(r5'2, 75'V)[2))
~ Homp(u)(DM(75'U,?), M(?, 75" V)[2])

~ Homp (DM(15'U, ?)/proj B, M(?,75'V) /proj B[2])

But by the previous lemma, we know a projective resolution in mod M of the module DM (75 'U,7)/proj |
Namely, there exists an exact sequence in mod M of the form:

00— M(?,U) —= M(?, Hy) —= M(?, H)) — DM(75'U,?)/proj B—0
where Hy and H; are in add(H). Thus we get (using Yoneda’s lemma)
HomD(ﬂ)(DM(U, 7),M(2,V)2]) =~ Hompy(M(?,U), M(?,75'V)/proj B)/[addM(?, H))]
~ M(U,75'V)/laddH]

~ M(rgU,V)/[addTpH].

Since V' is in M, a non zero morphism of M(7gU, V') cannot factorize through add(H). Thus
we get M(1U, V) /[addrgH] ~ M (75U, V) /|addTpH].
0J

Proof. (of proposition p.8) In this proof, for simplicity we denote 75 by 7. Let A be the algebra
Endc, (A). By proposition [.7, we have a vector space isomorphism

ey Aey ~ ey Aey @ eUExti(DA, Aey @ eUExti(DA, A%, @ ...
We prove by induction that
evExt (DA, A)®4Pey, ~ M(7PU, V) /[addr” H].
For p = 0, ey Aey is isomorphic to M(U, V) by Yoneda’s lemma, and so to M(U, V) /[add(H)).
Suppose the proposition holds for an integer p — 1 > 0. We then have
e Ext? (DA, A)®4Pey ~ Z e Exty (DA, A)®4P ey, @ ey Ext’ (DA, Aey.
Weind (M)

The sum means here the direct sum modulo the mesh relations of the category M. Thus this
vector space is the sum over the indecomposables W of M of

M(P7rU, W) /[add (7P H)] @ M(W, V) /|add (T H)]
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modulo the mesh relations of M. This is isomorphic to the cokernel of the map <p’T’ ;}1UW ®
Lewy + Leo-iyw ® @ryyy Where

gpﬂgy MX,TH) @ M(TH,)Y) — M(X,Y)
is the composition map and where
1X7y : M(X, Y) — M(X, Y)

is the identity. The cokernel of this map is isomorphic to the cokernel of the map SOprJW ®
Lwyv + 1w ® SOiW,v- But we have an isomorphism

> MU TW) @ M(TW, V) ~ M(7PU, V).
Weind M

Finally we get

Coker Z Crvvw © Lewy + lymw ® 9071-W,V ~ Coker(¢7uyy + 9071-PU,V)'
Weind M
Furthermore, a morphism in M(7PU, V') which factorizes through 7H factorizes through 7 H

since H is a slice and U is in M. Thus this cokernel is in fact isomorphic to the cokernel of
SOpry that is to say to the space

M(TPU, V) /]addT? H].

5.2. Case where B is hereditary.

Results of Geiss, Leclerc and Schroer. Let () be a finite connected quiver without oriented
cycles with n vertices. Denote by P the postprojective component of the Auslander-Reiten
quiver of mod k@, and by P, ..., P, the indecomposable projectives.

Definition 5.10 (Geiss-Leclerc-Schroer, [GLS07H]). A kQ-module M = M; & - - - @& M,, where
the M; are pairwise non isomorphic indecomposables, is called initial if the following conditions
hold:

e foralli=1,...,r, M; is postprojective;

e if X is an indecomposable kQ-module with Homyq (X, M) # 0, then X is in add(M);

e and P; € add(M) for each indecomposable projective k@Q-module P;.

We define the integers t; as
t; = max{j > 0|77/ (P)) € add(M) — {0}}.

Denote by A the preprojective algebra associated to (). There is a canonical embedding of
algebras kQQ—— A . Denote by mg : mod A — mod k() the corresponding restriction functor.

Theorem 5.11 (Geiss-Leclerc-Schroer, [GLSO07H]). Let M be an initial kQ-module, and let
Cy = Wél(add(M)) be the subcategory of all A-modules X with 7o(X) € add(M). The following
holds:

(i) the category Cpy is a Frobenius category with n projective-injectives;

(ii) the stable category C,, is a 2-CY triangulated category.
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Recall from Ringel [RinJ§ that the category mod A can be seen as modkQ(77',1). The
objects are pairs (X, f) where X is in modkQ and f : 77'X — X is a morphism in modkQ.
The morphisms ¢ between (X, f) and (Y, g) are commutative squares:

D ¢ f—> X

s

Yy LA Y

The image of an object (X, f) under g : mod A — mod k() is then the module X.
Let X = 77!P, be an indecomposable summand of an initial module M. Let Rx = (Y, f) be
the following object in mod kQ(77!,1) ~ mod A:

I+1

l !
Y:@T_’Pi and fZ@T_jB%@T_jPi
j=0 Jj=1 Jj=0

is given by the matrix
0

r=1
1o
Proposition 5.12 (Geiss-Leclerc-Schroer,[[GLSO7H]). The category Cas has a canonical maz-
imal rigid object R = @Xeindadd(M) Ryx. The projective-injectives of Cp are the R p,
t=1,...,n. Therefore, R is a cluster-tilting object in C,,.

Endomorphism algebra of the cluster-tilting object. Let ) be a connected quiver without ori-
ented cycles and denote by B the path algebra k£Q. Let M be an initial B-module. Let H be
the following postprojective slice H = @, 77" P; of mod B. Let Q" be the quiver such that
Endp(H) is isomorphic to kQ'.

Let us define, as in the previous section, the subcategory M of D?(modkQ) as

M ={X € modkQ /Exth(X, H) =0}

It is then obvious that M = add(M). As previously, we denote by A the preprojective algebra
associated with )'. It is isomorphic to the one associated with ) because ) and )’ have the
same underlying graph. Recall that we have M = M /add(H), and that A = Endg(M) is
an algebra of global dimension 2. Note that in this case 75 and 7p coincide on the objects of
mod B which have no projective direct summands since B is hereditary. We will denote it by
7 in this section.

Lemma 5.13. Let U and V be indecomposables in M. We have

Hom, (Ry, Ry) ~ @ M(U, V).

J=0

Proof. Let P and @) be projective indecomposables such that U = 779Q) and V = 77PP.
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Case 1: p < q
An easy computation gives the following equalities
p p
Homa(Ry, Ry) ~ @ M(Q,77P) ~ P M(r"HQ,777P)

=0 j=0

p q
~ @M(T‘pJ’jJ’q(T_qQ),T_pP) o~ @ M(TIU, V).
j=0 J=q-p

Since M(7*U, V) vanishes for k < ¢ —p + 1 and since 7*U vanishes for k > ¢ + 1 we get an
isomorphism

Hom, (Ry, Ry) ~ @ MU, V).

Jj=>0
Case 2: p > q .
In this case, a morphism from Ry to Ry is given by morphisms a; € M(Q,777P), with
j =0,...,psuch that 77%"q; = 0 for j = 0,...,p — ¢ — 1. But since 779777 P is not zero
for j =0,...,p—¢—1, the morphism 7~ %"'q; : 7797 Q — 7791J P vanishes if and only if a;

vanishes. Thus we get

Homy(Ry, Ry) ~ € M(Q,77P)~ @ M(r77Q,r"P)

J=p—q J=pr—q
p q
~ P ME Q) 7P P) ~ HM(FUL V).
j=p—q j=0

Since 77U vanishes for j > ¢ + 1 we get
Hom, (Ry, Rv) ~ @ M(r7U, V).

J=0

Corollary 5.14. Let U and V be indecomposable objects in M. We have
HOI’T]QM (RU, Rv) ~ €UA6V
and therefore the algebras A and Endc,, (R) are isomorphic.

Proof. The projective-injectives in the category Cy; are the Ry, with ¢ = 1,...,n. Denote by
Ry the sum @?:1 Rpy,. Thus HomQM(RU, Ry) is the cokernel of the composition map

HomcM (RU, RH) & HomcM (RH, Rv) — HomcM (RU, Rv)

By the previous lemma this map is isomorphic to the following

D, ;2o M(TUH) @ M(TTH,V) ——— @, M(TPU, V)

Given two morphisms f € M(7'U, H) and M(77H,V), ®(f ® g) is the composition 77 f o g €
MU, V). Thus the cokernel of this map is the cokernel of the map

B0 Py M(TPU, 7 H) @ M(T'H,V) — 2= @, M(r?U, V) .
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Since H is a slice and since U is in M, a morphism in M (7PU, V) which factorizes through
7'H with i < p factorizes through 77 H. Finally we get

Home (Ry, Ry) ~ €D M(7°U,V)/[addr" H],

p=>0

and we conclude using proposition p.§. O
Triangle equivalence.

Theorem 5.15. The functor F oi, : mod M — f.I.A yields a triangle equivalence between Cit
and C ;.

Proof. Let X = TglP,- be an indecomposable of M. Let X" be the projective M-module
Homp (7, X)|,,. The underlying vector space of F/(X") is

F(X") ~ @HomB(TgH,TglPi):@HomB(quB,TglPi)

q>0 q>0
l
-1 _
~ G}HomB(B,TJqB P) ~ @TB‘]PZ-.
q>0 q=0

It is then not hard to see that F'(X") is equal to Rx. Thus each projective X" is sent onto an
object of Cps. Therefore I induces a functor F : D*(M) — D(Cy;). Moreover for i = 1,...,n,
F(H]) is equal to R, - p,i.e. a projective-injective of Cp;. We have the following composition:

DV M) = DY(A) —= DY(M) —= DY (Cpy) —> DY(Cay ) /perCas =~ Cyy
)

L
2®DA[-2]

The functor F'oi, is clearly isomorphic to the left derived tensor product with the A-A-bimodule
R = Foi,(A). By proposition p.7, for X in M, we have the following exact sequence, functorial
in X:
00— Foi,(X")—F(H})) —= F(H}) —= Foi,(XV) —=0
with Hy and Hy in add(H). It yields a morphism
Foi,(DA) — Foi,(A)[2]

in the derived category of A-A-bimodules. Since the objects F(H{') and F(H{') vanish in the
stable category C,,, the image

Foi,(DA) — Foi,(A)[2]

of this morphism in the category of A-B-bimodules is invertible, where B is a dg category whose
perfect derived category is algebraically equivalent to the stable category C,,. In other words,
in the derived category D(A%® ® B), we have an isomorphism

DA &4 7Fi(A) ~ 7Fi,(A)[-2].

By the universal property of the orbit category, we have the factorization
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This factorization is an algebraic functor between 2-CY categories which sends the cluster-
tilting object A onto the cluster-tilting object R. Moreover by corollary p.14, it yields an
equivalence between the categories add(A) and add(R). Thus it is an algebraic triangle equiv-
alence.

O

Note that if M is the initial module kQ ® 77*kQ, Geiss, Leclerc and Schréer proved, using
a result of Keller and Reiten [KROA|, that the 2-CY category C,, is triangle equivalent to the
cluster category Cq. Here, H is 77'kQ and then M is k@, so we get another proof of this fact.

5.3. Relation with categories SubA/Z,.

Results of Buan, Iyama, Reiten and Scott. Let () be a finite connected quiver without oriented
cycles and A the associated preprojective algebra. We denote by {1,...,n} the set of vertices
of Q. For a vertex i of (), we denote by Z; the ideal A(1 — e;)A of A. We denote by W the
Cozeter group associated to the quiver ). The group W is defined by the generators 1,...,n
and the relations:

e i2=1foralliin {1,...,n};

e ;5 = ji if there are no arrows between the vertices ¢ and j;

e 151 = jij if there is exactly one arrow between 7 and j.

Let w = 1115 .. .17, be a W-reduced word. For m <r, let Z,, be the following ideal:
Tw, =1, ... L;,T;,.

For simplicity we will denote Z,,, by Z,. The category SubA/Z, is the subcategory of f.1.A
generated by the sub-A-modules of A/Z,,.

Theorem 5.16 (Buan-Iyama-Reiten-Scott [BIRS07]). The category SubA/Z,, is a Frobenius
category and its stable category SubA/Z,, is 2-CY. The object T, = @, _, €, ALy, is a
cluster-tilting object.

Note that this theorem is written only for non Dynkin quivers in [BIRS07], but the Dynkin
case is an easy consequence of theorem I1.2.8 and corollary 11.3.5 of [BIRS07].

Construction of a reduced word. Let B be a concealed algebra, and H a postprojective slice in
mod B. Let @ the quiver of Endg(H). It is a finite quiver without oriented cycles. We denote
by {1,...,n} its set of vertices and by A its preprojective algebra. We define as previously
M ={X € mod B /Exty(X, H) = 0}.

Let us order the indecomposables X, ..., Xy of M in such a way: if the morphism space
Homp(X;, X;) does not vanish, i is smaller than j. This is possible since () has no oriented
cycles.

By proposition p.], for X; € M there exists a unique ¢ > 0 such that 757X, ~ H, for a
certain integer (7). So we get a function ¢ : {1,...,N} — {1,...,n}. Let w be the word

p(1)p(2) ... o(N).
Proposition 5.17. The word w is W -reduced.
Proof. The proof is in several steps:

Step 1: For two integers i < j in {1,..., N}, we have o(i) = ¢(j) if and only if there exists
a positive integer p such that X; = 75 X;.
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Step 2: The element w of the Coxeter group does not depend on the order on the indecom-
posables of M.

Let i bein {1,..., N —1}. Assume there is an arrow ¢(i) — ¢(i+1) in Q). We show that there
is an arrow X; — X;,; in the Auslander-Reiten quiver of M. By proposition p., there exist
positive integers p and ¢ such that X; = 7/ H,;) and X, 41 = 75 Hy(4+1). By hypothesis there is
an arrow between H,;) and H,(41). Thus we want to show that p is equal to g.

Suppose that p > ¢+1, then since M is closed under 75, the objects 7}, H, ;1) and TJqBHHSD(iH)
are non zero and are in M. Let [ be the integer in {1,..., N} such that X; = T,‘éﬂHgﬂ(Hl). We
have an arrow

Xi =15 Hea) — ThHpirn = 75 X1
Thus, by the property of the AR-translation, there is an arrow X; — Xj;. Thus ¢ should be
strictly greater than [. But by step 1, and the hypothesis p > ¢ + 1, we have 7 + 1 < [. This is
a contradiction.
The cases ¢ > p+ 1, and (i + 1) — (i) in @ can be solved in the same way.

Step 3: It is not possible to have (i) = @(i + 1).
Suppose we have ¢(i) = ¢(i + 1). By step 1 there exists a positive integer p such that X; =
ThXit1. Suppose that p is > 2, then 75X;41 = T§p+lXi is in M, it is isomorphic to an X} for
an integer k with ¢(k) = (7). But k& must be strictly greater than ¢ and strictly smaller than
7 + 1 which is clearly impossible. Thus p is equal to 1. There should exist an X; in M such
that Hom(X;, X;) # 0 and Hom(X}, X;.1) # 0. Thus [ must be strictly between i and i + 1
which is impossible.

Step 4: It is not possible to have ¢(i) = p(i + 2) and p(i + 1) = p(i + 3) with exactly one
arrow in Q between p(i) and p(i + 1).

In this case we have, by step 1, X; = 75X and X1 = 75 X;.3. By the same argument as in
step 3, p and ¢ have to be equal to 1. Thus the AR quiver of M has locally the following form:

N T
..... > Xjyq e Xjog o
7 N e
S GRr— Xipg A

The module X;,; is the unique direct predecessor of X;,s. Indeed, suppose there is an X
with an arrow X, — X;,o. Thus there is an arrow 75X, = X; — X} and k£ must be strictly
between ¢ and 7 + 2. By the same argument, there is only one arrow with tail X3, one arrow
with source X; and one arrow with source X;,;. Thus we have the following AR sequences in
mod B:

0—=X, > Xip1 > Xipp >0 and 00— X1 = Xjpo = X130
which is clearly impossible.
Step 5: There is no subsequence of type jkjlkl in w with an arrow between j and k and an
arrow between k and [

Suppose we have ¢(i) = (i +2) = J, (i +1) = p(i +4) = k and p(i +3) = ¢(i +5) = L.
As previously, we have X; = 73X;,0, X;11 = 78X, 14 and X;,3 = 73X;;5. There is an arrow
Xiv1 — X0 so there is an arrow X;, o — X, 4. There is an arrow X;,35 — X;.4 thus there is
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an arrow X,;;1 — X;.13. As in step 4 it is easy to see that the AR quiver of M locally looks
like:

o 7
........ > Xjig o Xjig >
N e N\ e N
..... > X g o X o
A N psd
> X Xi+2 ........ - ~

Thus we have the 3 following AR sequences in mod B:

0=X;i=Xim1 = Xiio=0 0—=>Xiys = Xipa = Xiy5 >0

and 00— Xij1 —Xip3 D Xjpo — Xjpy — 0

A simple argument of dimension permits us to conclude that X; and X;,5 must be zero, that
is a contradiction.

By the second step, we know that using the relation of commutativity is the same as changing
the order on the indecomposables of M. Moreover we just saw that locally we can not reduce
the word w. Thus it is reduced.

OJ

Image of the cluster-tilting object. Let F' : mod M — f.I.A be the functor constructed in section
5.
Proposition 5.18. Fori=1,..., N, we have an isomorphism in f.l.A:
F(X]) =~ epiyA/ Ly,
where w; is the word p(1)--- (7).

Proof. The functor F' is right exact and sends the simple functor Sx, onto the simple S,).
Since F(X/') surjects onto F(Sy,), there is a morphism e,;A — F(X/'). Explicitly, we will
take the morphism given in this way:

The object X;; is of the form 7}, H, ;) fora ¢ > 0. If jisin {1,...,n}, the vector space e, Ae;
is isomorphic to [] ., Homiq(7pl;, Iy;)) where I; is the injective indecomposable module of
mod k(@ corresponding to the vertex j. Let f be a morphism in Homyo(7h1;, L,@)), then 75 (f)
is a morphism in Homyo (75 1;, 7h 1), and then P(7hf) = 74 P(f) is a morphism in M from
TR H; to ThH i) = X, thus is in F(XZA)eJ.

Step 1: The morphism ey, A — F(X/') vanishes on the ideal I, .

A word ji 7o - - jr will be called a subword of w; if there exist integers 1 <[} <ly < --- <. <1
such that j;js - o(li)p(lz) - - ¢(ly). It is easy to check that the vector space e,y Ly, €; is
generated by the paths from j to (i) such that there exists a factorization

e e L e e a2 )

with jjijs -« - jr(7) not a subword of w;.
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Let f be a morphism 751; — I, in Z(kQ) given by such a path. Assume that the image
P(73f) of fin F(X/) is non zero. Let

L g

—— 1l —>'”—>TDI o (4)

be the factorization of f given by the above factorization of the path. Therefore P(75f) is
equal to the composition

TP-HIH s TP1+11H s TP2+¢1H R 5 Tpr-i-qH s TBHAO(Z') — Xz .

Since P(75f) is not zero, all morphisms P(75f;) are not zero, and all objects 75 ¢ H;, are non
zero. Thus the objects pl+qH are of the form X, with hy < h; < --- < h, < i. Furthermore,
we have o(h;) = j;. Thus Jgi e dre(i) = @(ho)p(h1) -+ - p(h.)p(i) is a subword of w;. This
contradiction shows that the image of f in F'(X/') must be zero.

Step 2: The morphism ey, A — F(X]) is surjective.

Let f be a morphism 75 “H; — 75 H,u) = X; in M. Hence 757 f is a morphism 75 H; — H;
in M. Since P is full (cf prop. p.1), there exists a morphism ¢ : 73I; — I, such that

P(g) = 15°f. Thus we have P(thg) = 74P (g9) = f.

Step 3: The morphism eyyN/L,, — F(X]') is injective.
Let f be a non zero morphism 731; — I, in Z(kQ) such that P(73f) is zero. By lemma
b-G, we can assume that there exists a factorization of 74 f of the form

A T i 10

with Y indecomposable and P(Y) = 0. The object Y is of the form 73[; with h > ¢ and we
have T H; = 0.

The morphism g is a sum of compositions of irreducible morphisms between indecomposables.
Let

g0 g1 g2 gs

1 Y Y, Y

be such a summand of g. The objects Y;, 1 < k < s are indecomposable and so are of the
form 7°1;,, and the morphisms gy, 0 < k < s are irreducible. We will show that the word
[71J2 - .- js(i) is not a subword of w;. Without loss of generality, we may assume that for
1<k g s, P(Y}) is not zero, so there exist integers [ such that P(Y;) = X . Since the mor-
phisms g are irreducible, P(gy) does not vanish, and we have 1 <[} <y < --- < s <i. The
word j17a ... Jsp(1) is equal to the word ¢(l1)p(ls) - - - @(ls)p(i), so jijs - .. jse(i) is a subword
of W;.

I

Substep 1: The sequence 1 < I3 < Iy < --- < ly < 1 is the maximal element of the set
{1 <in <idp <0 <y <idgpn S0 | (i) = g1, .0, 006) = Js, 0list1) = @(i)} for the
lexicographic order.

We prove by decreasing induction that [; is the maximal integer with I < lx1 and ¢(lx) = J-
For k = s+ 1 it is obvious. Now suppose there exists an integer i such that ¢(ly) = ¢(ix) = Jk
and I}, < ix < lj41. Thus by step 1 of proposition p.17, there exists an integer r > 1 such that

X, = 75X;,. The morphism P(gx) : X;, — X, ,, is irreducible, so there exists a non zero
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irreducible morphism X;,,, — 75'X;,. The object 75" X, is in M since X;, and 73" X), = X,

are in M. It is of the form X;, and we have [, ; < t. Since r is > 1, t is < i}, by step 1 of
proposition [p.17. This implies I, 1 < i, which is a contradiction.

Substep 2: 1 does not belong to the set {p(1),(2),...,0(l1 —1)}.
Suppose that there exists an integer 1 < k < N such that ¢(k) is equal to [. Thus there exists
an integer r > 0 such that X} is equal to 75 H,. Since 7h H; = P(T11}) is zero, r is < h — 1.
Since the morphism gy : 7} — Y; is an irreducible morphism of Z(kQ), there exists an
irreducible morphism Y; — 747, in Z(kQ). Thus there exists an irreducible morphism
757" Y, — 7RI in Z(kQ). The object P(7hl;) = ThH; = X} is not zero and lies in M,
so the object P(75 "™Y]) = 75 " X), is not zero and lies in M since M is stable by kernel.
Thus there is an 1rreducible morphism 75~ h“Xll X; — X in M. Therefore ¢ has to be < k.
Moreover since r —h+1<0,1l;is < s by step 1 of proposition f.17. Finally we get I, < k.
Combining substep 1 and substep 2, we can prove that [j1js ... js(i) can not be a subword
of w;. Indeed, assume [j17s ... js¢(i) is a subword of w;. There exist 1 < iy < i3 < ... <15 <
is11 < i such that p(ig)@(i1) ... @(ist1) = lJ1ja - . . Jsp(7). In particular, the word j1js . .. js(7)
is a subword of w; and 1 <1; < ... < 1is <141 < is in the set of substep 1. Thus by substep

1, 71 has to be < [;. By substep 2, 75 can not exist.
O

Endomorphism algebra of the cluster-tilting object.

Lemma 5.19. Let X; and X; be indecomposables of M. We have an isomorphism of vector
spaces

HomA(%(]—)A/ij,ew)A/Iw @M TpX X

p>0

Proof. Case 1: 7 >1
By [BIRS07 (lemma II.1.14) we have an isomorphism

HomA(esD(j)A/ija ego(i)A/Iwi) = e@(i)A/IwieSO(j)‘
By proposition p.1§, this is isomorphic to the space
P ML ), Xo).
p=>0

By definition of the function ¢, there exists some ¢ > 1 such that X; = 75 H,(;). Thus we can
write the sum

P M5 H, ), X @M 57X, X)) © P M(TEX; X
p=0 p>0

Since j > i, there is no morphism from Tgp X, to X; for p > 1, and the first summand is zero.
Therefore we get the result.

Case 2: j <1
By [BIRS07] (lemma I1.1.14) we have an isomorphism
Homa (€ A/ Zuys €o N L) = o) (Zoti) - - - Lo 1)/ L)€l
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By proposition p.1§, this space is a subspace of the space
P M(ThH, ), Xi) ~ P M(57X;, X)) & @ M(T5X;, X)).

p=0 p>1 p>0

Step 1: If f is a non zero morphism in M(15"X;, X;) with p > 1 then f is not in the space
Co(iyLo(i) - - Lo(j+1) (i)
Let X, be the indecomposable 75" X;. Since p > 1 then [y is < j 4 1. The morphism is a sum
of composition of the form

)QO )Ql A )Q )Q

T

with the X; indecomposables. Since f is not zero, we have j +1 <y <} < ... <[, < 1.
Thus the word ¢(lp)e(l1) ... ¢(l.)e(i) is a subword of ¢(j + 1)p(7 4+ 2) ... (7). Since it holds
for each factorization of f, the morphism f is not in the space ey Zy(i) - - - Zo(j+1)€p()-

Step 2: If f is a morphism in M(15,X;, X;) withp > 0 then f is in the space e\ Loy - - - Lo(j+1)€0 () -

Let X, be the indecomposable 75,X;. Since p is > 0, we have Iy < j. Let us show that if f is
a composition of irreducible morphisms

Xl Xh ce Xl

T

Xlr+1 :Xz

0

then the word ¢(lg)@(l1) - - - p(l.)p(7) is not a subword of w(j + 1)p(7 +2) ... (7).

We have g < 13 < --- <. <1i. Sincelpis<j+1,andiis < j+1, thereexists 1 <k <r—+1
such that I _1 < j+1 < . Therefore ¢(Ix) ... @(l,)p(i) is a subword of p(7+1)p(j+2) ... (1),
and the sequence Il < lyy1 < --- <[, < is the maximal element of the set

Ur1<ip < <ipp1 <i | olix) =), 0(ir) = 0(lr), plirs1) = 0(i) }

for the lexicographic order (exactly for the same reasons as in substep 1 of proposition p.1§).
Now we can prove exactly as in substep 2 of proposition that ¢(lx_1) does not belong
to the set {o(j +1),...,0(lx — 1)}. Thus @p(lx_1)p(lk). ..ol )e(i) can not be a subword of

e(j+ Do +2)...0(i)
Finally, let f = fi1 + f2 be a morphism in

P M(EH, ), Xi) ~ P M(75°X;, Xi) © @ M(T5X;, X)).
p=>0 p>1 p>0

By step 2, fy is in the space e Zy(i) - - - Zo(j+1)€0(j)- By step 1 the morphism fisin e, Zy() - - - Zo(j+1) €4
if and only if f — 1 is zero. Thus we get an isomorphism

Homa (€4(5)A/Zu, s oA/ L) = €D M(THX;, X).

p=>0

Corollary 5.20. If X; and X; are indecomposables of M, then we have
HomMA/Iw (6¢(j)A/ij, ew(i)A/Iwi) ~ erfleXi.
Proof. The proof is exactly the same as the proof of corollary p.14 O
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Triangle equivalence.

Theorem 5.21. The functor F oi, : mod M — f.I.A induces an algebraic triangle equivalence
between Cy; and SubA /Z,,.

Proof. By proposition p.1§, the functor F' sends the projectives of mod M onto the summands
of the cluster-tilting object T, of the category SubA/Z,. For i = 1,... n, the projective H}
is sent to the projective-injective A/Z,e;. Furthermore, by corollary p.2(, F o i, induces an
equivalence between the subcategories add(A) and add(T,). Thus we can conclude as in the

proof of theorem p.13. O

5.4. Example. We refer to [Ami0g] for more examples. Let ) be the following quiver: 1 —— 2
The preinjective component of mod k@) looks as follows:

e ] [263] [021]
A T
N Nl 7 /

o |[384] [032] [110]

S
=
[«
©

—

Here we denote the kQ-modules by their dimension vectors in order to lighten the writing.
For example the module [1 4 2] has the following composition series: 2522 ;2.
If we mutate the tilting object [263] @ [142] @& [110] in the direction [14 2], we stay in the

preinjective component. We get the tilting object:
T=[263]@[384]B[110].
The algebra B = Endyg(T") is a concealed algebra and is given by the quiver:

2
VAN
Z\
1 3
The functor RHom(T', ?) yields an equivalence between D(kQ) and D°B. Denote by H the
image of D(kQ) through this equivalence. This is a postprojective slice of mod B. Moreover, this
equivelence restricts to an equivalence between the category M = {X € mod B | Exth (X, H) =

0} and the category M’ = {X € modkQ | Ext,ng(T, X) = 0}. The indecomposable objects of
M’ are

with the relation ba + b'a’ = 0.

[384],[263],[142],[110],[021],and[010].

The quiver of M’ with an admissible ordering is the following:

2 )
TN
 E— 3 6

4

The dotted arrows represent the Auslander translation 753. The projective indecomposables of
mod M have the following dimension vectors:

0 0 1 0 2 0 2 0 3 1 6 2
10 0f, 2 0 0f, 371 of, [371 0], 472 o, 8 41
0 0 0 1 0 1

-
-~
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Now let A be the preprojective associated to the quiver ). The functor F': mod M — mod A
sends the simples M-modules S; = [1 O0(0)0], Sy = [00 1(0]0} and Sg = [00031] on the

simple A-module 55 = [g].

1 ................... 3 ................... 6 ....... 2

It sends the simple M-modules Sy = [0 Yo 2 0} and S5 = [0 %0 (1] 0} on the simple A-module

S1 = [é}, and the simple M-module S, = [0 %0 (1] 0] on the simple A-module S5 = [gﬂ. Since
it is exact, it preserves the composition series and then it is easy to compute the image of the
indecomposable projective M-modules. We get

HEHRBRHRHES]

The projectives of the preprojective algebra associated to () have the following composition

series:
3 1 3
373
279 2
515323%2,4, 313313313, and 272 272 272

PSR T

The word w associated with the ordering is w = 232132. Thus the maximal rigid object of
the category SubA/Z, is
) 1 3
R=2@,%,& 3.3 @& 3°; & 3%3°; @
22 2 973%2 2727272 333
It is easy to check that R is the image by F' of the projective indecomposable M-modules. The
last three summands are the projective-injectives of the Frobenius category SubA/Z,. This
confirms proposition [(.18.
Now take the module X = 1 in M. It corresponds to the module [3 8 4] in mod k(). We have
the injective resolution in mod kQ):

3 3

0—=[384] —=[o21]'®[110]> —=[010]>—0

Thus the short exact sequence in M: 0 X H,y H, 0 is the following:

0—=1—43p5'—6—=0
Therefore, the sequence 0 — X" - H} — H{* = (77'X)"/proj B - 0 in mod M becomes:
0 0 2 0 13 3 1 14 6 2 13 0. 2
O—>[1 000]—>[3 110] @[4 200} —>[8 411] —>[0 103]—>0

where [0 01 (2) 3] is the quotient of (75'1)V = 3" = [o oy ? 4] by the projectives. Applying the
projection functor we get the exact sequence in mod A:

o—[]— [ e [ —[8] —[i]—o
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__The algebra A is the endomorphism algebra of the direct sum of the indecomposables of
M = M/addH ~ M'/addD(kQ). Thus the algebra A is given by the quiver

2
/ X
D\
1 3
By Theorem [.4 the cluster category C4 associated with the algebra A is 2-Calabi-Yau, Hom-

finite and A € C4 is a cluster-tilting object. Moreover by proposition [.16, the quiver of the
cluster-tilted algebra A = Endc,(A) has the form:

and the relation ba + b'a’ = 0.

2
Z
l1<=——3
The injective A-module [; = 1‘% has dimension vector [;2,] = %y i’ 2. Its image by

1* is the M-module [1 23 8 0]. Its image through F' is the same as the image of the M-

module [0 °y i 3}, indeed we have F o z*(l‘vﬂ) = [%} By the exact sequence above, there is

an isomorphism in SubA/Z,, between F o i,(I;) and F o i,(P;)[2] where P, is the projective
A-module with vector dimension [ ?,].
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