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CLUSTER CATEGORIES FOR ALGEBRAS OF GLOBAL
DIMENSION 2 AND QUIVERS WITH POTENTIAL

CLAIRE AMIOT

ABSTRACT. Let k be a field and A a finite-dimensional k-algebra of global
dimension < 2. We construct a triangulated category C4 associated to A
which, if A is hereditary, is triangle equivalent to the cluster category of A.
When C4 is Hom-finite, we prove that it is 2-CY and endowed with a canonical
cluster-tilting object. This new class of categories contains some of the stable
categories of modules over a preprojective algebra studied by Geiss-Leclerc-
Schréer and by Buan-Iyama-Reiten-Scott. Our results rely on quivers with
potential. Namely, we introduce a cluster category C(q,w) associated to a
quiver with potential (Q, W). When it is Jacobi-finite we prove that it is en-
dowed with a cluster-tilting object whose endomorphism algebra is isomorphic
to the Jacobian algebra J(Q,W).
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INTRODUCTION

The cluster category associated with a finite-dimensional hereditary algebra
was introduced in [[B d (and in [CCS0{] for the A, case). It serves in the
representation-theoretic approach to cluster algebras introduced and studied by
Fomin and Zelevinsky in a series of articles (cf. [FZ02], [FZ03], [FZ07] and [BFZ0])
with Berenstein). The link between cluster algebras and cluster categories is in
the spirit of ‘categorification’. Several articles (e.g. [MRZ03, [BMRT06], [CK0g,
[CCod), [BMRO7], [BMROY], [BMRT07, [CKOF]) deal with the categorification of
the cluster algebra Ag associated with an acyclic quiver () using the cluster cat-
egory Cq associated with the path algebra of the quiver (). Another approach
consists in categorifying cluster algebras by subcategories of the category of mod-
ules over a preprojective algebra associated to an acyclic quiver (cf. [,
IGLS064], [GLS06H], [GLS07H], [BIRS07]). In both approaches the categories C (or
their associated stable categories) satisfy the following fundamental properties:

- C is a triangulated category;

- C is 2-Calabi-Yau (2-CY for short);

- there exist cluster-tilting objects.
It has been shown that these properties alone imply many of the most impor-
tant theorems about cluster categories, respectively stable module categories over
preprojective algebras (cf. [[Y0d], [KROq, [KR07], [Kcl084d], [Pal], [Tab07]). In
particular by [], in a category C with such properties it is possible to ‘mutate’
the cluster-tilting objects and there exist exchange triangles. This is fundamental
for categorification.

Let k£ be a field. In this article we want to generalize the construction of the
cluster category replacing the hereditary algebra k£Q by a finite-dimensional algebra
A of finite global dimension. A candidate might be the orbit category D°(A)/v[-2],
where v is the Serre functor of the derived category D°(A). By [Kel0F, such a
category is triangulated if A is derived equivalent to an hereditary category H.
However in general, it is not triangulated. Thus a more appropiate candidate is
the triangulated hull C4 of the orbit category D®(A)/v[—2]. It is defined in [[Kel0]
as the stabilization of a certain dg category and contains the orbit category as a
full subcategory. More precisely the category C4 is a quotient of a triangulated
category 7 by a thick subcategory N which is 3-CY. This leads us to the sutdy of
such quotients in full generality. We prove that the quotient is 2-CY if the objects
of T are ‘limits’ of objects of ' (Theorem [[.J). In particular we deduce that the
cluster category C4 of an algebra of finite global dimension is 2-CY if it is Hom-finite
(Corollary [L.7).

We study the particular case where the algebra is of global dimension < 2. Since
k@ is a cluster-tilting object of the category Cg, the canonical candidate to be a
cluster-tilting object in the category C4 would be A itself. Using generalized tilting
theory (cf. ]), we give another construction of the cluster category. We find
a triangle equivalence

Ca —— perII/D'TI

where II is a dg algebra in negative degrees which is bimodule 3-CY and homolog-
ically smooth. This equivalence sends the object A onto the image of the free dg
module IT in the quotient. This leads us to the study of the categories perI'/DT
where I is a dg algebra with the above properties. We prove that if the zeroth co-
homology of T is finite-dimensional, then the category perI'/D'T" is 2-CY and the
image of the free dg module T is a cluster-tilting object (Theorem P.1). We show
that the algebra HT is finite-dimensional if and only if the quotient perI'/D'T
is Hom-finite. Thus we prove the existence of a cluster-tilting object in cluster
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categories C4 associated with algebras of global dimension 2 which are Hom-finite
(The). Moreover, this general approach applies to the Ginzburg dg alge-
bras [Gin0f] associated with a quiver with potential. Therefore we introduce a new
class of 2-CY categories C(q w) endowed with a cluster-tilting object associated
with a Jacobi-finite quiver with potential (Q, W) (Theorem @)

In ], Geiss, Leclerc and Schréer construct subcategories Cps of mod A
(where A = Ag is a preprojective algebra of an acyclic quiver) associated with
certain terminal k@Q-modules M. We show in the last part that the stable category
of such a Frobenius category Cjs is triangle equivalent to a cluster category Ca
where A is the endomorphism algebra of a postprojective module over an hereditary
algebra (Theorem ) Another approach is given by Buan, Iyama, Reiten and
Scott in [B |. They construct 2-Calabi-Yau triangulated categories Sub A/Z,,
where Z,, is a two-sided ideal of the preprojective algebra A = A¢ associated with an
element w of the Weyl group of ). For certain elements w of the Weyl group (namely
those coming from preinjective tilting modules), we construct a triangle equivalence
between Sub A /Z,, and a cluster category C4 where A is the endomorphism algebra
of a postprojective module over a concealed algebra (Theorem )

Plan of the paper. The first section of this paper is devoted to the study of
Serre functors in quotients of triangulated categories. In Section 2, we prove the
existence of a cluster-tilting object in a 2-CY category coming from a bimodule
3-CY dg algebra. Section 3 is a direct application of these results to Ginzburg dg
algebras associated with quivers with potential. In particular we give the definition
of the cluster category C(q,w) of a Jacobi-finite quiver with potential (Q,W). In
section 4 we define cluster categories of algebras of finite global dimension. We
apply the results of Sections 1 and 2 in subsection 4.3 to the particular case of
global dimension < 2. The last section links the categories introduced in ]
and in [B | with these new cluster categories C4.

Acknowledgements. This article is part of my Ph. D. thesis under the supervi-
sion of Bernhard Keller. I deeply thank him for his patience and availability. I also
would like to thank Bernard Leclerc, Yann Palu and Jan Schréer for interesting
and helpful discussions and Idun Reiten for kindly answering to my questions.

Notations. Throughout let k be a field. By triangulated category we mean k-linear
triangulated category satisfying the Krull-Schmidt property. For all triangulated
categories, we will denote the shift functor by [1]. For a finite-dimensional k-algebra
A we denote by mod A the category of finite-dimensional right A-modules. More
generally, for an additive k-category M we denote by mod M the category of finitely
presented functors M°’ — modk. Let D be the usual duality Homy(?, k). If A
is a differential graded (=dg) k-algebra, we will denote by D = DA the derived
category of dg A-modules and by DYA its full subcategory formed by the dg A-
modules whose homology is of finite total dimension over k. We write per A for the
category of perfect dg A-modules, i.e. the smallest triangulated subcategory of DA
stable under taking direct summands and which contains A.

1. CONSTRUCTION OF A SERRE FUNCTOR IN A QUOTIENT CATEGORY

1.1. Bilinear form in a quotient category. Let 7 be a triangulated category
and N a thick subcategory of 7 (i.e. a triangulated subcategory stable under
taking direct summands). We assume that there is an auto-equivalence v in 7 such
that v(N) C N. Moreover we assume that there is a non degenerate bilinear form:

Onx :T(N,X)xT(X,vN) — k
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which is bifunctorial in N € A and X € 7.

Construction of a bilinear form in T /N . Let X and Y be objects in 7. The aim
of this section is to construct a bifunctorial bilinear form:

Bxy :T/INX,Y) X T/N(Y,vX[-1]) — k.

We use the calculus of left fractions [ in the triangle quotient 7 /N. Let
slof: X -Yandttog:Y — vX[-1] be two morphisms in 7 /A. We can
construct a diagram

where the cone of s’ is isomorphic to the cone of s. Denote by N[1] the cone of u.
It is in AV since N is v-stable. Thus we get a diagram of the form:

u

N X X" N[1]

N
L

vX[—1] T vX"[-1] —=vN ——vX,

where the two horizontal rows are triangles of 7. We define then ﬁ%ﬁy as follows:
63(,)/(571 o fa t71 © g) = BN,Y/(Uv U})
Lemma 1.1. The form (' is well-defined, bilinear and bifunctorial.

Proof. It is not hard to check that @ is well-defined (cf. [Ami0g]). Since 3 is
bifunctorial and bilinear, 8’ satisfy the same properties. O

1.2. Non-degeneracy. In this section, we find conditions on X and Y such that
the bilinear form (% is non-degenerate.

Definition 1.2. Let X and Y be objects in 7. A morphism p: N — X is called a
local N -cover of X relative to Y if N is in N and if it induces an exact sequence:

0——>T(X,Y) 2= T(N,Y).

Let Y and Z be objects in 7. A morphism i : Z — N’ is called a local N -envelope
of Z relative to Y if N’ is in A and if it induces an exact sequence:

00— T(Y,Z) —== T (Y, N).

Theorem 1.3. Let X and Y be objects of T. If there exists a local N -cover of X
relative to Y and a local N -envelope of vX relative to Y, then the bilienar form
By constructed in the previous section is non-degenerate.

For a stronger version of this theorem see also [CR].
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Proof. Let f: X — Y be a morphism in 7 whose image in 7 /A is in the kernel of
3. We have to show that it factorizes through an object of A/.

Let p: N — X be a local N-cover of X relative to Y, and let X’ be the cone
of p. The morphism f is in the kernel of 3/, thus for each morphism g : ¥ — vN
which factorizes through v X'[—1], 8(fp, g) vanishes.

p

N X X' N[1]
lf
Y
:
\

N

vX[-1]| —vX'[-1]] —vN — X

This means that the linear form S(fp,?) vanishes on the image of the morphism
T(Y,vX'[-1]) — T (Y,vN). This image is canonically isomorphic to the kernel of
the morphism 7 (Y, vN) — T (Y,vX).

Let vi: vX — vN’ be a local N-envelope of v X relative to Y. The sequence

0——=T Y, vX)——=T(Y,vN')
is then exact. Therefore, the form 3(fp,?) vanishes on Ker(7 (Y,vN) — 7 (Y,vN")).

N——Xx X/ N[1]
f N’
e
e
7
A
Y
g
vX'[-1] vN vX vX’

vN'
Now [ is non-degenerate on

Coker(T(N',Y) — T(N,Y)) x Ker(T (Y,vN) — T(Y,vN")).

Thus the morphism fp lies in Coker(7 (N',Y) — T(N,Y)), that is to say that
fp factorizes through ip. Since p : N — X is a local N-cover of X, f factorizes
through N’. O

Proposition 1.4. Let X and Y be objects in T. If for each N in N the vector
spaces T(N,X) and T(Y,N) are finite-dimensional, then the existence of a local
N-cover of X relative to Y is equivalent to the existence of a local N -envelope of
Y relative to X.

Proof. Let g : N — X be a local N-cover of X relative to Y. It induces an injection

0——>T(X,Y) L= T(N,Y).

The space 7 (N,Y) is finite-dimensional by hypothesis. Fix a basis (f1, fo,..., fr)
of this space. This space is in duality with the space T (Y,vN). Let (f1, f4,..., f})
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be the dual basis of the basis (f1, fa,..., fr). We show that the morphism

v (15 F7) @221 N

is a local N-envelope of Y relative to X. We have a commutative diagram:

T7(x,v) LI s x vy

C
(flyees i)
T(N,Y) ——————=@P7T(N,vN).
If f is in the kernel of (fy,..., f/)«, then for alli = 1,...,r, the morphism f/o fog

is zero. Thus f o g is orthogonal on the vectors of the basis f1,..., f. and therefore
vanishes. Since g is a local N -cover of X relative to Y, f is zero, and the morphism

@D T(X,vN)

Y

is a local N-envelope of Y relative to X. The proof of the converse is dual. ([

Examples. Let A be a finite-dimensional self-injective k-algebra. Denote by 7 the
derived category D°(mod A) and by N the triangulated category per A. Since A is
finite-dimensional, there is an inclusion N' C 7. Moreover A is self-injective so of
infinite global dimension. Therefore the inclusion is strict. By , there is an
exact sequence of triangulated categories:

0 — per A —— D’(mod A) —— mod A —— 0.

The derived category D”(mod A) admits a Serre functor v :?é A DA which stabilizes
per A. Thus there is an induced functor in the quotient mod A that we will also
denote by v. Let ¥ be the suspension of the category mod A. One can easily
construct (cf. [Ami0g]) local N-covers and local N-envelopes, so we can apply
theorem B and the functor 7' o v is a Serre functor for the stable category
mod A.

An article of G. Tabuada [ gives an example of the converse construction.
Let C be an algebraic 2-Calabi-Yau category endowed with a cluster-tilting object.
The author constructs a triangulated category 7 and a triangulated 3-Calabi-Yau
subcategory A such that the quotient category 7 /A is triangle equivalent to C. It
is possible to show (cf. [Ami0§]) that the categories 7 and N satisfy the hypotheses

of theorem .

2. EXISTENCE OF A CLUSTER-TILTING OBJECT

Let A be a differential graded (=dg) k-algebra. We denote by A€ the dg algebra
A°P ® A. Suppose that A has the following properties:

e A is homologically smooth (i.e. the object A, viewed as an A®-module, is
perfect);

e for each p > 0, the space HPA is zero;

o the space H°A is finite-dimensional;

e A is bimodule 3-CY, i.e. there is an isomorphism in D(A®)

RHomye (A, A®) ~ A[-3].
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Since A is homologically smooth, the category D° A is a subcategory of per A (see
[Kel084]], lemma 4.1). We denote by 7 the canonical projection functor 7 : per A —
C = per A/D"A. Moreover, by the same lemma, there is a bifunctorial isomorphism

DHomp (L, M) ~ Homp (M, L[3])

for all objects L in D’ A and all objects M in per A. We call this property the CY

property.
The aim of this section is to show the following result:

Theorem 2.1. Let A be a dg k-algebra with the above properties. The category
C = per A/D°A is Hom-finite and 2-CY. Moreover, the object w(A) is a cluster-
tilting object. Its endomorphism algebra is isomorphic to HC A.

2.1. t-structure on per A. The main tool of the proof of theorem E is the exis-
tence of a canonical t-structure in per A.

t-structure on DA. Let D<g be the full subcategory of D whose objects are the dg
modules X such that HP X vanishes for all p > 0.

Lemma 2.2. The subcategory D<o is an aisle in the sense of Keller-Vossieck

Kvsq).

Proof. The canonical morphism 7<gA — A is a quasi-isomorphism of dg algebras.
Thus we can assume that A? is zero for all p > 0. The full subcategory D<y is stable
under X — X[1] and under extensions. We claim that the inclusion D<o D
has a right adjoint. Indeed, for each dg A-module X, the dg A-module 7<¢X is
a dg submodule of X, since A is concentrated in negative degrees. Thus 7<¢ is a
well-defined functor D — D<g. One can check easily that 7<¢ is the right adjoint
of the inclusion.

O

Proposition 2.3. Let ‘H be the heart of the t-structure, i.e. H is the intersection
D<o NDsg. We have the following properties:

(i) The functor H® induces an equivalence from H onto Mod HCA.

(ii) For all X and Y in H, we have an isomorphism Extpo,(X,Y) =~
Homp (X, Y[1]).

Note that it is not true for general i that Extl, (X,Y") ~ Homp (X, Y]i]).

Proof. (1) We may assume that A? = 0 for all p > 0. We then have a canonical
morphism A — H?A. The restriction along this morphism yields a functor ® :
Mod H°A — H such that H? o ® is the identity of Mod H°A. Thus the functor
H° : H — Mod HYA is full and essentially surjective. Moreover, it is exact and
an object N € H vanishes if and only if H°N vanishes. Thus if f : L — M is a
morphism of H such that H°(f) = 0, then ImH®(f) = 0 implies that H’(Imf) =0
and Imf =0, so f =0. Thus H° : H — Mod H%A is also faithful.

(i) By section 3.1.7 of [BBD8] there exists a triangle functor D?(H) — D which
yields for X and Y are in H and for n < 1 an isomorphism (remark (ii) section
3.1.17 p.85)

Hompy (X, Y[n]) ~ Homp(X, Y [n)).

Applying this for n = 1 and using (i), we get the result.
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Hom-finiteness.
Proposition 2.4. The category per A is Hom-finite.
Lemma 2.5. For each p, the space HP A is finite-dimensional.

Proof. By hypothesis, HP A is zero for p > 0. We prove by induction on n the
following statement: The space H™ ™A is finite-dimensional, and for allp > n+1
the space Homp(T<_, A, M[p]) is finite-dimensional for each M in mod HOA.

For n = 0, the space H°A is finite-dimensional by hypothesis. Let M be
in mod HYA. Since 7<¢A is ismorphic to A, Homp(r<oA, M[p]) is isomorphic
H°(M][p)), and so is zero for p > 1.

Suppose that the property holds for n. Form the triangle:

(H*"A)[nf 1] —>TS,n,1A TS,nA (H*”A)[n]

Let p be an integer > n + 1. Applying the functor Homp(?, M[p]) we get the long
exact sequence:

-+ = Homp(7<_n A, M[p]) = Homp (1< _n—1A4, M[p]) = Homp((H~™A)[n — 1], M[p]) = - -

By induction the space Homp(7<_, A, M[p]) is finite-dimensional.
Since M[p] is in D*A we can apply the CY property. If p is > n + 3, we have
isomorphisms:
Homp((H " A)[n — 1], M[p]) =~ Homp((H "A),M[p—n+1])
~ DHomp(M[p—n—2],H "A).
Since p —n — 2 is > 1, this space is zero.
If p =n + 2, we have the following isomorphisms.

Homp((H "A)[n —1],M[n+2]) =~ Homp((H "A), M[3])
DHomp(M,H™"A)
DHompgo 4 (M, H " A).

The last isomorphism comes from lemma (7). By induction, the space H ™A
is finite-dimensional. Thus for p > n + 2, the space Homp ((H " A)[n — 1], M[p]) is

finite-dimensional.
If p = n + 1 we have the following isomorphisms:

Homp((H "A)[n — 1], M[n+1]) =~ Homp((H "A), M[2])
DHomp (M, H " A[1])
DExtho (M, H™™A)
The last isomorphism comes from lemma @ (7). By induction, since H™ ™A is
finite-dimensional, the space Homp((H~"A)[n — 1], M[n + 1)) is finite-dimensional
and so is Homp (7<_,—14, M[n + 1]).

Now, look at the triangle

12

R

12

12

T<n2A——>Tc n 1 A—— (H " 1A)n+ 1] —= (T<—n—24)[1] .

>M[n+1]<0
The spaces Homp (7<_p_2A4, M[n + 1]) and Homp((t<_n—24)[1], M[n + 1]) vanish
since M[n + 1] is in D>_,,_1. Thus we have
Homp(7<_n_1A[n — 1], Mn+1]) ~ Homp((H " 'A)[n+1], M[n+ 1))
Homp(H "1 A, M)
Hom o (H ™" A, M).

12

12
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This holds for all finite-dimensional H°A-modules M. Thus it holds for the compact
cogenerator M = DHYA. The space Hompo(H " 1A, DH°A) ~ DH ""1A is
finite-dimensional, and therefore H~("*1) 4 is finite-dimensional. (I

Proof. (of proposition .4) For each integer p, the space Homp (A, A[p]) ~ HP(A)
is finite-dimensional by lemma E The subcategory of (per A)°P x per A whose
objects are the pairs (X,Y) such that Homp(X,Y") is finite-dimensional is stable
under extensions and passage to direct factors. [

Restriction of the t-structure to per A.

Lemma 2.6. For each X in per A, there exist integers N and M such that X
belongs to D<n and J‘DSM.

Proof. The object A belongs to D<g. Moreover, since for X in DA, the space
Homp (4, X) is isomorphic to H°X, the dg module A belongs to - D<_;. Thus the
property is true for A. For the same reasons, it is true for all shifts of A. Moreover,
this property is clearly stable under taking direct summands and extensions. Thus
it holds for all objects of per A. O

This lemma implies the following result:
Proposition 2.7. The t-structure on DA restricts to per A.
Proof. Let X be in per A, and look at the canonical triangle:
T<oX —= X —— 750X —— (7<0X)[1].

Since per A is Hom-finite, the space HPX ~ Homp(A, X[p]) is finite-dimensional

for all p € Z and vanishes for all p > 0 by lemma R.§. Thus the object 79X is
in DYA and so in per A. Since per A is a triangulated subcategory, it follows that
T<0X also lies in per A. O

Proposition 2.8. Let w be the projection w : per A — C. Thus for X and Y in
per A, we have

Home (7 X, 1Y) = lim Homp (1<, X, 7<,Y)

Proof. Let X and Y be in perA. An element of limHomp(7<,X,7<,Y) is an

equivalence class of morphisms 7<, X — 7<,Y. Two morphisms f : 7<, X — 7<,Y
and g : <, X — T<,,,Y with m > n are equivalent if there is a commutative square:

renX —L s 1o,y

L,

g
Tng EE— TSmY

where the vertical arrows are the canonical morphisms. If f is a morphism f :
T<nX — T<pY, we can form the following morphism from X to Y in C:

TanX f T<nY

AN

where the morphisms 7<, X — X and 7<,Y — Y are the canonical morphisms.
This is a morphism from 7.X to 7Y in C because the cone of the morphism 7<, X —
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X is in DY A. Moreover, if f : 7<, X — 7<,Y and g : 7<;n X — 7<,,Y are equivalent,
there is an equivalence of diagrams:

TS'”X ...... f> TgnY

TS’ITLX .......... > TSmY

Thus we have a well-defined map from limHomp(7<, X, 7<,Y") to Home (7 X, 7Y)
which is injective.
Now let X’ ,  beamorphism in Home (7 X, 7Y). Let X" be the cone of
VSN
X Y
s. It is an object of D’ A, and therefore lies in D, for some n < 0. Thus there
are no morphisms from 7<, X to X” and there is a factorization:

TSnX

X' X X" X'[1]

We obtain an isomorphism of diagrams:
!
/ \
X Y
\ /

Tan !

The morphism f : 7<, X — Y induces a morphism f’ : 7<, X — 7<,Y which lifts
the given morphism. Thus the map from limHomp (7<, X, 7<,Y") to Home (7X, 7Y)

is surjective. O

2.2. Fundamental domain. Let F be the following subcategory of per A:
The aim of this section is to show:

Proposition 2.9. The projection functor 7 : per A — C induces a k-linear equiva-
lence between F and C.

add(A)-approximation for objects of the fundamental domain.

Lemma 2.10. For each object X of F, there exists a triangle

P & X Pi[1]
with Py and Py in add(A).

Proof. For X in per A, the morphism

Homp(A,X) — Homy(HA, H°X)
fo= HF)
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is an isomorphism since Homp(A, X) ~ H°X. Thus it is possible to find a mor-
phism Py — X, with Py a free dg A-module, inducing an epimorphism HOP; ——= HOX .
Now take X in F and Py — X as previously and form the triangle

Py P, X P

Step 1: The object Py is in D<o N *D<_;.
The objects X and Py are in D<q, so P is in D<;. Moreover, since H'Py — H°X
is an epimorphism, H'(P;) vanishes and P; is in D<g.

Let Y be in D<_1, and look at the long exact sequence:

-+ — Homp(FPy,Y) —— Homp(P;,Y) ——= Homp(X[-1],Y) —— - --

The space Homp(X[—1],Y) vanishes since X is in *D<_5 and Y is in D<_;. The
object Py is free, and HY is zero, so the space Homp (P, Y) also vanishes. Con-
sequently, the object P is in 1D<_;.

Step 2: HOP, is a projective H° A-module.
Since P is in D<g there is a triangle

T< 1Pl —— P ——= H'P, —— (7<1 P1)[1].

Now take an object M in the heart H, and look at the long exact sequence:

-+ — Homp ((7<—1P1)[1], M[1]) — Homp(H°P;, M [1]) — Homp (P, M[1]) — - -

The space Homp ((7<—1P1)[1], M[1]) is zero because Homp(D<_2, D>_1) vanishes
in a t-structure. Moreover, the space Homp(Py, M[1]) vanishes because P; is in
+D<._1. Thus Homp(H°Py, M[1]) is zero. But this space is isomorphic to the
space Ext%{(H 9Py, M) by proposition @ This proves that HOP; is a projective
HO%A-module.
Step 3: Py is isomorphic to an object of add(A).
As previously, since H° Py is projective, it is possible to find an object P in add(A)
and a morphism P — P, inducing an isomorphism H°P — H°P;. Form the
triangle
Q——P—— P —= Q]

Since P and P; are in D<o and H°(v) is surjective, the cone Q lies in D<q. But

then w is zero since P; is in LDS_l. Thus the triangle splits, and P is isomorphic
to the direct sum P; @ Q). Therefore we have a short exact sequence:

0 H°Q H°P H'Py ——0,

and H°Q vanishes. The object @ is in D<_1, the triangle splits, and there is no
morphism between P and D<_1, so ) is the zero object.
O

Equivalence between the shifts of F.
Lemma 2.11. The functor 7<_1 induces an equivalence from F to F[1]

Proof. Step 1: The image of the functor T<_y restricted to F is in F[1].
Recall that F is D<o N *D<_sNperA so F[1]is D<_1N *D<_sNperA. Let X be
an object in F. By definition, 7<_; X lies in D<_; and there is a canonical triangle:

T§_1X X HOX Tgle[l] .
Now let Y be an object in D<_3 and form the long exact sequence

-+ —= Homp(X,Y) — Homp(7<_1X,Y) —— Homp ((H°X)[-1],Y) — - -
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Since X is in T D<_o, the space Homp(X,Y) vanishes. The object H°X[—1] is of
finite total dimension, so by the CY property, we have an isomorphism
Homp(H°X[—-1],Y) ~ DHomp (Y, H°X[2]).
But since Homp(D<_3,D>_») is zero, the space Homp((H°X)[—1],Y) vanishes
and T§_1X lies in lng_g.
Step 2: The functor 7<_1 : F — F[1] is fully faithful.
Let X and Y be two objects in F and f : 7<_1X — 7<_1Y be a morphism.

HX[-1] —>7< 1 X —= X —> [OX

HY[-1] —>7< 1Y >y — > goy

The space Homp(H°X[—1],Y) is isomorphic to DHomp(Y, HYX[2]) by the CY
property. Since Y is in +D<_, this space is zero, and the composition i o f
factorizes through the canonical morphism 7<_1X — X. Therefore, the functor
T<_1 is full.

Let X and Y be objects of 7 and f : X — Y a morphism satisfying 7<_; f = 0.
It induces a morphism of triangles:

HOX[-1] —=7<1 X > X —= F0x

| P

HY[-1] ——=71<1Y ——=Y —— H%Y

The composition f o vanishes, so f factorizes through H°X. But by the CY prop-

erty the space of morphisms Homp(HYX,Y) is isomorphic to DHomp (Y, H° X [3])

which is zero since Y is in “D<_5. Thus the functor 7<_; restricted to F is faithful.
Step 3: The functor T<_1 : F — F[1] is essentially surjective.

Let X be in F[1]. By the previous lemma there exists a triangle

P[] — By[l]] — X —— P1[2]

with Py and P; in add(A). Denote by v the Nakayama functor on the projectives
of mod H°A. Let M be the kernel of the morphism vH'P; — vH°P,. It lies in the
heart H.

Substep (i): There is an isomorphism of functors: Hom(?, X[1])|,, =~ Homq(?, M)

Let L be in H. We then have a long exact sequence:
-+ —=Homp(L, Py[2]) = Homp (L, X[1]) = Homp (L, Pi[3]) = Homp (L, Py[3]) = - - -
The space Homp (L, Py[2]) is isomorphic to DHomp (P, L[1]) by the CY property,

and vanishes because Py is in *D<_;. Moreover, we have the following isomor-
phisms:

Homp(L, P1[3]) =~ DHomp(Pi,L)
DHomy (HPy, L)
Homy (L, vH P}).
Thus Homp(?, X[1]),,, is isomorphic to the kernel of Homy (?, vH° P1) — Homy(?, vH' Fy),
which is just Homy (7, M).

12

12

Substep (ii): There is a monomorphism of functors: Ext;,(?, M)< Homp(?, X [2])},, .



CLUSTER CATEGORIES: A GENERALIZATION 13

For L in 'H, look at the following long exact sequence:
-+« = Homp(L, P1[3]) = Homp(L, P;[3]) = Homp(L, X[2]) = Homp (L, P, [4]) = - - - .

The space Homp (L, P1[4]) is isomorphic to DHomp(P;[1], L) which is zero since
Py[1]isin D<_; and L is in D>¢. Thus the functor Homp(?, X [2]),,, is isomorphic to
the cokernel of Homy(?, vHOP;) — Homy(?, vHOPy). By defninition, Extj,(?, M)
is the first homology of a complex of the form:

v —> 0 — Homy(?,vH'P) —— Homy (2, vH° Py) —— Homy (2, 1) —— - -,
where I is an injective H° A-module. Thus we get the canonical injection:
EXt%_‘(?, M)C—> Homp(?, X[Q])‘H

Now form the following triangle:

X Y M X[1].

Substep (i1): Y is in F and 7<_1Y is isomorphic to X .
Since X and M are in D<y, Y is in D<g. Let Z be in D<_» and form the following
long exact sequence:

-+-Homp(X[1], Z) = Homp(M, Z) = Homp(Y, Z) — Homp(X, Z) — Homp(M[-1],Z) - - - .

By the CY property and the fact that Z[2] is in D<g, we have isomorphisms
Homp(M[-1],Z) =~ DHomp(Z[-2], M)
DHomy (H™22Z, M).

12

Moreover, since X is in *D<_3, we have
Homp(X,Z) =~ Homp(X,(H 2Z)[2])
DHomy (H™2Z, X[1]).
By substep (i) the functors Homy(?, M) and Homp(?, X[1])},, are isomorphic.
Therefore we deduce that the morphism Homp(X,Z) — Homp(M[-1],Z) is an

isomorphism.
Now look at the triangle

R

T<3Z —= 7 ——= H ?Z[2] — (1<3Z)[1]
and form the commutative diagram
Homp (M, 7<_3Z) —= Homp(M, Z) — Homp (M, H =2 Z[2]) —= Homp (M, 1< _3Z][1])
| | 1 d
Homp (X (1], 7<—3Z) = Homp(X[1], Z) = Homp(X|[1], H 2Z[2]) = Homp (X [1], 7<_3Z]1])
By the CY property and the fact that (7<_3Z)[—3] is in D<g, we have isomorphisms
Homp(M[—1],7<_3Z[—-1]) =~ DHomp(r<_3Z[—1],M)
~ DHomy(H3Z,M).
Since X is in 1D<_3, we have
Homp (X, (t<—3Z)[-1]) ~ Homp(X,H *Z[-2])
~ DHomy(H3Z,X[1]).

Now we deduce from substep (i) that a[—1] is an isomorphism.
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The space Homp (X [1],7<_3Z[1]) is zero because X is *D<_3. Moreover there
are isomorphisms
Homp (M, H2Z[2]) =~ DHomp(H 2Z,M[1])
DExt; (H™2Z, M).
The space Homp(X[1], H2Z[2]) is isomorphic to DHomp(H ~2Z, X[2]). And by
substep (i), the morphism Ext},(?, M) — Homp (7, X[2])},, is injective, so c is
surjective. Therefore using a weak form of the five-lemma we deduce that b is

surjective.
Finally, we have the following exact sequence:

R

Homp (X[1], Z) == Homp(M, Z) — Homp (Y, Z) — Homp (X, Z) == Homp(M[-1], Z)

Thus the space Homp (M, Z) is zero, and Z is in *D<_s.
It is now easy to see that there is an isomorphism of triangles:

T§_1Y Y HOY TS,1Y[1]
X Y M X[1).

O

Proof of proposition @ Step 1: The functor w restricted to F is fully faithful.

Let X and Y be objects in F. By proposition .3 (iii), the space Home (7 X, 7Y)
is isomorphic to the direct limit limHomp(7<, X, 7<,Y). A morphism between X

and Y in C is a diagram of the form

TSnX
Ve N
X Y.
The canonical triangle
(TsnX)[-1] T<nX X TonX

yields a long exact sequence:

-+ > Homp (75, X,Y) = Homp(X,Y) = Homp(7<, X, Y) = Homp (75, X)[-1,Y) = - -

The space Homp ((75,X)[—1],Y) is isomorphic to the space DHomp (Y, (75, X)[2]).
The object X is in Dsg, thus so is 7, X, and the space DHomp (Y, (75,X)[2])
vanishes. For the same reasons, the space Homp(7~,X,Y) vanishes. Thus there
are bijections

Homp (7<n X, 7<,nY) = Homp(7<, X,Y) —— Homp(X,Y)
Therefore, the functor 7 : F — C is fully faithful.
Step 2: For X in per A, there exists an integer N and an object Y of F[—N]

such that 1X and 7Y are isomorphic in C.

Let X be in per A. By lemma @, there exists an integer N such that X is in
+Doy_5. For an object Y in D<n_2, the space Homp((1-nX)[—1],Y) is iso-
morphic to DHomp (Y, (7> nX)[2]) and thus vanishes. Therefore, 7< v X is still in
+D<y_2, and thus is in F[—N]. Since 7>y X is in DP A, the objects T<nX and X
are isomorphic in C.

Step 3: The functor m restricted to F is essentially surjective.
Let X bein per A and N such that 7< y X is in F[—N]. By lemma , T<_1 induces
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an equivalence between F and F[1]. Thus since the functor mo7<_; : perA — C

is isomorphic to m, there exists an object Y in F such that m(Y) and 7(X) are
isomorphic in C. Therefore, the functor « restricted to F is essentially surjective.

Proposition 2.12. If X and Y are objects in F, there is a short exact sequence:
0 — Extp(X,Y) — Ext}(X,Y) — DExtp(Y, X) — 0.
Proof. Let X and Y be in F. The canonical triangle
TeoX —= X —— 750X —— (7«0 X)[1]
yields the long exact sequence:
Homp ((7>0X)[—1], Y[1]) == Homp (1< X, Y[1]) = Homp (X, Y[1]) = Homp (70X, Y[1]) .

The space Homp (X [—1],Y[1]) is zero because X is in *D<_5 and Y is in D<y.
Moreover, the space Homp(7>0X, Y [1]) is zero because of the CY property. Thus
this long sequence reduces to a short exact sequence:

0 — Extp(X,Y) — Homp (720X, Y [1]) —— Homp((7>0X)[~1], Y[1]) —0 .

Step 1: There is an isomorphism Homp((150X)[~1],Y) ~ DExtp (Y, X).
The space Homp ((7>0X)[—1],Y[1]) is isomorphic to DHomp(Y,7>0X[1]) by the

CY property.
0 l \ o -
o A

(T<oX)[1] X[ (120 X)[1] — (7<0X)[2]

But since Homp (Y, (7<0X)[1]) and Homp (Y, (7<0X)[2]) are zero, we have an iso-
morphism

Homp (750X 1], Y) ~ DExtp (Y, X).
Step 2: There is an isomorphism Exts(mX,7Y) =~ Homp (1< 1 X, Y[1]).
By lemma P.11], the object 7<oX belongs to F[1] and clearly Y[1] belongs to F[1].
By proposition @ (applied to the shifted ¢t-structure), the functor = : per A — C in-
duces an equivalence from F[1] to C and clearly we have (70X, Y[l]) = 7(X).
We obtain bijections

Homp (7<0 X, Y[1]) —== Homp (77X, 7Y [1]) —— Homp (7 X, 7Y [1]).
(]

Proof of the main theorem. Step 1: The category C is Hom-finite and 2-CY.
The category F is obviously Hom-finite, hence so is C by proposition @ The
categories 7 = per A and V' = DY A C per A satisfy the hypotheses of section 1. By
[Kel084], thanks to the CY property, there is a bifunctorial non degenerate bilinear
form:

ﬁN,X : HomD(N,X) X Homp(X,N[?)]) — k
for N in D’ A and X in per A. Thus, by section 1, there exists a bilinear bifunctorial
form

By : Home(X,Y) x Home (Y, X[2]) — k

for X and Y in C = per A/D”A. We would like to show that it is non degenerate.
Since per A is Hom-finite, by theorem E and proposition m, it is sufficient to show
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the existence of local N-envelopes. Let X and Y be objects of per A. Therefore by
lemma @, X isin LDSN. Thus there is an injection

0 —— Homp(X,Y) ——= Homp (X, 7= nY)
and Y — 7= nY is a local N-envelope relative to X. Therefore, C is 2-CY.

Step 2: The object mA is a cluster-tilting object of the category C.

Let A be the free dg A-module in per A. Since H'A is zero, the space Extlp(A, A)
is also zero. Thus by the short exact sequence

0 — Extp (A, A) — Ext} (1A, 1A) — DExtp (A, A) —= 0

of proposition , m(A) is a rigid object of C. Now let X be an object of C. By
proposition @, there exists an object Y in F such that 7Y is isomorphic to X.
Now by lemma , there exists a triangle in per A

P Py Y P[]
with Py and Py in add(A). Applying the triangle functor m we get a triangle in C:
7TP1 7TPO X 7TP1 [1]

with 7P, and 7P in add(rA). If Ext;(mA, X) vanishes, this triangle splits and X
is a direct factor of wFPy. Thus, the object wA is a cluster-tilting object in the 2-CY
category C.

3. CLUSTER CATEGORIES FOR JACOBI-FINITE QUIVERS WITH POTENTIAL

3.1. Ginzburg dg algebra. Let @ be a finite quiver. For each arrow a of @, we
define the cyclic derivative with respect to a d, as the unique linear map

Da : KQ/IKQ, kQ] — kQ
which takes the class of a path p to the sum Zp:uav
of the path p (where u and v are possibly idempotents e; associated to a vertex i

of Q).
An element W of kQ/[kQ, kQ)] is called a potential on Q. It is given by a linear
combination of cycles in Q.

Definition 3.1 (Ginzburg). [Gin0@(section 4.2) Let Q be a finite quiver and W a

potential on Q. Let @ be the graded quiver with the same vertices as ) and whose
arrows are

vu taken over all decompositions

e the arrows of @ (of degree 0),

e an arrow a” : j — ¢ of degree —1 for each arrow a : ¢ — j of @,

e aloop t; : i — i of degree —2 for each vertex i of Q.
The Ginzburg dg algebra T'(Q, W) is a dg k-algebra whose underlying graded algebra
is the graded path algebra k@ Its differential is the unique linear endomorphism
homogeneous of degree 1 which satisfies the Leibniz rule

d(uv) = (du)v + (—1)Pudv,
for all homogeneous u of degree p and all v, and takes the following values on the
arrows of Q:

e da = 0 for each arrow a of @,

e d(a*) = 9,W for each arrow a of Q,

o d(t;) = ei(>_,la,a*])e; for each vertex i of QQ where ¢; is the idempotent
associated to ¢ and the sum runs over all arrows of Q).
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The strictly positive homology of this dg algebra clearly vanishes. Moreover B.
Keller showed the following result:

Theorem 3.2 (Keller). [KelO8Y| Let Q be a finite quiver and W a potential on
Q. The Ginzburg dg algebra T'(Q, W) is then homologically smooth and bimodule
3-CY.

3.2. Jacobian algebra.

Definition 3.3. Let @ be a finite quiver and W a potential on . The Jacobian
algebra J(Q, W) is the zeroth homology of the Ginzburg algebra I'(Q, W). This is
the quotient algebra

kQ/{0.W,a € Q1)
where (0, W, a € Q1) is the two-sided ideal generated by the 9, W.

Remark: We follow the terminology of H. Derksen, J. Weyman and A. Zelevinsky
([DWZ07) definition 3.1).

In recent works, B. Keller [] and A. Buan, O. Iyama, I. Reiten and D.
Smith ] have shown independently the following result:

Theorem 3.4 (Keller, Buan-Iyama-Reiten-Smith). Let T be a cluster-tilting object
in the cluster category Cq associated to an acyclic quiver Q). Then there exists a
quiver potential (Q', W) such that Ende, (T') is isomorphic to J(Q',W).

3.3. Jacobi-finite quiver potentials. The quiver potential (Q, W) is called Jacobi-
finite if the Jacobian algebra J(Q, W) is finite-dimensional.

Definition 3.5. Let (Q,W) be a Jacobi-finite quiver potential. Denote by T' the
Ginzburg dg algebra I'(Q, W). Let perI' be the thick subcategory of DI' generated
by I and DT the full subcategory of DI of the dg I'-modules whose homology is of
finite total dimension. The cluster category Cq w associated to (Q, W) is defined
as the quotient of triangulated categories perI'/DT.

Combining theorem and theorem B.9 we get the result:

Theorem 3.6. Let (Q, W) be a Jacobi-finite quiver potential. The cluster category
Cq,w) associated to (Q, W) is Hom-finite and 2-CY. Moreover the image T of the
free module T in the quotient per /DT is a cluster-tilting object. Its endomorphim
algebra is isomorphic to the Jacobian algebra J(Q,W).

As a direct consequence of this theorem we get the corollary:

Corollary 3.7. FEach finite-dimensional Jacobi algebra J(Q,W) is 2-CY-tilted in
the sense of I. Reiten (cf. ]), i.e. it is the endomorphism algebra of some
cluster-tilting object of a 2-CY category.

Definition 3.8. Let (Q,W) and (Q',W’) be two quiver potentials. A triangular
extension between (Q, W) and (Q’, W) is a quiver potential (Q, W) where
® Qo= QoUQy;
e Q1 = Q1 UQ U{a;,i € I}, where for each ¢ in the finite index set I, the
source of a; is in Qg and the tail of a; is in Qf;
o W=W+W.

Proposition 3.9. Denote by JF the class of Jacobi-finite quiver potentials. The
class JF satisfies the properties:

(1) it contains all acyclic quivers (with potential 0);

(2) it is stable under quiver potential mutation defined in [DWZ0T);
(3) it is stable under triangular extensions.
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Proof. (1) This is obvious since the Jacobi algebra J(Q, 0) is isomorphic to kQ.

(2) This is corollary 6.6 of [DWZ07.

(3) Let (Q,W) and (Q',W’) be two quiver potentials in JF and (Q,W) a
triangular extension. Let Q; = Q; U Q) U F be the set of arrows of Q. We
then have

kQ = kQ @p (R ® kF © R) ®r kQ

where R is the semi-simple algebra kQo and R’ is kQ). Let W be the
potential W + W' associated to the triangular extension. If @ is in @1,
then 9,W = 9,W, if a is in Q) then 9, W = 9,W’ and if a is in F, then
0, W = 0. Thus we have isomorphisms

J(Q.W) = kQ/(0.W,a€ Q1)
~ kQ' @r (R ®kF®R)®grkQ/(0.W,a € Q1,00W' b e Q)
~ kQ'/(OW' be Q) @r (R ®kF ®R)®gkQ/{(0.W,a € Q1)
J(Q W) @p (R ®kF ® R)®r J(Q,W).

Thus if J(Q',W') and J(Q, W) are finite-dimensional, J(Q, W) is finite-
dimensional since F' is finite.

O

In a recent work [], B. Keller and D. Yang proved the following:

Theorem 3.10 (Keller-Yang). Let (Q, W) be a Jacobi-finite quiver potential. As-
sume that QQ has no loops nor two-cyles. For each vertex i of Q, there is a derived
equivalence

where 11;(Q, W) is the mutation of (Q, W) at the vertez i in the sense of [DWZ07|.

Remark: in fact Keller and Yang proved this theorem in a more general setting.
This also true if (Q, W) is not Jacobi-finite, but then there is a derived equivalence
between the completions of the Ginzburg dg algebras.

Combining this theorem with theorem @ and some results of [], we get
the corollary:

Corollary 3.11. (1) If Q is an acyclic quiver, and W = 0, the cluster category
Cq,w) is canonically equivalent to the cluster category Cq.

(2) Let Q be an acyclic quiver and T a cluster-tilting object of Cq. If (Q', W) is
the_quiver potential associated with the cluster-tilted algebra Ende,, (T') (cf.
[KelOsH] [BIRSOY]), then the cluster category Cq,w) 18 triangle equivalent
to the cluster category Cqr.

Proof. (1) The cluster category C(q,o) is a 2-CY category with a cluster-tilting
object whose endomorphism algebra is isomorphic to £Q. Thus by ,
this category is triangle equivalent to Cq.

(2) In a cluster category, all cluster-tilting objects are mutation equivalent.
Thus by results of [], (Q, W) is mutation equivalent to (@Q’,0). More-
over, (Q,W) and Q" have no loops nor two-cycles. Thus, the theorem of
Keller and Yang [KYO0§] applies and we have an equivalence

DI(Q.W) ~ DI(Q',0).

Thus the categories C(qw) and C(g o) are triangle equivalent. By 1. we
get the result.
O
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4. CLUSTER CATEGORIES FOR NON HEREDITARY ALGEBRAS
4.1. Definition and results of Keller. Let A be a finite-dimensional k-algebra
of finite global dimension. The category DA admits a Serre functor v, =? (§L§> aADA
where D is the duality Hom(?, k) over the ground field. The orbit category
DA Jvao[—2]
is defined as follows:

e the objects are the same as those of D A;
e if X and Y are in DA the space of morphisms is isomorphic to the space
B Hompa (X, (V4 Y [-2i)).
i€L
By Theorem 1 of [, this category is triangulated if A is derived equivalent to
an hereditary category. This happens if A is the endomorphism algebra of a tilting
module over an hereditary algebra, or if A is a canonical algebra (cf. [],
[Fap01).
In general it is not triangulated and we define its triangulated hull as the algebraic
triangulated category C4 with the following universal category:

e There exists an algebraic triangulated functor 7 : D*A — Ca.
e Let B be a dg category and X an object of D(A°P ® B). If there exists

L
an isomorphism in D(A°? ® B) between DA ® 4 X[—2] and X, then the

L
triangulated algebraic functor ? ®4 X : D’ A — DB factorizes through 7.

Let B be the dg algebra A & DA[—3]|. Denote by p : B — A the canonical
projection. It induces a triangulated functor p, : D’A — D’B. Let (A)p be the
thick subcategory of D’B generated by the image of p.. By Theorem 2 of [,
the triangulated hull of the orbit category D?A/v4 o [-2] is the category

Ca = (A)B/per B.

We call it the cluster category of A. Note that if A is the path algebra of an acyclic
quiver, there is an equivalence

Co = Db (kQ)/v o [-2] ~ (kQ)p/per B.

4.2. 2-Calabi-Yau property. The dg B-bimodule DB is clearly isomorphic to
B3], so it is not hard to check the following lemma:

Lemma 4.1. For each X in per B andY in DB there is a functorial isomorphism
DHompp(X,Y) ~ Hompp(Y, X[3]).

So we can apply results of section 1 and construct a bilinear bifunctorial form:

By : Home, (X,Y) x Home, (Y, X[2]) — k.
Theorem 4.2. Let X and Y be objects in D = D’B. If the spaces Homp(X,Y)
and Homp (Y, X [3]) are finite-dimensional, then the bilinear form
By : Home, (X,Y) x Home, (Y, X[2]) — k
s mon-degenerate.
Before proving this theorem, we recall some results about inverse limits of se-

quences of vector spaces that we will use in the proof. Let --- — V), £ Vo1 L~ Wi = Vo

be an inverse system of vector spaces (or vector space complexes) inverse system.
We then have the following exact sequence
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0— Voo =limVy o [V, — 25 [[, V; —=lim'V, —¢
where @ is defined by ®(v,) = vp — ¢(vp) € V,, ® Vj,—1 where vy, is in V.
Recall two classical lemmas due to Mittag-Leffler:

Lemma 4.3. If, for all p, the sequence of vector spaces W; = Im(Vyop; — V,) is
stationary, then 1im1Vp vanishes.

This happens in particular when all vector spaces V,, are finite-dimensional.

©

Lemma 4.4. Let --- v, ki Vo1 Y .. i
verse system of finite-dimensional vector spaces such that Voo = limV), is also finite-

Vo be an in-

dimensional. Let Vp' be the image of Vo in V. The sequence Vp' is stationary and
we have V., = limVp’ = V.

Proof. (of theorem @) Let X and Y be objects of D’ B such that Homps (X, Y) is
finite-dimensional. We will prove that there exists a local per B-cover of X relative
toY.

Let P, :... Py P, P,_1 . P, be aprojective
resolution of X. The complex P, has components in per B, and its homology
vanishes in all degrees except in degree zero, where it is X. Let P<, and P, be
the natural truncations, and denote by Tot(P) the total complex associated to P,.
For all n € N, there is an exact sequence of dg B-modules:

0 —— Tot(P<y) — Tot(P) —— Tot(Psp) —=0

The complex Tot(P) is quasi-isomorphic to X, and the complex Tot(P<,) is in
per B. Moreover, T'ot(P) is the colimit of T'0t(P<,). Thus by definition, we have
the following equalities
Hom%(Tot(P),Y) = Homy(colimTot(P<y),Y)
= limHom%(Tot(P<y),Y).

Denote by V, the complex Hom%(Tot(P<,),Y). In the inverse system

® ®

©
--—>V;D—>V;D_1

Vl ‘/Oa

all the maps are surjective, so by lemma @, there is a short exact sequence

0 VOO Hp Vp 2 Hq Vq —0
which induces a long exact sequence in cohomology
I HY, H°(Veo) [1HV, =T1HV;-- .
lim' H~1V, limH°V,
We have the equalities
H°(Vy) = H°(Hom%(Tot(P),Y))
= Homy(Tot(P),Y)
= Homp(X,Y).

Denote by W), the complex Homp (T'ot(P<,),Y) and by U, the complex H~*(V,,)
Homp (T'ot(P<;), Y [—1]). The spaces (Up), are finite-dimensional, so by lemma @,
lim* U, vanishes and we have an isomorphism
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H°(limV,) = H°(V) ~ limH"(V,).

The system (W), satisfies the hypothesis of lemma @ In fact, for each integer p,
the space Homp(T'ot(P<,),Y) is finite-dimensional because Tot(P<,) is in per B.
Moreover, by the last two equalities W = hian is isomorphic to Homp(X,Y)
which is finite-dimensional by hypothesis. By lemma @, the system (W), formed
by the image of W, in W, is stationary. More precisely, there exists an integer n
such that W/ = liinWIg. Moreover W, is a subspace of W,, = Homp(T0t(P<y,),Y)

and there is an injection
Homp(X,Y)“—— Homp(Tot(P<,),Y) .

This yields a local per B-cover of X relative to Y.

The spaces Homp (N, X) and Homp (X, N) are finite-dimensional for N in per B
and X in D’B. Thus by proposition [L.4, there exists local per B-envelopes. There-
fore theorem applies and (8’ is non-degenerate.

O

Corollary 4.5. Let A be a finite-dimensional k-algebra with finite global dimension.
If the cluster category C 4 is Hom-finite, then it is 2-CY as a triangulated category.

Proof. Denote by p. : D’ A — DB the restriction of the projection p: B — A.
Let X and Y be in D*(A). By hypothesis, the vector spaces

D Hompea (X, 14Y[~2p]) and @5 Hompu (Y, 4 X [2p + 3))
PEZ pEL
are finite-dimensional. But by [Kel0d], the space Hompe 5 (p« X, p.Y) is isomorphic
to
P Hompua (X, 4 Y [—2p]),
p=>0
so is finite-dimensional. For the same reasons, the space Homps (Y, X[3]) is also
finite-dimensional. Applying theorem @, we get a non-degenerate bilinear form
;* xp.v- The non-degeneracy property is extension closed, so for each M and N
in (A)p, the form 3}, , is non-degenerate.
O

4.3. Case of global dimension 2. In this section we assume that A is a finite-
dimensional k-algebra of global dimension < 2.

Criterion for Hom-finiteness. The canonical t-structure on the derived category
D = DP A satisfies the property:

Lemma 4.6. We have the following inclusions v(D>o) C D>_2 and v~ (D<g) C
D<s. Moreover, the space Homp (U, V') wvanishes for all U in Dso and all V in
Dg_g.

Proposition 4.7. Let X be the A-A-bimodule Ext% (DA, A). The endomorphism
algebra A = Endc, (A) is isomorphic to the tensor algebra Ty X of X over A.

Proof. By definition, the endomorphism space End¢, (A) is isomorphic to
&P Homp (A, 7 A[—2p))
pEL

For p > 1, the object v? A[—2p] is in D> since v A is in D>¢. So since A is in D,
the space Homp (A, v? A[—2p]) vanishes.
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L L

The functor v =?®4 DA admits an inverse v~! = —®4 RHoma (DA, A). Since
the global dimension of A is < 2, the homology of the complex RHom (DA, A) is
concentrated in degrees 0, 1 and 2 :

H°(RHoma(DA, A)) = Homp(DA, A)
HY(RHoma(DA,A)) = Exty(DA,A)
H?*(RHoma(DA, A)) = Ext}(DA,A).

Let us denote by Y the complex RHom (DA, A)[2]. We then have

L L L
vPAR2p] = ARy (YOAP) = Y®aP,

Therefore we get the following equalities

L
Hompa(A, STPA[-2p]) = Hompu(A,Y®4P)
= HO(YQ%AP).
Since H(Y') = X, we conclude using the following easy lemma. O

Lemma 4.8. Let M and N two complexes of A-modules whose homology is con-
centrated in negative degrees. Then there is an isomorphism

H(M éA N) ~ H°(M)®4 H°(N).

Proposition 4.9. Let A be a finite-dimensional algebra of global dimension 2. The
following properties are equivalent:

(1) the cluster category Ca is Hom-finite;

(2) the functor ? ® 4 Ext?>(DA, A) is nilpotent;

(3) the functor Tory (?, DA) is nilpotent;

(4) there exists an integer N such that there is an inclusion ®(Dxq) C D>y
where ® is the autoequivalence va[—2] of the category D = DA and Dxg
is the right aisle of the natural t-structure of DY A.

Proof. 1 = 2: Tt is obvious by proposition @

2 & 3 & 4: Let ® be the autoequivalence v4[—2] of D’A. The functor
Tor? (?, DA) is isomorphic to HOo® and ?® 4Ext? (DA, A) is isomorphic to HOo®~ 1,
Thus it is sufficient to check that there are isomorphisms

H°® o H'® ~ H°®? and H°® ' o H®~! ~ HY®d 2.

This is easy using Lemma @ since the algebra A has global dimension < 2 .

4 = 1: Suppose that there exists some N > 0 such that ®V (D) is included
in D<y. For each object X in C4, the class of the objects Y such that the space
Home, (X,Y) (resp. Home, (Y, X)) is finite-dimensional, is extension closed. There-
fore, it is sufficient to show that for all simples S, S’, and each integer n, the space
Homc, (.S, S’[n]) is finite-dimensional.

There exists an integer pg such that for all p > py ®P(S’) is in D>,41. Therefore,
because of the defining properties of the t-structure, the space

@ Homp (S, ®7(S)[n])

vanishes. Similary, there exists an integer gg such that for all ¢ > ¢g, we have
®9(S) € D>_p43. Since the algebra A is of global dimension < 2, the space

@ Homp (®9(S), S'[n])

q2qo0
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vanishes. Thus the space

@D Homp (S, 27 (S")[n]) = €D Homp (S, *(S)[n])

PEZL P=—qo

is finite-dimensional. O

Cluster-tilting object. In this section we prove the following theorem:

Theorem 4.10. Let A be a finite-dimensional k-algebra of global dimension < 2.
If the functor Tor?(?, DA) is nilpotent, then the cluster category C4 is Hom-finite,
2-CY and the object A is a cluster-tilting object.

We denote by © a cofibrant resolution of the dg A-bimodule RHom$% (DA, A).
Following [Kel08d] and [KelO8H], we define the 3-derived preprojective algebra as
the tensor algebra

I5(A) = Ta(©[2]).
The complex RHom®% (DA, A)[2] has its homology concentrated in degrees —2, —1
and 0, and we have

H72(0[2]) ~ Hompa (DA, A), H *(©[2]) ~ Ext(DA, A)

and H°(0[2]) ~ Ext’ (DA, A).
Thus the homology of the dg algebra II3(A) vanishes in strictly positive degrees
and we have

HTI3A = T4Ext% (DA, A) = A.
By proposition @, it is finite-dimensional. Moreover, Keller showed that II3(A) is

homologically smooth and bimodule 3-CY [Kel08H]. Thus we can apply theorem
and we have the following result:

Corollary 4.11. The category C = perII3A/D T3 A is 2-CY and the free dg module
TI3 A is a cluster-tilting object in C.

To complete the proof of Theorem we now construct a triangle equivalence
between C4 and C sending A to II3A.

Let us recall a theorem of Keller ([Kel94], or theorem 8.5, p.96 [AHHKO7)):

Theorem 4.12. [Keller] Let B be dg algebra, and T an object of DB. Denote
by C the dg algebra RHom%(T,T). Denote by (T')p the thick subcategory of DB
generated by T. The functor RHom%(T,?) : DB — DC induces an algebraic
triangle equivalence

RHom%(T,?) : (T')p —— per C.

Let us denote by Ho(dgalg) the homotopy category of dg algebras, i.e. the
localization of the category of dg algebras at the class of quasi-isomorphisms.

Lemma 4.13. InHo(dgalg), there is an isomorphism between I3 A and RHomp(Ap, Ap).

Proof. The dg algebra B is A @ (DA)[—3]. Denote by X a cofibrant resolution of
the dg A-bimodule DA[—2]. Now look at the dg submodule of the bar resolution
of B seen as a bimodule over itself (see the proof of theorem 7.1 in [Kel05]):

bar(X,B):-+ —> B4 X®?2@,B—> B4 X®4B—B®4B—=0

This is a cofibrant resolution of the dg B-bimodule B. Thus A ®p bar(X, B) is
a cofibrant resolution of the dg B-module A. Therefore, we have the following
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isomorphisms
RHom%(Ap,Ag) ~ Hompz(A®pbar(X,B),A)
~ [ HomL(A®a X®4" @4 B, Ap)

n>0
~ [ Hom%(X®4",Homp(B, Ap)a)
n>0
~ H Hom® (X®A™ Ay),
n>0
where the differential on the last complex is induced by that of X®4", Note that
Hom% (X, A) = RHom%(DA[-2], A)

= RHom% (DA, A)2] = ©]2].
We can now use the following lemma:

Lemma 4.14. Let A be a dg algebra, and L and M dg A-bimodules such that M 4
is perfect as right dg A-module. There is an isomorphism in D(AP @ A)

L L
RHom% (L, A) ® 4 RHom% (M, A) ~ RHom% (M ®4 L, A).
Proof. Let X and M be dg A-bimodules. The following morphism of D(A% @ A)

L
X ®4 RHoma(M,A) — RHoma(M,X)
r@¢ = (mexp(m))
is clearly an isomorphism for M = A. Thus it is an isomorphism if M is perfect as

a right dg A-module. Applying this to the right dg A-module RHom (L, A), we
get an isomorphism of dg A-bimodules

L
RHom (L, A) @4 RHom (M, A) ~ RHoma (M, RHom (L, A)).

Finally, by adjunction we get an isomorphism of dg A-bimodules

L L
RHoma(L,A) ® 4 RHoma(M, A) ~ RHoma(M ®4 L, A).
(]

Therefore, the dg A-bimodule Hom$ (X ®4™ Ay4) is isomorphic to (©[2])®4",
and there is an isomorphism of dg algebras
L
RHom%(Ap, Ap) ~ ED(0[2))4" = TI5(A)
n>0

L

because for each p € Z, the group HP(0[2]®4™) vanishes for all n >> 0. O

By theorem , the functor RHom%(Ap,?) induces an equivalence between
the thick subcategory (A)p of DB generated by A, and perII3(A). Thus we get a
triangle equivalence that we will denote by F":

F = RHom(Ap,?) : (A)p ——— perIls A

This functor sends the object Ap of DYB onto the free module II3 A and the free
B-module B onto RHom%(Ag, B), that is to say onto Am,4. So F induces an
equivalence

F:perB=(B)p —— (A)m,4.

Lemma 4.15. The thick subcategory (A)m,a of DIz A generated by A is DPTI3A.
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Proof. The algebra A is finite-dimensional, thus (A)m, 4 is obviously included in
DPII3A. Moreover, the category DPII3 A equals (mod HO(I13A))m, 4 by the existence
of the t-structure. The dg algebra I3 A is the tensor algebra T4 (0[2]) thus there is a
canonical projection II3A — A which yields a restriction functor D*A — Db(II3A)
respecting the t-structure:

mod HTI3A = H—— D’(I13A)

T T

mod A———— Db 4
This restriction functor induces a bijection in the set of isomorphism classes of
simple modules because the kernel of the map H(II3A) — A is a nilpotent ideal

(namely the sum of the tensor powers over A of the bimodule Ext? (DA, A)). Thus
each simple of mod HTI3A is in (A)1;, 4 and we have

<A>H3A ~ (mod HO(HgA»HSA ~ DbngA.
(]

Proof. (of theorem @) By proposition @ and corollary @, the cluster category
is Hom-finite and 2-CY. Furthermore, the functor F' = RHom%(Ap,?) induces the
following commutative square:

F:(A)p — perll3A

J

per B———= D'[[3A
Thus F' induces a triangle equivalence
Ca = (A)p/per B———— perII3A/D'TI3A = C

sending the object A onto the free module IIsA. By theorem P.1], A is therefore a
cluster-tilting object of the cluster category Ca. (]

Quiver of the endomorphism algebra of the cluster-tilting object. Let A = kQ/I
be a finite-dimensional k-algebra of global dimension < 2. Suppose that I is an
admissible ideal generated by a finite set of minimal relations r;, i € J where for
each i € J, the relation r; starts at the vertex s(r;) and ends at the vertex t(r;).
Let Q be the following quiver:

e the set of the vertices of C~2 equals that of Q;

e the set of arrows of @ is obtained from that of @ by adding a new arrow p;

with source t(r;) and target s(r;) for each i in J.

We then have the following proposition, which has essentially been proved by
I. Assem, T. Briistle and R. Schiffler [ABS0f] (thm 2.6). The proposition is also

proved in [KelO8H].

Proposition 4.16. If the algebra Endc, (A) = A is finite-dimensional, then its
quiver is Q.

Proof. Let B be a finite-dimensional algebra. The vertices of its quiver are deter-
mined by the quotient B/rad(B) and the arrows are determined by rad(B)/rad?(B).
Denote by X the A-A-bimodule Ext% (DA, A). Since X ®4 X is in rad?(B), the
quiver of A = T4 X is the same as the quiver of the algebra A x X. The proof is

then exactly the same as in [ABS0§] (thm 2.6).
O
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Example. Let @ be a Dynkin quiver. Let A be its Auslander algebra. The algebra
A is of global dimension < 2. The category mod A is equivalent to the category
mod (mod kQ) of finitely presented functors (mod kQ)°? — modk. The projective
indecomposables of mod A are the representable functors U” = Homyg(?,U) where
U is an indecomposable kQ-module. Let S be a simple A-module. Since A is finite-
dimensional, this simple is associated to an indecomposable U of modkQ. If U is
not projective, then it is easy to check that in D’(A) the simple Sy is isomorphic
to the complex:

L— 0 — (rU)" EN Un 0
-3 92 —1 1

where 0 U E U 0 is the Auslander-Reiten sequence as-
sociated to U. Thus ®(Sy) = vSy[—2] is the complex:

=0 ——(rU) EY uv 0
-1 0 1 2 3
where U is the injective A-module DHomyq (U, ?). It follows from the Auslander-
Reiten formula that this complex is quasi-isomorphic to the simple S;¢.
If U is projective, then Sy is isomorphic in D?(A) to

T

——= 0 — (radU)" U» 0
—2 1 0 1
and then ®(Sy) is in D>1. Since for each indecomposable U there is some N such
that 7VU is projective, there is some M such that ®M(Ds() is included in Dsq.
By proposition @, the cluster category C4 is Hom-finite, and 2-CY by corollary

The quiver of A is the Auslander-Reiten quiver of mod £Q. The minimal relations
of the algebra A are given by the mesh relations. Thus the quiver of A is the same as
that of A in which arrows 72 — x are added for each non projective indecomposable
x.

For instance, if ) is A4 with the orientation 1 2 3 4, then

the quiver of the algebra A is the following

AN
AN 7N

5. STABLE MODULE CATEGORIES AS CLUSTER CATEGORIES

5.1. Definition and first properties. Let B be a concealed algebra [, i.e.
the endomorphism algebra of a preinjective tilting module over a finite-dimensional
hereditary algebra. Let H be a postprojective slice of mod B. We denote by add(H)
the smallest subcategory of mod B which contains H and which is stable under
taking direct summands. Let @ be the quiver such that Endp(H) is the path
algebra kQ and let Qo = {1,--- ,n} be its set of vertices. By Happel , there
is a triangle equivalence:
DRHomp(?7,H)
D" (B) Db (kQ).
(D?)ékQH

Notice that these functors induce quasi-inverse equivalences between add(H) and
the subcategory of finite-dimensional injective k@Q-modules.
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Define M as the following subcategory of mod B:
M ={X €modB | Extz(X,H) =0} = {X € mod B | X is cogenerated by H}

We denote by 7p the AR-translation of the category mod B and by 7p the AR-
translation of D*B.
The following proposition is a classical result in tilting theory (see for example

Fnsd).
Proposition 5.1. (1) For each X in M there exists a triangle

X Hy H,y X[1]

in D*(mod B) functorial in X with Hy and Hy in add(H);
(2) M C mod B is closed under kernels so in particular, M is closed under 1p;
(3) for each indecomposable X in M there exists a unique ¢ > 0 such that
757X is in add(H);
(4) the category M has finitely many indecomposables.

Hom-finiteness. Let M be the quotient M /add(H). Denote by p : M — M the
canonical projection. Since H is a slice, we have the following properties.

Proposition 5.2. (1) The category M is equivalent to the full subcategory of
M whose objects do not have non zero direct factors in add(H). We denote
by i : M — M the associated inclusion.

(2) The category M C mod B is closed under kernels, and hence under p.
(3) The right evact functor i : mod M — mod M induced by i : M — M is
isomorphic to the restriction along p.

Proposition 5.3. Let A be the endomorphism algebra Endp (@ ,,cina it M) The
global dimension of A is at most 2.

Proof. There is an equivalence of categories between mod A and mod M. Since M
is stable under kernels, the global dimension of A is < 2. O

Theorem 5.4. The cluster category C4 is a Hom-finite, 2-CY category, and the
object A is a cluster-tilting object in C4.

Proof. Using corollary E and theorem @, we just have to check that the functor
Tor% (?, DA) is nilpotent. Since there are finitely many indecomposables in M, the
proof is the same as for an Auslander algebra (cf. the examples of section E) O

Construction of the functor F': mod M — f.LLA. Denote by Z(kQ) the subcategory
of the preinjective modules of mod kQ).

Proposition 5.5. There exists a k-linear functor P : T(kQ) — M unique up to
tsomorphism such that
o P restricted to subcategory of the injective kQ-modules is isomorphic to the
restriction of the functor D(?) Qrq H;
o for each indecomposable X in ZT(kQ) such that P(X) is not projective, the
1mage
Pi Pp
0— P(mpX)—— P(EF) —— P(X) ——=0
of an Auslander-Reiten sequence in mod kQ ending at X

%

0 X E—2>X 0

is an Auslander-Reiten sequence in mod B ending at P(X).

Moreover, the functor P is full, essentially surjective, and satisfies Porp ~ tgo P.
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Proof. The Auslander-Reiten quivers I'z of Z(kQ) and I'yq of M are connected
translation quivers. Each vertex of I'z is of the form T%,T with ¢ > 0 and z inde-
composable injective. Each vertex of I'yq is of the form 752 where z is in add(H)
((3) of proposition @) Moreover, there is a canonical isomorphism of quivers
P:T pkQ@ — Daqacrry- Thus we can inductively construct a morphism of quivers
(that we will still denote by P) P : 't — I'yq extending P such that:

e P(tpx) = 78 P(x) for each vertex z of I'z ;
e P(opa) = opP(a) for each arrow a :  — y of I'z, where opa (resp. o)
denotes the arrow 7py — x (resp. 7y — x) such that the mesh relations in
I'z (resp. in I'yq) are of the form 3~ ), op(a)a (resp. 3,5, 0B(8)5).
Clearly, this morphism of translation quivers induces surjections in the sets of
vertices and the sets of arrows.

The categories Z(kQ) and M are standard, i.e. k-linearly equivalent to the mesh
categories of their Auslander-Reiten quivers. Up to isomorphism, an equivalence
k(I'z) — Z(kQ) is uniquely determined by its restriction to a slice. Thus there
exists a k-linear functor P : Z(kQ) — M unique up to isomorphism which is equal
to D(?) ®rg H on the slice of the injectives and such that the square

k(Tz) ——=Z(kQ)
lp ip
k(T pm) ————= M

is commutative. This functor P sends Auslander-Reiten sequences

% P

0 TpX E X 0
to Auslander-Reiten sequences
Pi Pp
0——73P(X)——= P(E) P(X) 0

if P(X) is not projective. Since P is surjective, P is full and essentially surjective.
O

Lemma 5.6. Let X and Y be indecomposables in T(kQ). The kernel of the map
Homyq(X,Y) — Homp(PX, PY) is generated by compositions of the form X —
Z —'Y where Z is indecomposable and P(Z) is zero.

Proof. If P(X) or P(Y') is zero this is obviously true. Suppose they are not. The
mesh relations are minimal relations of the k-linear category M and P is full.
Thus the kernel of the functor P is the ideal generated by the morphisms of the

form 7 —2>V —L> W where 0 P(U) Py P(V)iP(W)—>O

is an Auslander-Reiten sequence in M. Since P(U) is isomorphic to 75 P(W), the
indecomposable U is isomorphic to 7p(W). By the construction of P, V is a direct
factor of the middle term of the Auslander-Reiten sequence ending at W, and we

can ‘complete’ the composition 7pW A 1% L W into an Auslander-Reiten
sequence

g
(g) Vv (hh') W 0

0 oW

with P(V') = 0 and P(¢’) = P(h') = 0. Thus the morpism hg = —h'g’ factors
through an object in the kernel of P. O
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Now let A be the preprojective algebra associated to the acyclic quiver Q. It is
defined as the quotient kQ/(c) where @ is the double quiver of ) which is obtained
from @ by adding to each arrow a : ¢ — j an arrow a* : j — i pointing in the
opposite direction, and where (c) is the ideal generated by the element

c= Z (a*a+ aa™)
aceQ1
where @1 is the set of arrows of (). We denote by e; the idempotent of A associated
with the vertex i. We then have a natural functor
projA — TU(kQ)
e — szo I

where T (kQ) is the closure of Z(kQ) under countable products. Composing this
functor with the natural extension of P to Z'(kQ), we get a functor:

projA — M
e — ®p20 TH H;.

Therefore the restriction along this functor yields a functor F' : mod M — mod A.
Moreover, since M has finitely many indecomposables, the functor F' takes its
values in the full subcategory f.1.A formed by the A-modules of finite length.

This is an exact functor since it is a restriction. If M is an M-module, then the
vector space F'(M)e; is isomorphic to @5, M (TpH;). For X in M, there exists
i € Qo and ¢ > 0 such that 7¢H; = X. It is then easy to check that the image
F(Sx) of the simple associated to X is the simple A-module S;.

Fundamental propositions.

Proposition 5.7. For X in M, there exists a functorial sequence in mod A of the
form

0——=Foi.(X")——=F(H}) —=F(H) —= Foi,(XV)—=0

where iy : mod M — mod M is the right exact functor induced by i : M — M, and
where Hy and Hy are in add(H).

Proof. Let X be in M, and iX its image in M. By (1) of proposition @, there
exists a triangle functorial in X:

iX H, H, (eX)[1]

with Hy and Hy in add(H). Tt yields a long exact sequence in mod M:

0 (i X)" HY H) Extp(?,iX)

e

By definition, the functor Extg(?,Ho)‘ w18 zero. The Auslander-Reiten formula
gives us an isomorphism

Ext(?,iX)|,, ~ DHomp(15"iX,?),,,/proj B.
Since F' is an exact functor, we get the following exact sequence in f.I.A:
0 — F((iX)") — F(Hy) — F(H{") —= F((75"iX)" /proj B) —=0
By definition, we have F((iX)") ~ (F 0i,)(X”"). For j = 1,--- ,n, we have an
isomorphism:

F((r5"iX)" /proj B)e; ~ @) DHomp(75"iX, 75 H;)/proj B.
p=0

— Ext}g(?,Ho)‘M —_—
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For p > 0, we have 75(H;) = 75 (5" H;) if and only if 7% H; is not projective.

Thus we have a vector space isomorphism

F((r5'iX)" /projB)e; ~ @DHomB(TB iX, 5 H;) /proj B.
p>0

A morphism f : 77! X — 771Y factorizes through a projective object if and only
if 7(f) : X — Y is not zero. Thus we have:

F((r5"iX)"/projB)e; ~ € DHomp(iX,7}H;)
@DHomB(X ThH;)/ladd(H)]
p>0

(Fop)(X¥)ej = (Foi)(XY)e;.

12

12

Therefore we get this exact sequence in f.I.A, functorial in X:
0 — (F 0 i.)(X") —= F(H}) — F(H) —= (F 0 i.)(X") —=0
O

Proposition 5.8. Let U and V be indecomposables in M. We have an isomor-
phism

Homc, (U", V") ~ @ M(T5U, V)/[addr} H]

p>0

where M(TBU, V') /[addr}, H] is the cokernel of the composition map
M(TBU, TR H) @ M(T5H, V) — M(TRU, V).
We first show the following lemma:

Lemma 5.9. Let ey and ey be the idempotents of A associated to the indecompos-
ables U and V. We have an isomorphism

evExty (DA, A)ey ~ M(mU,V)/[addrs H]
where M(tgU, V) /[addTp H] is the cokernel of the composition map
MU, 75H) @ M(1pH,V) — M(15U, V).
Proof. We have the following isomorphisms:
evExt’ (DA, Aey = Ext}(D(epA), Aey)
~  Homp, g (DM(U,?), M(?7,V)[2)).

Denote by M the category /\ﬂ proj B. The functor 75 induces an equivalence of
k-linear categories 75 : M — M. Thus we get the following isomorphisms

HomD(m)(Dﬂ(U, N, M(?,V)2]) =~ Homp(ﬂ)(DM(TglU, 5 ), M5, 5 V)[2])

R

Homp vy (DM (75U, 7), M(? TglV)[ ])
Homp () (DM(15U, ?) /proj B, M(?, T

R

But by the previous lemma, we know a projective resolution in mod M of the
module DM (75 'U,7)/proj B. Namely, there exists an exact sequence in mod M of
the form:

'V)/proj B[2])

0——= M, U) ——= M(?,Hy) —= M(?,H) — DM(TglU,?)/projB —0
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where Hy and H; are in add(H). Thus we get (using Yoneda’s lemma)
Homp, oy (DM(U, ?), M(?,V)[2]) = Homp(a)(M(?,U), M(?,75V)/proj B)/[add M(?, H))]
~ M(U,75'V)/[addH]

~ M(mgU,V)/[addTs H].

Since V is in M, a non zero morphism of M(7pU, V) cannot factorize through
add(H). Thus we get M(7gU,V)/[addTpH] ~ M(7gU,V)/[addTp H].
(]

Proof. (of proposition @) In this proof, for simplicity we denote 75 by 7. Let A
be the algebra Endc, (A). By proposition @, we have a vector space isomorphism

ey Aey ~ ey Aey @ eUExti(DA, Aey & eUExti(DA, A)Pa%e, @ ...
We prove by induction that
evExt’ (DA, A)®4Pey ~ M(7PU, V) /[add? H].

For p = 0, eyAey is isomorphic to M(U,V) by Yoneda’s lemma, and so to
M(U,V)/[add(H)]. Suppose the proposition holds for an integer p — 1 > 0. We
then have

euExth (DA, A)¥4Pey ~ Y~ e Ext} (DA, A)®* P ey @ ewExt’ (DA, Aey.
W eind (M)

The sum means here the direct sum modulo the mesh relations of the category M.
Thus this vector space is the sum over the indecomposables W of M of

MU W) J[add(P~ H)] @ M(7W, V) /[add(TH)]

modulo the mesh relations of M. This is isomorphic to the cokernel of the map

p—1 1
SDTpflU7W ® 1TW,V + 17-1371U7W 39 QDTW,V where

Py MX, TH)@ M(TH,Y) — M(X,Y)
is the composition map and where
1X,y . ./\/l()(7 Y) — ./\/l()(7 Y)
is the identity. The cokernel of this map is isomorphic to the cokernel of the map
v rw @ Lrwy + lu,w ® 9071—W,V' But we have an isomorphism
> MEUTW) @ M(TW, V) =~ M(rPU, V).
W eind M

Finally we get

Coker Z O ovew @ Lewy + Lusw @ @lyy | ~ Coker(¢2, 1 + ©lopy)-
W €ind M
Furthermore, a morphism in M(7PU, V) which factorizes through 7H factorizes

through 7P H since H is a slice and U is in M. Thus this cokernel is in fact
isomorphic to the cokernel of ¢?,,,,, that is to say to the space

M(TPU, V) /[addT? H].

5.2. Case where B is hereditary.
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Results of Geiss, Leclerc and Schréer. Let @) be a finite connected quiver without
oriented cycles with n vertices. Denote by P the postprojective component of
the Auslander-Reiten quiver of modkQ, and by Pi,..., P, the indecomposable
projectives.

Definition 5.10 (Geiss-Leclerc-Schréer, [|GLS07H]). A kQ-module M = M@ - - @
M., where the M, are pairwise non isomorphic indecomposables, is called initial if
the following conditions hold:

o foralli=1,...,r, M; is postprojective;
e if X is an indecomposable kQ-module with Homyg (X, M) # 0, then X is
in add(M);

e and P; € add(M) for each indecomposable projective k@Q-module P;.
We define the integers ¢; as

t; = max{j > 0|77 (P;) € add(M) — {0}}.

Denote by A the preprojective algebra associated to Q. There is a canonical
embedding of algebras kQ——— A . Denote by mg : mod A — mod k(@) the corre-
sponding restriction functor.

Theorem 5.11 (Geiss-Leclerc-Schréer, [[GLS07H]). Let M be an initial kQ-module,
and let Cpr = ﬂél(add(M)) be the subcategory of all A-modules X with mo(X) €
add(M). The following holds:

(i) the category Cps is a Frobenius category with n projective-injectives;

(i) the stable category C,, is a 2-CY triangulated category.

Recall from Ringel [Rin9g] that the category mod A can be seen as mod kQ(7~1,1).
The objects are pairs (X, f) where X is in modkQ and f : 771X — X is a mor-
phism in mod kQ). The morphisms ¢ between (X, f) and (Y, g) are commutative
squares:

f
Tl —X

)

T71Y g% Y

The image of an object (X, f) under mg : mod A — mod kQ is then the module X.
Let X = 77'P; be an indecomposable summand of an initial module M. Let
Rx = (Y, f) be the following object in mod kQ(7~%,1) ~ mod A:

I+1

l l
Y:@Tfjpi and f:@TﬁjPi—»@Tiji
=0 j=1 =0

is given by the matrix
0

~
|
—

1o
Proposition 5.12 (Geiss-Leclerc-Schroer, [|[GLSO7TH]). The category Car has a canon-
ical mazximal rigid object R = @y cing add(M) Rx. The projective-injectives of Cyy
are the R —+,p,, i =1,...,n. Therefore, R is a cluster-tilting object in C ;.
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Endomorphism algebra of the cluster-tilting object. Let Q be a connected quiver
without oriented cycles and denote by B the path algebra kQ. Let M be an initial
B-module. Let H be the following postprojective slice H = @, 7~ P; of mod B.
Let Q' be the quiver such that Endg(H) is isomorphic to kQ'.

Let us define, as in the previous section, the subcategory M of D’(mod kQ) as

M ={X € modkQ /Extp(X,H) = 0}.

It is then obvious that M = add(M). As previously, we denote by A the pre-
projective algebra associated with Q’. It is isomorphic to the one associated
with @ because Q and @’ have the same underlying graph. Recall that we have
M = M/add(H), and that A = Endp(M) is an algebra of global dimension 2.
Note that in this case 7 and 7p coincide on the objects of mod B which have no

projective direct summands since B is hereditary. We will denote it by 7 in this
section.

Lemma 5.13. Let U and V be indecomposables in M. We have
Homy (Ry, Ry) ~ @M(TjU, V).
Jj=0

Proof. Let P and @ be projective indecomposables such that U = 779Q and V =
T PP.

Case 1: p<q
An easy computation gives the following equalities

HomA(RU, Rv)

12

P P
@ M(Q, 777 P) ~ @ M(r7PHQ,77PP)
=0

Jj=0

12

P
@M(Tﬂg*ﬂq —1Q), 77 PP) @ M(TIU, V).

= J=q-p

Since M(7*U, V) vanishes for k < ¢ — p+ 1 and since 7°U vanishes for k > ¢ + 1
we get an isomorphism

Homy (Ry, Ry) ~ @D M(7U, V).
Jj=0
Case 2: p > q
In this case, a morphism from Ry to Ry is given by morphisms a; € M(Q, 777 P),
with j = 0,...,psuch that 7=9a; = 0for j =0,...,p—g—1. But since 7 9F1=7 P
is not zero for j =0,...,p — ¢ — 1, the morphism 79 tq; : 77971Q — 7=9F1=ip
vanishes if and only if a; vanishes. Thus we get

p
Homa (R, Ry') @ M(@Q,7P)~ @ M(rPHQ,77"P)

12

j=p—q j=p—q
P ‘ q
~ @ M(r7PHita(r=a @M (77U, V).
Jj=p—q Jj=0

Since 77U vanishes for j > ¢+ 1 we get
Homy (Ry, Ry) ~ @ M(TIU, V).

Jj=0

Corollary 5.14. Let U and V be indecomposable objects in M. We have
HomQM (RU, Rv) ~ erleV
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and therefore the algebras A and Endc,, (R) are isomorphic.

Proof. The projective-injectives in the category Cys are the Ry, with i =1,...,n.
Denote by Ry the sum @;_; Ry,. Thus Hom¢ (Ry, Ry) is the cokernel of the
composition map

HomcM(RU,RH) X HomcM(RH,Rv) — HomcM (RU,R\/).

By the previous lemma this map is isomorphic to the following

D20 M(TUH) & M(TH, V) ———— B, M(77U, V)

Given two morphisms f € M(7°U, H) and M(77H, V), ®(f ®g) is the composition
I fog€ M("U, V). Thus the cokernel of this map is the cokernel of the map

D0 Bl M(TPU, 7 H) @ M(T°H,V) il Do M(TPU V) .

Since H is a slice and since U is in M, a morphism in M (7PU, V') which factorizes
through 7*H with i < p factorizes through 7P H. Finally we get

Home, (Ry,Ry) ~ P M(r*U,V)/[addr? H],
p=>0

and we conclude using proposition . O
Triangle equivalence.

Theorem 5.15. The functor F oi, : mod M — f.I.A yields a triangle equivalence
between Cxr and C ;.

Proof. Let X = TglPi be an indecomposable of M. Let X" be the projective
M-module Homp(?, X),,. The underlying vector space of F(X") is

°r
F(X") ~ @Homp(riH,m5'P,) ~ @ Homp (5B, 75' P;)
q>0 q>0
l
~ @HomB(B,Tf;lPi)z@quPi.
q=>0 q=0

It is then not hard to see that F'(X") is equal to Rx. Thus each projective X"
is sent onto an object of Cjs. Therefore F induces a functor F : D*(M) — D°(Cyy).
Moreover for i = 1,...,n, F(H}") is equal to R - p,,i.e. a projective-injective of
Cpr. We have the following composition:

DP(M) ~ DP(A) —> DP(M) —— D(Car) —— DP(Car)/per Car = Cy,
)
7% 4 DA[-2]

The functor F' o i, is clearly isomorphic to the left derived tensor product with
the A-A-bimodule R = F oi.(A). By proposition @, for X in M, we have the
following exact sequence, functorial in X:

0—>Foi*(XA)—>F(HO/\)—>-F(H{\)—>FOZ'*(XV)—>()
with Hy and H; in add(H). It yields a morphism
Foi.(DA) — Foi.(A)[2]

in the derived category of A-A-bimodules. Since the objects F(H{) and F(H{)
vanish in the stable category C,,, the image

Foi.(DA) — Foi.(A)[2]
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of this morphism in the category of A-B-bimodules is invertible, where B is a dg
category whose perfect derived category is algebraically equivalent to the stable
category C,;. In other words, in the derived category D(A°? ® B), we have an
isomorphism

DA S A nFi.(A) = nFi.(A)]-2].

By the universal property of the orbit category, we have the factorization

L
®aR

D(M)

=Cu-

This factorization is an algebraic functor between 2-CY categories which sends
the cluster-tilting object A onto the cluster-tilting object R. Moreover by corollary
.14, it yields an equivalence between the categories add(A) and add(R). Thus it
is an algebraic triangle equivalence.

O

Note that if M is the initial module kQ ® 7~ 'kQ, Geiss, Leclerc and Schréer
proved, using a result of Keller and Reiten [KRO(], that the 2-CY category C,, is
triangle equivalent to the cluster category Cq. Here, H is 77'kQ and then M is
k@, so we get another proof of this fact.

5.3. Relation with categories SubA/Z,.

Results of Buan, Iyama, Reiten and Scott. Let @ be a finite connected quiver
without oriented cycles and A the associated preprojective algebra. We denote by
{1,...,n} the set of vertices of Q. For a vertex i of @, we denote by Z; the ideal
A(1 —e;)A of A. We denote by W the Cozeter group associated to the quiver Q.
The group W is defined by the generators 1,...,n and the relations:

e i2=1foralliin {1,...,n};

e ij = ji if there are no arrows between the vertices i and 7;

e iji = jij if there is exactly one arrow between 7 and j.

Let w = i142...49 be a W-reduced word. For m < r, let Z,, . be the following
ideal:

Tw, =Ti, ... T1,Ts,.

For simplicity we will denote Z,,. by Z,,. The category Sub A/Z,, is the subcategory
of f.1.A generated by the sub-A-modules of A/Z,,.

Theorem 5.16 (Buan-Iyama-Reiten-Scott [BIRS0Y]). The category SubA/T,, is
a Frobenius category and its stable category SubA /T, is 2-CY. The object Tp, =
@, €i,, N Tw, is a cluster-tilting object.

m

Note that this theorem is written only for non Dynkin quivers in [BIRS07], but
the Dynkin case is an easy consequence of theorem II.2.8 and corollary I1.3.5 of

Construction of a reduced word. Let B be a concealed algebra, and H a postpro-
jective slice in mod B. Let @ the quiver of Endg(H). It is a finite quiver without
oriented cycles. We denote by {1,...,n} its set of vertices and by A its preprojective
algebra. We define as previously M = {X € mod B /Extp(X, H) = 0}.

Let us order the indecomposables X1, ..., Xy of M in such a way: if the mor-
phism space Homp(X;, X;) does not vanish, ¢ is smaller than j. This is possible
since @) has no oriented cycles.
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By proposition @, for X; € M there exists a unique ¢ > 0 such that 757X, ~
H ;) for a certain integer ¢(i). So we get a function ¢ : {1,...,N} — {1,...,n}.
Let w be the word ¢(1)p(2)...¢(N).

Proposition 5.17. The word w s W -reduced.

Proof. The proof is in several steps:

Step 1: For two integers i < j in {1,..., N}, we have p(i) = ¢(j) if and only if
there exists a positive integer p such that X; = 75 X;.

Step 2: The element w of the Coxeter group does not depend on the order on the
indecomposables of M.
Let ¢ be in {1,..., N — 1}. Assume there is an arrow (i) — ¢(i + 1) in Q. We
show that there is an arrow X; — X1 in the Auslander-Reiten quiver of M. By
proposition @, there exist positive integers p and ¢ such that X; = T%HMQ and
Xiy1 = TgH(P(H_l). By hypothesis there is an arrow between H ;) and H(;y1)-
Thus we want to show that p is equal to gq.

Suppose that p > ¢+ 1, then since M is closed under 73, the objects T%HMH”
and T%JrlH(p(i
such that X; = T%+1H(P(i+1). We have an arrow

+1) are non zero and are in M. Let | be the integer in {1,..., N}

Xi = T%Hap(i) — T]%Hap(i—i-l) = Tngl.
Thus, by the property of the AR-translation, there is an arrow X; — X;. Thus ¢
should be strictly greater than [. But by step 1, and the hypothesis p > q + 1, we

have 7 +1 <[. This is a contradiction.
The cases ¢ > p+ 1, and ¢(i + 1) — ¢(4) in @ can be solved in the same way.

Step 3: It is not possible to have ¢(i) = p(i + 1).
Suppose we have ¢(i) = ¢(i + 1). By step 1 there exists a positive integer p such
that X; = 75,X;41. Suppose that p is > 2, then 75X;41 = Tgp'HXi is in M, it
is isomorphic to an X}, for an integer k with ¢(k) = (7). But k must be strictly
greater than ¢ and strictly smaller than ¢ + 1 which is clearly impossible. Thus
p is equal to 1. There should exist an X; in M such that Hom(X;, X;) # 0 and
Hom(X}, X;4+1) # 0. Thus ! must be strictly between ¢ and i+ 1 which is impossible.

Step 4: It is not possible to have (i) = p(i + 2) and p(i + 1) = p(i + 3) with
exactly one arrow in Q between ¢(i) and p(i + 1).
In this case we have, by step 1, X; = 75X, 42 and X;41 = 75 X;43. By the same
argument as in step 3, p and g have to be equal to 1. Thus the AR quiver of M
has locally the following form:

N T

..... s Xjyq s Xjyg o
N 7 N e y
o X Xipo >

The module X, is the unique direct predecessor of X;.o. Indeed, suppose there
is an X with an arrow X; — X;yo. Thus there is an arrow 75 X410 = X; — X}
and k must be strictly between ¢ and ¢4 2. By the same argument, there is only one
arrow with tail X, 3, one arrow with source X; and one arrow with source X, ;.
Thus we have the following AR sequences in mod B:

0=X;,—=Xit1 = Xizo—=0 and 0—=Xit1 = Xito = Xit3—=0
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which is clearly impossible.

Step 5: There is no subsequence of type jkjlkl in w with an arrow between j and
k and an arrow between k and [
Suppose we have ¢ (i) = ¢(i+2) = j, p(i+1) = p(i+4) = k and ¢(i+3) = p(i+5) =
l. As previously, we have X; = 78 X;12, Xit1 = 78X;+4 and X;13 = 78 Xiys5.
There is an arrow X;11 — X2 so there is an arrow X;;5 — X;4. There is an
arrow X; 3 — X;14 thus there is an arrow X; 11 — X;13. As in step 4 it is easy to
see that the AR quiver of M locally looks like:

7
N
........ = Xjpg o Xgog o
A 7 N\ el N
..... ) CHF Gy p—
P N s
S R Xi+2 ........ . X

Thus we have the 3 following AR sequences in mod B:

0=X;, = Xiy1 > Xiy2o >0 0—=>Xi13—=>X04—> X415 >0

and 0 Xit1 Xiy3 ® Xiqo Xiya 0
A simple argument of dimension permits us to conclude that X; and X, 5 must be
zero, that is a contradiction.
By the second step, we know that using the relation of commutativity is the
same as changing the order on the indecomposables of M. Moreover we just saw
that locally we can not reduce the word w. Thus it is reduced.

O

Image of the cluster-tilting object. Let F' : mod M — fl.A be the functor con-
structed in section @

Proposition 5.18. Fori=1,..., N, we have an isomorphism in f.l.A:
F(X/\) ~ e«p(i)A/Iwi

K2

where w; is the word p(1) -+ - p(i).

Proof. The functor F is right exact and sends the simple functor Sx, onto the simple
Su(:)- Since F(X]') surjects onto F(Sx,), there is a morphism e ;A — F(X]).
Explicitly, we will take the morphism given in this way:

The object X is of the form 7} H, ;) for a ¢ > 0. If j is in {1,...,n}, the vector
space €, (;)Ae; is isomorphic to [[,5q Homyq (7515, Is(s)) where I is the injective
indecomposable module of mod k@ corresponding to the vertex j. Let f be a mor-
phism in Homyq (7515, I,(;)), then 73 (f) is a morphism in Homyq (Thra;, THhIu0))
and then P(7f) = 7% P(f) is a morphism in M from 75 7 H; to THH ) = Xi,
thus is in F(X[")e;.

3

Step 1: The morphism e, A — F(X]") vanishes on the ideal T, .

A word jija - - - j will be called a subword of w; if there exist integers 1 < l; <
lg < -+ <l <isuch that jijo---Jr = p(l1)e(l2) - - - (l;). Tt is easy to check that
the vector space e, (;)Zw,€; is generated by the paths from j to (i) such that there
exists a factorization

e T R S e 2 ()]

with jj1j2 - - jr(i) not a subword of wj.
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Let f be a morphism 731; — Iy in Z(kQ) given by such a path. Assume that
the image P(7 f) of f in F(X/') is non zero. Let

fo f1 fa pr

L, ——= - ——T1 I}, L. 0!

DT P17
Tpl; o Lj,

be the factorization of f given by the above factorization of the path. Therefore
P(t3f) is equal to the composition

P+q 7. P1+q 7. p2+q 7. pr+q 7. q N = X
T Hj =1 Hj =1 Hj, > =15 " Hj, >TpHyu) = Xi .

Since P(74f) is not zero, all morphisms P(75 f;) are not zero, and all objects
TP, are non zero. Thus the objects 75 “H; are of the form X, with
ho < hy < -+- < h, < i. Furthermore, we have ¢(h;) = j;. Thus jji - jre(i) =
o(ho)p(h1) -+ - p(hy)p(i) is a subword of w;. This contradiction shows that the im-
age of f in F(X*) must be zero.

Step 2: The morphism e,y A — F(X]') is surjective.

Let f be a morphism 75 7H; — TEHyiy = X; in M. Hence 757f is a mor-
phism 75 H; — H,(;) in M. Since P is full (cf. prop. @), there exists a morphism
g : mh1i — I,y such that P(g) = 759 f. Thus we have P(159) = 74 P(g) = f.

Step 3: The morphism e, A/Tw, — F(X]) is injective.
Let f be a non zero morphism 751; — I,;) in Z(kQ) such that P(7 f) is zero.
By lemma @, we can assume that there exists a factorization of 7, f of the form

+ h 9 q
™ 'L >Y > Tp (i)

with Y indecomposable and P(Y') = 0. The object Y is of the form T%Il with h > ¢
and we have TR H; = 0.

The morphism ¢ is a sum of compositions of irreducible morphisms between
indecomposables. Let

go g1 g2 s

i Vi Vs Y, H 1)

be such a summand of g. The objects Yy, 1 < k < s are indecomposable and so are
of the form 7¢I, , and the morphisms g, 0 < k < s are irreducible. We will show
that the word [j172 ... js¢(i) is not a subword of w;. Without loss of generality, we
may assume that for 1 < k < s, P(Y}) is not zero, so there exist integers [; such
that P(Y;) = Xj,. Since the morphisms gy, are irreducible, P(gx) does not vanish,
and we have 1 < [; <lp < --- < ly < 4. The word j1j2...Js¢(i) is equal to the
word o(11)p(l2) - - p(ls)e(i), 80 j1ja ... jse(i) is a subword of w;.

Substep 1: The sequence 1 < Iy < ls < -+ < lg < i is the mazimal element of

the set {1 <y <o < -+ <ig<igy1 <i | (i1) =J1,-..,0(ts) = Js, P(is+1) =
©(2)} for the lexicographic order.
We prove by decreasing induction that [l is the maximal integer with [ < lx11
and p(l) = jk. For k = s+ 1 it is obvious. Now suppose there exists an integer
i, such that o(lx) = p(ix) = jk and Iy < ix < lg+1. Thus by step 1 of proposi-
tion , there exists an integer » > 1 such that X;, = 75X;,. The morphism
P(gx) : Xi, — Xy, is irreducible, so there exists a non zero irreducible morphism
Xy, — 75 Xi,. The object 75X, is in M since X;, and 75" X;, = X;, are in
M. Tt is of the form X;, and we have [y, < t. Since r is > 1, ¢t is < i; by step 1
of proposition . This implies lx4+1 < ¢x which is a contradiction.
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Substep 2: 1 does not belong to the set {o(1),¢(2),...,0(l1 —1)}.

Suppose that there exists an integer 1 < k < N such that ¢(k) is equal to I. Thus
there exists an integer » > 0 such that X}, is equal to 75 H;. Since Tng = P(T%Il)
is zero, r is < h — 1.

Since the morphism gg : 751, — Y7 is an irreducible morphism of Z(kQ), there
exists an irreducible morphism Y; — Tgflll in Z(kQ). Thus there exists an irre-
ducible morphism T;;h“Yl — 751 in T(kQ). The object P(thI;) = 7 H; = X
is not zero and lies in M, so the object P(rp "™'V;) = 75 "1 X, is not zero
and lies in M since M is stable by kernel. Thus there is an irreducible mor-
phism T]g_h+1Xll = X; — X} in M. Therefore t has to be < k. Moreover since
r—h+1<0,l; is < s by step 1 of proposition . Finally we get [; < k.

Combining substep 1 and substep 2, we can prove that ljija ... jse(i) can not
be a subword of w;. Indeed, assume lj;js ... js¢(i) is a subword of w;. There exist
1<ip <iyp <...<is<isp1 <isuch that p(io)p(i1)...o(ist1) = lj1ja ... Js(i).
In particular, the word jija ... js¢(4) is a subword of w; and 1 < iy < ... < is <
is+1 < ¢ is in the set of substep 1. Thus by substep 1, i; has to be < I;. By substep
2, i can not exist.

O
Endomorphism algebra of the cluster-tilting object.

Lemma 5.19. Let X; and X; be indecomposables of M. We have an isomorphism
of vector spaces

HomA(ew(j)A/ij s 690(1-)/\/1-11,1.) ~ @ M(Tng, Xl)
p=>0
Proof. Case 1: j >1i
By [BIRS07] (lemma II.1.14) we have an isomorphism
Homa (ep() A/ Tu; o)A/ Tuw.) = €y A/ Tuw,ep()-

By proposition , this is isomorphic to the space

P M(ThH, ), Xi).

p=0

By definition of the function ¢, there exists some ¢ > 1 such that X; = T%Hw(j).
Thus we can write the sum

P M(hH,), Xi) = P M5 X5, Xi) @ P M(75 X5, X))
p>0 p=1 >0

Since j > 4, there is no morphism from 75" X; to X; for p > 1, and the first sum-
mand is zero. Therefore we get the result.

Case 2: j <
By [BIRS07] (lemma II.1.14) we have an isomorphism
Homa (ep() A/ Zuwys eo N/ Twi) = ey (Lo - - Lo(i+1) [ Lwi e () -
By proposition , this space is a subspace of the space
P MEH, ), Xi) ~ P M7 X5, Xi) & P M(TEX;, X).

p=>0 p=>1 p>0
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Step 1: If f is a non zero morphism in M(75"X;, X;) with p > 1 then f is not
in the space ey Loy - - Lo(j+1)Ce()-
Let X;, be the indecomposable 75”X;. Since p > 1 then Iy is < j + 1. The
morphism is a sum of composition of the form

X Xi X

0 1 r Xi

with the X, indecomposables. Since f is not zero, we have j+1 <[y <1 <... <
Iy < 4. Thus the word ¢(lp)p(l1) - . . (I )p(4) is a subword of ¢(j+1)p(j+2) . . . (7).
Since it holds for each factorization of f, the morphism f is not in the space

eo(i)Lo(i) - - Lo(j+1)€(j)

Step 2: If f is a morphism in M(ThX;, X;) with p > 0 then f is in the space
o) Le(i) - - Lo(+1) €0 ()
Let X, be the indecomposable 75X ;. Since p is > 0, we have Iy < j. Let us show
that if f is a composition of irreducible morphisms

Xy, X1, X, X, =X

r4+1

then the word ¢(lo)p(l1) - - - ©(l)p(4) is not a subword of w(j + 1)p(j +2) ... ¢(4).

We have lp < I3 < --- < I, <. Since lgis < 7+ 1, and ¢ is < j + 1, there
exists 1 < k <r 4 1 such that ly_1 < j+ 1 <. Therefore p(lg)...p(l)p(i) is a
subword of ¢(j + 1)p(j +2)...¢(i), and the sequence I < lp41 < -+ <l < iis
the maximal element of the set

Ur1<ip < <irpr <i | @(ix) = k), 00ir) = o), @(ir+1) = (i)}
for the lexicographic order (exactly for the same reasons as in substep 1 of proposi-
tion f.1§). Now we can prove exactly as in substep 2 of proposition that p(lg—1)
does not belong to the set {©(j+1),...,0(lx —1)}. Thus p(lg—1)p(lk) ... p(L)p(7)

can not be a subword of (j + 1)p(j +2) ... v(7).
Finally, let f = f1 + f2 be a morphism in

P ML H,y, Xi) ~ P M(57 X5, Xi) & P M5 X5, X0).

p=0 p>1 p>0
By step 2, f2 is in the space e, Zy(i) - - - Ly(j+1)€4(5)- By step 1 the morphism f is
in e,y Loy - - Lp(j+1)€p(;) if and only if f —1is zero. Thus we get an isomorphism

Homa (e(5)A /T, €A Tw,) ~ @D M(TEX;, X).

p=>0
O
Corollary 5.20. If X; and X; are indecomposables of M, then we have
Homgupa/z,, (eg,(j)A/ij,eg,(i)A/Iwi) ~ ey, flexi.
Proof. The proof is exactly the same as the proof of corollary . O

Triangle equivalence.

Theorem 5.21. The functor F oi, : mod M — f.I.A induces an algebraic triangle
equivalence between Cx; and SubA/Z,,.

Proof. By proposition , the functor F' sends the projectives of mod M onto
the summands of the cluster-tilting object Ty, of the category SubA/Z,,. For i =
1,...,n, the projective H* is sent to the projective-injective A/Z,e;. Furthermore,
by corollary @, F o i, induces an equivalence between the subcategories add(A)
and add(T,,). Thus we can conclude as in the proof of theorem .15, O
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5.4. Example. We refer to for more examples. Let @ be the following
quiver: 1 ——=2=——3. The preinjective component of mod k@ looks as fol-

lows:

[4169] [263] [021]

A e N B
N

[3116] [142] [010]

N A

[384] [032] [110]

Here we denote the k@-modules by their dimension vectors in order to lighten
the writing. For example the module [1 4 2] has the following decomposition series:
2 2 2 2

371737

If we mutate the tilting object [263] @ [142] @ [110] in the direction [1 4 2],
we stay in the preinjective component. We get the tilting object:

T=[263]®[384]B[110].

The algebra B = Endy(T) is a concealed algebra and is given by the quiver:

Let M be the following subcategory of mod B:

with the relation ba + b'a’ = 0.

2 5 3.

7N N\

1 3 6 2

NS

4 1

Then the algebra A is given by the quiver
2
70N
a’ b’
1 3

By Theorem @ the cluster category C4 associated with the algebra A is 2-Calabi-

Yau, Hom-finite and A € Cy4 is a cluster-tilting object. Moreover by proposition
[.14, the quiver of the cluster-tilted algebra A = Endc, (A) has the form:

and the relation ba + b'a’ = 0.

4

//2\\
1<=——3
N\

4.

The projective indecomposables of mod M are the following:

0 0 1 0 2 0 2 0 3 1 6 2
10 0f, 270 of, 371 0, 371 0, 472 o, 8 4 1
0 0 0 1 0 1
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The word w associated with the ordering is w = 232132. The projectives of the
preprojective algebra associated to @ have the following composition series:
3
373
27279 3
313313313

The maximal rigid object of the category Sub A/Z,, associated to w = 232132 is
1 2

R=2®,3,® 3 3 @ 32, @& 32,2, @ 25139

The last three summands are the projective-injectives of the Frobenius category

SubA/Z,,. If we write these modules with their dimension vectors we get:

R=i]elzleli]o[ileli]o[5]

It is easy to check that this module corresponds to the projection of the projectives
of mod M.

Now take the module X = 1 in M. It corresponds to the module [384] in
mod k£@Q). We have the injective resolution in mod kQ:

0—=[384] —=TJo21]*®[110] —=[010*—0

Thus the short exact sequence in M: () X Hy H; 0 isthe
following:

0—=1—=>4305"——=6—=>0

Therefore, the sequence 0 — X" — Hj' — H{* = (771 X)Y /proj B — 0 in mod M
becomes:
0 0 2 0 13 3 1 14 6 2 13 0 2
0—>{1 0 0}—>[3 1 0} @{4 2 0} —>{8 4 1} —>[0 1 3}—>0
0 1 0 1 0
0 2 7. . EETNY v 0 2 L
where [0 1, 3} is the quotient of (75°1)Y = 3Y = [0 L 4} by the projectives.

Applying the projection functor we get the exact sequence in mod A:
0 273 474 813 2
o[ —[i] e [i] —[#] —[i] —>
0 1 0 1 0

The M-module 1‘\% is [1 %3 0} = i’ 2%, We have Foi*(l‘vﬁ) = {%] By the
exact sequence above, there is an isomorphism in SubA/Z,, between F o z*(lr/ﬂ)
and F o4, (1D )[2].

It
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