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CLUSTER CATEGORIES FOR ALGEBRAS OF GLOBAL

DIMENSION 2 AND QUIVERS WITH POTENTIAL

CLAIRE AMIOT

Abstract. Let k be a field and A a finite-dimensional k-algebra of global
dimension ≤ 2. We construct a triangulated category CA associated to A

which, if A is hereditary, is triangle equivalent to the cluster category of A.
When CA is Hom-finite, we prove that it is 2-CY and endowed with a canonical
cluster-tilting object. This new class of categories contains some of the stable
categories of modules over a preprojective algebra studied by Geiss-Leclerc-
Schröer and by Buan-Iyama-Reiten-Scott. Our results rely on quivers with
potential. Namely, we introduce a cluster category C(Q,W ) associated to a

quiver with potential (Q, W ). When it is Jacobi-finite we prove that it is en-
dowed with a cluster-tilting object whose endomorphism algebra is isomorphic
to the Jacobian algebra J (Q, W ).
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Introduction

The cluster category associated with a finite-dimensional hereditary algebra
was introduced in [BMR+06] (and in [CCS06] for the An case). It serves in the
representation-theoretic approach to cluster algebras introduced and studied by
Fomin and Zelevinsky in a series of articles (cf. [FZ02], [FZ03], [FZ07] and [BFZ05]
with Berenstein). The link between cluster algebras and cluster categories is in
the spirit of ‘categorification’. Several articles (e.g. [MRZ03], [BMR+06], [CK08],
[CC06], [BMR07], [BMR08], [BMRT07], [CK06]) deal with the categorification of
the cluster algebra AQ associated with an acyclic quiver Q using the cluster cat-
egory CQ associated with the path algebra of the quiver Q. Another approach
consists in categorifying cluster algebras by subcategories of the category of mod-
ules over a preprojective algebra associated to an acyclic quiver (cf. [GLS07a],
[GLS06a], [GLS06b], [GLS07b], [BIRS07]). In both approaches the categories C (or
their associated stable categories) satisfy the following fundamental properties:

- C is a triangulated category;
- C is 2-Calabi-Yau (2-CY for short);
- there exist cluster-tilting objects.

It has been shown that these properties alone imply many of the most impor-
tant theorems about cluster categories, respectively stable module categories over
preprojective algebras (cf. [IY06], [KR06], [KR07], [Kel08a], [Pal], [Tab07]). In
particular by [IY06], in a category C with such properties it is possible to ‘mutate’
the cluster-tilting objects and there exist exchange triangles. This is fundamental
for categorification.

Let k be a field. In this article we want to generalize the construction of the
cluster category replacing the hereditary algebra kQ by a finite-dimensional algebra
A of finite global dimension. A candidate might be the orbit category Db(A)/ν[−2],
where ν is the Serre functor of the derived category Db(A). By [Kel05], such a
category is triangulated if A is derived equivalent to an hereditary category H.
However in general, it is not triangulated. Thus a more appropiate candidate is
the triangulated hull CA of the orbit category Db(A)/ν[−2]. It is defined in [Kel05]
as the stabilization of a certain dg category and contains the orbit category as a
full subcategory. More precisely the category CA is a quotient of a triangulated
category T by a thick subcategory N which is 3-CY. This leads us to the sutdy of
such quotients in full generality. We prove that the quotient is 2-CY if the objects
of T are ‘limits’ of objects of N (Theorem 1.3). In particular we deduce that the
cluster category CA of an algebra of finite global dimension is 2-CY if it is Hom-finite
(Corollary 4.5).

We study the particular case where the algebra is of global dimension ≤ 2. Since
kQ is a cluster-tilting object of the category CQ, the canonical candidate to be a
cluster-tilting object in the category CA would be A itself. Using generalized tilting
theory (cf. [Kel94]), we give another construction of the cluster category. We find
a triangle equivalence

CA
∼ // perΠ/DbΠ

where Π is a dg algebra in negative degrees which is bimodule 3-CY and homolog-
ically smooth. This equivalence sends the object A onto the image of the free dg
module Π in the quotient. This leads us to the study of the categories perΓ/DbΓ
where Γ is a dg algebra with the above properties. We prove that if the zeroth co-
homology of Γ is finite-dimensional, then the category perΓ/DbΓ is 2-CY and the
image of the free dg module Γ is a cluster-tilting object (Theorem 2.1). We show
that the algebra H0Γ is finite-dimensional if and only if the quotient perΓ/DbΓ
is Hom-finite. Thus we prove the existence of a cluster-tilting object in cluster
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categories CA associated with algebras of global dimension 2 which are Hom-finite
(Theorem 4.10). Moreover, this general approach applies to the Ginzburg dg alge-
bras [Gin06] associated with a quiver with potential. Therefore we introduce a new
class of 2-CY categories C(Q,W ) endowed with a cluster-tilting object associated
with a Jacobi-finite quiver with potential (Q, W ) (Theorem 3.6).

In [GLS07b], Geiss, Leclerc and Schröer construct subcategories CM of modΛ
(where Λ = ΛQ is a preprojective algebra of an acyclic quiver) associated with
certain terminal kQ-modules M . We show in the last part that the stable category
of such a Frobenius category CM is triangle equivalent to a cluster category CA

where A is the endomorphism algebra of a postprojective module over an hereditary
algebra (Theorem 5.15). Another approach is given by Buan, Iyama, Reiten and
Scott in [BIRS07]. They construct 2-Calabi-Yau triangulated categories SubΛ/Iw

where Iw is a two-sided ideal of the preprojective algebra Λ = ΛQ associated with an
element w of the Weyl group of Q. For certain elements w of the Weyl group (namely
those coming from preinjective tilting modules), we construct a triangle equivalence
between SubΛ/Iw and a cluster category CA where A is the endomorphism algebra
of a postprojective module over a concealed algebra (Theorem 5.21).

Plan of the paper. The first section of this paper is devoted to the study of
Serre functors in quotients of triangulated categories. In Section 2, we prove the
existence of a cluster-tilting object in a 2-CY category coming from a bimodule
3-CY dg algebra. Section 3 is a direct application of these results to Ginzburg dg
algebras associated with quivers with potential. In particular we give the definition
of the cluster category C(Q,W ) of a Jacobi-finite quiver with potential (Q, W ). In
section 4 we define cluster categories of algebras of finite global dimension. We
apply the results of Sections 1 and 2 in subsection 4.3 to the particular case of
global dimension ≤ 2. The last section links the categories introduced in [GLS07b]
and in [BIRS07] with these new cluster categories CA.

Acknowledgements. This article is part of my Ph. D. thesis under the supervi-
sion of Bernhard Keller. I deeply thank him for his patience and availability. I also
would like to thank Bernard Leclerc, Yann Palu and Jan Schröer for interesting
and helpful discussions and Idun Reiten for kindly answering to my questions.

Notations. Throughout let k be a field. By triangulated category we mean k-linear
triangulated category satisfying the Krull-Schmidt property. For all triangulated
categories, we will denote the shift functor by [1]. For a finite-dimensional k-algebra
A we denote by modA the category of finite-dimensional right A-modules. More
generally, for an additive k-categoryM we denote by modM the category of finitely
presented functors Mop → modk. Let D be the usual duality Homk(?, k). If A
is a differential graded (=dg) k-algebra, we will denote by D = DA the derived
category of dg A-modules and by DbA its full subcategory formed by the dg A-
modules whose homology is of finite total dimension over k. We write perA for the
category of perfect dg A-modules, i.e. the smallest triangulated subcategory of DA
stable under taking direct summands and which contains A.

1. Construction of a Serre functor in a quotient category

1.1. Bilinear form in a quotient category. Let T be a triangulated category
and N a thick subcategory of T (i.e. a triangulated subcategory stable under
taking direct summands). We assume that there is an auto-equivalence ν in T such
that ν(N ) ⊂ N . Moreover we assume that there is a non degenerate bilinear form:

βN,X : T (N, X) × T (X, νN) −→ k
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which is bifunctorial in N ∈ N and X ∈ T .

Construction of a bilinear form in T /N . Let X and Y be objects in T . The aim
of this section is to construct a bifunctorial bilinear form:

β′X,Y : T /N (X, Y ) × T /N (Y, νX [−1]) −→ k.

We use the calculus of left fractions [Ver77] in the triangle quotient T /N . Let
s−1 ◦ f : X → Y and t−1 ◦ g : Y → νX [−1] be two morphisms in T /N . We can
construct a diagram

X

f ��?
??

? Y

syyssssss

g ''OOOOOOO νX [−1]

twwooo
oo

νu[−1]
rr

Y ′

%%KK
KK

K νX ′[−1]
s′

wwooooo

νX ′′[−1]

where the cone of s′ is isomorphic to the cone of s. Denote by N [1] the cone of u.
It is in N since N is ν-stable. Thus we get a diagram of the form:

N //

v

//

X
u //

f

��

X ′′ // N [1]

Y ′

��

w

��
νX [−1]

νu[−1]
// νX ′′[−1] // νN // νX,

where the two horizontal rows are triangles of T . We define then β′X,Y as follows:

β′X,Y (s−1 ◦ f, t−1 ◦ g) = βN,Y ′(v, w).

Lemma 1.1. The form β′ is well-defined, bilinear and bifunctorial.

Proof. It is not hard to check that β′ is well-defined (cf. [Ami08]). Since β is
bifunctorial and bilinear, β′ satisfy the same properties. �

1.2. Non-degeneracy. In this section, we find conditions on X and Y such that
the bilinear form β′XY is non-degenerate.

Definition 1.2. Let X and Y be objects in T . A morphism p : N → X is called a
local N -cover of X relative to Y if N is in N and if it induces an exact sequence:

0 // T (X, Y )
p∗

// T (N, Y ).

Let Y and Z be objects in T . A morphism i : Z → N ′ is called a local N -envelope
of Z relative to Y if N ′ is in N and if it induces an exact sequence:

0 // T (Y, Z)
i∗ // T (Y, N ′).

Theorem 1.3. Let X and Y be objects of T . If there exists a local N -cover of X
relative to Y and a local N -envelope of νX relative to Y , then the bilienar form
β′XY constructed in the previous section is non-degenerate.

For a stronger version of this theorem see also [CR].
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Proof. Let f : X → Y be a morphism in T whose image in T /N is in the kernel of
β′. We have to show that it factorizes through an object of N .

Let p : N → X be a local N -cover of X relative to Y , and let X ′ be the cone
of p. The morphism f is in the kernel of β′, thus for each morphism g : Y → νN
which factorizes through νX ′[−1], β(fp, g) vanishes.

N
p // X //

f

��

X ′ // N [1]

Y

���
�
�

g

$$I
IIIIIIIII

νX [−1] // νX ′[−1] // νN // νX

This means that the linear form β(fp, ?) vanishes on the image of the morphism
T (Y, νX ′[−1]) −→ T (Y, νN). This image is canonically isomorphic to the kernel of
the morphism T (Y, νN) −→ T (Y, νX).

Let νi : νX → νN ′ be a local N -envelope of νX relative to Y . The sequence

0 // T (Y, νX) // T (Y, νN ′)

is then exact. Therefore, the form β(fp, ?) vanishes on Ker(T (Y, νN) −→ T (Y, νN ′)).

N
p // X //

f

��

i

!!C
CC

CC
CC

C X ′ // N [1]

N ′

||z
z

z
z

Y

g

��
νX ′[−1] // νN //

//

νX

νi

""E
EE

EE
EE

EE
// νX ′

νN ′

Now β is non-degenerate on

Coker(T (N ′, Y ) −→ T (N, Y )) × Ker(T (Y, νN) −→ T (Y, νN ′)).

Thus the morphism fp lies in Coker(T (N ′, Y ) −→ T (N, Y )), that is to say that
fp factorizes through ip. Since p : N → X is a local N -cover of X , f factorizes
through N ′. �

Proposition 1.4. Let X and Y be objects in T . If for each N in N the vector
spaces T (N, X) and T (Y, N) are finite-dimensional, then the existence of a local
N -cover of X relative to Y is equivalent to the existence of a local N -envelope of
Y relative to X.

Proof. Let g : N → X be a local N -cover of X relative to Y . It induces an injection

0 // T (X, Y )
g∗

// T (N, Y ).

The space T (N, Y ) is finite-dimensional by hypothesis. Fix a basis (f1, f2, . . . , fr)
of this space. This space is in duality with the space T (Y, νN). Let (f ′1, f

′
2, . . . , f

′
r)
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be the dual basis of the basis (f1, f2, . . . , fr). We show that the morphism

Y
(f ′

1,...,f ′

r) // ⊕r
i=1 νN

is a local N -envelope of Y relative to X . We have a commutative diagram:

T (X, Y )
��

g∗

��

(f ′

1,...,f ′

r)∗ // ⊕ T (X, νN)

g∗

��
T (N, Y )

(f ′

1,...,f ′

r)∗ // ⊕ T (N, νN).

If f is in the kernel of (f ′1, . . . , f
′
r)∗, then for all i = 1, . . . , r, the morphism f ′i ◦ f ◦ g

is zero. Thus f ◦ g is orthogonal on the vectors of the basis f ′1, . . . , f
′
r and therefore

vanishes. Since g is a local N -cover of X relative to Y , f is zero, and the morphism

T (X, Y )
(f ′

1,...,f ′

r)∗ // ⊕ T (X, νN)

is injective. Therefore, the morphism

Y
(f ′

1,...,f ′

r) // ⊕r
i=1 νN

is a local N -envelope of Y relative to X . The proof of the converse is dual. �

Examples. Let A be a finite-dimensional self-injective k-algebra. Denote by T the
derived category Db(modA) and by N the triangulated category perA. Since A is
finite-dimensional, there is an inclusion N ⊂ T . Moreover A is self-injective so of
infinite global dimension. Therefore the inclusion is strict. By [KV87], there is an
exact sequence of triangulated categories:

0 // perA // Db(modA) // modA // 0.

The derived categoryDb(modA) admits a Serre functor ν =?
L
⊗ADA which stabilizes

perA. Thus there is an induced functor in the quotient modA that we will also
denote by ν. Let Σ be the suspension of the category modA. One can easily
construct (cf. [Ami08]) local N -covers and local N -envelopes, so we can apply
theorem 1.3 and the functor Σ−1 ◦ ν is a Serre functor for the stable category
modA.

An article of G. Tabuada [Tab07] gives an example of the converse construction.
Let C be an algebraic 2-Calabi-Yau category endowed with a cluster-tilting object.
The author constructs a triangulated category T and a triangulated 3-Calabi-Yau
subcategory N such that the quotient category T /N is triangle equivalent to C. It
is possible to show (cf. [Ami08]) that the categories T and N satisfy the hypotheses
of theorem 1.3.

2. Existence of a cluster-tilting object

Let A be a differential graded (=dg) k-algebra. We denote by Ae the dg algebra
Aop ⊗ A. Suppose that A has the following properties:

• A is homologically smooth (i.e. the object A, viewed as an Ae-module, is
perfect);

• for each p > 0, the space HpA is zero;
• the space H0A is finite-dimensional;
• A is bimodule 3-CY, i.e. there is an isomorphism in D(Ae)

RHomAe(A, Ae) ≃ A[−3].
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Since A is homologically smooth, the category DbA is a subcategory of perA (see
[Kel08a], lemma 4.1). We denote by π the canonical projection functor π : perA →
C = perA/DbA. Moreover, by the same lemma, there is a bifunctorial isomorphism

DHomD(L, M) ≃ HomD(M, L[3])

for all objects L in DbA and all objects M in perA. We call this property the CY
property.

The aim of this section is to show the following result:

Theorem 2.1. Let A be a dg k-algebra with the above properties. The category
C = perA/DbA is Hom-finite and 2-CY. Moreover, the object π(A) is a cluster-
tilting object. Its endomorphism algebra is isomorphic to H0A.

2.1. t-structure on perA. The main tool of the proof of theorem 2.1 is the exis-
tence of a canonical t-structure in perA.

t-structure on DA. Let D≤0 be the full subcategory of D whose objects are the dg
modules X such that HpX vanishes for all p > 0.

Lemma 2.2. The subcategory D≤0 is an aisle in the sense of Keller-Vossieck
[KV88].

Proof. The canonical morphism τ≤0A → A is a quasi-isomorphism of dg algebras.
Thus we can assume that Ap is zero for all p > 0. The full subcategory D≤0 is stable

under X 7→ X [1] and under extensions. We claim that the inclusion D≤0
� � // D

has a right adjoint. Indeed, for each dg A-module X , the dg A-module τ≤0X is
a dg submodule of X , since A is concentrated in negative degrees. Thus τ≤0 is a
well-defined functor D → D≤0. One can check easily that τ≤0 is the right adjoint
of the inclusion.

�

Proposition 2.3. Let H be the heart of the t-structure, i.e. H is the intersection
D≤0 ∩D≥0. We have the following properties:

(i) The functor H0 induces an equivalence from H onto ModH0A.
(ii) For all X and Y in H, we have an isomorphism Ext1H0A(X, Y ) ≃

HomD(X, Y [1]).

Note that it is not true for general i that ExtiH(X, Y ) ≃ HomD(X, Y [i]).

Proof. (i) We may assume that Ap = 0 for all p > 0. We then have a canonical
morphism A → H0A. The restriction along this morphism yields a functor Φ :
ModH0A → H such that H0 ◦ Φ is the identity of ModH0A. Thus the functor
H0 : H → ModH0A is full and essentially surjective. Moreover, it is exact and
an object N ∈ H vanishes if and only if H0N vanishes. Thus if f : L → M is a
morphism of H such that H0(f) = 0, then ImH0(f) = 0 implies that H0(Imf) = 0
and Imf = 0, so f = 0. Thus H0 : H → ModH0A is also faithful.

(ii) By section 3.1.7 of [BBD82] there exists a triangle functor Db(H) → D which
yields for X and Y are in H and for n ≤ 1 an isomorphism (remark (ii) section
3.1.17 p.85)

HomDH(X, Y [n]) ≃ HomD(X, Y [n]).

Applying this for n = 1 and using (i), we get the result.
�
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Hom-finiteness.

Proposition 2.4. The category perA is Hom-finite.

Lemma 2.5. For each p, the space HpA is finite-dimensional.

Proof. By hypothesis, HpA is zero for p > 0. We prove by induction on n the
following statement: The space H−nA is finite-dimensional, and for all p ≥ n + 1
the space HomD(τ≤−nA, M [p]) is finite-dimensional for each M in modH0A.

For n = 0, the space H0A is finite-dimensional by hypothesis. Let M be
in modH0A. Since τ≤0A is ismorphic to A, HomD(τ≤0A, M [p]) is isomorphic
H0(M [p]), and so is zero for p ≥ 1.

Suppose that the property holds for n. Form the triangle:

(H−nA)[n − 1] // τ≤−n−1A // τ≤−nA // (H−nA)[n]

Let p be an integer ≥ n + 1. Applying the functor HomD(?, M [p]) we get the long
exact sequence:

· · · // HomD(τ≤−nA, M [p]) // HomD(τ≤−n−1A, M [p]) // HomD((H−nA)[n − 1], M [p]) // · · · .

By induction the space HomD(τ≤−nA, M [p]) is finite-dimensional.
Since M [p] is in DbA we can apply the CY property. If p is ≥ n + 3, we have

isomorphisms:

HomD((H−nA)[n − 1], M [p]) ≃ HomD((H−nA), M [p − n + 1])

≃ DHomD(M [p − n − 2], H−nA).

Since p − n − 2 is ≥ 1, this space is zero.
If p = n + 2, we have the following isomorphisms.

HomD((H−nA)[n − 1], M [n + 2]) ≃ HomD((H−nA), M [3])

≃ DHomD(M, H−nA)

≃ DHomH0A(M, H−nA).

The last isomorphism comes from lemma 2.3 (i). By induction, the space H−nA
is finite-dimensional. Thus for p ≥ n + 2, the space HomD((H−nA)[n− 1], M [p]) is
finite-dimensional.

If p = n + 1 we have the following isomorphisms:

HomD((H−nA)[n − 1], M [n + 1]) ≃ HomD((H−nA), M [2])

≃ DHomD(M, H−nA[1])

≃ DExt1H0A(M, H−nA)

The last isomorphism comes from lemma 2.3 (ii). By induction, since H−nA is
finite-dimensional, the space HomD((H−nA)[n− 1], M [n + 1]) is finite-dimensional
and so is HomD(τ≤−n−1A, M [n + 1]).

Now, look at the triangle

τ≤−n−2A //

0

..

τ≤−n−1A //

��

(H−n−1A)[n + 1] //

vvnnnnnnnnnnnn
(τ≤−n−2A)[1]

0ooM [n + 1]

.

The spaces HomD(τ≤−n−2A, M [n + 1]) and HomD((τ≤−n−2A)[1], M [n + 1]) vanish
since M [n + 1] is in D≥−n−1. Thus we have

HomD(τ≤−n−1A[n − 1], M [n + 1]) ≃ HomD((H−n−1A)[n + 1], M [n + 1])

≃ HomD(H−n−1A, M)

≃ HomH0A(H−n−1A, M).
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This holds for all finite-dimensional H0A-modules M . Thus it holds for the compact
cogenerator M = DH0A. The space HomH0A(H−n−1A, DH0A) ≃ DH−n−1A is
finite-dimensional, and therefore H−(n+1)A is finite-dimensional. �

Proof. (of proposition 2.4) For each integer p, the space HomD(A, A[p]) ≃ Hp(A)
is finite-dimensional by lemma 2.5. The subcategory of (perA)op × perA whose
objects are the pairs (X, Y ) such that HomD(X, Y ) is finite-dimensional is stable
under extensions and passage to direct factors. �

Restriction of the t-structure to perA.

Lemma 2.6. For each X in perA, there exist integers N and M such that X
belongs to D≤N and ⊥D≤M .

Proof. The object A belongs to D≤0. Moreover, since for X in DA, the space
HomD(A, X) is isomorphic to H0X , the dg module A belongs to ⊥D≤−1. Thus the
property is true for A. For the same reasons, it is true for all shifts of A. Moreover,
this property is clearly stable under taking direct summands and extensions. Thus
it holds for all objects of perA. �

This lemma implies the following result:

Proposition 2.7. The t-structure on DA restricts to perA.

Proof. Let X be in perA, and look at the canonical triangle:

τ≤0X // X // τ>0X // (τ≤0X)[1].

Since perA is Hom-finite, the space HpX ≃ HomD(A, X [p]) is finite-dimensional
for all p ∈ Z and vanishes for all p ≫ 0 by lemma 2.6. Thus the object τ>0X is
in DbA and so in perA. Since perA is a triangulated subcategory, it follows that
τ≤0X also lies in perA. �

Proposition 2.8. Let π be the projection π : perA → C. Thus for X and Y in
perA, we have

HomC(πX, πY ) = lim
→

HomD(τ≤nX, τ≤nY )

Proof. Let X and Y be in perA. An element of lim
→

HomD(τ≤nX, τ≤nY ) is an

equivalence class of morphisms τ≤nX → τ≤nY . Two morphisms f : τ≤nX → τ≤nY
and g : τ≤mX → τ≤mY with m ≥ n are equivalent if there is a commutative square:

τ≤nX
f //

��

τ≤nY

��
τ≤mX

g // τ≤mY

where the vertical arrows are the canonical morphisms. If f is a morphism f :
τ≤nX → τ≤nY , we can form the following morphism from X to Y in C:

τ≤nX

||zzz
zzz

zz

f //

$$H
HHHHHHHH
τ≤nY

��
X Y,

where the morphisms τ≤nX → X and τ≤nY → Y are the canonical morphisms.
This is a morphism from πX to πY in C because the cone of the morphism τ≤nX →
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X is in DbA. Moreover, if f : τ≤nX → τ≤nY and g : τ≤mX → τ≤mY are equivalent,
there is an equivalence of diagrams:

τ≤nX

��

||xx
xxxxxx

f //

$$III
III

II
II

τ≤nY

��

��

X Y

τ≤mX

bbFFFFFFFF
g //

::uuuuuuuuuu

τ≤mY

OO

Thus we have a well-defined map from lim
→

HomD(τ≤nX, τ≤nY ) to HomC(πX, πY )

which is injective.
Now let X ′ s

!!C
C

}}zz
X Y

be a morphism in HomC(πX, πY ). Let X ′′ be the cone of

s. It is an object of DbA, and therefore lies in D>n for some n ≪ 0. Thus there
are no morphisms from τ≤nX to X ′′ and there is a factorization:

τ≤nX

��

0

""E
EE

EE
EE

EE

||
X ′

s // X // X ′′ // X ′[1]

We obtain an isomorphism of diagrams:

X ′

$$II
IIs

zzuuu
u

X Y

τ≤nX
f

;;vvvv
ddHHHH

OO

The morphism f : τ≤nX → Y induces a morphism f ′ : τ≤nX → τ≤nY which lifts
the given morphism. Thus the map from lim

→
HomD(τ≤nX, τ≤nY ) to HomC(πX, πY )

is surjective. �

2.2. Fundamental domain. Let F be the following subcategory of perA:

F = D≤0 ∩
⊥D≤−2 ∩ perA.

The aim of this section is to show:

Proposition 2.9. The projection functor π : perA → C induces a k-linear equiva-
lence between F and C.

add(A)-approximation for objects of the fundamental domain.

Lemma 2.10. For each object X of F , there exists a triangle

P1
// P0

// X // P1[1]

with P0 and P1 in add(A).

Proof. For X in perA, the morphism

HomD(A, X) → HomH(H0A, H0X)
f 7→ H0(f)
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is an isomorphism since HomD(A, X) ≃ H0X . Thus it is possible to find a mor-

phism P0 → X , with P0 a free dg A-module, inducing an epimorphism H0P0
// // H0X .

Now take X in F and P0 → X as previously and form the triangle

P1
// P0

// X // P1[1].

Step 1: The object P1 is in D≤0 ∩ ⊥D≤−1.

The objects X and P0 are in D≤0, so P1 is in D≤1. Moreover, since H0P0 → H0X
is an epimorphism, H1(P1) vanishes and P1 is in D≤0.

Let Y be in D≤−1, and look at the long exact sequence:

· · · // HomD(P0, Y ) // HomD(P1, Y ) // HomD(X [−1], Y ) // · · · .

The space HomD(X [−1], Y ) vanishes since X is in ⊥D≤−2 and Y is in D≤−1. The
object P0 is free, and H0Y is zero, so the space HomD(P0, Y ) also vanishes. Con-
sequently, the object P1 is in ⊥D≤−1.

Step 2: H0P1 is a projective H0A-module.

Since P1 is in D≤0 there is a triangle

τ≤−1P1 // P1
// H0P1

// (τ≤−1P1)[1].

Now take an object M in the heart H, and look at the long exact sequence:

· · · // HomD((τ≤−1P1)[1], M [1]) // HomD(H0P1, M [1]) // HomD(P1, M [1]) // · · · .

The space HomD((τ≤−1P1)[1], M [1]) is zero because HomD(D≤−2,D≥−1) vanishes
in a t-structure. Moreover, the space HomD(P1, M [1]) vanishes because P1 is in
⊥D≤−1. Thus HomD(H0P1, M [1]) is zero. But this space is isomorphic to the

space Ext1H(H0P1, M) by proposition 2.3. This proves that H0P1 is a projective
H0A-module.

Step 3: P1 is isomorphic to an object of add(A).

As previously, since H0P1 is projective, it is possible to find an object P in add(A)
and a morphism P → P1 inducing an isomorphism H0P → H0P1. Form the
triangle

Q
u // P

v // P1
w // Q[1]

Since P and P1 are in D≤0 and H0(v) is surjective, the cone Q lies in D≤0. But
then w is zero since P1 is in ⊥D≤−1. Thus the triangle splits, and P is isomorphic
to the direct sum P1 ⊕ Q. Therefore we have a short exact sequence:

0 // H0Q // H0P // H0P1
// 0,

and H0Q vanishes. The object Q is in D≤−1, the triangle splits, and there is no
morphism between P and D≤−1, so Q is the zero object.

�

Equivalence between the shifts of F .

Lemma 2.11. The functor τ≤−1 induces an equivalence from F to F [1]

Proof. Step 1: The image of the functor τ≤−1 restricted to F is in F [1].

Recall that F is D≤0 ∩ ⊥D≤−2 ∩ perA so F [1] is D≤−1 ∩ ⊥D≤−3 ∩ perA. Let X be
an object in F . By definition, τ≤−1X lies in D≤−1 and there is a canonical triangle:

τ≤−1X // X // H0X // τ≤−1X [1] .

Now let Y be an object in D≤−3 and form the long exact sequence

· · · // HomD(X, Y ) // HomD(τ≤−1X, Y ) // HomD((H0X)[−1], Y ) // · · ·
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Since X is in ⊥D≤−2, the space HomD(X, Y ) vanishes. The object H0X [−1] is of
finite total dimension, so by the CY property, we have an isomorphism

HomD(H0X [−1], Y ) ≃ DHomD(Y, H0X [2]).

But since HomD(D≤−3,D≥−2) is zero, the space HomD((H0X)[−1], Y ) vanishes
and τ≤−1X lies in ⊥D≤−3.

Step 2: The functor τ≤−1 : F → F [1] is fully faithful.

Let X and Y be two objects in F and f : τ≤−1X → τ≤−1Y be a morphism.

H0X [−1] // τ≤−1X //

f

��

X

��

// H0X

H0Y [−1] // τ≤−1Y
i // Y // H0Y

The space HomD(H0X [−1], Y ) is isomorphic to DHomD(Y, H0X [2]) by the CY
property. Since Y is in ⊥D≤−2, this space is zero, and the composition i ◦ f
factorizes through the canonical morphism τ≤−1X → X . Therefore, the functor
τ≤−1 is full.

Let X and Y be objects of F and f : X → Y a morphism satisfying τ≤−1f = 0.
It induces a morphism of triangles:

H0X [−1] //

��

τ≤−1X
i //

0

��

X //

f

��

H0X

}} ��
H0Y [−1] // τ≤−1Y // Y // H0Y

The composition f ◦ i vanishes, so f factorizes through H0X . But by the CY prop-
erty the space of morphisms HomD(H0X, Y ) is isomorphic to DHomD(Y, H0X [3])
which is zero since Y is in ⊥D≤−2. Thus the functor τ≤−1 restricted to F is faithful.

Step 3: The functor τ≤−1 : F → F [1] is essentially surjective.

Let X be in F [1]. By the previous lemma there exists a triangle

P1[1] // P0[1] // X // P1[2]

with P0 and P1 in add(A). Denote by ν the Nakayama functor on the projectives
of modH0A. Let M be the kernel of the morphism νH0P1 → νH0P0. It lies in the
heart H.

Substep (i): There is an isomorphism of functors: Hom(?, X [1])|H ≃ HomH(?, M)

Let L be in H. We then have a long exact sequence:

· · · // HomD(L, P0[2]) // HomD(L, X [1]) // HomD(L, P1[3]) // HomD(L, P0[3]) // · · · .

The space HomD(L, P0[2]) is isomorphic to DHomD(P0, L[1]) by the CY property,
and vanishes because P0 is in ⊥D≤−1. Moreover, we have the following isomor-
phisms:

HomD(L, P1[3]) ≃ DHomD(P1, L)

≃ DHomH(H0P1, L)

≃ HomH(L, νH0P1).

Thus HomD(?, X [1])|H is isomorphic to the kernel of HomH(?, νH0P1) → HomH(?, νH0P0),
which is just HomH(?, M).

Substep (ii): There is a monomorphism of functors: Ext1H(?, M)
� � // HomD(?, X [2])|H .
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For L in H, look at the following long exact sequence:

· · · // HomD(L, P1[3]) // HomD(L, P1[3]) // HomD(L, X [2]) // HomD(L, P1[4]) // · · · .

The space HomD(L, P1[4]) is isomorphic to DHomD(P1[1], L) which is zero since
P1[1] is in D≤−1 and L is in D≥0. Thus the functor HomD(?, X [2])|H is isomorphic to

the cokernel of HomH(?, νH0P1) → HomH(?, νH0P0). By defninition, Ext1H(?, M)
is the first homology of a complex of the form:

· · · // 0 // HomH(?, νH0P1) // HomH(?, νH0P0) // HomH(?, I) // · · · ,

where I is an injective H0A-module. Thus we get the canonical injection:

Ext1H(?, M)
� � // HomD(?, X [2])|H .

Now form the following triangle:

X // Y // M // X [1].

Substep (iii): Y is in F and τ≤−1Y is isomorphic to X.

Since X and M are in D≤0, Y is in D≤0. Let Z be in D≤−2 and form the following
long exact sequence:

· · ·HomD(X [1], Z) // HomD(M, Z) // HomD(Y, Z) // HomD(X, Z) // HomD(M [−1], Z) · · · .

By the CY property and the fact that Z[2] is in D≤0, we have isomorphisms

HomD(M [−1], Z) ≃ DHomD(Z[−2], M)

≃ DHomH(H−2Z, M).

Moreover, since X is in ⊥D≤−3, we have

HomD(X, Z) ≃ HomD(X, (H−2Z)[2])

≃ DHomH(H−2Z, X [1]).

By substep (i) the functors HomH(?, M) and HomD(?, X [1])|H are isomorphic.
Therefore we deduce that the morphism HomD(X, Z) → HomD(M [−1], Z) is an
isomorphism.

Now look at the triangle

τ≤−3Z // Z // H−2Z[2] // (τ≤−3Z)[1]

and form the commutative diagram

HomD(M, τ≤−3Z) // HomD(M, Z) // HomD(M, H−2Z[2]) // HomD(M, τ≤−3Z[1])

HomD(X [1], τ≤−3Z) //

a

OO

HomD(X [1], Z) //

b

OO

HomD(X [1], H−2Z[2]) //

c

OO

HomD(X [1], τ≤−3Z[1])

d

OO
.

By the CY property and the fact that (τ≤−3Z)[−3] is in D≤0, we have isomorphisms

HomD(M [−1], τ≤−3Z[−1]) ≃ DHomD(τ≤−3Z[−1], M)

≃ DHomH(H−3Z, M).

Since X is in ⊥D≤−3, we have

HomD(X, (τ≤−3Z)[−1]) ≃ HomD(X, H−3Z[−2])

≃ DHomH(H−3Z, X [1]).

Now we deduce from substep (i) that a[−1] is an isomorphism.
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The space HomD(X [1], τ≤−3Z[1]) is zero because X is ⊥D≤−3. Moreover there
are isomorphisms

HomD(M, H−2Z[2]) ≃ DHomD(H−2Z, M [1])

≃ DExt1H(H−2Z, M).

The space HomD(X [1], H−2Z[2]) is isomorphic to DHomD(H−2Z, X [2]). And by

substep (ii), the morphism Ext1H(?, M) → HomD(?, X [2])|H is injective, so c is
surjective. Therefore using a weak form of the five-lemma we deduce that b is
surjective.

Finally, we have the following exact sequence:

HomD(X [1], Z) // // HomD(M, Z) // HomD(Y, Z) // HomD(X, Z)
∼ // HomD(M [−1], Z)

Thus the space HomD(M, Z) is zero, and Z is in ⊥D≤−2.
It is now easy to see that there is an isomorphism of triangles:

τ≤−1Y //

��

Y // H0Y //

��

τ≤−1Y [1]

��
X // Y // M // X [1].

�

Proof of proposition 2.9. Step 1: The functor π restricted to F is fully faithful.

Let X and Y be objects in F . By proposition 2.3 (iii), the space HomC(πX, πY )
is isomorphic to the direct limit lim

→
HomD(τ≤nX, τ≤nY ). A morphism between X

and Y in C is a diagram of the form

τ≤nX

$$II
I

zzuuu
X Y.

The canonical triangle

(τ>nX)[−1] // τ≤nX // X // τ>nX

yields a long exact sequence:

· · · // HomD(τ>nX, Y ) // HomD(X, Y ) // HomD(τ≤nX, Y ) // HomD((τ>nX)[−1], Y ) // · · ·

The space HomD((τ>nX)[−1], Y ) is isomorphic to the space DHomD(Y, (τ>nX)[2]).
The object X is in D≥0, thus so is τ>nX , and the space DHomD(Y, (τ>nX)[2])
vanishes. For the same reasons, the space HomD(τ>nX, Y ) vanishes. Thus there
are bijections

HomD(τ≤nX, τ≤nY )
∼ // HomD(τ≤nX, Y )

∼ // HomD(X, Y )

Therefore, the functor π : F → C is fully faithful.

Step 2: For X in perA, there exists an integer N and an object Y of F [−N ]
such that πX and πY are isomorphic in C.

Let X be in perA. By lemma 2.6, there exists an integer N such that X is in
⊥D≤N−2. For an object Y in D≤N−2, the space HomD((τ>NX)[−1], Y ) is iso-
morphic to DHomD(Y, (τ>NX)[2]) and thus vanishes. Therefore, τ≤NX is still in
⊥D≤N−2, and thus is in F [−N ]. Since τ>NX is in DbA, the objects τ≤NX and X
are isomorphic in C.

Step 3: The functor π restricted to F is essentially surjective.

Let X be in perA and N such that τ≤NX is in F [−N ]. By lemma 2.11, τ≤−1 induces
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an equivalence between F and F [1]. Thus since the functor π ◦ τ≤−1 : perA → C
is isomorphic to π, there exists an object Y in F such that π(Y ) and π(X) are
isomorphic in C. Therefore, the functor π restricted to F is essentially surjective.

Proposition 2.12. If X and Y are objects in F , there is a short exact sequence:

0 // Ext1D(X, Y ) // Ext1C(X, Y ) // DExt1D(Y, X) // 0.

Proof. Let X and Y be in F . The canonical triangle

τ<0X // X // τ≥0X // (τ<0X)[1]

yields the long exact sequence:

HomD((τ≥0X)[−1], Y [1]) HomD(τ<0X, Y [1])oo HomD(X, Y [1])oo HomD(τ≥0X, Y [1])oo .

The space HomD(X [−1], Y [1]) is zero because X is in ⊥D≤−2 and Y is in D≤0.
Moreover, the space HomD(τ≥0X, Y [1]) is zero because of the CY property. Thus
this long sequence reduces to a short exact sequence:

0 // Ext1D(X, Y ) // HomD(τ<0X, Y [1]) // HomD((τ≥0X)[−1], Y [1]) // 0 .

Step 1: There is an isomorphism HomD((τ≥0X)[−1], Y ) ≃ DExt1D(Y, X).

The space HomD((τ≥0X)[−1], Y [1]) is isomorphic to DHomD(Y, τ≥0X [1]) by the
CY property.

Y

0

yy �� %%KKKKKKKKKK 0

��
(τ<0X)[1] // X [1] // (τ≥0X)[1] // (τ<0X)[2]

But since HomD(Y, (τ<0X)[1]) and HomD(Y, (τ<0X)[2]) are zero, we have an iso-
morphism

HomD(τ≥0X [−1], Y ) ≃ DExt1D(Y, X).

Step 2: There is an isomorphism Ext1C(πX, πY ) ≃ HomD(τ≤−1X, Y [1]).

By lemma 2.11, the object τ<0X belongs to F [1] and clearly Y [1] belongs to F [1].
By proposition 2.9 (applied to the shifted t-structure), the functor π : perA → C in-

duces an equivalence from F [1] to C and clearly we have π(τ<0X, Y [1])
∼ // π(X).

We obtain bijections

HomD(τ<0X, Y [1])
∼ // HomD(πτ<0X, πY [1])

∼ // HomD(πX, πY [1]).

�

Proof of the main theorem. Step 1: The category C is Hom-finite and 2-CY.

The category F is obviously Hom-finite, hence so is C by proposition 2.9. The
categories T = perA and N = DbA ⊂ perA satisfy the hypotheses of section 1. By
[Kel08a], thanks to the CY property, there is a bifunctorial non degenerate bilinear
form:

βN,X : HomD(N, X) × HomD(X, N [3]) → k

for N in DbA and X in perA. Thus, by section 1, there exists a bilinear bifunctorial
form

β′X,Y : HomC(X, Y ) × HomC(Y, X [2]) → k

for X and Y in C = perA/DbA. We would like to show that it is non degenerate.
Since perA is Hom-finite, by theorem 1.3 and proposition 1.4, it is sufficient to show
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the existence of local N -envelopes. Let X and Y be objects of perA. Therefore by
lemma 2.6, X is in ⊥D≤N . Thus there is an injection

0 // HomD(X, Y ) // HomD(X, τ>NY )

and Y → τ>NY is a local N -envelope relative to X . Therefore, C is 2-CY.

Step 2: The object πA is a cluster-tilting object of the category C.

Let A be the free dg A-module in perA. Since H1A is zero, the space Ext1D(A, A)
is also zero. Thus by the short exact sequence

0 // Ext1D(A, A) // Ext1C(πA, πA) // DExt1D(A, A) // 0

of proposition 2.12, π(A) is a rigid object of C. Now let X be an object of C. By
proposition 2.9, there exists an object Y in F such that πY is isomorphic to X .
Now by lemma 2.10 , there exists a triangle in perA

P1
// P0

// Y // P1[1]

with P1 and P0 in add(A). Applying the triangle functor π we get a triangle in C:

πP1
// πP0

// X // πP1[1]

with πP1 and πP0 in add(πA). If Ext1C(πA, X) vanishes, this triangle splits and X
is a direct factor of πP0. Thus, the object πA is a cluster-tilting object in the 2-CY
category C.

3. Cluster categories for Jacobi-finite quivers with potential

3.1. Ginzburg dg algebra. Let Q be a finite quiver. For each arrow a of Q, we
define the cyclic derivative with respect to a ∂a as the unique linear map

∂a : kQ/[kQ, kQ] → kQ

which takes the class of a path p to the sum
∑

p=uav vu taken over all decompositions

of the path p (where u and v are possibly idempotents ei associated to a vertex i
of Q).

An element W of kQ/[kQ, kQ] is called a potential on Q. It is given by a linear
combination of cycles in Q.

Definition 3.1 (Ginzburg). [Gin06](section 4.2) Let Q be a finite quiver and W a

potential on Q. Let Q̂ be the graded quiver with the same vertices as Q and whose
arrows are

• the arrows of Q (of degree 0),
• an arrow a∗ : j → i of degree −1 for each arrow a : i → j of Q,
• a loop ti : i → i of degree −2 for each vertex i of Q.

The Ginzburg dg algebra Γ(Q, W ) is a dg k-algebra whose underlying graded algebra

is the graded path algebra kQ̂. Its differential is the unique linear endomorphism
homogeneous of degree 1 which satisfies the Leibniz rule

d(uv) = (du)v + (−1)pudv,

for all homogeneous u of degree p and all v, and takes the following values on the

arrows of Q̂:

• da = 0 for each arrow a of Q,
• d(a∗) = ∂aW for each arrow a of Q,
• d(ti) = ei(

∑
a[a, a∗])ei for each vertex i of Q where ei is the idempotent

associated to i and the sum runs over all arrows of Q.
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The strictly positive homology of this dg algebra clearly vanishes. Moreover B.
Keller showed the following result:

Theorem 3.2 (Keller). [Kel08b] Let Q be a finite quiver and W a potential on
Q. The Ginzburg dg algebra Γ(Q, W ) is then homologically smooth and bimodule
3-CY.

3.2. Jacobian algebra.

Definition 3.3. Let Q be a finite quiver and W a potential on Q. The Jacobian
algebra J(Q, W ) is the zeroth homology of the Ginzburg algebra Γ(Q, W ). This is
the quotient algebra

kQ/〈∂aW, a ∈ Q1〉

where 〈∂aW, a ∈ Q1〉 is the two-sided ideal generated by the ∂aW .

Remark: We follow the terminology of H. Derksen, J. Weyman and A. Zelevinsky
([DWZ07] definition 3.1).

In recent works, B. Keller [Kel08b] and A. Buan, O. Iyama, I. Reiten and D.
Smith [BIRS08] have shown independently the following result:

Theorem 3.4 (Keller, Buan-Iyama-Reiten-Smith). Let T be a cluster-tilting object
in the cluster category CQ associated to an acyclic quiver Q. Then there exists a
quiver potential (Q′, W ) such that EndCQ

(T ) is isomorphic to J(Q′, W ).

3.3. Jacobi-finite quiver potentials. The quiver potential (Q, W ) is called Jacobi-
finite if the Jacobian algebra J(Q, W ) is finite-dimensional.

Definition 3.5. Let (Q, W ) be a Jacobi-finite quiver potential. Denote by Γ the
Ginzburg dg algebra Γ(Q, W ). Let perΓ be the thick subcategory of DΓ generated
by Γ and DbΓ the full subcategory of DΓ of the dg Γ-modules whose homology is of
finite total dimension. The cluster category C(Q,W ) associated to (Q, W ) is defined

as the quotient of triangulated categories perΓ/DbΓ.

Combining theorem 2.1 and theorem 3.2 we get the result:

Theorem 3.6. Let (Q, W ) be a Jacobi-finite quiver potential. The cluster category
C(Q,W ) associated to (Q, W ) is Hom-finite and 2-CY. Moreover the image T of the

free module Γ in the quotient perΓ/DbΓ is a cluster-tilting object. Its endomorphim
algebra is isomorphic to the Jacobian algebra J(Q, W ).

As a direct consequence of this theorem we get the corollary:

Corollary 3.7. Each finite-dimensional Jacobi algebra J (Q, W ) is 2-CY-tilted in
the sense of I. Reiten (cf. [Rei07]), i.e. it is the endomorphism algebra of some
cluster-tilting object of a 2-CY category.

Definition 3.8. Let (Q, W ) and (Q′, W ′) be two quiver potentials. A triangular
extension between (Q, W ) and (Q′, W ′) is a quiver potential (Q̄, W̄ ) where

• Q̄0 = Q0 ∪ Q′0;
• Q̄1 = Q1 ∪ Q′1 ∪ {ai, i ∈ I}, where for each i in the finite index set I, the

source of ai is in Q0 and the tail of ai is in Q′0;
• W̄ = W + W ′.

Proposition 3.9. Denote by JF the class of Jacobi-finite quiver potentials. The
class JF satisfies the properties:

(1) it contains all acyclic quivers (with potential 0);
(2) it is stable under quiver potential mutation defined in [DWZ07];
(3) it is stable under triangular extensions.
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Proof. (1) This is obvious since the Jacobi algebra J(Q, 0) is isomorphic to kQ.
(2) This is corollary 6.6 of [DWZ07].
(3) Let (Q, W ) and (Q′, W ′) be two quiver potentials in JF and (Q̄, W̄ ) a

triangular extension. Let Q̄1 = Q1 ∪Q′1 ∪ F be the set of arrows of Q̄. We
then have

kQ̄ = kQ′ ⊗R′ (R′ ⊕ kF ⊕ R) ⊗R kQ

where R is the semi-simple algebra kQ0 and R′ is kQ′0. Let W̄ be the
potential W + W ′ associated to the triangular extension. If a is in Q1,
then ∂aW̄ = ∂aW , if a is in Q′1 then ∂aW̄ = ∂aW ′ and if a is in F , then
∂aW̄ = 0. Thus we have isomorphisms

J(Q̄, W̄ ) = kQ̄/〈∂aW̄ , a ∈ Q̄1〉

≃ kQ′ ⊗R′ (R′ ⊕ kF ⊕ R) ⊗R kQ/〈∂aW, a ∈ Q1, ∂bW
′, b ∈ Q′1〉

≃ kQ′/〈∂bW
′, b ∈ Q′1〉 ⊗R′ (R′ ⊕ kF ⊕ R) ⊗R kQ/〈∂aW, a ∈ Q1〉

≃ J(Q′, W ′) ⊗R′ (R′ ⊕ kF ⊕ R) ⊗R J(Q, W ).

Thus if J(Q′, W ′) and J(Q, W ) are finite-dimensional, J(Q̄, W̄ ) is finite-
dimensional since F is finite.

�

In a recent work [KY08], B. Keller and D. Yang proved the following:

Theorem 3.10 (Keller-Yang). Let (Q, W ) be a Jacobi-finite quiver potential. As-
sume that Q has no loops nor two-cyles. For each vertex i of Q, there is a derived
equivalence

DΓ(µi(Q, W )) ≃ DΓ(Q, W ),

where µi(Q, W ) is the mutation of (Q, W ) at the vertex i in the sense of [DWZ07].

Remark: in fact Keller and Yang proved this theorem in a more general setting.
This also true if (Q, W ) is not Jacobi-finite, but then there is a derived equivalence
between the completions of the Ginzburg dg algebras.

Combining this theorem with theorem 3.6 and some results of [BIRS08], we get
the corollary:

Corollary 3.11. (1) If Q is an acyclic quiver, and W = 0, the cluster category
C(Q,W ) is canonically equivalent to the cluster category CQ.

(2) Let Q be an acyclic quiver and T a cluster-tilting object of CQ. If (Q′, W ) is
the quiver potential associated with the cluster-tilted algebra EndCQ

(T ) (cf.
[Kel08b] [BIRS08]), then the cluster category C(Q,W ) is triangle equivalent
to the cluster category CQ′ .

Proof. (1) The cluster category C(Q,0) is a 2-CY category with a cluster-tilting
object whose endomorphism algebra is isomorphic to kQ. Thus by [KR07],
this category is triangle equivalent to CQ.

(2) In a cluster category, all cluster-tilting objects are mutation equivalent.
Thus by results of [BIRS08], (Q, W ) is mutation equivalent to (Q′, 0). More-
over, (Q, W ) and Q′ have no loops nor two-cycles. Thus, the theorem of
Keller and Yang [KY08] applies and we have an equivalence

DΓ(Q, W ) ≃ DΓ(Q′, 0).

Thus the categories C(Q,W ) and C(Q′,0) are triangle equivalent. By 1. we
get the result.

�



CLUSTER CATEGORIES: A GENERALIZATION 19

4. Cluster categories for non hereditary algebras

4.1. Definition and results of Keller. Let A be a finite-dimensional k-algebra

of finite global dimension. The category DbA admits a Serre functor νA =?
L
⊗A DA

where D is the duality Homk(?, k) over the ground field. The orbit category

DbA/νA ◦ [−2]

is defined as follows:

• the objects are the same as those of DbA;
• if X and Y are in DbA the space of morphisms is isomorphic to the space

⊕

i∈Z

HomDA(X, (νi
AY [−2i]).

By Theorem 1 of [Kel05], this category is triangulated if A is derived equivalent to
an hereditary category. This happens if A is the endomorphism algebra of a tilting
module over an hereditary algebra, or if A is a canonical algebra (cf. [HR02],
[Hap01]).

In general it is not triangulated and we define its triangulated hull as the algebraic
triangulated category CA with the following universal category:

• There exists an algebraic triangulated functor π : DbA → CA.
• Let B be a dg category and X an object of D(Aop ⊗ B). If there exists

an isomorphism in D(Aop ⊗ B) between DA
L
⊗A X [−2] and X , then the

triangulated algebraic functor ?
L
⊗A X : DbA → DB factorizes through π.

Let B be the dg algebra A ⊕ DA[−3]. Denote by p : B → A the canonical
projection. It induces a triangulated functor p∗ : DbA → DbB. Let 〈A〉B be the
thick subcategory of DbB generated by the image of p∗. By Theorem 2 of [Kel05],
the triangulated hull of the orbit category DbA/νA ◦ [−2] is the category

CA = 〈A〉B/perB.

We call it the cluster category of A. Note that if A is the path algebra of an acyclic
quiver, there is an equivalence

CQ = Db(kQ)/ν ◦ [−2] ≃ 〈kQ〉B/perB.

4.2. 2-Calabi-Yau property. The dg B-bimodule DB is clearly isomorphic to
B[3], so it is not hard to check the following lemma:

Lemma 4.1. For each X in perB and Y in DbB there is a functorial isomorphism

DHomDB(X, Y ) ≃ HomDB(Y, X [3]).

So we can apply results of section 1 and construct a bilinear bifunctorial form:

β′XY : HomCA
(X, Y ) × HomCA

(Y, X [2]) → k.

Theorem 4.2. Let X and Y be objects in D = DbB. If the spaces HomD(X, Y )
and HomD(Y, X [3]) are finite-dimensional, then the bilinear form

β′XY : HomCA
(X, Y ) × HomCA

(Y, X [2]) → k

is non-degenerate.

Before proving this theorem, we recall some results about inverse limits of se-

quences of vector spaces that we will use in the proof. Let . . . // Vp
ϕ // Vp−1

ϕ // · · · // V1
ϕ // V0

be an inverse system of vector spaces (or vector space complexes) inverse system.
We then have the following exact sequence
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0 // V∞ = lim
←

Vp //
∏

p Vp
Φ //

∏
q Vq // lim

←

1Vp // 0

where Φ is defined by Φ(vp) = vp − ϕ(vp) ∈ Vp ⊕ Vp−1 where vp is in Vp.
Recall two classical lemmas due to Mittag-Leffler:

Lemma 4.3. If, for all p, the sequence of vector spaces Wi = Im(Vp+i → Vp) is

stationary, then lim
←

1Vp vanishes.

This happens in particular when all vector spaces Vp are finite-dimensional.

Lemma 4.4. Let . . . // Vp
ϕ // Vp−1

ϕ // · · · // V1
ϕ // V0 be an in-

verse system of finite-dimensional vector spaces such that V∞ = lim
←

Vp is also finite-

dimensional. Let V ′p be the image of V∞ in Vp. The sequence V ′p is stationary and
we have V ′∞ = lim

←
V ′p = V∞.

Proof. (of theorem 4.2) Let X and Y be objects of DbB such that HomDbB(X, Y ) is
finite-dimensional. We will prove that there exists a local perB-cover of X relative
to Y .

Let P• : . . . // Pn+1
// Pn

// Pn−1
// . . . // P0 be a projective

resolution of X . The complex P• has components in perB, and its homology
vanishes in all degrees except in degree zero, where it is X . Let P≤n and P>n be
the natural truncations, and denote by Tot(P ) the total complex associated to P•.
For all n ∈ N, there is an exact sequence of dg B-modules:

0 // Tot(P≤n) // Tot(P ) // Tot(P>n) // 0

The complex Tot(P ) is quasi-isomorphic to X , and the complex Tot(P≤n) is in
perB. Moreover, Tot(P ) is the colimit of Tot(P≤n). Thus by definition, we have
the following equalities

Hom•B(Tot(P ), Y ) = Hom•B(colim
→

Tot(P≤n), Y )

= lim
←

Hom•B(Tot(P≤n), Y ).

Denote by Vp the complex Hom•B(Tot(P≤p), Y ). In the inverse system

. . . // Vp
ϕ // Vp−1

ϕ // · · · // V1
ϕ // V0 ,

all the maps are surjective, so by lemma 4.3, there is a short exact sequence

0 // V∞ //
∏

p Vp
Φ //

∏
q Vq // 0

which induces a long exact sequence in cohomology

· · ·
∏

q H−1Vq

(( ((QQQQQQ
// H0(V∞)

&& &&LLLLL
// ∏H0Vp

// ∏H0Vq · · ·

lim
←

1H−1Vp

77
77pppppp

lim
←

H0Vp

88
88rrrrr

.

We have the equalities

H0(V∞) = H0(Hom•B(Tot(P ), Y ))
= HomH(Tot(P ), Y )
= HomD(X, Y ).

Denote by Wp the complex HomD(Tot(P≤p), Y ) and by Up the complex H−1(Vp) =
HomD(Tot(P≤p), Y [−1]). The spaces (Up)p are finite-dimensional, so by lemma 4.3,

lim
←

1Up vanishes and we have an isomorphism
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H0(lim
←

Vp) = H0(V∞) ≃ lim
←

H0(Vp).

The system (Wp)p satisfies the hypothesis of lemma 4.4. In fact, for each integer p,
the space HomD(Tot(P≤p), Y ) is finite-dimensional because Tot(P≤p) is in perB.
Moreover, by the last two equalities W∞ = lim

←
Wp is isomorphic to HomD(X, Y )

which is finite-dimensional by hypothesis. By lemma 4.4, the system (W ′
p)p formed

by the image of W∞ in Wp is stationary. More precisely, there exists an integer n
such that W ′

n = lim
←

W ′
p. Moreover W ′

n is a subspace of Wn = HomD(Tot(P≤n), Y )

and there is an injection

HomD(X, Y )
� � // HomD(Tot(P≤n), Y ) .

This yields a local perB-cover of X relative to Y .
The spaces HomD(N, X) and HomD(X, N) are finite-dimensional for N in perB

and X in DbB. Thus by proposition 1.4, there exists local perB-envelopes. There-
fore theorem 1.3 applies and β′ is non-degenerate.

�

Corollary 4.5. Let A be a finite-dimensional k-algebra with finite global dimension.
If the cluster category CA is Hom-finite, then it is 2-CY as a triangulated category.

Proof. Denote by p∗ : DbA → DbB the restriction of the projection p : B → A.
Let X and Y be in Db(A). By hypothesis, the vector spaces

⊕

p∈Z

HomDbA(X, νp
AY [−2p]) and

⊕

p∈Z

HomDbA(Y, νp
AX [−2p + 3])

are finite-dimensional. But by [Kel05], the space HomDbB(p∗X, p∗Y ) is isomorphic
to ⊕

p≥0

HomDbA(X, νp
AY [−2p]),

so is finite-dimensional. For the same reasons, the space HomDbB(Y, X [3]) is also
finite-dimensional. Applying theorem 4.2, we get a non-degenerate bilinear form
β′p∗X,p∗Y . The non-degeneracy property is extension closed, so for each M and N

in 〈A〉B , the form β′MN is non-degenerate.
�

4.3. Case of global dimension 2. In this section we assume that A is a finite-
dimensional k-algebra of global dimension ≤ 2.

Criterion for Hom-finiteness. The canonical t-structure on the derived category
D = DbA satisfies the property:

Lemma 4.6. We have the following inclusions ν(D≥0) ⊂ D≥−2 and ν−1(D≤0) ⊂
D≤2. Moreover, the space HomD(U, V ) vanishes for all U in D≥0 and all V in
D≤−3.

Proposition 4.7. Let X be the A-A-bimodule Ext2A(DA, A). The endomorphism

algebra Ã = EndCA
(A) is isomorphic to the tensor algebra TAX of X over A.

Proof. By definition, the endomorphism space EndCA
(A) is isomorphic to

⊕

p∈Z

HomD(A, νpA[−2p])

For p ≥ 1, the object νpA[−2p] is in D≥2 since νA is in D≥0. So since A is in D≤0,
the space HomD(A, νpA[−2p]) vanishes.
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The functor ν =?
L
⊗A DA admits an inverse ν−1 = −

L
⊗A RHomA(DA, A). Since

the global dimension of A is ≤ 2, the homology of the complex RHomA(DA, A) is
concentrated in degrees 0, 1 and 2 :

H0(RHomA(DA, A)) = HomD(DA, A)

H1(RHomA(DA, A)) = Ext1A(DA, A)

H2(RHomA(DA, A)) = Ext2A(DA, A).

Let us denote by Y the complex RHomA(DA, A)[2]. We then have

ν−pA[2p] = A
L
⊗A (Y

L

⊗Ap) = Y
L

⊗Ap.

Therefore we get the following equalities

HomDA(A, S−pA[−2p]) = HomDA(A, Y
L

⊗Ap)

= H0(Y
L

⊗Ap).

Since H0(Y ) = X , we conclude using the following easy lemma. �

Lemma 4.8. Let M and N two complexes of A-modules whose homology is con-
centrated in negative degrees. Then there is an isomorphism

H0(M
L
⊗A N) ≃ H0(M) ⊗A H0(N).

Proposition 4.9. Let A be a finite-dimensional algebra of global dimension 2. The
following properties are equivalent:

(1) the cluster category CA is Hom-finite;

(2) the functor ? ⊗A Ext2(DA, A) is nilpotent;

(3) the functor TorA2 (?, DA) is nilpotent;
(4) there exists an integer N such that there is an inclusion ΦN (D≥0) ⊂ D≥1

where Φ is the autoequivalence νA[−2] of the category D = DbA and D≥0

is the right aisle of the natural t-structure of DbA.

Proof. 1 ⇒ 2: It is obvious by proposition 4.7.
2 ⇔ 3 ⇔ 4: Let Φ be the autoequivalence νA[−2] of DbA. The functor

Tor2A(?, DA) is isomorphic to H0◦Φ and ?⊗AExt2A(DA, A) is isomorphic to H0◦Φ−1.
Thus it is sufficient to check that there are isomorphisms

H0Φ ◦ H0Φ ≃ H0Φ2 and H0Φ−1 ◦ H0Φ−1 ≃ H0Φ−2.

This is easy using Lemma 4.8 since the algebra A has global dimension ≤ 2 .
4 ⇒ 1: Suppose that there exists some N ≥ 0 such that ΦN (D≥0) is included

in D≤1. For each object X in CA, the class of the objects Y such that the space
HomCA

(X, Y ) (resp. HomCA
(Y, X)) is finite-dimensional, is extension closed. There-

fore, it is sufficient to show that for all simples S, S′, and each integer n, the space
HomCA

(S, S′[n]) is finite-dimensional.
There exists an integer p0 such that for all p ≥ p0 Φp(S′) is in D≥n+1. Therefore,

because of the defining properties of the t-structure, the space
⊕

p≥p0

HomD(S, Φp(S′)[n])

vanishes. Similary, there exists an integer q0 such that for all q ≥ q0, we have
Φq(S) ∈ D≥−n+3. Since the algebra A is of global dimension ≤ 2, the space

⊕

q≥q0

HomD(Φq(S), S′[n])
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vanishes. Thus the space

⊕

p∈Z

HomD(S, Φp(S′)[n]) =

p0⊕

p=−q0

HomD(S, Φp(S′)[n])

is finite-dimensional. �

Cluster-tilting object. In this section we prove the following theorem:

Theorem 4.10. Let A be a finite-dimensional k-algebra of global dimension ≤ 2.
If the functor TorA2 (?, DA) is nilpotent, then the cluster category CA is Hom-finite,
2-CY and the object A is a cluster-tilting object.

We denote by Θ a cofibrant resolution of the dg A-bimodule RHom•A(DA, A).
Following [Kel08a] and [Kel08b], we define the 3-derived preprojective algebra as
the tensor algebra

Π3(A) = TA(Θ[2]).

The complex RHom•A(DA, A)[2] has its homology concentrated in degrees −2, −1
and 0, and we have

H−2(Θ[2]) ≃ HomDA(DA, A), H−1(Θ[2]) ≃ Ext1A(DA, A)

and H0(Θ[2]) ≃ Ext2A(DA, A).

Thus the homology of the dg algebra Π3(A) vanishes in strictly positive degrees
and we have

H0Π3A = TAExt2A(DA, A) = Ã.

By proposition 4.9, it is finite-dimensional. Moreover, Keller showed that Π3(A) is
homologically smooth and bimodule 3-CY [Kel08b]. Thus we can apply theorem
2.1 and we have the following result:

Corollary 4.11. The category C = perΠ3A/DbΠ3A is 2-CY and the free dg module
Π3A is a cluster-tilting object in C.

To complete the proof of Theorem 4.10 we now construct a triangle equivalence
between CA and C sending A to Π3A.

Let us recall a theorem of Keller ([Kel94], or theorem 8.5, p.96 [AHHK07]):

Theorem 4.12. [Keller] Let B be dg algebra, and T an object of DB. Denote
by C the dg algebra RHom•B(T, T ). Denote by 〈T 〉B the thick subcategory of DB
generated by T . The functor RHom•B(T, ?) : DB → DC induces an algebraic
triangle equivalence

RHom•B(T, ?) : 〈T 〉B
∼ // perC.

Let us denote by Ho(dgalg) the homotopy category of dg algebras, i.e. the
localization of the category of dg algebras at the class of quasi-isomorphisms.

Lemma 4.13. In Ho(dgalg), there is an isomorphism between Π3A and RHomB(AB, AB).

Proof. The dg algebra B is A ⊕ (DA)[−3]. Denote by X a cofibrant resolution of
the dg A-bimodule DA[−2]. Now look at the dg submodule of the bar resolution
of B seen as a bimodule over itself (see the proof of theorem 7.1 in [Kel05]):

bar(X, B) : · · · // B ⊗A X⊗A2 ⊗A B // B ⊗A X ⊗A B // B ⊗A B // 0

This is a cofibrant resolution of the dg B-bimodule B. Thus A ⊗B bar(X, B) is
a cofibrant resolution of the dg B-module A. Therefore, we have the following
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isomorphisms

RHom•B(AB , AB) ≃ Hom•B(A ⊗B bar(X, B), A)

≃
∏

n≥0

Hom•B(A ⊗A X⊗An ⊗A B, AB)

≃
∏

n≥0

Hom•A(X⊗An, HomB(B, AB)A)

≃
∏

n≥0

Hom•A(X⊗An, AA),

where the differential on the last complex is induced by that of X⊗An. Note that

Hom•A(X, A) = RHom•A(DA[−2], A)

= RHom•A(DA, A)[2] = Θ[2].

We can now use the following lemma:

Lemma 4.14. Let A be a dg algebra, and L and M dg A-bimodules such that MA

is perfect as right dg A-module. There is an isomorphism in D(Aop ⊗ A)

RHom•A(L, A)
L
⊗A RHom•A(M, A) ≃ RHom•A(M

L
⊗A L, A).

Proof. Let X and M be dg A-bimodules. The following morphism of D(Aop ⊗ A)

X
L
⊗A RHomA(M, A) −→ RHomA(M, X)

x ⊗ ϕ 7→ (m 7→ xϕ(m))

is clearly an isomorphism for M = A. Thus it is an isomorphism if M is perfect as
a right dg A-module. Applying this to the right dg A-module RHomA(L, A), we
get an isomorphism of dg A-bimodules

RHomA(L, A)
L
⊗A RHomA(M, A) ≃ RHomA(M, RHomA(L, A)).

Finally, by adjunction we get an isomorphism of dg A-bimodules

RHomA(L, A)
L
⊗A RHomA(M, A) ≃ RHomA(M

L
⊗A L, A).

�

Therefore, the dg A-bimodule Hom•A(X⊗An, AA) is isomorphic to (Θ[2])⊗An,
and there is an isomorphism of dg algebras

RHom•B(AB , AB) ≃
⊕

n≥0

(θ[2])
L

⊗An = Π3(A)

because for each p ∈ Z, the group Hp(θ[2]
L

⊗An) vanishes for all n ≫ 0. �

By theorem 4.12, the functor RHom•B(AB , ?) induces an equivalence between
the thick subcategory 〈A〉B of DB generated by A, and perΠ3(A). Thus we get a
triangle equivalence that we will denote by F :

F = RHom•B(AB , ?) : 〈A〉B
∼ // perΠ3A

This functor sends the object AB of DbB onto the free module Π3A and the free
B-module B onto RHom•B(AB , B), that is to say onto AΠ3A. So F induces an
equivalence

F : perB = 〈B〉B
∼ // 〈A〉Π3A.

Lemma 4.15. The thick subcategory 〈A〉Π3A of DΠ3A generated by A is DbΠ3A.
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Proof. The algebra A is finite-dimensional, thus 〈A〉Π3A is obviously included in
DbΠ3A. Moreover, the category DbΠ3A equals 〈modH0(Π3A)〉Π3A by the existence
of the t-structure. The dg algebra Π3A is the tensor algebra TA(θ[2]) thus there is a
canonical projection Π3A → A which yields a restriction functor DbA → Db(Π3A)
respecting the t-structure:

modH0Π3A = H
� � // Db(Π3A)

modA

OO

� � // DbA

OO

This restriction functor induces a bijection in the set of isomorphism classes of
simple modules because the kernel of the map H0(Π3A) → A is a nilpotent ideal

(namely the sum of the tensor powers over A of the bimodule Ext2A(DA, A)). Thus
each simple of modH0Π3A is in 〈A〉Π3A and we have

〈A〉Π3A ≃ 〈modH0(Π3A)〉Π3A ≃ DbΠ3A.

�

Proof. (of theorem 4.10) By proposition 4.9 and corollary 4.5, the cluster category
is Hom-finite and 2-CY. Furthermore, the functor F = RHom•B(AB , ?) induces the
following commutative square:

F : 〈A〉B
∼ // perΠ3A

perB
∼ //?�

OO

DbΠ3A
?�

OO

Thus F induces a triangle equivalence

CA = 〈A〉B/perB
∼ // perΠ3A/DbΠ3A = C

sending the object A onto the free module Π3A. By theorem 2.1, A is therefore a
cluster-tilting object of the cluster category CA. �

Quiver of the endomorphism algebra of the cluster-tilting object. Let A = kQ/I
be a finite-dimensional k-algebra of global dimension ≤ 2. Suppose that I is an
admissible ideal generated by a finite set of minimal relations ri, i ∈ J where for
each i ∈ J , the relation ri starts at the vertex s(ri) and ends at the vertex t(ri).

Let Q̃ be the following quiver:

• the set of the vertices of Q̃ equals that of Q;

• the set of arrows of Q̃ is obtained from that of Q by adding a new arrow ρi

with source t(ri) and target s(ri) for each i in J .

We then have the following proposition, which has essentially been proved by
I. Assem, T. Brüstle and R. Schiffler [ABS06] (thm 2.6). The proposition is also
proved in [Kel08b].

Proposition 4.16. If the algebra EndCA
(A) = Ã is finite-dimensional, then its

quiver is Q̃.

Proof. Let B be a finite-dimensional algebra. The vertices of its quiver are deter-
mined by the quotient B/rad(B) and the arrows are determined by rad(B)/rad2(B).

Denote by X the A-A-bimodule Ext2A(DA, A). Since X ⊗A X is in rad2(B), the

quiver of Ã = TAX is the same as the quiver of the algebra A ⋊ X . The proof is
then exactly the same as in [ABS06] (thm 2.6).

�
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Example. Let Q be a Dynkin quiver. Let A be its Auslander algebra. The algebra
A is of global dimension ≤ 2. The category modA is equivalent to the category
mod (modkQ) of finitely presented functors (modkQ)op → modk. The projective
indecomposables of modA are the representable functors U∧ = HomkQ(?, U) where
U is an indecomposable kQ-module. Let S be a simple A-module. Since A is finite-
dimensional, this simple is associated to an indecomposable U of modkQ. If U is
not projective, then it is easy to check that in Db(A) the simple SU is isomorphic
to the complex:

· · ·
// 0
−3

// (τU)∧
−2

// E∧
−1

// U∧
0

// 0
1

//
· · ·

where 0 // τU // E // U // 0 is the Auslander-Reiten sequence as-
sociated to U . Thus Φ(SU ) = νSU [−2] is the complex:

· · ·
// 0
−1

// (τU)∨
0

// E∨
1

// U∨
2

// 0
3

//
· · ·

where U∨ is the injective A-module DHomkQ(U, ?). It follows from the Auslander-
Reiten formula that this complex is quasi-isomorphic to the simple SτU .

If U is projective, then SU is isomorphic in Db(A) to

· · ·
// 0
−2

// (radU)∧
−1

// U∧
0

// 0
1

//
· · · ,

and then Φ(SU ) is in D≥1. Since for each indecomposable U there is some N such
that τNU is projective, there is some M such that ΦM (D≥0) is included in D≥1.
By proposition 4.9, the cluster category CA is Hom-finite, and 2-CY by corollary
4.5.

The quiver of A is the Auslander-Reiten quiver of modkQ. The minimal relations
of the algebra A are given by the mesh relations. Thus the quiver of Ã is the same as
that of A in which arrows τx → x are added for each non projective indecomposable
x.

For instance, if Q is A4 with the orientation 1 // 2 // 3 // 4 , then

the quiver of the algebra Ã is the following

•
��@

@@

•

??~~~

��@
@@

•oo

��@
@@

•

??~~~

��@
@@

•oo

??~~~

��@
@@

•oo

��@
@@

•

??~~~
•oo

??~~~
•oo

??~~~
•oo

5. Stable module categories as cluster categories

5.1. Definition and first properties. Let B be a concealed algebra [Rin84], i.e.
the endomorphism algebra of a preinjective tilting module over a finite-dimensional
hereditary algebra. Let H be a postprojective slice of modB. We denote by add(H)
the smallest subcategory of modB which contains H and which is stable under
taking direct summands. Let Q be the quiver such that EndB(H) is the path
algebra kQ and let Q0 = {1, · · · , n} be its set of vertices. By Happel [Hap87], there
is a triangle equivalence:

Db(B)
DRHomB(?,H) // Db(kQ).

(D?)
L

⊗kQH

oo

Notice that these functors induce quasi-inverse equivalences between add(H) and
the subcategory of finite-dimensional injective kQ-modules.
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Define M as the following subcategory of modB:

M = {X ∈ modB | Ext1B(X, H) = 0} = {X ∈ modB | X is cogenerated by H}

We denote by τB the AR-translation of the category modB and by τD the AR-
translation of DbB.

The following proposition is a classical result in tilting theory (see for example
[Rin84]).

Proposition 5.1. (1) For each X in M there exists a triangle

X // H0
// H1

// X [1]

in Db(modB) functorial in X with H0 and H1 in add(H);
(2) M ⊂ modB is closed under kernels so in particular, M is closed under τB;
(3) for each indecomposable X in M there exists a unique q ≥ 0 such that

τ−q
B X is in add(H);

(4) the category M has finitely many indecomposables.

Hom-finiteness. Let M be the quotient M/add(H). Denote by p : M → M the
canonical projection. Since H is a slice, we have the following properties.

Proposition 5.2. (1) The category M is equivalent to the full subcategory of
M whose objects do not have non zero direct factors in add(H). We denote
by i : M → M the associated inclusion.

(2) The category M ⊂ modB is closed under kernels, and hence under τB.
(3) The right exact functor i : modM → modM induced by i : M → M is

isomorphic to the restriction along p.

Proposition 5.3. Let A be the endomorphism algebra EndB(
⊕

M∈indMM). The
global dimension of A is at most 2.

Proof. There is an equivalence of categories between modA and modM. Since M
is stable under kernels, the global dimension of A is ≤ 2. �

Theorem 5.4. The cluster category CA is a Hom-finite, 2-CY category, and the
object A is a cluster-tilting object in CA.

Proof. Using corollary 4.5 and theorem 4.9, we just have to check that the functor
Tor2A(?, DA) is nilpotent. Since there are finitely many indecomposables in M, the
proof is the same as for an Auslander algebra (cf. the examples of section 4.3). �

Construction of the functor F : modM → f.l.Λ. Denote by I(kQ) the subcategory
of the preinjective modules of modkQ.

Proposition 5.5. There exists a k-linear functor P : I(kQ) → M unique up to
isomorphism such that

• P restricted to subcategory of the injective kQ-modules is isomorphic to the
restriction of the functor D(?) ⊗kQ H;

• for each indecomposable X in I(kQ) such that P (X) is not projective, the
image

0 // P (τDX)
Pi // P (E)

Pp // P (X) // 0

of an Auslander-Reiten sequence in modkQ ending at X

0 // τDX
i // E

p // X // 0

is an Auslander-Reiten sequence in modB ending at P (X).

Moreover, the functor P is full, essentially surjective, and satisfies P ◦τD ≃ τB ◦P .
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Proof. The Auslander-Reiten quivers ΓI of I(kQ) and ΓM of M are connected
translation quivers. Each vertex of ΓI is of the form τq

Dx with q ≥ 0 and x inde-
composable injective. Each vertex of ΓM is of the form τq

Bx where x is in add(H)
((3) of proposition 5.1). Moreover, there is a canonical isomorphism of quivers
P̄ : ΓDkQ → Γadd(H). Thus we can inductively construct a morphism of quivers

(that we will still denote by P̄ ) P̄ : ΓI → ΓM extending P̄ such that:

• P̄ (τDx) = τBP̄ (x) for each vertex x of ΓI ;
• P̄ (σDα) = σBP̄ (α) for each arrow α : x → y of ΓI , where σDα (resp. σBβ)

denotes the arrow τDy → x (resp. τBy → x) such that the mesh relations in
ΓI (resp. in ΓM) are of the form

∑
t(α)=x σD(α)α (resp.

∑
t(β)=x σB(β)β).

Clearly, this morphism of translation quivers induces surjections in the sets of
vertices and the sets of arrows.

The categories I(kQ) and M are standard, i.e. k-linearly equivalent to the mesh
categories of their Auslander-Reiten quivers. Up to isomorphism, an equivalence
k(ΓI) → I(kQ) is uniquely determined by its restriction to a slice. Thus there
exists a k-linear functor P : I(kQ) → M unique up to isomorphism which is equal
to D(?) ⊗kQ H on the slice of the injectives and such that the square

k(ΓI)

P̄

��

∼ // I(kQ)

P

��
k(ΓM)

∼ // M

is commutative. This functor P sends Auslander-Reiten sequences

0 // τDX
i // E

p // X // 0

to Auslander-Reiten sequences

0 // τBP (X)
Pi // P (E)

Pp // P (X) // 0

if P (X) is not projective. Since P̄ is surjective, P is full and essentially surjective.
�

Lemma 5.6. Let X and Y be indecomposables in I(kQ). The kernel of the map
HomkQ(X, Y ) → HomB(PX, PY ) is generated by compositions of the form X →
Z → Y where Z is indecomposable and P (Z) is zero.

Proof. If P (X) or P (Y ) is zero this is obviously true. Suppose they are not. The
mesh relations are minimal relations of the k-linear category M and P is full.
Thus the kernel of the functor P is the ideal generated by the morphisms of the

form U
g // V

h // W where 0 // P (U)
Pg // P (V )

Ph // P (W ) // 0
is an Auslander-Reiten sequence in M. Since P (U) is isomorphic to τBP (W ), the
indecomposable U is isomorphic to τD(W ). By the construction of P , V is a direct
factor of the middle term of the Auslander-Reiten sequence ending at W , and we

can ‘complete’ the composition τDW
g // V

h // W into an Auslander-Reiten
sequence

0 // τDW

( g
g′

)

// V ⊕ V ′
( h h′ ) // W // 0

with P (V ′) = 0 and P (g′) = P (h′) = 0. Thus the morpism hg = −h′g′ factors
through an object in the kernel of P . �
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Now let Λ be the preprojective algebra associated to the acyclic quiver Q. It is
defined as the quotient kQ̄/(c) where Q̄ is the double quiver of Q which is obtained
from Q by adding to each arrow a : i → j an arrow a∗ : j → i pointing in the
opposite direction, and where (c) is the ideal generated by the element

c =
∑

a∈Q1

(a∗a + aa∗)

where Q1 is the set of arrows of Q. We denote by ei the idempotent of Λ associated
with the vertex i. We then have a natural functor

projΛ −→ IΠ(kQ)
eiΛ 7→

∏
p≥0 τp

DIi

where IΠ(kQ) is the closure of I(kQ) under countable products. Composing this
functor with the natural extension of P to IΠ(kQ), we get a functor:

projΛ −→ M
eiΛ 7→

⊕
p≥0 τp

BHi.

Therefore the restriction along this functor yields a functor F : modM → modΛ.
Moreover, since M has finitely many indecomposables, the functor F takes its
values in the full subcategory f.l.Λ formed by the Λ-modules of finite length.

This is an exact functor since it is a restriction. If M is an M-module, then the
vector space F (M)ej is isomorphic to

⊕
p≥0 M(τp

BHj). For X in M, there exists
i ∈ Q0 and q ≥ 0 such that τqHi = X . It is then easy to check that the image
F (SX) of the simple associated to X is the simple Λ-module Si.

Fundamental propositions.

Proposition 5.7. For X in M, there exists a functorial sequence in modΛ of the
form

0 // F ◦ i∗(X
∧) // F (H∧0 ) // F (H∧1 ) // F ◦ i∗(X

∨) // 0

where i∗ : modM → modM is the right exact functor induced by i : M → M, and
where H0 and H1 are in add(H).

Proof. Let X be in M, and iX its image in M. By (1) of proposition 5.1, there
exists a triangle functorial in X :

iX // H0
// H1

// (iX)[1]

with H0 and H1 in add(H). It yields a long exact sequence in modM:

0 // (iX)∧ // H∧0 // H∧1 // Ext1B(?, iX)|M
// Ext1B(?, H0)|M

// · · · .

By definition, the functor Ext1B(?, H0)|M is zero. The Auslander-Reiten formula
gives us an isomorphism

Ext1B(?, iX)|M ≃ DHomB(τ−1
B iX, ?)|M/projB.

Since F is an exact functor, we get the following exact sequence in f.l.Λ:

0 // F ((iX)∧) // F (H∧0 ) // F (H∧1 ) // F ((τ−1
B iX)∨/projB) // 0

By definition, we have F ((iX)∧) ≃ (F ◦ i∗)(X
∧). For j = 1, · · · , n, we have an

isomorphism:

F ((τ−1
B iX)∨/projB)ej ≃

⊕

p≥0

DHomB(τ−1
B iX, τp

BHj)/projB.
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For p ≥ 0, we have τp
B(Hj) = τ−1

B (τp+1
B Hj) if and only if τp

BHj is not projective.
Thus we have a vector space isomorphism

F ((τ−1
B iX)∨/projB)ej ≃

⊕

p≥0

DHomB(τ−1
B iX, τ−1

B τp+1
B Hj)/projB.

A morphism f : τ−1X → τ−1Y factorizes through a projective object if and only
if τ(f) : X → Y is not zero. Thus we have:

F ((τ−1
B iX)∨/projB)ej ≃

⊕

p≥1

DHomB(iX, τp
BHj)

≃
⊕

p≥0

DHomB(X, τp
BHj)/[add(H)]

≃ (F ◦ p∗)(X∨)ej ≃ (F ◦ i∗)(X
∨)ej .

Therefore we get this exact sequence in f.l.Λ, functorial in X :

0 // (F ◦ i∗)(X
∧) // F (H∧0 ) // F (H∧1 ) // (F ◦ i∗)(X

∨) // 0

�

Proposition 5.8. Let U and V be indecomposables in M. We have an isomor-
phism

HomCA
(U∧, V ∧) ≃

⊕

p≥0

M(τp
BU, V )/[addτp

BH ]

where M(τp
BU, V )/[addτp

BH ] is the cokernel of the composition map

M(τp
BU, τp

BH) ⊗M(τp
BH, V ) −→ M(τp

BU, V ).

We first show the following lemma:

Lemma 5.9. Let eU and eV be the idempotents of A associated to the indecompos-
ables U and V . We have an isomorphism

eUExt2A(DA, A)eV ≃ M(τBU, V )/[addτBH ]

where M(τBU, V )/[addτBH ] is the cokernel of the composition map

M(τBU, τBH) ⊗M(τBH, V ) −→ M(τBU, V ).

Proof. We have the following isomorphisms:

eUExt2A(DA, A)eV = Ext2A(D(eUA), AeV )

≃ HomD(M)(DM(U, ?),M(?, V )[2]).

Denote by M the category M/projB. The functor τB induces an equivalence of
k-linear categories τB : M → M. Thus we get the following isomorphisms

HomD(M)(DM(U, ?),M(?, V )[2]) ≃ HomD(M)(DM(τ−1
B U, τ−1

B ?),M(τ−1
B ?, τ−1

B V )[2])

≃ HomD(M)(DM(τ−1
B U, ?),M(?, τ−1

B V )[2])

≃ HomD(M)(DM(τ−1
B U, ?)/projB,M(?, τ−1

B V )/projB[2])

But by the previous lemma, we know a projective resolution in modM of the
module DM(τ−1

B U, ?)/projB. Namely, there exists an exact sequence in modM of
the form:

0 // M(?, U) // M(?, H0) // M(?, H1) // DM(τ−1
B U, ?)/projB // 0
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where H0 and H1 are in add(H). Thus we get (using Yoneda’s lemma)

HomD(M)(DM(U, ?),M(?, V )[2]) ≃ HomD(M)(M(?, U),M(?, τ−1
B V )/projB)/[addM(?, H)]

≃ M(U, τ−1
B V )/[addH ]

≃ M(τBU, V )/[addτBH ].

Since V is in M, a non zero morphism of M(τBU, V ) cannot factorize through
add(H). Thus we get M(τBU, V )/[addτBH ] ≃ M(τBU, V )/[addτBH ].

�

Proof. (of proposition 5.8) In this proof, for simplicity we denote τB by τ . Let Ã
be the algebra EndCA

(A). By proposition 4.7, we have a vector space isomorphism

eU ÃeV ≃ eUAeV ⊕ eUExt2A(DA, A)eV ⊕ eUExt2A(DA, A)⊗A2eV ⊕ . . .

We prove by induction that

eUExt2A(DA, A)⊗ApeV ≃ M(τpU, V )/[addτpH ].

For p = 0, eUAeV is isomorphic to M(U, V ) by Yoneda’s lemma, and so to
M(U, V )/[add(H)]. Suppose the proposition holds for an integer p − 1 ≥ 0. We
then have

euExt2A(DA, A)⊗ApeV ≃
∑

W∈ind (M)

euExt2A(DA, A)⊗Ap−1eW ⊗ eW Ext2A(DA, A)eV .

The sum means here the direct sum modulo the mesh relations of the category M.
Thus this vector space is the sum over the indecomposables W of M of

M(τp−1U, W )/[add(τp−1H)] ⊗M(τW, V )/[add(τH)]

modulo the mesh relations of M. This is isomorphic to the cokernel of the map
ϕp−1

τp−1U,W ⊗ 1τW,V + 1τp−1U,W ⊗ ϕ1
τW,V where

ϕj
X,Y : M(X, τ jH) ⊗M(τ jH, Y ) −→ M(X, Y )

is the composition map and where

1X,Y : M(X, Y ) −→ M(X, Y )

is the identity. The cokernel of this map is isomorphic to the cokernel of the map
ϕp

τpU,τW ⊗ 1τW,V + 1U,τW ⊗ ϕ1
τW,V . But we have an isomorphism

∑

W∈indM

M(τpU, τW ) ⊗M(τW, V ) ≃ M(τpU, V ).

Finally we get

Coker




∑

W∈indM

ϕp
τpU,τW ⊗ 1τW,V + 1U,τW ⊗ ϕ1

τW,V



 ≃ Coker(ϕp
τpU,V + ϕ1

τpU,V ).

Furthermore, a morphism in M(τpU, V ) which factorizes through τH factorizes
through τpH since H is a slice and U is in M. Thus this cokernel is in fact
isomorphic to the cokernel of ϕp

τpU,V that is to say to the space

M(τpU, V )/[addτpH ].

�

5.2. Case where B is hereditary.
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Results of Geiss, Leclerc and Schröer. Let Q be a finite connected quiver without
oriented cycles with n vertices. Denote by P the postprojective component of
the Auslander-Reiten quiver of modkQ, and by P1, . . . , Pn the indecomposable
projectives.

Definition 5.10 (Geiss-Leclerc-Schröer, [GLS07b]). A kQ-module M = M1⊕· · ·⊕
Mr, where the Mi are pairwise non isomorphic indecomposables, is called initial if
the following conditions hold:

• for all i = 1, . . . , r, Mi is postprojective;
• if X is an indecomposable kQ-module with HomkQ(X, M) 6= 0, then X is

in add(M);
• and Pi ∈ add(M) for each indecomposable projective kQ-module Pi.

We define the integers ti as

ti = max{j ≥ 0|τ−j(Pi) ∈ add(M) − {0}}.

Denote by Λ the preprojective algebra associated to Q. There is a canonical

embedding of algebras kQ
� � // Λ . Denote by πQ : modΛ → modkQ the corre-

sponding restriction functor.

Theorem 5.11 (Geiss-Leclerc-Schröer, [GLS07b]). Let M be an initial kQ-module,
and let CM = π−1

Q (add(M)) be the subcategory of all Λ-modules X with πQ(X) ∈
add(M). The following holds:

(i) the category CM is a Frobenius category with n projective-injectives;
(ii) the stable category CM is a 2-CY triangulated category.

Recall from Ringel [Rin98] that the category modΛ can be seen as modkQ(τ−1, 1).
The objects are pairs (X, f) where X is in modkQ and f : τ−1X → X is a mor-
phism in modkQ. The morphisms ϕ between (X, f) and (Y, g) are commutative
squares:

τ−1X
f //

τ−1ϕ

��

X

ϕ

��
τ−1Y

g // Y

The image of an object (X, f) under πQ : modΛ → modkQ is then the module X .
Let X = τ−lPi be an indecomposable summand of an initial module M . Let

RX = (Y, f) be the following object in modkQ(τ−1, 1) ≃ modΛ:

Y =

l⊕

j=0

τ−jPi and f :

l+1⊕

j=1

τ−jPi −→
l⊕

j=0

τ−jPi

is given by the matrix

f =




0

1
. . .
. . .

. . .
1 0


 .

Proposition 5.12 (Geiss-Leclerc-Schröer,[GLS07b]). The category CM has a canon-
ical maximal rigid object R =

⊕
X∈ind add(M) RX . The projective-injectives of CM

are the Rτ−tiPi
, i = 1, . . . , n. Therefore, R is a cluster-tilting object in CM .



CLUSTER CATEGORIES: A GENERALIZATION 33

Endomorphism algebra of the cluster-tilting object. Let Q be a connected quiver
without oriented cycles and denote by B the path algebra kQ. Let M be an initial
B-module. Let H be the following postprojective slice H =

⊕n
i=1 τ−tiPi of modB.

Let Q′ be the quiver such that EndB(H) is isomorphic to kQ′.
Let us define, as in the previous section, the subcategory M of Db(modkQ) as

M = {X ∈ modkQ /Ext1B(X, H) = 0}.

It is then obvious that M = add(M). As previously, we denote by Λ the pre-
projective algebra associated with Q′. It is isomorphic to the one associated
with Q because Q and Q′ have the same underlying graph. Recall that we have
M = M/add(H), and that A = EndB(M) is an algebra of global dimension 2.
Note that in this case τB and τD coincide on the objects of modB which have no
projective direct summands since B is hereditary. We will denote it by τ in this
section.

Lemma 5.13. Let U and V be indecomposables in M. We have

HomΛ(RU , RV ) ≃
⊕

j≥0

M(τ jU, V ).

Proof. Let P and Q be projective indecomposables such that U = τ−qQ and V =
τ−pP .

Case 1: p ≤ q
An easy computation gives the following equalities

HomΛ(RU , RV ) ≃

p⊕

j=0

M(Q, τ−jP ) ≃

p⊕

j=0

M(τ−p+jQ, τ−pP )

≃

p⊕

j=0

M(τ−p+j+q(τ−qQ), τ−pP ) ≃

q⊕

j=q−p

M(τ jU, V ).

Since M(τkU, V ) vanishes for k ≤ q − p + 1 and since τkU vanishes for k ≥ q + 1
we get an isomorphism

HomΛ(RU , RV ) ≃
⊕

j≥0

M(τ jU, V ).

Case 2: p > q
In this case, a morphism from RU to RV is given by morphisms aj ∈ M(Q, τ−jP ),
with j = 0, . . . , p such that τ−q+1aj = 0 for j = 0, . . . , p−q−1. But since τ−q+1−jP
is not zero for j = 0, . . . , p − q − 1, the morphism τ−q+1aj : τ−q+1Q → τ−q+1−jP
vanishes if and only if aj vanishes. Thus we get

HomΛ(RU , RV ) ≃

p⊕

j=p−q

M(Q, τ−jP ) ≃

p⊕

j=p−q

M(τ−p+jQ, τ−pP )

≃

p⊕

j=p−q

M(τ−p+j+q(τ−qQ), τ−pP ) ≃

q⊕

j=0

M(τ jU, V ).

Since τ jU vanishes for j ≥ q + 1 we get

HomΛ(RU , RV ) ≃
⊕

j≥0

M(τ jU, V ).

�

Corollary 5.14. Let U and V be indecomposable objects in M. We have

HomCM
(RU , RV ) ≃ eU ÃeV
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and therefore the algebras Ã and EndCM
(R) are isomorphic.

Proof. The projective-injectives in the category CM are the RHi
with i = 1, . . . , n.

Denote by RH the sum
⊕n

i=1 RHi
. Thus HomCM

(RU , RV ) is the cokernel of the
composition map

HomCM
(RU , RH) ⊗ HomCM

(RH , RV ) −→ HomCM
(RU , RV ).

By the previous lemma this map is isomorphic to the following

⊕
i,j≥0 M(τ iU, H) ⊗M(τ jH, V ) Φ //

⊕
p≥0 M(τpU, V )

Given two morphisms f ∈ M(τ iU, H) and M(τ jH, V ), Φ(f ⊗g) is the composition
τ jf ◦ g ∈ M(τ i+jU, V ). Thus the cokernel of this map is the cokernel of the map

⊕
p≥0

⊕p
i=0 M(τpU, τ iH) ⊗M(τ iH, V ) Φ //

⊕
p≥0 M(τpU, V ) .

Since H is a slice and since U is in M, a morphism in M(τpU, V ) which factorizes
through τ iH with i ≤ p factorizes through τpH . Finally we get

HomCM
(RU , RV ) ≃

⊕

p≥0

M(τpU, V )/[addτpH ],

and we conclude using proposition 5.8. �

Triangle equivalence.

Theorem 5.15. The functor F ◦ i∗ : modM → f.l.Λ yields a triangle equivalence
between CM and CM .

Proof. Let X = τ−l
B Pi be an indecomposable of M. Let X∧ be the projective

M-module HomB(?, X)|M . The underlying vector space of F (X∧) is

F (X∧) ≃
⊕

q≥0

HomB(τq
BH, τ−l

B Pi) ≃
⊕

q≥0

HomB(τ−q
B B, τ−l

B Pi)

≃
⊕

q≥0

HomB(B, τq−l
B Pi) ≃

l⊕

q=0

τ−q
B Pi.

It is then not hard to see that F (X∧) is equal to RX . Thus each projective X∧

is sent onto an object of CM . Therefore F induces a functor F : Db(M) → Db(CM ).
Moreover for i = 1, . . . , n, F (H∧i ) is equal to Rτ−tiPi

,i.e. a projective-injective of
CM . We have the following composition:

Db(M) ≃ Db(A)

?
L

⊗ADA[−2]

VV
i∗ // Db(M)

F // Db(CM )
π // Db(CM )/per CM ≃ CM

The functor F ◦ i∗ is clearly isomorphic to the left derived tensor product with
the A-Λ-bimodule R = F ◦ i∗(A). By proposition 5.7, for X in M, we have the
following exact sequence, functorial in X :

0 // F ◦ i∗(X
∧) // F (H∧0 ) // F (H∧1 ) // F ◦ i∗(X

∨) // 0

with H0 and H1 in add(H). It yields a morphism

F ◦ i∗(DA) → F ◦ i∗(A)[2]

in the derived category of A-Λ-bimodules. Since the objects F (H∧0 ) and F (H∧1 )
vanish in the stable category CM , the image

F ◦ i∗(DA) → F ◦ i∗(A)[2]
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of this morphism in the category of A-B-bimodules is invertible, where B is a dg
category whose perfect derived category is algebraically equivalent to the stable
category CM . In other words, in the derived category D(Aop ⊗ B), we have an
isomorphism

DA
L
⊗A πFi∗(A) ≃ πFi∗(A)[−2].

By the universal property of the orbit category, we have the factorization

Db(M)
?

L

⊗AR //
++WWWWW CM .

CM

33

This factorization is an algebraic functor between 2-CY categories which sends
the cluster-tilting object A onto the cluster-tilting object R. Moreover by corollary
5.14, it yields an equivalence between the categories add(A) and add(R). Thus it
is an algebraic triangle equivalence.

�

Note that if M is the initial module kQ ⊕ τ−1kQ, Geiss, Leclerc and Schröer
proved, using a result of Keller and Reiten [KR06], that the 2-CY category CM is
triangle equivalent to the cluster category CQ. Here, H is τ−1kQ and then M is
kQ, so we get another proof of this fact.

5.3. Relation with categories SubΛ/Iw.

Results of Buan, Iyama, Reiten and Scott. Let Q be a finite connected quiver
without oriented cycles and Λ the associated preprojective algebra. We denote by
{1, . . . , n} the set of vertices of Q. For a vertex i of Q, we denote by Ii the ideal
Λ(1 − ei)Λ of Λ. We denote by W the Coxeter group associated to the quiver Q.
The group W is defined by the generators 1, . . . , n and the relations:

• i2 = 1 for all i in {1, . . . , n};
• ij = ji if there are no arrows between the vertices i and j;
• iji = jij if there is exactly one arrow between i and j.

Let w = i1i2 . . . ir be a W -reduced word. For m ≤ r, let Iwm
be the following

ideal:

Iwm
= Iim

. . .Ii2Ii1 .

For simplicity we will denote Iwr
by Iw. The category SubΛ/Iw is the subcategory

of f.l.Λ generated by the sub-Λ-modules of Λ/Iw.

Theorem 5.16 (Buan-Iyama-Reiten-Scott [BIRS07]). The category SubΛ/Iw is
a Frobenius category and its stable category SubΛ/Iw is 2-CY. The object Tw =⊕r

m=1 eim
Λ/Iwm

is a cluster-tilting object.

Note that this theorem is written only for non Dynkin quivers in [BIRS07], but
the Dynkin case is an easy consequence of theorem II.2.8 and corollary II.3.5 of
[BIRS07].

Construction of a reduced word. Let B be a concealed algebra, and H a postpro-
jective slice in modB. Let Q the quiver of EndB(H). It is a finite quiver without
oriented cycles. We denote by {1, . . . , n} its set of vertices and by Λ its preprojective

algebra. We define as previously M = {X ∈ modB /Ext1B(X, H) = 0}.
Let us order the indecomposables X1, . . . , XN of M in such a way: if the mor-

phism space HomB(Xi, Xj) does not vanish, i is smaller than j. This is possible
since Q has no oriented cycles.
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By proposition 5.1, for Xi ∈ M there exists a unique q ≥ 0 such that τ−q
B Xi ≃

Hϕ(i) for a certain integer ϕ(i). So we get a function ϕ : {1, . . . , N} → {1, . . . , n}.
Let w be the word ϕ(1)ϕ(2) . . . ϕ(N).

Proposition 5.17. The word w is W -reduced.

Proof. The proof is in several steps:

Step 1: For two integers i < j in {1, . . . , N}, we have ϕ(i) = ϕ(j) if and only if
there exists a positive integer p such that Xi = τp

BXj.

Step 2: The element w of the Coxeter group does not depend on the order on the
indecomposables of M.

Let i be in {1, . . . , N − 1}. Assume there is an arrow ϕ(i) → ϕ(i + 1) in Q. We
show that there is an arrow Xi → Xi+1 in the Auslander-Reiten quiver of M. By
proposition 5.1, there exist positive integers p and q such that Xi = τq

BHϕ(i) and
Xi+1 = τp

BHϕ(i+1). By hypothesis there is an arrow between Hϕ(i) and Hϕ(i+1).
Thus we want to show that p is equal to q.

Suppose that p ≥ q + 1, then since M is closed under τB, the objects τq
BHϕ(i+1)

and τq+1
B Hϕ(i+1) are non zero and are in M. Let l be the integer in {1, . . . , N}

such that Xl = τq+1
B Hϕ(i+1). We have an arrow

Xi = τq
BHϕ(i) → τq

BHϕ(i+1) = τ−1
B Xl.

Thus, by the property of the AR-translation, there is an arrow Xl → Xi. Thus i
should be strictly greater than l. But by step 1, and the hypothesis p ≥ q + 1, we
have i + 1 ≤ l. This is a contradiction.

The cases q ≥ p + 1, and ϕ(i + 1) → ϕ(i) in Q can be solved in the same way.

Step 3: It is not possible to have ϕ(i) = ϕ(i + 1).

Suppose we have ϕ(i) = ϕ(i + 1). By step 1 there exists a positive integer p such

that Xi = τp
BXi+1. Suppose that p is ≥ 2, then τBXi+1 = τ−p+1

B Xi is in M, it
is isomorphic to an Xk for an integer k with ϕ(k) = ϕ(i). But k must be strictly
greater than i and strictly smaller than i + 1 which is clearly impossible. Thus
p is equal to 1. There should exist an Xl in M such that Hom(Xi, Xl) 6= 0 and
Hom(Xl, Xi+1) 6= 0. Thus l must be strictly between i and i+1 which is impossible.

Step 4: It is not possible to have ϕ(i) = ϕ(i + 2) and ϕ(i + 1) = ϕ(i + 3) with
exactly one arrow in Q between ϕ(i) and ϕ(i + 1).

In this case we have, by step 1, Xi = τp
BXi+2 and Xi+1 = τq

BXi+3. By the same
argument as in step 3, p and q have to be equal to 1. Thus the AR quiver of M
has locally the following form:

%%

��

// Xi+1

%%KK
K

Xi+3

::

//

!!// Xi

;;www
Xi+2

99ttt
//

''
>>

.

The module Xi+1 is the unique direct predecessor of Xi+2. Indeed, suppose there
is an Xk with an arrow Xk → Xi+2. Thus there is an arrow τBXi+2 = Xi → Xk

and k must be strictly between i and i+2. By the same argument, there is only one
arrow with tail Xi+3, one arrow with source Xi and one arrow with source Xi+1.
Thus we have the following AR sequences in modB:

0 // Xi
// Xi+1

// Xi+2
// 0 and 0 // Xi+1

// Xi+2
// Xi+3

// 0
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which is clearly impossible.

Step 5: There is no subsequence of type jkjlkl in w with an arrow between j and
k and an arrow between k and l

Suppose we have ϕ(i) = ϕ(i+2) = j, ϕ(i+1) = ϕ(i+4) = k and ϕ(i+3) = ϕ(i+5) =
l. As previously, we have Xi = τBXi+2, Xi+1 = τBXi+4 and Xi+3 = τBXi+5.
There is an arrow Xi+1 → Xi+2 so there is an arrow Xi+2 → Xi+4. There is an
arrow Xi+3 → Xi+4 thus there is an arrow Xi+1 → Xi+3. As in step 4 it is easy to
see that the AR quiver of M locally looks like:

''

##

// Xi+3

%%KK
K

Xi+5

;;

//

  // Xi+1

99ttt

%%KK
K

Xi+4

99ttt
//

%%// Xi

;;www
Xi+2

99ttt
//

''
>>

Thus we have the 3 following AR sequences in modB:

0 // Xi
// Xi+1

// Xi+2
// 0 0 // Xi+3

// Xi+4
// Xi+5

// 0

and 0 // Xi+1
// Xi+3 ⊕ Xi+2

// Xi+4
// 0

A simple argument of dimension permits us to conclude that Xi and Xi+5 must be
zero, that is a contradiction.

By the second step, we know that using the relation of commutativity is the
same as changing the order on the indecomposables of M. Moreover we just saw
that locally we can not reduce the word w. Thus it is reduced.

�

Image of the cluster-tilting object. Let F : modM → f.l.Λ be the functor con-
structed in section 5.1.

Proposition 5.18. For i = 1, . . . , N , we have an isomorphism in f.l.Λ:

F (X∧i ) ≃ eϕ(i)Λ/Iwi

where wi is the word ϕ(1) · · ·ϕ(i).

Proof. The functor F is right exact and sends the simple functor SXi
onto the simple

Sϕ(i). Since F (X∧i ) surjects onto F (SXi
), there is a morphism eϕ(i)Λ → F (X∧i ).

Explicitly, we will take the morphism given in this way:
The object Xi is of the form τq

BHϕ(i) for a q ≥ 0. If j is in {1, . . . , n}, the vector
space eϕ(i)Λej is isomorphic to

∏
p≥0 HomkQ(τp

DIj , Iϕ(i)) where Ij is the injective
indecomposable module of modkQ corresponding to the vertex j. Let f be a mor-
phism in HomkQ(τp

DIj , Iϕ(i)), then τq
D(f) is a morphism in HomkQ(τp+q

D Ij , τ
q
DIϕ(i)),

and then P (τq
Df) = τq

BP (f) is a morphism in M from τp+q
B Hj to τq

BHϕ(i) = Xi,
thus is in F (X∧i )ej .

Step 1: The morphism eϕ(i)Λ → F (X∧i ) vanishes on the ideal Iwi
.

A word j1j2 · · · jr will be called a subword of wi if there exist integers 1 ≤ l1 <
l2 < · · · < lr ≤ i such that j1j2 · · · jr = ϕ(l1)ϕ(l2) · · ·ϕ(lr). It is easy to check that
the vector space eϕ(i)Iwi

ej is generated by the paths from j to ϕ(i) such that there
exists a factorization

j ///o/o/o j1 ///o/o/o j2 ///o/o/o · · · ///o/o/o jr
///o/o/o ϕ(i)

with jj1j2 · · · jrϕ(i) not a subword of wi.
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Let f be a morphism τp
DIj → Iϕ(i) in I(kQ) given by such a path. Assume that

the image P (τq
Df) of f in F (X∧i ) is non zero. Let

τp
DIj

f0 // τp1

D Ij1

f1 // τp2

D Ij2

f2 // · · · // τpr

D Ijr

fr // Iϕ(i)

be the factorization of f given by the above factorization of the path. Therefore
P (τq

Df) is equal to the composition

τp+q
B Hj

// τp1+q
B Hj1

// τp2+q
B Hj2

// · · · // τpr+q
B Hjr

// τq
BHϕ(i) = Xi .

Since P (τq
Df) is not zero, all morphisms P (τq

Dfl) are not zero, and all objects

τpl+q
B Hjl

are non zero. Thus the objects τpl+q
B Hjl

are of the form Xhl
with

h0 < h1 < · · · < hr < i. Furthermore, we have ϕ(hl) = jl. Thus jj1 · · · jrϕ(i) =
ϕ(h0)ϕ(h1) · · ·ϕ(hr)ϕ(i) is a subword of wi. This contradiction shows that the im-
age of f in F (X∧i ) must be zero.

Step 2: The morphism eϕ(i)Λ → F (X∧i ) is surjective.

Let f be a morphism τp+q
B Hj → τq

BHϕ(i) = Xi in M. Hence τ−q
B f is a mor-

phism τp
BHj → Hϕ(i) in M. Since P is full (cf. prop. 5.5), there exists a morphism

g : τp
DIi → Iϕ(i) such that P (g) = τ−q

B f . Thus we have P (τq
Dg) = τq

BP (g) = f .

Step 3: The morphism eϕ(i)Λ/Iwi
→ F (X∧i ) is injective.

Let f be a non zero morphism τp
DIj → Iϕ(i) in I(kQ) such that P (τq

Df) is zero.
By lemma 5.6, we can assume that there exists a factorization of τq

Df of the form

τq+p
D Ij

h // Y
g // τq

DIϕ(i)

with Y indecomposable and P (Y ) = 0. The object Y is of the form τh
DIl with h ≥ q

and we have τh
BHl = 0.

The morphism g is a sum of compositions of irreducible morphisms between
indecomposables. Let

τh
DIl

g0 // Y1
g1 // Y2

g2 // · · · // Ys
gs // τq

DIϕ(i)

be such a summand of g. The objects Yk, 1 ≤ k ≤ s are indecomposable and so are
of the form τrk

D Ijk
, and the morphisms gk, 0 ≤ k ≤ s are irreducible. We will show

that the word lj1j2 . . . jsϕ(i) is not a subword of wi. Without loss of generality, we
may assume that for 1 ≤ k ≤ s, P (Yk) is not zero, so there exist integers lk such
that P (Yk) = Xlk . Since the morphisms gk are irreducible, P (gk) does not vanish,
and we have 1 ≤ l1 < l2 < · · · < ls < i. The word j1j2 . . . jsϕ(i) is equal to the
word ϕ(l1)ϕ(l2) · · ·ϕ(ls)ϕ(i), so j1j2 . . . jsϕ(i) is a subword of wi.

Substep 1: The sequence 1 ≤ l1 < l2 < · · · < ls < i is the maximal element of
the set {1 ≤ i1 < i2 < · · · < is < is+1 ≤ i | ϕ(i1) = j1, . . . , ϕ(is) = js, ϕ(is+1) =
ϕ(i)} for the lexicographic order.

We prove by decreasing induction that lk is the maximal integer with lk < lk+1

and ϕ(lk) = jk. For k = s + 1 it is obvious. Now suppose there exists an integer
ik such that ϕ(lk) = ϕ(ik) = jk and lk < ik < lk+1. Thus by step 1 of proposi-
tion 5.17, there exists an integer r ≥ 1 such that Xlk = τr

BXik
. The morphism

P (gk) : Xlk → Xlk+1
is irreducible, so there exists a non zero irreducible morphism

Xlk+1
→ τ−1

B Xlk . The object τ−1
B Xlk is in M since Xlk and τ−r

B Xlk = Xik
are in

M. It is of the form Xt, and we have lk+1 < t. Since r is ≥ 1, t is ≤ ik by step 1
of proposition 5.17. This implies lk+1 < ik which is a contradiction.
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Substep 2: l does not belong to the set {ϕ(1), ϕ(2), . . . , ϕ(l1 − 1)}.

Suppose that there exists an integer 1 ≤ k ≤ N such that ϕ(k) is equal to l. Thus
there exists an integer r ≥ 0 such that Xk is equal to τr

BHl. Since τh
BHl = P (τh

DIl)
is zero, r is ≤ h − 1.

Since the morphism g0 : τh
DIl → Y1 is an irreducible morphism of I(kQ), there

exists an irreducible morphism Y1 → τh−1
D Il in I(kQ). Thus there exists an irre-

ducible morphism τr−h+1
D Y1 → τr

DIl in I(kQ). The object P (τr
DIl) = τr

BHl = Xk

is not zero and lies in M, so the object P (τr−h+1
D Y1) = τr−h+1

B Xl1 is not zero
and lies in M since M is stable by kernel. Thus there is an irreducible mor-
phism τr−h+1

B Xl1 = Xt → Xk in M. Therefore t has to be < k. Moreover since
r − h + 1 ≤ 0, l1 is ≤ s by step 1 of proposition 5.17. Finally we get l1 < k.

Combining substep 1 and substep 2, we can prove that lj1j2 . . . jsϕ(i) can not
be a subword of wi. Indeed, assume lj1j2 . . . jsϕ(i) is a subword of wi. There exist
1 ≤ i0 < i1 < . . . < is < is+1 ≤ i such that ϕ(i0)ϕ(i1) . . . ϕ(is+1) = lj1j2 . . . jsϕ(i).
In particular, the word j1j2 . . . jsϕ(i) is a subword of wi and 1 ≤ i1 < . . . < is <
is+1 ≤ i is in the set of substep 1. Thus by substep 1, i1 has to be ≤ l1. By substep
2, i0 can not exist.

�

Endomorphism algebra of the cluster-tilting object.

Lemma 5.19. Let Xi and Xj be indecomposables of M. We have an isomorphism
of vector spaces

HomΛ(eϕ(j)Λ/Iwj
, eϕ(i)Λ/Iwi

) ≃
⊕

p≥0

M(τp
BXj , Xi).

Proof. Case 1: j ≥ i

By [BIRS07] (lemma II.1.14) we have an isomorphism

HomΛ(eϕ(j)Λ/Iwj
, eϕ(i)Λ/Iwi

) ≃ eϕ(i)Λ/Iwi
eϕ(j).

By proposition 5.18, this is isomorphic to the space
⊕

p≥0

M(τp
BHϕ(j), Xi).

By definition of the function ϕ, there exists some q ≥ 1 such that Xj = τq
BHϕ(j).

Thus we can write the sum

⊕

p≥0

M(τp
BHϕ(j), Xi) =

q⊕

p=1

M(τ−p
B Xj , Xi) ⊕

⊕

p≥0

M(τp
BXj , Xi)

Since j ≥ i, there is no morphism from τ−p
B Xj to Xi for p ≥ 1, and the first sum-

mand is zero. Therefore we get the result.

Case 2: j < i

By [BIRS07] (lemma II.1.14) we have an isomorphism

HomΛ(eϕ(j)Λ/Iwj
, eϕ(i)Λ/Iwi

) ≃ eϕ(i)(Iϕ(i) . . . Iϕ(j+1)/Iwi
)eϕ(j).

By proposition 5.18, this space is a subspace of the space
⊕

p≥0

M(τp
BHϕ(j), Xi) ≃

⊕

p≥1

M(τ−p
B Xj , Xi) ⊕

⊕

p≥0

M(τp
BXj , Xi).
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Step 1: If f is a non zero morphism in M(τ−p
B Xj, Xi) with p ≥ 1 then f is not

in the space eϕ(i)Iϕ(i) . . . Iϕ(j+1)eϕ(j).

Let Xl0 be the indecomposable τ−p
B Xj . Since p ≥ 1 then l0 is ≤ j + 1. The

morphism is a sum of composition of the form

Xl0
// Xl1

// · · · // Xlr
// Xi

with the Xlk indecomposables. Since f is not zero, we have j + 1 ≤ l0 < l1 < . . . <
lr < i. Thus the word ϕ(l0)ϕ(l1) . . . ϕ(lr)ϕ(i) is a subword of ϕ(j+1)ϕ(j+2) . . . ϕ(i).
Since it holds for each factorization of f , the morphism f is not in the space
eϕ(i)Iϕ(i) . . . Iϕ(j+1)eϕ(j).

Step 2: If f is a morphism in M(τp
BXj, Xi) with p ≥ 0 then f is in the space

eϕ(i)Iϕ(i) . . . Iϕ(j+1)eϕ(j).

Let Xl0 be the indecomposable τp
BXj . Since p is ≥ 0, we have l0 ≤ j. Let us show

that if f is a composition of irreducible morphisms

Xl0
// Xl1

// · · · // Xlr
// Xlr+1

= Xi

then the word ϕ(l0)ϕ(l1) · · ·ϕ(lr)ϕ(i) is not a subword of ϕ(j + 1)ϕ(j + 2) . . . ϕ(i).
We have l0 < l1 < · · · < lr < i. Since l0 is < j + 1, and i is ≤ j + 1, there

exists 1 ≤ k ≤ r + 1 such that lk−1 < j + 1 ≤ lk. Therefore ϕ(lk) . . . ϕ(lr)ϕ(i) is a
subword of ϕ(j + 1)ϕ(j + 2) . . . ϕ(i), and the sequence lk < lk+1 < · · · < lr < i is
the maximal element of the set

{j + 1 ≤ ik < · · · < ir+1 ≤ i | ϕ(ik) = ϕ(lk), . . . , ϕ(ir) = ϕ(lr), ϕ(ir+1) = ϕ(i)}

for the lexicographic order (exactly for the same reasons as in substep 1 of proposi-
tion 5.18). Now we can prove exactly as in substep 2 of proposition 5.18 that ϕ(lk−1)
does not belong to the set {ϕ(j +1), . . . , ϕ(lk −1)}. Thus ϕ(lk−1)ϕ(lk) . . . ϕ(lr)ϕ(i)
can not be a subword of ϕ(j + 1)ϕ(j + 2) . . . ϕ(i).

Finally, let f = f1 + f2 be a morphism in
⊕

p≥0

M(τp
BHϕ(j), Xi) ≃

⊕

p≥1

M(τ−p
B Xj , Xi) ⊕

⊕

p≥0

M(τp
BXj , Xi).

By step 2, f2 is in the space eϕ(i)Iϕ(i) . . . Iϕ(j+1)eϕ(j). By step 1 the morphism f is
in eϕ(i)Iϕ(i) . . .Iϕ(j+1)eϕ(j) if and only if f −1 is zero. Thus we get an isomorphism

HomΛ(eϕ(j)Λ/Iwj
, eϕ(i)Λ/Iwi

) ≃
⊕

p≥0

M(τp
BXj , Xi).

�

Corollary 5.20. If Xi and Xj are indecomposables of M, then we have

HomSubΛ/Iw
(eϕ(j)Λ/Iwj

, eϕ(i)Λ/Iwi
) ≃ eXj

ÃeXi
.

Proof. The proof is exactly the same as the proof of corollary 5.14. �

Triangle equivalence.

Theorem 5.21. The functor F ◦ i∗ : modM → f.l.Λ induces an algebraic triangle
equivalence between CM and SubΛ/Iw.

Proof. By proposition 5.18, the functor F sends the projectives of modM onto
the summands of the cluster-tilting object Tw of the category SubΛ/Iw. For i =
1, . . . , n, the projective H∧i is sent to the projective-injective Λ/Iwei. Furthermore,
by corollary 5.20, F ◦ i∗ induces an equivalence between the subcategories add(A)
and add(Tw). Thus we can conclude as in the proof of theorem 5.15. �
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5.4. Example. We refer to [Ami08] for more examples. Let Q be the following
quiver: 1 // 2 3oooo . The preinjective component of modkQ looks as fol-
lows:

· · · [ 4 16 9 ]

%%LLLLL

%%LL
LLL

[ 2 6 3 ]

%%KK
KK

%%KK
KK

[ 0 2 1 ]

%%KK
KK

K

%%KK
KK

K;;wwwwww

;;wwwwww

##G
GG

GG [ 3 11 6 ]

99rrrr 99rrrr

%%LLLL
L

[ 1 4 2 ]

99sssss

99sssss

%%KK
KK

[ 0 1 0 ]

· · · [ 3 8 4 ]

99rrrr

[ 0 3 2 ]

99sssss
[ 1 1 0 ]

99ssss

Here we denote the kQ-modules by their dimension vectors in order to lighten
the writing. For example the module [ 1 4 2 ] has the following decomposition series:
2 2 2 2

3 1 3 .
If we mutate the tilting object [ 2 6 3 ] ⊕ [ 1 4 2 ] ⊕ [ 1 1 0 ] in the direction [ 1 4 2 ],

we stay in the preinjective component. We get the tilting object:

T = [ 2 6 3 ] ⊕ [ 3 8 4 ] ⊕ [ 1 1 0 ] .

The algebra B = EndkQ(T ) is a concealed algebra and is given by the quiver:

2
b

��>
>>

>>
>>

b′ ��>
>>

>>
>>

1

a

@@������� a′

@@�������
3

with the relation ba + b′a′ = 0.

Let M be the following subcategory of modB:

2

��=
==

=

��=
==

=
5

��=
==

=

��=
==

=
3

1

@@����
@@����

3

@@����

@@����

��=
==

= 6 2

4

@@����
1

.

Then the algebra A is given by the quiver

2
b

��>
>>

>>
>>

b′ ��>
>>

>>
>>

1

a

@@������� a′

@@�������
3

c

��>
>>

>>
>>

4

and the relation ba + b′a′ = 0.

By Theorem 5.4 the cluster category CA associated with the algebra A is 2-Calabi-
Yau, Hom-finite and A ∈ CA is a cluster-tilting object. Moreover by proposition
4.16, the quiver of the cluster-tilted algebra Ã = EndCA

(A) has the form:

2

��=
==

=

��=
==

=

1

@@����
@@����

3

��?
??

?
oo

4.

The projective indecomposables of modM are the following:
[

0 0
1 0 0

0

]
,

[
1 0

2 0 0
0

]
,

[
2 0

3 1 0
0

]
,

[
2 0

3 1 0
1

]
,

[
3 1

4 2 0
0

]
,

[
6 2

8 4 1
1

]
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The word w associated with the ordering is w = 232132. The projectives of the
preprojective algebra associated to Q have the following composition series:

1
2

3 3
2 2 2

3 1 3 3 1 3 3 1 3
...

...
...

,

2
3 1 3

2 2 2 2
3 1 3 3 1 3 3 1 3

...
...

...

, and

3
2 2

3 1 3 1 3
2 2 2 2 2 2

...
...

The maximal rigid object of the category SubΛ/Iw associated to w = 232132 is

R = 2 ⊕ 3
2 2 ⊕

2
3 3

2 2 2
⊕

1
2

3 3
2 2 2

⊕
3

2 2
3 3 3

2 2 2 2

⊕
2

3 1 3
2 2 2 2

3 3 3 3 3 3
2 2 2 2 2 2 2 2

.

The last three summands are the projective-injectives of the Frobenius category
SubΛ/Iw. If we write these modules with their dimension vectors we get:

R =
[

0
1
0

]
⊕

[
1
2
0

]
⊕

[
2
4
0

]
⊕

[
2
4
1

]
⊕

[
4
6
0

]
⊕

[
8
13
1

]
.

It is easy to check that this module corresponds to the projection of the projectives
of modM.

Now take the module X = 1 in M. It corresponds to the module [ 3 8 4 ] in
modkQ. We have the injective resolution in modkQ:

0 // [ 3 8 4 ] // [ 0 2 1 ]4 ⊕ [ 1 1 0 ]3 // [ 0 1 0 ]3 // 0

Thus the short exact sequence in M: 0 // X // H0
// H1

// 0 is the

following:

0 // 1 // 43 ⊕ 54 // 63 // 0

Therefore, the sequence 0 // X∧ // H∧0 // H∧1 // (τ−1X)∨/projB // 0 in modM

becomes:

0 //
[

0 0
1 0 0

0

]
//
[

2 0
3 1 0

1

]3

⊕
[

3 1
4 2 0

0

]4
//
[

6 2
8 4 1

1

]3
//
[

0 2
0 1 3

0

]
// 0

where
[

0 2
0 1 3

0

]
is the quotient of (τ−1

B 1)∨ = 3∨ =
[

0 2
0 1 4

1

]
by the projectives.

Applying the projection functor we get the exact sequence in modΛ:

0 //
[

0
1
0

]
//
[

2
4
1

]3

⊕
[

4
6
0

]4
//
[

8
13
1

]3
//
[

2
4
0

]
// 0

The M-module 1∨|
M

is
[

2
1 3

0

]
=

3 3 3
2 2

1
. We have F ◦ i∗(1

∨
|
M

) =
[

2
4
0

]
. By the

exact sequence above, there is an isomorphism in SubΛ/Iw between F ◦ i∗(1
∨
|
M

)

and F ◦ i∗(1
∧
|
M

)[2].
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