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Abstract

Hypercomplex or quaternions numbers have been used recently for both greyscale
and colour image processing. Fast, numerous hypercomplex 2D Fourier transforms
were presented as a generalization of the complex 2D Fourier transform to this new
hypercomplex space. Thus, the major problem was to put an interpretation of what
information the Fourier coefficients could provide. In this paper, we first define the
conditions on the spectrum coefficients needed to reconstruct a colour image with-
out loss of information through the inverse quaternionic Fourier transform process.
The result is used to interpret the quaternionic spectrum coefficients of this specific
colour Fourier transform. Secondly, with this apprehension of the quaternion num-
bers and the corresponding colour spectrum space, we define spatial and frequential
strategies to filter colour images.
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Nowadays, as multimedia devices and internet are becoming accessible to more
and more people, image processing must take colour information into account
because colour processing is needed everywhere for new technologies. Several
approaches have been submitted to deal with colour images, one of the old-
est is to process each channel of the colour image separately. Implementing
such programs often creates colour shifts and artefacts, so different approaches
should be used to produce visually pleasing colour images. A quite recent ap-
proach is to encode the three channel components on the three imaginary parts
of a quaternion as proposed by S.T. Sangwine and T. Ell in [20,14,13]. Quater-
nions have been used for both greyscale images by Bülow [1] and colour ones
by Sangwine et al. [20]. An introduction of quaternionic Fourier transforms
has been made independently by both the teams above but in different defini-
tions. In this paper, we study the Quaternionic Fourier spectrum in order to
define precisely the properties of this new colour representation. In this way,
we want to explain the colour information contained in the new domain that
is to say how the different real and imaginary parts of the spectral quater-
nionic domain interact with the pure quaternion component chosen to encode
colours in spatial domain. The other fundamental studied topic in the paper is
the filtering aspect. Indeed, we review spatial colour filter approaches, intro-
duce a new spatial gradient approach using quaternions, and validate a new
quaternionic spectral colour filter.

The first section of this paper reminds what the quaternions are and how
to use them to process colour information. Then we study how quaternions
can be used to make R

3 transformations such as projections, rotations, etc.
As an example, these transformations are used to switch from RGB to HSV
colour spaces. The second section introduces the discrete quaternionic Fourier
transform proposed by Sangwine and by Bülow, and we define the conditions
on the quaternionic spectrum to enable manipulations into this frequency
domain without loosing information when going back to the spatial domain.
This is also the subject of the second section which gives a new interpretation
of the influence of Dirac initialization on the quaternionic Fourier space. The
third section starts by surveying existing colour image filtering approaches
based on quaternions. Then, we use the R

3 transformations defined in the first
section and the analysis of the quaternionic frequency domain in the second
section to propose the definitions of a new quaternionic vector gradient and
a frequency quaternionic filter. Finally, the appendix gives more details with
formulas and graphics to help understand the information included in the
quaternionic colour spectrum.
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1 Quaternions

1.1 Concept

A quaternion q ∈ H (H refers to Hamilton[8] who was first to discover these
numbers) is a generalization of a complex number and is defined as q = qr +
qii + qjj + qkk where:

• qr, qi, qj and qk are real numbers.
• i, j and k are three new imaginary numbers, asserting:

i2 = j2 = k2 = −1 ij = −ji = k jk = −kj = i and ki = −ik = j

With q = qr + qii + qjj + qkk any quaternion:

• q = qr − qii − qjj − qkk is q’s conjugate.

• q’s modulus or norm is
√

q2
r + q2

i + q2
j + q2

k =
√

qq noted |q|.
• if q 6= 0, then q−1 = q

|q|2 is q’s inverse.

• ℜ(q) = qr is q’s real part . If ℜ(q) = q, then q is real .
• ℑ(q) = ib + jc + kd is q’s imaginary part . If ℑ(q) = q, then q is pure.
• P = {q ∈ H | q = ℑ(q)} is the Pure Quaternion set.
• S = {q ∈ H | |q| = 1} is the Unitary Quaternion set.

Note that the quaternion product is anti-commutative.

Quaternions can be expressed using scalar part S(q) and vector part V (q),
q = S(q) + V (q) with S(q) = qr and V (q) = qii + qjj + qkk. Sangwine and
Ell [20,14,13,21,22,4] were the first to use this vector part of quaternions to
encode colour images. They took the three imaginary parts to code the r (red),
g (green) and b (blue) colour components of an image. A colour image I with
the spatial resolution of N ×M pixels is in this way represented by an N ×M

matrix as follow:

q(s, t) = r(s, t)i + g(s, t)j + b(s, t)k

where s = 1, 2, ..., N and t = 1, 2, ...,M are the spatial coordinates of the pixel
q.
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1.2 R
3 Transformations with Quaternions

As pure quaternions are used analogously to describe R
3 vectors, the classical

R
3 transformations such as translations, reflections, projections, rejections and

rotations can be defined with only additions and multiplications as explained
by Sangwine in [22] (cf. Figure 1). With two pure quaternions (q1, q2) ∈ P

2,
the translation vector is supported by the quaternion qtrans = q1 + q2. If q ∈ P

and µ ∈ S ∩ P then qrefl = −µqµ is the q’s reflection vector with µ axis. If
q ∈ P and µ ∈ S ∩ P then qproj = 1

2
(q − µqµ) is the q’s projection vector on

µ axis. If q ∈ P and µ ∈ S ∩ P then qrej = 1

2
(q + µqµ) is the q’s orthogonal

projection vector on µ axis’s orthogonal plane or the q’s rejection of the µ

axis. And eventually if q ∈ P, φ ∈ R and µ ∈ S ∩ P then qrot = eµ
φ

2 qe−µ
φ

2 is
the q’s rotation vector around µ axis with φ angle.

Fig. 1. Geometric Transformations in R
3 with Quaternion: q denotes the

original vector, µ denotes the axis vector, qrefl is the q’s reflection vector with µ

axis, qrej is the q’s rejection of the µ axis and qproj is q’s projection vector on µ

axis.

For each colour pixel described in RGB colour space using a quaternion vector
q ∈ P, HSV (hue, saturation, value) colour space coordinates can be found
using operations on quaternions. We consider that the value component of
the HSV vector represents the norm of the colour’s orthogonal projection
vector (q.µgrey)µgrey on the grey axis µgrey (this axis can be defined such that
µgrey = i+j+k√

3
). Saturation and hue are represented on the plane orthogonal

to the grey axis which crosses (q.µgrey)µgrey. The saturation is the distance
between the colour vector q and the grey axis µgrey, and hue is the angle
between the colour vector q and a colour vector ν taken anywhere on the
plane orthogonal to µgrey and which sets the zero hue reference angle. This
reference hue value is often taken to represent the red colour vector, so we
decided arbitrarily to associate the red colour vector to the ν vector and gave
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it a zero hue value (cf. Figure 2). Hue is the angle between this reference colour
vector and the colour vector q.

For a colour vector q, the corresponding H, V, and S components can be
obtained using the grey-axis µ = µgrey ∈ S∩P and the reference colour vector
ν ∈ S ∩ P with the following elementary quaternionic operations [7]





H=tan−1 |q−µνqνµ|
|q−νqν|

S=|1
2
(q + µqµ)|

V =|1
2
(q − µqµ)|

(1)

which will be used later in this paper to define a new gradient operator.

Fig. 2. Hue, Saturation and Value given with reference µGrey and H(ν) = 0

2 Discrete Quaternion Fourier Transform

2.1 Definition

Different works introduced the quaternionic Fourier Transform, [1,21]. The
Discrete Quaternion Fourier Transform (DQFT) in µ = µii+µjj+µkk ∈ S∩P

direction analysis allows us to give the frequency equivalence of a N×M spatial
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colour image in a matrix defined by

Q(S, T ) =
1√
MN

N
2∑

s=−N
2

+1

M
2∑

t=−M
2

+1

exp−2µπ(Ss
N

+
Tt
M ) q(s, t) (2)

Here, the term Q(S, T ) represents the frequency coordinates and q(s, t) =
r(s, t)i + g(s, t)j + b(s, t)k is a pure quaternion used to represent the three
different colour channels of the pixel at the coordinates (s, t) of the colour
image. Since the quaternion product is not commutative, DQFT can have
different forms [15]. Note that in this paper we will follow the DQFT definition
given in (2).

The inverse DQFT (IDQFT) to the transform presented in (2) is given by

q(s, t) = 1√
MN

∑N
2

S=−N
2

+1

∑M
2

T=−M
2

+1
exp2πµ(Ss

N
+

Tt
M ) Q(S, T )

It is proved [15,5] that DQFT or its inverse (IDQFT) for a square matrix of
dimension 2n × 2n could be simplified by processing two fast complex Fourier
transforms.

2.2 Colour quaternion spectrum properties

In order to understand what the Fourier coefficients stand for, we studied
the digital characterization of the DQFT. We first discovered that the colour
Fourier spectrum exhibits some symmetries due to zero scalar spatial part
of any colour image. This observation follows the well-known fact that the
spectrum of a real signal by a complex Fourier transform (CFT) has hermitian
properties of symmetry.

Even if the spatial information of a colour image is using pure quaternions only,
applying a DQFT on an image results in full quaternions (i.e. with nonzero
scalar part). We wanted to find, after IDQFT, a space where scalar part is
zero in order to avoid any loss of information as the spatial colour image is
coded on a pure quaternions matrix.

Let
Q(S, T ) = Qr(S, T ) + Qi(S, T )i + Qj(S, T )j + Qk(S, T )k

be the spectral quaternion at coordinates (S, T ) ∈ ([−N
2

+1..N
2
], [−M

2
+1..M

2
]).

In addition, let
q(s, t) = qi(s, t)i + qj(s, t)j + qk(s, t)k
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denote the IDQFT quaternion of (s, t) spatial coordinates.

Developping this,with µ = µii + µjj + µkk, the cartesian real part form of the
spatial domain leads to

qr(s, t) = 1√
MN

∑ ∑ [
cos(2π

(
Ss
N

+ Tt
M

)
)Qr(S, T )

−µi sin(2π
(

Ss
N

+ Tt
M

)
)Qi(S, T ) − µj sin(2π

(
Ss
N

+ Tt
M

)
)Qj(S, T )

−µk sin(2π
(

Ss
N

+ Tt
M

)
)Qk(S, T )

]
(3)

where qr(s, t) is null when

Qr(−S,−T ) = −Qr(S, T ) ; Qi(−S,−T ) = Qi(S, T )

Qj(−S,−T ) = Qj(S, T ) ; Qk(−S,−T ) = Qk(S, T )

As it can be seen from the symmetries contained in the Fourier spectrum, the
real part must be odd and all the imaginary parts must be even. This is a direct
extension of the antihermitian property of the complex Fourier transform of
imaginary signal. Any transform in the quaternionic colour spectrum must
obey to these rules to keep spatial information safe.

2.3 Digital study of the colour spectrum

In this section, we try to give an interpretation of the information contained
in the quaternionic spectrum of colour images. To do this, we propose to
initialize the discrete spectrum with a constant which will represent a Dirac
(an infinetely short pulse) and study the response in the spatial domain after
IDQFT. Note that the details of the calculus are presented in appendix.

Initialization could be done in two different ways:

• On the real part of the spectrum, this leads to odd oscillations on the
spatial domain linked to the µ direction parameter of the Fourier transform.
Complex colours are obtained in the RGB colour space after modifying µ

and normalizing it in order to obtain a pure unit quaternion.

If Qr(S0, T0) = Kr; Qr(−S0,−T0) = −Kr then

q(s, t) = 2Kr(µi sin
(
2π

(
S0s
N

+ T0t
M

))
+ µj sin

(
2π

(
S0s
N

+ T0t
M

))
+ µk sin

(
2π

(
S0s
N

+ T0t
M

))

• On an imaginary part of the spectrum, this results to even oscillations on
the spatial domain independently from the µ parameter of the Fourier trans-
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form. A proper initialization on the different imaginary components with re-
spect to the additive colour synthesis theory allows to reach complex colours.
For example to get yellow oscillations the red and green components (i and
j) should be initialised (with e=i,j or k).

If Qe(S0, T0) = Qe(−S0,−T0) = Ke then qe(s, t) = 2Keµe cos
(
2π

(
S0s
N

+ T0t
M

))

2.4 Quaternionic Graphical Spectrum Illustration

Figure 3 illustrates the different possible initializations on the quaternionic
spectrum. A pair of constants has been set on the quaternionic spectrum
following the properties for spatial reconstruction, then IDQFT has been per-
formed to make the following subfigures (for more graphical illustrations report
to section A.2 in the appendix).

• Initializing a pair of constants on any imaginary component with any direc-
tion µ leads to a spatial oscillation on the same component (Figure 3(a)).

• Initializing a pair of constants on the real component leads to a spatial
oscillation following the same imaginary component(s) as those included in
the direction µ (Figure 3(b)).

• The coordinates (S0, T0) and (−S0,−T0) of the two initialization points in
the Fourier domain affect the orientation and the frequency of the oscil-
lations in the spatial domain as it does so for greyscale image in complex
Fourier domain. Orientation of the oscillations can be changed as shown in
Figure 3(c).

(a) (b) (c)

Fig. 3. Spectrum Initialization examples: (a) µGrey = i+j+k√
3

and Qi(2, 2) = Qi(−2,−2) = Ki; (b) µMagenta = i+k√
2

and

Qr(2, 2) = −Qr(−2,−2) = Kr; (c) µY ellow = i+j√
2

and Qr(0, 2) = −Qr(0,−2) = Kr

The following focuses on the use of quaternions in filtering which is one of the
most frequently used low level image processing operations. We first review
spatial colour image approaches and get a new spatial colour filter. Then
starting from the interpretation of the quaternionic Fourier space that we
made in this previous section, we introduce a quaternionic spectrum filter.
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3 Quaternionic filtering

In this section, we focus on the colour filtering aspect and study discontinuity
detection which is a fundamental issue of colour image processing such as
edge detection and image analysis. A number of approaches can be used to
detect the edges and fine details in colour images. The following briefly surveys
well-known approaches.

3.1 Spatial filtering

3.1.1 Marginal methods

Marginal methods, adopted directly from greyscale image processing, process
each channel of the colour image separately (Figure 4a). Thus, they are compu-
tationally simple and easy to implement. On the other hand, due to the omis-
sion of the essential spectral information during processing, many marginal
methods have insufficient performance [11,12]. As presented in [10,11], edges
can be detected in a component-wise manner or by applying the processing
solution to the luminance signal. However, neither approach can detect the
discontinuities in colour information.

3.1.2 Vectorial methods

To avoid the drawbacks of marginal solutions, vectorial methods, such as those
based on robust order statistics [12,16], process colour pixels as vectors (Figure
4b). In the design proposed by Di Zenzo [3], edges are detected using colour
vectorial gradients. The vectorial methods usually have better performance
compared to marginal solutions, however, the performance improvements are
obtained at expense of the increased computational complexity.

(a) (b)

Fig. 4. (a)Marginal and (b) Vectorial methods
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3.1.3 Perceptual methods

Perceptuals methods [6,9,23,17] are based on the human visual system (HVS)
characteristics. For example, in [2], Carron used a marginal gradient method
but based on a weight factor : the hue coefficient of each pixel, more relevant
than saturation or intensity to split colours. In a second approach, when the
hue information is not enough to detect edges, the gradient is given using in-
tensity and/or saturation. The contribution in this approach relies on the fact
that if the difference between two colours is detected with a high saturation,
the colours seem farther than if they have smaller saturation (i.e. nearer from
the grey axis) but the same hues. Figure 5 shows that the two green vectors
q1 and q2, near the grey axis, seem to have a smaller hue difference than the
two red vectors q3 and q4, far from the grey axis. This is not true but there is
a difference: q1 and q2 have a smaller saturation (distance from the grey axis)
than q3 and q4. The perceptual methods because using the HVS character-
istics give better results than the marginal and vectorial ones. Moreover the
chromatic information of pixels is used to avoid artefacts and a major advan-
tage is the integration of colour shadows. Nevertheless, by working in proper
colour spaces and using thresholds for instance for hue relevance, algorithms
complexity is raised.

Fig. 5. The distance between q1 and q2 (green vectors) seems to be smaller than
between q3 and q4 (red vectors) but the hue difference is the same: q̂1q2 = q̂3q4

3.1.4 Sangwine’s quaternionic approach

Sangwine proposed the convolution on a quaternionic colour image can be
defined by [20,14,21]:

qfiltered(s, t) =
n1∑

τ1=−n1

m1∑

τ2=−m1

hl(τ1, τ2)q((s − τ1)(t − τ2))hr(τ1, τ2) (4)
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where hl and hr are the two conjugate filters of dimension N1 × M1 where
N1 = 2n1 + 1 ∈ N and M1 = 2m1 + 1 ∈ N.

From this definition of the convolution product, Sangwine proposed a colour
edge detector in [19]. In this method, the two filters h1 and h2 are conjugated
in order to fullfill a rotation operation of every pixel around the greyscale axis
by an angle of π and compare it to its neighbours (cf. Figure 6).

qfilt(s, t) = l ⋆ q ⋆ r(s, t) (5)

Fig. 6. Sangwine’s Edge Detector Scheme: µ is the grey axis; µq1µ (resp. µq3µ)
is the rotated vector of q1 (resp. q3) around µ with an angle of π; the comparison
vector between q1 and q2 (resp. between q3 and q4) is given by q2 + µq1µ (resp.
q4 + µq3µ); q4 + µq3µ is near from the grey axis so the colour seems grey but
q2 + µq1µ is far from the grey axis so Sangwine’s filter has detect an edge as this
vector is more coloured.

The filter composed by a pair of quaternion conjugated filters is defined as
follows

l =
1

6




1 1 1

0 0 0

Q Q Q




and r =
1

6




1 1 1

0 0 0

Q Q Q




(6)

where Q = eµ π
2 and µ = µGrey = i+j+k√

3
the greyscale axis.

The filtered image (cf. Figure 6) is a greyscale image almost everywhere, be-
cause in homogeneous regions the vector sum of one pixel to its neighbours
rotated by π around the grey axis has a low saturation (cf. q4 + µq3µ for
instance). However, pixels in colour opposition (like q1 and q2 for example)
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represent a colour edge. Therefore, they present a vector sum far from the
grey axis. Edges are thus coloured due to this high distance.

Although this detector has a good performance, it often produces false colours,
for example, when the vector sum is out of the colour space domain. Figure
7 shows that the edge of the hat is not detected by the same colour in c or d
where the horizontal filtering convolution is applied rightwise or leftwise.

(a) (b)

(c) (d)

Fig. 7. Sangwine edge detector result: (a) original image; (b) Sangwine’s filter
applied from left to right horizontally; (c) zoom on the hat edge of the (b) picture;
(d) same zoom but with the filter applied from right to left. Thus applying the filter
leftwise in one same direction (horizontal, vertical or diagonal) leads to different
results than applying it rightwise.

3.1.5 A new gradient detector

Starting with the result of Sangwine filter, we get for each pixel q1 and q3 a
vector of itself rotated by π around the greyscale axis and compared to its
neighbours q2 and q4. We saw that the more the colour vector of a pixel is
far from its neighbours (colour edge), the more the vector sum in Sangwine’s
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filter is far from the grey axis. Our approach also gives us a colour gradient.
We propose to determine the distance qdist of Sangwine’s comparison colour
vector sum qsum = q2 + µq1µ or qsum = q4 + µq3µ from the grey axis µ (cf.
Figure 8). This distance can be calculated with quaternionic operations (refer
to section 1.2) and is the norm of the rejection of the vector of the grey axis.
This distance is defined from a colour vector to the grey axis and we work in
the RGB colour space. Thus, equation (1) implies that this is the saturation
of the colour vector sum given by Sangwine’s filter.

qdist =
1

2
(qsum + µqsumµ) (7)

Fig. 8. Proposed quaternionic edge detector: µ is the grey axis; µq1µ (resp.
µq3µ) is the rotated vector of q1 (resp. q3) around µ with an angle of π; our com-
parison vector between q1 and q2 (resp. between q3 and q4) is given by the dis-
tance qdist = 1

2
(qsum + µqsumµ) of Sangwine’s vector sum qsum = q2 + µq1µ (resp.

qsum = q4 +µq3µ) from the grey axis (orange arrows); An edge is detected by a high
distance from the grey axis like the orange arrow between µ and q2 + µq1µ.

Figure 9 shows that the two distances S1 and S2 are equal. Sangwine’s filter
gives two different colour vectors q1 + µq2µ and q2 + µq1µ for the same two
original colours q1 and q2 comparison. Note that our new method is thus
independent from the path (leftwise or rightwise) applied to convolute the
filter with the image whereas Sangwine’s is not.

This saturation filter is applied to the horizontal, vertical and both diagonal
directions. The maximum of these values of saturation at each pixel of the
image is then selected to make the final colour gradient filter by maximum
distance. Note that this quaternionic filtering operation is linear but the total
process is not linear as the ”maximum” operator interferes.

Figure 10 shows the results of our experiment where in each row there are
first the original image, then the colour gradient and log colour gradient (in
order to amplify the edges detected by the colour gradient) and finally the
edge map images. This last image is a thresholding on the colour gradient
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Fig. 9. Difference between Sangwine and our edge detector: µ is the grey
axis; µq1µ (resp. µq2µ) is the rotated vector of q1 (resp. q2) around µ with an angle of
π; the same colours q1 and q2 can give two different colour vectors qsum = q2 +µq1µ

and qsum = q1 + µq2µ by the Sangwine’s method. Note that our approach leads to
the same distance because S1 = S2.

image. The results show that the method detect colour edges quite properly
for example with the house image where walls, roof and sky are well separated.
The same observation can be done with the well detected separation between
Lenna’s shoulder and chin. Process our method on images such as the mandrill
separates correctly the homogeneous and textures areas. Even if there is still
an edge detected between the roof and the top right side of the chimney, we
can say that our approach handles shadows quite well. However,because our
method uses a comparison of saturation only, the differences of luminance
between colours is not detected, see for instance the details of the window’s
house.

3.1.6 Edge detection performance

Figure 11 shows the edge maps obtained using the different methods. The
marginal (Figure 11b) and Di Zenzo (Figure 11c) approaches seem to be more
sensitive to noise. The edges obtained by our approach (Figure 11f and g) are
much thicker and closed. Remember that the first Carron method (Figure 11d)
is based on a measure of the hue to weight the marginal gradient; the second
method uses as well the saturation and the luminance measures to weight the
gradient when hue is not enough relevant. These methods give closed contours
and are not sensitive to noise as the marginal and Di Zenzo ones. Regarding
Carron2 approach (Figure 11e), our method cannot distinguish as efficiently
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 10. From left to right, original images, colour gradient, log colour gradient and
edge map from our new spatial method

shadows to real contours because our method is based on the saturation only.
But this result depends on the thresholding done on the colour gradient. Indeed
the shadows contours can be erased from our edge map but at the price of
thinner edges everywhere else (see Figure 10d for example).

To improve our algorithm and take shadows into account we need to check if
the saturation measure is self-sufficient. Indeed, two different colours can have
the same saturation. It is the case for instance with q1 and q2 on one hand
and q3 and q4 on the other hand as we saw in Figure 5. Even so, q1 and q2

are different colours as well as q3 and q4, fortunately they can be disjoined by
their difference of luminance and/or hue. Implementing these luminance and
chromaticity measures (as the Carron2 method does) when saturation is not

15



enough relevant should enhance the performance of our approach.

Even with this lack of improvement, our edge detector is quite efficient with an
implementation using quaternion formalism and the results are given without
performing any change of colour space so imprecisions due to these digital
manipulations of colours are avoided. Moreover, it should be noted that our
edge detector is based on a vectorial approach and does not need any additional
definition to sort colours. Our distance is a saturation one that does not give
more importance for a specified colour than for another one, speaking at the
same saturation level. Finally, our method is more similar to a perceptual one
than those based on RGB colour space as it uses geometric concepts from
HSV colour space for example.

3.1.7 Computational complexity

To compare the computational complexity of the proposed approach and the
traditional marginal colour gradient operator, the quaternionic operations
have to be expressed in terms of the traditional real operations such as multi-
plications and additions. Let multq (resp. multr) stand for quaternionic (resp.
real) multiplication, addq (resp. addr) quaternionic (resp. real) addition:

• addq = 4 addr

• multq = 4 ∗ 4 multr + 4*3 addr

We apply Sangwine algorithm and then we calculate the distance of the colour
sum vector results from the grey axis. Note that the calculations will be per-
formed for a N × N image.

• Sangwine algorithm :
Remember that for each pixel we apply two convolutions by a 3 × 3

window, one with the quaternion Q and one with Q (cf. equations (5) and
(6)).

nSang = N2(2 ∗ (6multq + 5addq))

In fact, since each convolution implies three zero coefficients, only 6
quaternionic multiplications and 5 quaternionic additions are needed.

• Distance calculation :
For each pixel again we calculate the saturation distance as seen in equa-

tion (7).

nDist = N2(addq + 2multq)
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Then as we process the Sangwine filter on horizontal, vertical and both diag-
onal directions :

nTotal = 4 ∗ (nSang + nDist)

= 4 ∗ (N2(2 ∗ (6 multq + 5 addq)) + N2(addq + 2 multq))

= N2(832 multr + 768 addr)

For a classical marginal gradient, the same kind of Prewitt filter is needed,
but we only apply it one time on each colour component. We then apply it
on the same four directions and the number of operations needed is about
N2(28multr + 20addr).

We can see that our method is using much more operations than the classi-
cal one so the computation time is increased (linearly and not exponentially).
However, it should be noted that the complexity is not changed as both meth-
ods are in O(N2) and the results obtained using the proposed approach are
better than the ones obtained using a marginal method.

3.2 Frequency filtering

Our approach is built on the same idea used to filter greyscale images: DQFT
is performed on a colour image leading to its the frequential information. We
then apply a mask on this Fourier information by setting its either low or
high frequency coefficients to zero. Eventually, the result is processed through
IDQFT to give the filtered image.

We use the quaternion formalism to encode colour images but we need to
stay aware on the fact that the quaternionic product is not commutative.
Indeed, the well known theorem which states that a convolution product in
spatial domain is equal to the product in the Fourier space is not true with
quaternions [15].

By definition, the formulation of our Fourier filtering approach is given by

qFilt = IDQFT{H.Q} (8)

with Q = DQFT (q) denotes the quaternionic Fourier transform of the original
image and H the frequency behavior of the filter.

To compare the frequential filtering to the spatial one, we focus on the high-
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(a) (b)

(c) (d)

(e)

(f) (g)

Fig. 11. Different spatial gradients on the ”house” image : (a) ”House”
original image; (b) Marginal approach; (c) Di Zenzo approach; (d) First Carron
approach; (e) Second Carron approach; (f) our method; (g) our method with loga-
rithmic approach.
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pass filtering

H(S, T ) = 1 for (|S| > a, |T | > b) and 0 otherwise, with a, b ∈ R

Indeed we notice through the quaternionic spectrum study that there is a
likeness of organisation as in the classical complex spectrum. As a consequence,
high frequency selection will give weight to ruptures and thus contours.

Figure 12 shows that frequency filtering preserves the original colours and the
high frequency content is really isolated from the rest of the image. In fact,
the contours of the top and bottom boxes appear green and white in Figure
12g and the circle and quadrilateral are red and blue in Figure 12h as in
the original image (Figure 12e). These remarks are also valid on the contours
made on the Lenna image as we can see the details of her hat in Figure 12c
and mouth in Figure 12d. We see that information on edges is vectorial as it
appears in colours. A scaling process between 0 and 255 has been made after
IDQFT using the min and max of each component. As the method uses the
windowing concept to filter the image in the frequency domain, we can observe
that there are some oscillations on edges detected in the high-pass filtered
pictures. This windowing process in the quaternionic spectral domain leads to
equivalent artefacts than those produced if it was done on a greyscale image
spectrum : the Fourier transform of the rectangle function is the sinc (sine
cardinal) function. However, even if this statement is not true anymore with
the formalism of quaternions (from the anti-commutativity of the product),
we observe that it still remains the same kind of border effects. Note that the
colour artefacts are just the conjugate colours of the edges in the RGB colour
domain as we see in Figure 12h where the red (resp. blue) colour of the circle
(resp. quadrilateral) is oscillating with green (resp. yellow).

Figure 13 shows that this spectrum strategy is at least good enough to detect
colour edges properly. A edge map is made by thresholding the absolute values
of the filtered images. This method seems however more sensitive to small
details than the one presented on the spatial filtering section but it may give
more details than the spatial approach with not saturated colours. Indeed we
can see in Figure 13c that the gutters and drainpipes of the roof are well
detected by the frequential method. They are not detected by the spatial one
because they are quite white (white has a zero saturation level). Furthermore,
this approach can filter both in low-pass and high-pass bands and it can be
generalized to band-pass by selecting the proper windowing scheme in the
spectrum domain.

Notice that the experiments show only results with the µ parameter of the
DQFT and IDQFT equal to µgrey. Finally taking the interpretation of the
quaternionic spectrum of the first section we may be able to make spectrum
filters which can extract only one component or any combinaison of them.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 12. Quaternionic high-pass filtering results: (a) Lenna original image;
(b) highpass filter applied on (a); (c) details of the hat; (d) details of the face; (e)
hand-made colour image; (f) high-pass filter applied on (e); (g) details of the green
and white boxes edges; (h) details of the red circle and blue quadrilateral edges.
Frequency filtering preserves the original colours.

Speaking about performances, it takes two classical complex fast Fourier trans-
forms to perform a DQFT or IDQFT. To process both DQFT and IDQFT
is so equivalent to a complexity in O(N2ln(N2)). The windowing process is
a product term by term between the spectrum and a 2D rectangle function.
This process has a complexity in O(N2). The all method uses the two previous
algorithms leading the total complexity of the process in O(N2+N2ln(N2)) =
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O(N2ln(N2)). This is a bit slower than the spatial method.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13. Comparison between high-pass and spatial filtering: (a) Lenna orig-
inal image; (b) highpass filtering’s edge map; (c) spatial gradient’s edge map; (d)
mandrill original image; (e) highpass filtering’s edge map; (f) spatial gradient’s edge
map; (g) house original image; (h) highpass filtering’s edge map; (i) spatial gradi-
ent’s edge map.

4 Conclusion

In this paper, we analysed the properties of the quaternionic Fourier spec-
trum. This contributed first, to reconstruct after IDQFT and without any loss
of information a quaternionic spatial colour image composed of three imagi-
nary components only. Secondly, this gave us an interpretation of quaternionic
Fourier coefficients influence on the spatial domain with both calculus and
graphical illustrations. When initializing the real part of the spectrum with
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a pair of constants respecting proper symmetries, the corresponding spatial
domain presents odd oscillations dependent on the µ parameter of the trans-
formation. However, spectrum pairs of Dirac initialization made on imaginary
component influences the spatial domain with even oscillations independently
from the µ parameter. As in the complex Fourier analysis, the quaternionic
spectrum can be used to detect spatial orientations. Then in a second part,
we applied the previous digital concepts to propose a new quaternionic colour
vectorial gradient. This gave enthusiastic results as its takes advantages of
both vectorial and perceptual approaches of spatial filtering for a RGB colour
space approach. In addition, we used the interpretation of the spectrum to
create frequency quaternionic filters that gave similar results than complex
frequency filters on greyscale images. In that way, both spatial and spectrum
approaches have been discussed to get a wider vision on filtering with quater-
nions. Perspectives are first to enhance the spatial vectorial filter in order to
take the saturation reluctance into account, thus achieving higher efficiency
by giving more power to intensity and hue values when needed. The frequen-
tial approach can as well be improved first by using a smoother function than
the rectangle one to process the spectrum filtering and soften the border ef-
fects leading to colour artefacts. Secondly, we can select in the Fourier domain
the wanted components as described by the spectrum interpretation of the
first section. Finally, as quaternions do not seem to give information to com-
pare colour components between themselves but more independent component
analysis, geometric algebra which manipulates vectors but also multivectors
may represent a useful tool to achieve new results.

A Appendix

A.1 Digital study of the colour spectrum

This section shows more details on how, an initialization made in the quater-
nionic spectrum, influences the spatial domain after IDQFT.

A problem relies on the fact that the spectrum must present the previous
symmetry conditions (refer to section 2.2), and thus the pixel at coordinates
(−S0,−T0) must be initialized with amplitude that respects the conditions.
Eventually there are two points initialized in the spectrum in order to find a
spatial image after IQFT without any loss of information. There are different
cases for initialization, as reported in the following.

• Initialization on the real component

In this case, the initialization requires the Qr(S0, T0) = Kr and Qr(−S0,−T0) =
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−Kr conditions. After IDQFT the spatial image is represented on its imag-
inary components as follows:

qr(s, t) = 0

qi(s, t) = 2Krµi sin
(
2π

(
S0s

N
+

T0t

M

))

qj(s, t) = 2Krµj sin
(
2π

(
S0s

N
+

T0t

M

))

qk(s, t) = 2Krµk sin
(
2π

(
S0s

N
+

T0t

M

))

Initialize the real component of the spectrum leads, after IQFT process,
to odd variations (for the sinus is an odd function). These variations are
described by the imaginary component(s) used to set the analysing direction
µ = µii + µjj + µkk. As for a classical frequency representation, we observe
that the frequency coordinates (S0, T0) are associated with the direction and
the repetition density of the analyzed pattern.

• Initialization on an imaginary component

In this case the initialization requires Qe(S0, T0) = Qe(−S0,−T0) = Ke

(with e = i, j or k) conditions. After IDQFT the spatial image corresponding
to e-imaginary component is represented on its following cartesian form

qe(s, t) = 2Ke cos
(
2π

(
S0s

N
+

T0t

M

))

q′e(s, t) = 0 with e′ 6= e

Initialize an (several) imaginary component(s) of the spectrum leads, after
IQFT process, to even oscillations (for the cosinus is a even function) des-
cribed on the same imaginary component(s). We observe that the analysing
direction µ chosen in the IDQFT has no influence.

A.2 Quaternionic Graphical Spectrum Illustration

A.2.1 Initialization on a spectrum’s imaginary part with any µ ∈ S ∩ P

As we saw in the previous section, to set a pair of constants that follows
the necessary conditions on one imaginary component of the quaternionic
spectrum leads to a spatial oscillation on the same component after processing
IDQFT (cf. Figure A.1). For example if the initialization is done on the first
frequency component, the spatial oscillations that arise from IDQFT are on
the first spatial component coding the image, that is to say the red channel
if working in RGB colour space. The initialization can be done on several
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components, in that case, the result affects the same components that have
been modified. In our case as the following examples are taken from a RGB
colour space, multiple initializations (always under the conditions for correct
spatial reconstruction) on the spectrum produce spatial oscillations following
the rules of the addivive synthesis of colours. So if we initialize the spectrum on
each imaginary component with the same couple of constants, the spatial result
after IDQFT on a RGB colour space is grey oscillations. The µ parameter does
not interfere in this case.

A.2.2 Initialization on the spectrum’s real part with any µ ∈ S ∩ P but µ 6=
µGrey

It was shown in Section 2.3 that the initialization on the spectrum could be
done on the real component. In that case, we can also get different kinds
of oscillations after IDQFT was performed, thus showing that the conditions
enunciated before are preserved. Oscillations after IQFT process are on the
same imaginary components involved in the initialization of the pure unit
quaternion direction µ. In other words, working in RGB colour space implies
that, to get red oscillations, the µ parameter must be equal to i (cf. Figure
A.2). Oscillations composed of numerous colours can be achieved in setting
the µ parameter properly, for instance µ = i+j√

2
leads to yellow variations in

the RGB colour space after IDQFT.

A.2.3 Geometric Variations

In the complex plane, coordinates of the spectrum coefficients involved in the
quaternionic Fourier space’s initialization are really important parameters.
Indeed, the resulting oscillations by IDQFT process have a geometric orien-
tation linked to this. Supposing that coordinates are given in Z

2 with the
pixel O(0, 0) in the image centre (whereas on the top-left corner as often), the
initialization of the spectrum at coordinates (S0, T0) and (−S0,−T0) results,
through IDQFT process, in a 2D oscillation (sinus and cosinus) following the
axis made by this two pixels.

In Figure A.3, numerous geometric oscillations are shown by modifying the
coordinates of the pixels pair implicated by the initialization but with the
same way to set the spectrum components.
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. A.1. Initialization examples with µ = µGrey = i+j+k√
3

: (a)

Qi(2, 2) = Qi(−2,−2) = Ki; (b) Qj(2, 2) = Qj(−2,−2) = Kj ;
(c) Qk(2, 2) = Qk(−2,−2) = Kk; (d) Qi(2, 2) = Qi(−2,−2) = Ki

and Qi(2, 2) = Qi(−2,−2) = Ki; (e) Qj(2, 2) = Qj(−2,−2) = Kj

and Qj(2, 2) = Qj(−2,−2) = Kj ; (f) Qk(2, 2)Qk(−2,−2) = Kk and
Qk(2, 2) = Qk(−2,−2) = Kk; (g) Qi(2, 2) = Qi(−2,−2) = Ki,
Qj(2, 2) = Qj(−2,−2) = Kj and Qk(2, 2) = Qk(−2,−2) = Kk.
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(a) (b) (c)

Fig. A.2. Initialization examples with µ 6= µGrey and

Qr(2, 2) = −Qr(−2,−2) = Kr (a) µGrey = i+j+k√
3

; (b) µRed = i; (c) µMagenta = i+k√
2
.

(a) (b)

(c) (d)

Fig. A.3. Geometric oscillation examples initialization with µY ellow = i+j√
2

(a) Qr(2, 2) = −Qr(−2,−2) = Kr; (b) Qr(4,−4) = −Qr(−4, 4) = Kr; (c)
Qr(0, 2) = −Qr(0,−2) = Kr; (d) Qr(2, 0) = −Qr(−2, 0) = Kr.

References
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