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Djalil Chafäı and Florent Malrieu

Preprint AIHP0805-003 May 2008 – Revised version November 2008

Abstract

Mixtures are convex combinations of laws. Despite this simple definition, a mixture
can be far more subtle than its mixed components. For instance, mixing Gaussian
laws may produce a potential with multiple deep wells. We study in the present work
fine properties of mixtures with respect to concentration of measure and Sobolev type
functional inequalities. We provide sharp Laplace bounds for Lipschitz functions in the
case of generic mixtures, involving a transportation cost diameter of the mixed family.
Additionally, our analysis of Sobolev type inequalities for two-component mixtures
reveals natural relations with some kind of band isoperimetry and support constrained
interpolation via mass transportation. We show that the Poincaré constant of a two-
component mixture may remain bounded as the mixture proportion goes to 0 or 1 while
the logarithmic Sobolev constant may surprisingly blow up. This counter-intuitive
result is not reducible to support disconnections, and appears as a reminiscence of the
variance-entropy comparison on the two-point space. As far as mixtures are concerned,
the logarithmic Sobolev inequality is less stable than the Poincaré inequality and the
sub-Gaussian concentration for Lipschitz functions. We illustrate our results on a
gallery of concrete two-component mixtures. This work leads to many open questions.
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1 Introduction

Mixtures of distributions are ubiquitous in Stochastic Analysis, Modelling, Simulation, and
Statistics, see for instance the monographs [16, 18, 40, 39, 50]. Recall that a mixture of
distributions is nothing else but a convex combination of these distributions. For instance,
if µ0 and µ1 are two laws on the same space, and if p ∈ [0, 1] and q = 1 − p, then the law
pµ1 + qµ0 is a “two-component mixture”. More generally, a finite mixture takes the form
p1µ1 + · · · + pnµn where µ1, . . . , µn are probability measures on a common measurable
space and p1δ1 + · · ·+pnδn is a finite discrete probability measure. A widely used example
is given by finite mixtures of Gaussians for which µi = N (mi, σ

2
i ) for every 1 6 i 6 n. In

that case, for certain choices of m1, . . . ,mn and σ1, . . . , σn, the mixture

p1N (m1, σ
2
1) + · · · + pnN (mn, σ

2
n)

is multi-modal and its log-density is a multiple wells potential. For instance, each compo-
nent µi may correspond typically in Statistics to a sub-population, in Information Theory
to a channel, and in Statistical Physics to an equilibrium. Another very natural example
is given by the invariant measures of finite Markov chains, which are mixtures of the in-
variant measures uniquely associated to each recurrent class of the chain. A more subtle
example is the local field of the Sherrington-Kirkpatrick model of spin glasses which gives
rise to a mixture of two univariate Gaussians with equal variances, see for instance [13].

At this point, it is enlightening to introduce a bit more abstract point of view. Let
ν be a probability measure on some measurable space Θ and (µθ)θ∈Θ be a collection
of probability measures on some common fixed measurable space X , such that the map
θ 7→ Eµθ

f is measurable for any fixed bounded continuous f : X → R. The mixture
M(ν, µθ∈Θ) is the law on X defined for any bounded measurable f : X → R by

EM(ν,µθ∈Θ)f =

∫

Θ

∫

X
f(x) dµθ(x) dν(θ) = Eν(θ 7→ Eµθ

f).

Here ν is the mixing law whereas (µθ)θ∈Θ are the mixed laws or the mixture components
or even the mixed family. With these new notations, and for the finite mixture example
mentioned earlier we have Θ = {1, . . . , n} and ν = p1δ1 + · · · + pnδn and

M(ν, (µθ)θ∈Θ) = M(p1δ1 + · · · + pnδn, {µ1, . . . , µn}) = p1µ1 + · · · + pnµn.

The mixture M(ν, µθ∈Θ) can be seen as a sort of general convex combination in the convex
set of probability measures on X . It appears for certain class of ν as a particular Choquet’s
Integral, see [43] and [17]. On the other hand, the case where the mixture components
are product measures is also related to exchangeability and De Finetti’s Theorem, see for
instance [7]. In terms of random variables, if (X,Y ) is a couple of random variables then
the law L(X) of X is a mixture of the family of conditional laws L(X|Y = y) with the
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mixing law L(Y ). By this way, mixing appears as the dual of the so-called disintegration
of measure. Here and in the whole sequel, the term “mixing” refers to the mixture of
distributions as defined above and has a priori nothing to do with weak dependence.

Our first aim is to investigate the fine behavior of concentration of measure for mix-
tures, for instance for a two-component mixture pµ1 + qµ0 as min(p, q) goes to 0. It is well
known that Poincaré and (Gross) logarithmic Sobolev functional inequalities are powerful
tools in order to obtain concentration of measure. Also, our second aim is to investigate
the fine behavior of these functional inequalities for mixtures, and in particular for two-
component mixtures. Our work reveals striking unexpected phenomena. In particular,
our results suggest that the logarithmic Sobolev inequality, which implies sub-Gaussian
concentration, is very sensitive to mixing, in contrast with the sub-Gaussian concentration
itself which is far more stable. As in [20] and [3], our work is connected to the more general
problem of the behavior of optimal constants for sequences of probability measures.

Let us start with the notion of concentration of measure for Lipschitz functions. We
denote by ‖·‖2 the Euclidean norm of R

d. A function f : R
d → R is Lipschitz when

‖f‖Lip = sup
x 6=y

|f(x) − f(y)|
‖x− y‖2

<∞.

Let µ be a law on R
d such that Eµ|f | <∞ for every Lipschitz function f . This holds true

for instance when µ has a finite first moment. We always make implicitly this assumption
in the sequel. We define now the log-Laplace transform αµ : R → [0,∞] of µ by

αµ(λ) = log sup
‖f‖Lip61

Eµ

(
eλ(f−Eµf)

)
. (1)

The Cramér-Chernov-Chebychev inequality gives, for every r > 0,

βµ(r) = sup
‖f‖Lip61

µ(|f − Eµf | > r) 6 2 exp

(
− sup

λ>0
(rλ− αµ(λ))

)
(2)

and the supremum in the right hand side is a Fenchel-Legendre transform of αµ. Note
that βµ is a uniform upper bound on the tails probabilities of Lipschitz images of µ. We
are interested in the control of βµ via αµ in the case where µ = M(ν, (µθ)θ∈Θ), in terms
of the mixing law ν and of the log-Laplace bounds (αµθ

)θ∈Θ for the mixed family.
We say that µ satisfies a sub-Gaussian concentration of measure for Lipschitz functions

when there exists a constant C ∈ (0,∞) such that for every real number λ,

αµ(λ) 6
1

4
Cλ2. (3)

The log-Laplace-Lipschitz quadratic bound (3) implies via (2) that for every r > 0,

βµ(r) 6 2 exp

(
−r

2

C

)
. (4)

Actually, it was shown (see [15] and [9]) that up to constants, (3) and (4) are equivalent,
and are also equivalent to the existence of a constant ς ∈ (0,∞) and x0 ∈ R

d such that
∫

Rd

eς|x−x0|2 µ(dx) <∞. (5)
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Linear or quadratic upper bounds for αµ may be deduced from functional inequalities such
as Poincaré and (Gross) logarithmic Sobolev inequalities [23, 24]. We say that µ satisfies
a Poincaré inequality of constant C ∈ (0,∞) when for every smooth h : R

d → R,

Varµ(h) 6 C E(|∇h|2) (6)

where Varµ(h) = Eµ(h2) − (Eµh)
2 is the variance of h for µ. The smallest possible

constant C is called the optimal Poincaré constant of µ and is denoted CPI(µ) with the
convention inf ∅ = ∞. Similarly, µ satisfies a (Gross) logarithmic Sobolev inequality of
constant C ∈ (0,∞) when

Entµ(h2) 6 C E(|∇h|2) (7)

for every smooth function f : R
d → R, where Entµ(h2) = Eµ(h2 log h2)−Eµ(h2) log Eµ(h2)

is the entropy or free energy of h2 for µ, with the convention 0 log(0) = 0. As for the
Poincaré inequality, the smallest possible C is the optimal logarithmic Sobolev constant of
µ and is denoted CGI(µ) with inf ∅ = ∞. Standard linearization arguments give that

ρ(Kµ) 6 CPI(µ) 6
1

2
CGI(µ) (8)

where ρ(Kµ) stands for the spectral radius of the covariance matrix Kµ of µ defined by
(Kµ)i,j = Eµ(xixj) − Eµ(xi)Eµ(xj) where xi and xj are the coordinate functions. More
precisely, the first inequality in (8) follows from (6) by taking h = 〈·, u〉 where u runs over
the unit sphere while the second inequality in (8) follows by considering the directional
derivative of both sides of (7) at the constant function 1.

A basic example is given by Gaussian laws for which equalities are achieved in (8). A
wide class of laws satisfy Poincaré and logarithmic Sobolev inequalities. Beyond Gaussian
laws, a criterion due to Bakry & Émery [2, 1] (see also [42], [46, 12], and [10, 11]) states
that if µ has Lebesque density e−V on R

d such that x 7→ V (x)− 1
2κ |x|2 is convex for some

fixed real κ > 0 then CPI(µ) 6 κ and CGI(µ) 6 2κ with equality in both cases when µ is
Gaussian. This log-concave criterion appears as a comparison with Gaussians. Note that
in general, CGI(µ) <∞ implies CPI(µ) <∞ but the converse is false. For instance, the law
with density proportional to exp(−|x|a) on R satisfies a Poincaré inequality iff a > 1 and
a logarithmic Sobolev inequality iff a > 2, see e.g. [1, Chapter 6]. Note also that if µ has
disconnected support, then necessarily CPI(µ) = CGI(µ) = ∞. To see it, consider a non
constant h which is constant on each connected component of the support of µ. This is for
instance the case for the two-component mixture µ = pµ1 + qµ0 = M(pδ1 + qδ0, {µ0, µ1})
with p ∈ (0, 1) and q = 1 − p where µ0 and µ1 have disjoint supports.

The logarithmic Sobolev inequality (7) implies a sub-Gaussian concentration of mea-
sure for Lipschitz images of µ. Namely, using (7) with h = exp(1

2λf) for a real number
λ and a smooth Lipschitz function f : R

d → R gives via Rademacher’s Theorem and a
standard argument attributed to Herbst [34, Chapter 5] that for any reals λ and r > 0

αµ(λ) 6
1

4
CGI(µ)λ2 and βµ(r) 6 2 exp

(
− r2

CGI(µ)

)
. (9)

The same method yields from (6) a sub-exponential upper bound for βµ of the form
c1 exp(−c2r) for some constants c1, c2 > 0, see for instance [22] and [33, Section 2.5].

Both Poincaré and logarithmic Sobolev inequalities are invariant by the action of the
translation group and the orthogonal group. More generally, let us denote by f · µ the
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image measure of µ by the map f . Both (6) and (7) are stable by Lipschitz maps in the
sense that CPI(f · µ) 6 ‖f‖2

LipCPI(µ) and CGI(f · µ) 6 ‖f‖2
LipCGI(µ). On the real line,

CPI and CGI can be controlled via “simple” variational bounds such as (18). Both (6) and
(7) are also stable by bounded perturbations on the log-density of µ, see [27], [25], and
[3] for further details. In view of sub-exponential or sub-Gaussian concentration bounds,
the main advantage of (6) and (7) over a direct approach based on αµ or βµ lies in the
stability by tensor products of (6) and (7), see e.g. [1, Chapters 1 and 3], [9], and [21].

The case of mixtures. The integral criterion (5) shows that if the components
of a mixture satisfies uniformly a sub-Gaussian concentration of measure for Lipschitz
functions, and if the mixing law has compact support, then the mixture also satisfies a
sub-Gaussian concentration of measure for Lipschitz functions. Such bounds appear for
instance in [6]. However, this observation does not give any fine quantitative estimate on
the dependency over the weights for a finite mixture. Regarding Poincaré and logarithmic
Sobolev inequalities, it is clear that a finite mixture of Gaussians will satisfies such in-
equalities since its log-density is a bounded perturbation of a uniformly concave function.
Here again, this does not give any fine control on the constants.

An upper bound for the Poincaré constant of univariate finite Gaussian mixture was
provided by Johnson [29, Theorem 1.1 and Section 2]. Unfortunately, this upper bound
blows up when the minimum weight of the mixing law goes to 0. A more general upper
bound for finite mixtures of overlapping densities was obtained by Madras and Randall
[35, Theorem 1.2 and Section 5]. Here again, the bound blows up when the minimum
weight of the mixing law goes to 0. Some aspects of Poisson mixtures are considered by
Kontoyannis and Madiman [30, 31] in connection with compound Poisson processes and
discrete modified logarithmic Sobolev inequalities.

Outline of the article. Recall that the aim of the present work is to study fine
properties of mixture of law with respect to concentration of measure and Sobolev type
functional inequalities. The analysis of various elementary examples shows actually that
such a general objective is very ambitious. Also, we decided to focus in the present work
on more tractable situations. Section 2 provides Laplace bounds for Lipschitz functions
in the case of generic mixtures. These upper bounds on αµ (and thus βµ) for a mixture µ
involve the W1-diameter (see Section 2 for a precise definition) of the mixed family. Sec-
tion 3 is devoted to upper bounds on αµ for two-component mixtures µ = µp = pµ1 + qµ0.
Our result is mainly based on a Laplace-Lipschitz counterpart of the optimal logarithmic
Sobolev inequality for asymmetric Bernoulli measures. In particular, we show that if µ0

and µ1 satisfy a sub-Gaussian concentration for Lipschitz functions, then it is also the
case for the mixture µp, with a quite satisfactory and intuitive behavior as min(p, q) goes
to 0. In Section 4, we study Poincaré and logarithmic Sobolev inequalities for two com-
ponents mixtures. A decomposition of variance and entropy allows to reduce the problem
to the Poincaré and logarithmic Sobolev inequalities for each component, to discrete in-
equalities for the Bernoulli mixing law pδ1 + qδ0, and to the control of a mean-difference
term. This last term can be controlled in turn by using some support-constrained trans-
portation, leading to very interesting open questions in dimension > 1. The Poincaré
constant of the two-component mixture can remain bounded as min(p, q) goes to 0, while
the logarithmic Sobolev constant may surprisingly blow up at speed − log(min(p, q)). This
counter-intuitive result shows that as far as mixture of laws are concerned, the logarith-
mic Sobolev inequality does not behave like the sub-Gaussian concentration for Lipschitz
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functions. We also illustrate our results on a gallery of concrete two-component mixtures.
In particular, we show that the blow up of the logarithmic Sobolev constant as min(p, q)
goes to 0 is not necessarily related to support problems.

Open problems. The study of Poincaré and logarithmic Sobolev inequalities for
multivariate or non-finite mixtures is an interesting open problem, for which we give some
clues at the end of Section 4 in terms of support-constrained transportation interpolation.
There is maybe a link with the decomposition approach used in [28] for Markov chains.
One can also explore the tensor products of mixtures, which are again mixtures. Another
interesting problem is the development of a direct approach for transportation cost and
measure-capacities inequalities (see [5]) for mixtures, even in the finite univariate case.

2 General Laplace bounds for Lipschitz functions

Intuitively, the concentration of measure of a finite mixture may be controlled by the worst
concentration of the components and some sort of diameter of the mixed family. We shall
confirm, extend, and illustrate this intuition for a non necessarily finite mixture. The
notion of diameter that we shall use is related to coupling and transportation cost. Recall
that for every k > 1, the Wasserstein (or transportation cost) distance of order k between
two laws µ1 and µ2 on R

d is defined by (see e.g. [51, 52] and [44, 47])

Wk(µ1, µ2) = inf
π

(∫

Rd×Rd

|x− y|k dπ(x, y)

)k−1

(10)

where π runs over the set of laws on R
d×R

d with marginals µ1 and µ2. TheWk-convergence
is equivalent to the weak convergence together with the convergence of moments up to
order k. In dimension d = 1, we have, by denoting F1 and F2 the cumulative distribution
functions of µ1 and µ2, with generalized inverses F−1

1 and F−1
2 , for every k > 1,

Wk(µ1, µ2)
k =

∫ 1

0

∣∣F−1
1 (x) − F−1

2 (x)
∣∣k dx and W1(µ1, µ2) =

∫

R

|F1(x) − F2(x)| dx (11)

where the last expression of W1 follows from the Kantorovich-Rubinstein dual formulation

W1(µ1, µ2) = sup
‖f‖Lip61

(∫

Rd

f dµ1 −
∫

Rd

f dµ2

)
. (12)

Note that if µ1 does not give mass to points then µ2 = (F−1
2 ◦F1) ·µ1. The transportation

cost distances lead to the so called transportation cost inequalities, popularized by Marton
[36, 37], Talagrand [49], and Bobkov & Götze [8]. See for instance the books [34, 51, 52]
for a review. The link with concentration of measure was recently deeply explored by
Gozlan, see e.g. [21]. We will not use this interesting line of research in the present paper.

Theorem 2.1 (General Laplace-Lipschitz bound via diameter). Let µ = M(ν, (µθ)θ∈Θ)
be a general mixture. If this mixture satisfies the uniform bounds

α = sup
θ∈Θ

αθ <∞ and W = sup
θ,θ′∈Θ

W1(µθ, µθ′) <∞

then for every λ > 0 we have

αµ(λ) 6 α(λ) +
1

8
min

(
8Wλ,W

2
λ2
)
.
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Proof of Theorem 2.1. The key point is that if ‖f‖Lip 6 1 then for every λ > 0,

Eµ

(
eλf
)

eλEµf
= e−λEµf

∫

Θ
Eµθ

(
eλf
)
ν(dθ) 6

∫

Θ
eαθ(λ)+λ(Eµθ

f−Eµf) ν(dθ). (13)

As a consequence, we get

αµ(λ) 6 α(λ) + sup
‖f‖Lip61

log

∫

Θ
eλ(Eµθ

f−Eµf) ν(dθ). (14)

Thanks to the relation (12), we obtain

Eµθ
f − Eµf =

∫

Θ

(
Eµθ

f − Eµθ′
f
)
ν(dθ′)

6

∫

Θ
W1(µθ, µθ′) ν(dθ

′) 6 W.

This shows that the second term in the right hand side of (14) is bounded by Wλ. Alter-
natively, one can use the Hoeffding bound [26] which says that if X is a centered bounded
random variable with oscillation c = supX − infX then

E
(
eλX

)
6 e

1
8
λ2c2.

The desired bound in terms of W
2
λ2 follows by taking X = EµY

f − Eµf where Y ∼ ν
and noticing that c 6 supθ,θ′

(
Eµθ

f − Eµθ′
f
)

= W .

Example 2.2 (Finite mixtures). For a finite mixture µ = p1µ1+· · ·+pnµn = M(ν, (µi)16i6n)
where ν = p1δ1 + · · · + pnδn, the mixing measure ν is supported by a finite set. In that
case, Theorem 2.1 gives an immediate Laplace bound, involving the worst bound for the
mixture components (µi)16i6n (this cannot be improved in general). However, in Section
3, we provide sharper bounds by improving the dependency over ν in the case where n = 2.

Example 2.3 (Bounded mixtures of multivariate Gaussians). Here µθ = N (m(θ),Γ(θ))
where m : Θ → R

d and Γ : R
d → S+

d are two measurable bounded functions and S+
d is the

cone of symmetric nonnegative d×d matrices. Note that Γ(θ) is allowed to be singular i.e.
not of full rank. The spectrum of Γ(θ) is real and non-negative. If λ1(θ) > · · · > λd(θ) are
the eigenvalues of Γ(θ), we define ρ = supθ∈Θ λ1(θ) = supθ∈Θ ‖Γ(θ)‖2→2. Now fix some
mixing law ν on Θ and consider the mixture µ = M(ν, (µθ)θ∈Θ). Then for every λ > 0,

αµ(λ) 6
ρ

2
λ2 +

1

8
min(8Wλ,W

2
λ2).

One can deduce an upper bound for W from the following lemma.

Lemma 2.4 (W1-distance of two multivariate Gaussian laws). Let µ0 = N (m(0),Γ(0))
and µ1 = N (m(1),Γ(1)) be two Gaussian laws on R

d. For θ ∈ {0, 1}, we denote by

λ1(θ) > · · · > λd(θ)

7



the ordered spectrum of Γ(θ) and by (vi(θ))16i6d an associated orthonormal basis of eigen-
vectors. Assume, without loss of generality, that vi(0) ·vi(1) > 0 for every 1 6 i 6 d where
“·” stands for the Euclidean scalar product of R

d. Then W1(µ0, µ1) is bounded above by

|m(1) −m(0)| +

√√√√
d∑

i=1

{(√
λi(1) −

√
λi(0)

)2
+ 2
√
λi(1)λi(0)(1 − vi(1) · vi(0))

}
.

The reader may find in [48, Theorem 3.2] a formula in the same spirit for W2(µ0, µ1).

Proof of Lemma 2.4. The triangle inequality for the W1 distance gives

W1(µ0, µ1) 6 W1(µ0,N (m(1),Γ(0))) +W1(N (m(1),Γ(0)), µ1)

6 |m(1) −m(0)| +W1(N (0,Γ(0)),N (0,Γ(1))).

Now, if (Yi)16i6d are i.i.d. real random variables of law N (0, 1) then the law of

Xθ =

d∑

i=1

Yi

√
λi(θ)vi(θ)

is N (0,Γ(θ)) for θ ∈ {0, 1}. Moreover, from (10) and Jensen’s inequality, we get

W1(N (0,Γ(0)),N (0,Γ(1)))2 6 (E|X1 −X0|)2 6 E(|X1 −X0|2).

At this step, we note that

|X1 −X0|2 =
d∑

i=1

Y 2
i

∣∣∣
√
λi(1)vi(1) −

√
λi(0)vi(0)

∣∣∣
2

+ 2
∑

i<j

YiYj

(√
λi(1)vi(1) −

√
λi(0)vi(0)

)
·
(√

λi(1)vi(1) −
√
λi(0)vi(0)

)
.

Since (Yi) are i.i.d. N (0, 1) and (vi(θ))16i6d is orthonormal for θ ∈ {0, 1}, one has

E(|X1 −X0|2) =

d∑

i=1

∣∣∣
√
λi(1)vi(1) −

√
λi(0)vi(0)

∣∣∣
2

=
d∑

i=1

{(√
λi(1) −

√
λi(0)

)2
+ 2
√
λi(1)λi(0)(1 − vi(1) · vi(0))

}
.

Of course the assumptions of Theorem 2.1 may be relaxed. Instead of trying to deal
with generic abstract results, let us provide some highlighting examples.

Example 2.5 (Gaussian mixture of translated Gaussians). Here Θ = R and µθ =
N (θ, σ2) for some fixed σ > 0, and the mixing law is also Gaussian ν = N (0, τ2) for some
fixed τ > 0. In this case, α(λ) = 1

2σ
2λ2 but W is infinite since

W1(µθ, µθ′) =
∣∣θ − θ′

∣∣.
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In particular, Theorem 2.1 is useless. Nevertheless, the function

θ 7→ g(θ) = Eµθ
f − Eµf

is Lipschitz since

∣∣g(θ) − g(θ′)
∣∣ 6 E

(∣∣f(X + θ) − f(X + θ′)
∣∣) 6

∣∣θ − θ′
∣∣

where X ∼ N (0, 1). As a consequence, we get

sup
‖f‖Lip61

log

∫

Θ
eλ(Eµθ

f−Eµf) ν(dθ) 6
τ2λ2

2
,

and for any λ > 0

αµ(λ) 6
σ2 + τ2

2
λ2.

The same argument may be used more generally for “position” mixtures. For instance if
η is some fixed probability measure on R

d and µθ = η ∗ δθ for θ ∈ R
d then ∀λ > 0,

αµ(λ) 6 αη(λ) + αµ(λ).

In this particular case, µ = ν ∗ η and the bound above follows also by tensorization!

Example 2.6 (Mixture of scaled Gaussians: from exponential to Gaussian tails).
Here we take Θ = [0,∞) and µθ = N (0, θ2) with a mixing measure ν of density

θ 7→ γ

Γ(γ−1)
exp (−θγ)1[0,∞)(θ)

where γ > 2 is some fixed real number. Note that ν has a non-compact support and that
µ does not satisfy the integral criterion (5). This means that µ cannot have sub-Gaussian
tails. Note also that both α(λ) and W are infinite since

αθ(λ) =
θ2λ2

2
and W1(µθ, µθ′) =

√
2

π

∣∣θ − θ′
∣∣

where we used (11) for W1. Starting from (13), one has by Cauchy-Schwarz’s inequality

(
Eµ

(
eλf
)

eλEµf

)2

6

∫

Θ
eθ

2λ2
ν(dθ)

∫

Θ
e2λ(Eµθ

f−Eµf) ν(dθ). (15)

Note that ν satisfies condition (5) and αν(λ) 6 Cλ2 for some real constant C > 0. Here
and in the sequel, the constant C may vary from line to line and may be chosen independent
of γ. On the other hand, the centered function g(θ) = Eµθ

f − Eµf is 1-Lipschitz since

∣∣g(θ) − g(θ′)
∣∣ =

∣∣Ef(θX)− Ef(θ′X)
∣∣ 6

∣∣θ − θ′
∣∣E(|X|)

where X ∼ N (0, 1). Also, for the second term in the right hand side of (15) we have

∫

Θ
e2λ(Eµθ

f−Eµf) ν(dθ) 6 eαν(2λ)
6 e4Cλ2

.
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If γ = 2 then αµ(λ) 6 2Cλ2− 1
4 log(1−λ2) 6 2C− 1

4 log(1−λ) if λ < 1, which gives, after
some computations, the deviation bound, for some other constants C ′ > 0 and C ′′ > 0,

µ(F − Eµf > r) 6 C ′e−C′′r.

Assume in contrast that γ > 2. Since θ2λ2 6 γ−1θγ + C0λ
2γ

γ−2 for some constant C0 > 0
which may depend on γ but not on λ and θ, we get, for some constants C1 > 0 and C2 > 0,

∫ ∞

0
exp

(
θ2λ2

)
ν(dθ) 6 C1 exp

(
C2λ

2γ
γ−2

)
.

This gives αµ(λ) 6 C3λ
2γ

γ−2 + C4 for some constants C3 > 0 and C4 > 0, which yields a
deviation bound of the form (for some constants C5 > 0 and C6 > 0)

µ(f − Eµf > r) 6 C5 exp
(
−C6r

2− 4
γ+2

)
.

Note that ν goes to the uniform law on [0, 1] as γ → ∞ and the Gaussian tail reappears.

3 Concentration bounds for two-component mixtures

In this section, we investigate the special case where the mixing measure ν is the Bernoulli
measure B(p) = pδ1 + qδ0 where q = 1 − p. We are interested in the study of the sharp
dependence of the concentration bounds on p, especially when p is close to 0 or 1.

Theorem 3.1 (Two-component mixture). Let µ0 and µ1 be two probability measures
on X and µ = pµ1 + qµ0 with p ∈ [0, 1] and q = 1− p. Define xp = max(p, q)/(2cp) where

cp =
q − p

4(log(q) − log(p))

with the continuity conventions c1/2 = 1/8 and c0 = c1 = 0. Then for any λ > 0,

αµ(λ) 6 max(αµ0 , αµ1)(λ) +






cpλ
2W1(µ0, µ1)

2 if λW1(µ0, µ1) 6 xp

max(p, q)

(
λW1(µ0, µ1) −

1

2
xp

)
otherwise.

Note that if min(p, q) → 0, then cp ∼ −(4 log(p))−1 → 0 and xp → ∞, and we thus
recover an upper bound of the form αµ 6 max(αµ1 , αµ2) as min(p, q) → 0, which is
satisfactory. The two different upper bounds given by Theorem 3.1 provide two different
upper bounds for the concentration of measure of the mixture µ, illustrated by the following
Corollary (the proof of the Corollary is immediate and is left to the reader).

Corollary 3.2 (Two-component mixtures with sub-Gaussian tails). Let µ0 and
µ1 be two probability measures on X and µ = pµ1 + qµ0 for some p ∈ [0, 1] with q = 1− p.
If there exists a real constant C > 0 such that for any λ > 0

max(αµ0 , αµ1)(λ) 6
1

2
Cλ2

10



then for every r > 0, with W = W1(µ0, µ1),

βµ(r) 6 2






exp

(
− r2

2C + 4cpW
2

)
if r 6 max(p, q)

(
C

2cpW
+W

)
,

exp

(
− 1

2C
(r − max(p, q)W )2 − max(p, q)2

4cp

)
otherwise.

Proof of Theorem 3.1. We have µ = qµ0 + pµ1 = M(ν, {µ0, µ1}) where ν := qδ0 + pδ1.
For this finite mixture, we get, as in the general case, for any f ∈ Lip(X ,R) and λ > 0,

log

(
Eµ

(
eλf
)

eλEµf

)
6 max(αµ0 , αµ1)(λ) + log

(
Eν

(
eλg
)

eλEνg

)
,

where g(i) := Eµi
f . At this step, we use the particular nature of ν, which gives

Eν

(
eλg
)

eλEνg
= coshp(λ(g(1) − g(0))),

where coshp(x) := peqx + qe−px. Since g(1) − g(0) = Eµ1f − Eµ0f , we get by (12)

−W1(µ0, µ1) 6 g(1) − g(0) 6 W1(µ0, µ1).

Since coshp(−x) = coshq(x) for any x ∈ R, we get for any λ > 0,

sup
‖f‖Lip61

(
Eν

(
eλg
)

eλEνg

)
= max (coshp, coshq)(λW1(µ0, µ1)).

Putting all together, we obtain, for any λ > 0,

αµ(λ) 6 max(αµ0 , αµ1)(λ) + log max (coshp, coshq)(λW1(µ0, µ1)),

Since (coshq − coshp)
′(x) = 2pq(cosh(px) − cosh(qx)), one has, for every x > 0,

max (coshp, coshq)(x) = coshmin(p,q)(x).

Let us assume that p 6 q. Lemma 3.3 ensures that, for every x > 0,

log max (coshp, coshq)(x) = log coshp(x) 6 cpx
2.

On the other hand,
log coshp(x) = qx+ log

(
p+ qe−x

)
6 qx.

Now, for x = xp, the slope of x 7→ cpx
2 is equal to q and the tangent is y = q(x−xp/2). On

the other hand, the convexity of x 7→ log coshp(x) yields log coshp(x) 6 q(x−xp) for x > xp

(drawing a picture may help the reader). The desired conclusion follows immediately.

The proof of Theorem 3.1 relies on Lemma 3.3 below which provides a Gaussian bound
for the Laplace transform of a Lipschitz function with respect to a Bernoulli law. This
lemma is an optimal version of the Hoeffding bound [26] in the case of a Bernoulli law.

11



Lemma 3.3 (Two-point lemma). For any 0 6 p 6 1/2, we have

sup
x>0

x−2 log(peqx + qe−px) = cp =
q − p

4(log(q) − log(p))
(16)

with the natural conventions c0 = 0 and c1/2 = 1/8 as in Theorem 3.1. Moreover, the
supremum in x is achieved for x = 2(log(q) − log(p)).

The constant cp is also equal, as it will appear in the proof, to supλ>0 αB(p)(λ)/λ2.
The classical Hoeffding bound for this supremum is c1/2 = 1/8 which is the maximum of
cp over p. Additionally, the quantity 1/(4cp) is the optimal constant of the logarithmic
Sobolev inequality for the asymmetric Bernoulli measure qδ0 + pδ1 (see Lemma 4.1).

Proof of Lemma 3.3. Let us define x̂p = log(q/p) and β(x) = x−2ψ(x) where

ψ(x) = log(peqx + qe−px).

The function ψ is “strongly convex” at the origin (ψ(0) = ψ′(0) = 0 and ψ′′(0) = pq and
ψ′′′(0) > 0) and linear at infinity (ψ′(∞) = q). Therefore, the supremum of β is achieved
for some x > 0. The derivative of β has the sign of γ(x) := xψ′(x)− 2ψ(x). Furthermore,

γ′(x) = xψ′′(x) − ψ′(x) and γ′′(x) = xψ′′′(x).

As a consequence, γ′′ has the sign of ψ′′′ which is positive on (0, x̂p) and negative on
(x̂p,+∞). Since γ′(0) = 0 and γ′ achieves its maximum for x = x̂p and γ′ goes to −q at
infinity and there exists an unique yp > 0 (in fact yp > x̂p) such that γ′(yp) = 0. As a
conclusion, since γ(0) = 0 and γ is increasing on (0, yp) and γ(x) goes to −∞ as x goes to
infinity, γ(x) is equal to zero exactly two times: for x = 0 and x = zp > yp > x̂p In fact,
zp is equal to 2x̂p. Indeed, we have

ψ′(x) = pq
eqx − e−px

peqx + qe−px
.

Now, we compute

ψ′(2x̂p) = pq
(q/p)2q − (p/q)2p

p(q/p)2q + q(p/q)2p
= · · · = q2 − p2 = q − p,

and

2ψ(2x̂p) = 2 log(p(q/p)2q + q(p/q)2p)

= 2 log((q + p)(q/p)q−p)

= 2x̂pψ
′(2x̂p).

Thus, 2x̂p is (the unique positive) solution of 2ψ(x) = xψ′(x). As a conclusion, we get
cp = ψ(2x̂p)/(4x̂

2
p), which gives the desired formula after some algebra.

Remark 3.4 (Advantage of direct Laplace bounds). Consider a mixture µ = pµ1 +
qµ0 of two Gaussian laws µ0 and µ1 on R with same variance σ2 and different means.
Corollary 3.2 ensures that for every r > 0,

βµ(r) 6 2 exp

(
− r2

2σ2 + 4cpW1(µ0, µ1)2

)
.
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This bound remains relevant as σ → 0 since we recover the bound for the Bernoulli mixing
law ν = pδ1 +qδ0. On the other hand, any concentration bound deduced from a logarithmic
Sobolev inequality would blow up as σ goes to zero, as we shall see in Section 4.

Remark 3.5 (Inhomogeneous tails). It is satisfactory to recover, when p goes to 0
(resp. 1), the concentration bound of µ0 (resp. µ1) and not only the maximum of the
bounds of the two components. It is possible to exhibit two regimes, corresponding to small
and big values of λ. Assume that µi = N (0, θ2

i ) for i ∈ {0, 1} with θ1 > θ0 > 0. Theorem
2.1 gives

αµ(λ) 6
θ2
1λ

2

2
+ (θ1 − θ0)λ.

On the other hand, one has

log
Eµ

(
eλf
)

eEµ(λf)
6

∫
αµθ

(λ) ν(dθ) + log

∫
eHλ(θ)+λg(θ) ν(dθ),

where

Hλ(θ) = αµθ
(λ) −

∫
αµθ′

(λ) ν(dθ′) and g(θ) = Eµθ
f − Eµf.

Then, Lemma 3.3 ensures that for every ε > 0,

log

∫
eHλ(θ)+λg(θ) ν(dθ) 6 cp(Hλ(1) + λg(1) −Hλ(0) − λg(0))2

6 cp

(
1

ε
|Hλ(1) −Hλ(0)|2 + ε|λg(1) − λg(0)|2

)
.

Choosing ε = λ leads to

log

∫
eHλ(θ)+λg(θ) ν(dθ) 6 cp

(
(θ2

1 − θ2
0)

2

4
+ (θ1 − θ0)

2

)
λ3.

As a conclusion αµ can be control by (at least) these two ways:

αµ(λ) 6






θ2
1λ

2

2
+ (θ1 − θ0)λ,

pθ2
1 + qθ2

0λ
2

2
+ cp

(
(θ2

1 − θ2
0)

2

4
+ (θ1 − θ0)

2

)
λ3.

The second one provides sharp bounds for λ 6 f(1/cp) whereas the first one is useful for
λ > f(1/cp) (where f is an increasing function which is computable).

4 Gross-Poincaré inequalities for two-component mixtures

It is known that functional inequalities such as Poincaré and (Gross) logarithmic Sobolev
inequalities provide, via Laplace exponential bounds, dimension free concentration bounds,
see for instance [34]. It is quite natural to ask for such functional inequalities for mixtures.
Before attacking the problem, some facts have to be emphasized.
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As already mentioned in the introduction, a law µ with disconnected support cannot
satisfy a Poincaré or a logarithmic Sobolev inequality. In particular, a mixture of laws with
disjoint supports cannot satisfy such functional inequalities. This observation suggests that
in order to obtain a functional inequality for a mixture, one has probably to control the
considered functional inequality for each component of the mixture and to ensure that the
support of the mixture is connected. It is important to realize that such a connectivity
problem is due to the peculiarities of the functional inequalities, but does not pose a
real problem for the concentration of measure properties, as suggested by Theorem 3.1
and Remark 3.4 for instance. In the sequel, we will focus on the case of two-component
mixtures, and try to get sharp bounds on the Poincaré and logarithmic Sobolev constants.
The two-component case is fundamental. The extension of the results to more general
finite mixtures is possible by following roughly the same scheme, see Remark 4.2 below.

For the logarithmic Sobolev inequality of two-component mixtures, we will make use
of the following optimal two-point Lemma, obtained years ago independently by Diaconis
& Saloff-Coste and Higushi & Yoshida. An elementary proof due to Bobkov is given by
Saloff-Coste in his Saint-Flour Lecture Notes [45].

Lemma 4.1 (Optimal logarithmic Sobolev inequality for Bernoulli measures).
For every p ∈ (0, 1) and every f : {0, 1} → R, and with the convention (log(q)−log(p))/(q−
p) = 2 if p = q = 1/2, we have

Entpδ1+qδ0

(
f2
)

6
log(q) − log(p)

q − p
pq(f(0) − f(1))2.

Moreover, the function of p in front of the right hand side cannot be improved.

Note that the constant in front of the right hand side of the inequality provided by
Lemma 4.1 is nothing else but pq/(4cp) where cp is as in Theorem 3.1 and Lemma 3.3.
At this stage, it is important to understand the deep difference between the Poincaré and
the logarithmic Sobolev inequalities at the level of the two-point space. On the two-point
space, the Poincaré inequality turns out to be a simple equality, and Lemma 4.1 is in fact
an entropy-variance comparison. Namely, for every p ∈ (0, 1) and f : {0, 1} → R,

Entpδ1+qδ0

(
f2
)

6
log(q) − log(p)

q − p
Varpδ1+qδ0(f) .

This inequality is optimal and (log(q) − log(p))/(q − p) tends to +∞ as min(p, q) goes to
0. Also, for strongly asymmetric Bernoulli measures, the entropy of the square can take
extremely big values for a fixed prescribed variance. This elementary phenomenon helps to
better understand the surprising difference in the behavior of the Poincaré and logarithmic
Sobolev constants of certain two-component mixtures exhibited in the sequel. Moreover,
this observation suggests to use asymmetric test functions inspired from the two-point
space in order to show that the logarithmic Sobolev constant may blow up when the
mixing law is strongly asymmetric. We shall adopt however another (quantitative) route.
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4.1 Decomposition of the variance and entropy of the mixture

Let µ0 and µ1 be two laws on R
d, p ∈ [0, 1], q = 1− p, ν = pδ1 + qδ0, and µp = pµ1 + qµ0.

Then, one can decompose and bound the variance of f : R
d → R with respect to µp as

Varµp(f) = Eν(θ 7→ Varµθ
(f)) + Varν(θ 7→ Eµθ

f)

= Eν(θ 7→ Varµθ
(f)) + pq(Eµ0f − Eµ1f)2

6 max(CPI(µ0), CPI(µ1))Eµ(|∇f |2) + pq(Eµ0f − Eµ1f)2.

For the entropy, by using Lemma 4.1 for ν we can write

Entµp

(
f2
)

= Eν

(
θ 7→ Entµθ

(
f2
))

+ Entν

(
(θ 7→ Eµθ

f)2
)

6 Eν

(
θ 7→ Entµθ

(
f2
))

+
pq(log q − log p)

q − p
(Eµ0f − Eµ1f)2

6 max(CGI(µ0), CGI(µ1))Eµ(|∇f |2) +
pq(log q − log p)

q − p
(Eµ0f − Eµ1f)2.

We thus see that in both cases (Poincaré and logarithmic Sobolev inequalities), the problem
can be reduced to the control of the mean-difference term (Eµ0f − Eµ1f)2 in terms of
Eµ(|∇f |2) for every smooth function f . Note that this task is impossible if µ0 and µ1

have disjoint supports.

Remark 4.2 (Finite mixtures). Let (µi)16i6n be a family of probability measures on R
d.

Consider the finite mixture µ = M(ν, (µi)16i6n) with mixing measure ν = p1δ1+· · ·+pnδn.
The decomposition of variance is a general fact valid in particular for µ, and writes

Varµ(f) = Eν(θ 7→ Varµθ
(f)) + Varν(θ 7→ Eµθ

f) .

Here again, the first term in the right hand side may be controlled with the Poincaré
inequality for each of the components (µi)16i6n. For the second term of the right hand
side, it remains to notice that for every g : Θ = {1, . . . , n} → R,

Varν(g) =
1

2

∑

i,j

pipj(g(i) − g(j))2 =
∑

i<j

pipj(g(i) − g(j))2

which gives for g = Eµθ
(f) the identity

Varν(Eµθ
f) =

∑

i<j

pipj

(
Eµi

f − Eµj
f
)2
.

As for the two-component case, this further reduces the Poincaré inequality for µ to the
control of the mean-differences

(
Eµi

f − Eµj
f
)2

in terms of Eµ(|∇f |2). An analogous
approach for the entropy and the logarithmic Sobolev inequality can be obtained by using
[14, Theorem A1 p. 49] for instance.

4.2 Control of the mean-difference in dimension one

The following lemma provides the control of the mean-difference term (Eµ0f − Eµ1f)2 in
the case where µ0 and µ1 are probability measures on R (i.e. d = 1).
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Lemma 4.3 (Control of the mean-difference term in dimension one). Let µ0 and
µ1 be two probability distributions on R absolutely continuous with respect to the Lebesgue
measure. Let us denote by F0 (respectively F1) the cumulative distribution function and f0

(respectively f1) the probability density function of µ0 (respectively µ1). If co(S) denotes
the convex envelope of the set S = supp(µ0) ∪ supp(µ1), then, for any p ∈ (0, 1), with
µp = pµ1 + qµ0 and q = 1 − p, we have

(Eµ0f − Eµ1f)2 6 I(p)Eµp(f
′2) where I(p) =

∫

co(S)

(F1(x) − F0(x))
2

pf1(x) + qf0(x)
dx,

and the constant I(p) cannot be improved. Moreover, the function p 7→ I(p) is convex,
and

1

2max(p, q)
I

(
1

2

)
6 I(p) 6

1

2min(p, q)
I

(
1

2

)
. (17)

Furthermore, if S is not connected then I is constant and equal to ∞, while the convexity
of I ensure that supp∈(0,1) I(p) = max(I(0+), I(1−)) where

I(0+) = lim
p→0+

I(p) and I(1−) = lim
p→1−

I(p),

and I(p) <∞ for every p in (0, 1) if and only if max(I(0+), I(1−)) <∞.

Proof of Lemma 4.3. For any smooth and compactly supported function f , an integration
by parts gives for every θ ∈ {0, 1},

Eµθ
f =

∫

R

f(x)fθ(x) dx = −
∫

R

f ′(x)Fθ(x) dx.

Since F1 − F0 = 0 outside co(S) we have

Eµ0f − Eµ1f =

∫

co(S)
(F1(x) − F0(x))f

′(x) dx.

It remains to use the Cauchy-Schwarz inequality, which gives

(Eµ0f − Eµ1f)2 =

(∫

co(S)

F0(x) − F1(x)√
pf1(x) + qf0(x)

f ′(x)
√
pf1(x) + qf0(x) dx

)2

6 I(p)

∫

co(S)
f ′(x)2(pf1(x) + qf0(x))dx = I(p)Eµp(f

′2).

The equality case of the Cauchy-Schwarz inequality provides the optimality of I(p). The
bound (17) follows from 2min(p, q)(f0 + f1)/2 6 pf1 + qf0 6 2max(p, q)(f0 + f1)/2. The
other claims of the lemma are immediate.

4.3 Control of the Poincaré and logarithmic Sobolev constants

By combining the decomposition of the variance and of the entropy given at the beginning
of the current section with Lemma 4.3 and Lemma 4.1, we obtain the following Theorem.
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Theorem 4.4 (Poincaré and logarithmic Sobolev inequalities for two-component
mixtures). Let µ0 and µ1 be two probability distributions on R absolutely continuous with
respect to the Lebesgue measure, and consider the two-component mixture µp = pµ1 + qµ0

with 0 6 p 6 1 and q = 1 − p. If I(p) is as in Lemma 4.3 then for every p ∈ (0, 1),

CPI(µp) 6 max(CPI(µ0), CPI(µ1)) + pqI(p)

and

CGI(µp) 6 max(CGI(µ0), CGI(µ1)) +
log q − log p

q − p
pqI(p).

In particular, since supp∈(0,1) I(p) = max(I(0+), I(1−)) where I(0+) and I(1−) are as in
Lemma 4.3, we get the following uniform bounds:

sup
p∈(0,1)

CPI(µp) 6 max(CPI(µ0), CPI(µ1)) +
1

4
max(I(0+), I(1−))

and

sup
p∈(0,1)

CGI(µp) 6 max(CGI(µ0), CGI(µ1)) +
1

2
max(I(0+), I(1−)).

Moreover, if I(0+) <∞ (respectively if I(1−) <∞) then

lim sup
p→0+respectively 1−

CPI(µp) 6 max(CPI(µ0), CPI(µ1))

and
lim sup

p→0+respectively 1−
CGI(µp) 6 max(CGI(µ0), CGI(µ1)).

The upper bounds given by Theorem 4.4 must be understood in [0,∞] since the right
hand side can be infinite (in such a case the bound is of course useless). Additionally, by
Lemma 4.3, the function p 7→ I(p) is convex, and it is possible that I(1/2) < ∞ while
max(I(0+), I(1−)) = ∞. The following corollary provides a uniform bound on the Poincaré
constant of a two-component mixture in terms of I(1/2) without using max(I(0+), I(1−)).
This corollary has no immediate logarithmic Sobolev counterpart, as explained in the
remark below following the proof of the corollary.

Corollary 4.5 (Uniform Poincaré inequality for two-component mixtures). Let
µ0 and µ1 be two probability distributions on R absolutely continuous with respect to the
Lebesgue measure and consider the mixture µp = pµ1 + qµ0 for every p ∈ [0, 1]. We have
then

max
p∈[0,1]

CPI(µp) 6 max(CPI(µ0), CPI(µ1)) +
1

2
I

(
1

2

)

where I(1/2) is as in Lemma 4.3.

Proof of Corollary 4.5. We observe that thanks to (17), one has

pqI(p) = max(p, q)min(p, q)I(p) 6
1

2
I

(
1

2

)

and Theorem 4.4 provides the desired result.
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Remark 4.6 (Blow-up of the logarithmic Sobolev constant). With the notations
of Corollary 4.5, we have, by using the same argument, that for every p ∈ (0, 1),

CGI(µp) 6 max(CGI(µ0), CGI(µ1)) +
1

2

log(q) − log(p)

q − p
I

(
1

2

)
.

Since (log(q) − log(p))/(q − p) goes to +∞ at speed − log(min(p, q)) as min(p, q) goes to
0, we cannot derive a uniform logarithmic Sobolev inequality for two-component mixtures
under the sole assumption that I(1/2) < ∞. Surprisingly, we shall see in the sequel that
this behavior is sharp and cannot be improved in general for two-component mixtures.

4.4 The fundamental example of two Gaussians with identical variance

It was already observed by Johnson in [29, Theorem 1.1 page 536] that for the finite
univariate Gaussian mixture µ = p1N (m1, τ

2) + · · · + pnN (mn, τ
2), we have

CPI(µ) 6 τ

(
1 +

σ2

τ min16i6n pi
exp

(
σ2

τ min16i6n pi

))

where σ2 = (p1m
2
1+· · ·+pnm

2
n)−(p1m1+· · ·+pnmn)2 is the variance of p1δm1+· · ·+pnδmn .

This upper bound on the Poincaré constant blows up as min16i6n pi goes to 0. Madras
and Randall have also obtained [35, Theorem 1.2 and Section 5] upper bounds for the
Poincaré constant of non-Gaussian finite mixtures under an overlapping condition on the
supports of the components. As for the result of Johnson mentioned earlier, their upper
bound blows up when the minimum weight of the mixing law min16i6n pi goes to 0. In the
sequel, we show that the Poincaré constant can remain actually bounded as min16i6n pi

goes to 0. To fix ideas, we will consider the special case of a two-component mixture of two
Gaussian distributions N (−a, 1) and N (+a, 1). As usual, we denote by Φ (respectively
ϕ) the cumulative distribution function (respectively probability density function) of the
standard Gaussian measure N (0, 1).

Corollary 4.7 (Mixture of two Gaussians with identical variance). For any a > 0
and 0 < p < 1, let µ0 = N (−a, 1) and µ1 = N (+a, 1), and define the two-component
mixture µp = pµ1 + qµ0. Then

CPI(µp) 6 1 + pq4a2

(
Φ(2a)e4a2

+
2a√
2π
e2a2

+
1

2

)

and

CGI(µp) 6 2 +
log(q) − log(p)

q − p
pq4a2

(
Φ(2a)e4a2

+
2a√
2π
e2a2

+
1

2

)
.

Additionally, a sharper upper bound for p = 1/2 is given by

CPI(µ1/2) 6 1 + a
2Φ(a) − 1

2ϕ(a)
and CGI(µ1/2) 6 2 + a

2Φ(a) − 1

ϕ(a)
.

Note that as a function of p, the obtained upper bounds on the constants are continuous
on the whole interval [0, 1]. The bound (8) expressed in the univariate situation implies
that CPI is always greater than or equal to the variance of the probability measure. Here,
the variance of µp is equal to 1 + 4apq. Then the upper bound on the Poincaré constant
given above is sharp for any p ∈ (0, 1) as a goes to 0.
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Proof of Corollary 4.7. Lemma 4.3 ensures that p 7→ I(p) is a convex function: let us have
a look at I(0+) and I(1−) which are here equal by symmetry. Since

Φ(x+ a) − Φ(x− a) =

∫ +a

−a
ϕ(x+ u) du 6 2a






ϕ(x+ a) if x < −a,
ϕ(0) if − a 6 x 6 a,

ϕ(x− a) if a < x,

one has

I(1−) =

∫

R

(Φ(x+ a) − Φ(x− a))2

ϕ(x− a)
dx

6 4a2

(∫ −a

−∞

ϕ(x+ a)2

ϕ(x− a)
dx+ ϕ(0)2

∫ +a

−a

1

ϕ(x− a)
dx+

∫ +∞

+a
ϕ(x− a) dx

)

6 4a2

(
e4a2

∫ −a

−∞
e−

(x+3a)2

2
1√
2π

dx+
1√
2π

∫ 2a

0
e

x2

2 dx+

∫ +∞

0
ϕ(x) dx

)

6 4a2

(
Φ(2a)e4a2

+
2a√
2π
e2a2

+
1

2

)
.

Then, the first statement follows from Theorem 4.4. For the second one, by Lemma 4.8
given at the end of the section, we have

I

(
1

2

)
= 2

∫

R

Φ(x+ a) − Φ(x− a)

ϕ(x+ a) + ϕ(x− a)
(Φ(x+ a) − Φ(x− a)) dx

6 2τa

∫

R

(Φ(x+ a) − Φ(x− a)) dx

= 4aτa.

This gives as expected I(1/2) 6 2a(2Φ(a) − 1)/ϕ(a).

The following lemma shows that I(1/2) is related to some kind of “band isoperimetry”.
Note that Lemma 4.3 provides a more general approach beyond the Gaussian case.

Lemma 4.8 (Band bound). For any x ∈ R and any a > 0,

Φ(x+ a) − Φ(x− a)

ϕ(x+ a) + ϕ(x− a)
6

Φ(+a) − Φ(−a)
ϕ(+a) + ϕ(−a) = τa

Moreover, this constant cannot be improved. As an example, one has τ1 ≈ 1.410686134.

Proof of Lemma 4.8. Assume that a = 1. Let τ > 0 and define for any x ∈ R

α(x) = Φ(x+ 1) − Φ(x− 1) − τ(ϕ(x + 1) + ϕ(x− 1)).

One has α′(x) = 0 iff τ(1 + x+ (x− 1)e2x) = e2x − 1. Thus, either x = 0, or

τ−1 = β(x) = −1 + x coth(x).

The function β is even, convex, and achieves its global minimum 0 at x = 0. Therefore, the
equation α′(x) = 0 has three solutions {−xτ , 0,+xτ}, where xτ > 0 satisfies τβ(xτ ) = 1.
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Since limx→±∞ α(x) = 0, one has α 6 0 on R if and only if α(0) 6 0 and α′′(0) 6 0. The
condition α(0) 6 0 is fulfilled as soon as

τ >
Φ(+1) − Φ(−1)

ϕ(+1) + ϕ(−1)

whereas the condition α′′(0) > 0 holds for any τ . The case where a 6= 1 is similar.

Remark 4.9 (Relation with isoperimetry). If Ax = [x−a, x+a] then ∂Ax = {x−a, x+
a}. If γ = N (0, 1) then γ(Ax) = Φ(x+ a)−Φ(x− a) while γs(∂Ax) = ϕ(x+ a)+ϕ(x− a)
where γs is the surface measure associated to γ, see e.g. [32]. Lemma 4.8 expresses that for
any A ∈ Ca = {Ax;x ∈ R}, we have γ(A) 6 τaγs(∂A) and equality is achieved for A = A0.
Recall that the Gaussian isoperimetric inequality states that (ϕ◦Φ−1)(γ(A)) 6 γs(∂A) for
any regular A ⊂ R with equality when A is a half line, see e.g. [32] and references therein.

4.5 Gallery of examples of one-dimensional two-component mixtures

Recall that if µ is a probability measure on R with density f > 0 and median m then

max(b−, b+) 6 CGI(µ) 6 16max(b−, b+) (18)

where

b+ = sup
x>m

µ([x,+∞)) log

(
1 +

1

2µ([x,+∞))

)∫ x

m

1

f(y)
dy,

and

b− = sup
x<m

µ((−∞, x]) log

(
1 +

1

2µ((−∞, x])

)∫ m

x

1

f(y)
dy.

These bounds appear in [5, Remark 7 page 9] as a refinement of a famous criterion by
Bobkov and Götze based on previous works of Hardy and Muckenhoupt, see also [41]. More
generally, the notion of measure capacities constitutes a powerful tool for the control of
CPI and CGI, see [38] and [4, 5]. In the present article, we only use a weak version of such
criteria, stated in the following lemma, and which can be found for instance in [1, Chapter
6 page 107]. We will typically use it in order to show that CGI(p1µ+ qµ0) blows up as p
goes to 0 or 1 for certain choices of µ0 and µ1.

Lemma 4.10 (Crude lower bound). Let µ be some distribution on R with density
f > 0 then for every median m of µ and every x 6 m, by denoting Ψ(u) = −u log(u),

150CGI(µ) > Ψ(µ(−∞, x])

∫ m

x

1

f(y)
dy.

In this whole section, µ0 and µ1 are absolutely continuous probability measures on
R with cumulative distribution functions F0 and F1 and probability density functions f0

and f1. For every 0 6 p 6 1, we consider the two-component mixture µp = pµ1 + qµ0.
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The sharp analysis of the logarithmic Sobolev constant for finite mixtures is a difficult
problem. Also, we decided to focus on some enlightening examples, by providing a gallery
of special cases of µ0 and µ1 for which we are able to control the dependence over p of the
Poincaré and logarithmic Sobolev constant of µp. Some of them are quite surprising and
reveal hidden subtleties of the logarithmic Sobolev inequality as min(p, q) goes to 0. . . The
key tools used here are Theorem 4.4 and Lemma 4.10.

4.5.1 One Gaussian and a sub-Gaussian

Setting. Here µ1 = N (0, 1) while µ0 is such that f0 6 κf1 for some finite constant κ > 1.
Claim. For every 0 < p < 1 we have CPI(µp) 6 max(1, CPI(µ0))+Dq. This upper bound
goes to max(1, CPI(µ0)) as p → 1 and is additionally uniformly bounded when p runs
over (0, 1). Similarly, CGI(µp) 6 α − β log(p) for some constants α, β > 0 which do not
depend on p. This upper bound blows up at speed − log(p) as p → 0. This is actually
the real behavior of CGI(µp) in some situations as shown in Section 4.5.4! In contrast,
Section 4.5.2 states that lim supp→0CGI(µp) <∞ when µ0 and µ1 are two Gaussians with
identical mean and different variances.
Proof. Since µ1 = N (0, 1), we have CPI(µ1) = 1 and CGI(µ1) = 2. By hypothesis, we
have F0 6 κF1 and 1 − F0 6 κ(1 − F1). Thus, for some D > 0 and every 0 < p < 1,

I(p) 6
2(1 + κ2)

p

(∫ 0

−∞

F 2
1 (x)

f1(x)
dx+

∫ +∞

0

(1 − F1(x))
2

f1(x)
dx

)
=
D

p
<∞.

Now Theorem 4.4 shows that CPI(µp) 6 max(1, CPI(µ0)) +Dq. The desired upper bound
for CGI(µp) follows by the same way and we leave the details to the reader.

4.5.2 Two Gaussians with identical mean

We have already considered the mixture of two Gaussians with identical variances and
different means in Section 4.4. Here we consider a mixture of two Gaussians with identical
means and different variances. It turns out that this Gaussian mixture is a simple Gaussian
sub-case of Section 4.5.1, for which we are able to provide a more precise bound for CGI.
Setting. µ1 = N (0, σ2) with σ > 1 and µ0 = N (0, 1).
Claim. For every p ∈ (0, 1), we have CGI(µp) < ∞. Moreover, p 7→ CGI(µp) is bounded
on (0, 1) and lim supp→0+ CGI(µp) 6 max(CGI(µ0), CGI(µ1)) = 2σ2.
Proof. We have f0 6 κf1 for some κ > 1, and we recover the setting of Section 4.5.1. Let
us provide now an upper bound for I(p) when p is close to 0. We have pf1(x) > qf0(x) if
and only if |x| > xp where

xp =

√
2σ2

σ2 − 1
log

(
qσ

p

)
.

We have, for some constant C > 0,

I(p) 6 2

∫ −1

−∞

F1(x)
2

pf1(x) + qf0(x)
dx+ 2

∫ 0

−1

F1(x)
2

f0(x)
dx

6 2

∫ −1

−∞

1

x2

f1(x)
2

pf1(x) + qf0(x)
dx+ C,
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since 2q > 1 and F1(x) 6 f1(x)/|x|. If p is sufficiently small then xp > 1 and

∫ −1

−∞

1

x2

f1(x)
2

pf1(x) + qf0(x)
dx 6 2

∫ −1

−xp

1

x2

f1(x)
2

f0(x)
dx+

1

p
F1(−xp).

By the definition of xp, for some C > 0,

1

p
F1(−xp) 6

C

p
e−x2

p/(2σ2)
6 C

(
1

p

)σ2
−2

σ2−1

.

If σ2 6 2, then this function of p is bounded. On the other hand, for some C > 0,

∫ −1

−xp

1

x2

f1(x)
2

f0(x)
dx 6 C

∫ −1

−xp

1

x2
e

σ2
−2

2σ2 x2

dx.

If σ2 6 2, then this function of p is bounded. If σ2 > 2, then, for some C > 0,

∫ −1

−xp

e
σ2

−2

2σ2 x2

dx 6 Ce
σ2

−2

2σ2 x2
p 6 C

(
1

p

)σ2
−2

σ2−1

.

As a conclusion, if σ2 6 2, then supp∈(0,1) I(p) < ∞, whereas if σ2 > 2, then for some
constant C > 0 and any p < 1/2,

I(p) 6 C

(
1

p

)σ2
−2

σ2−1

and thus −p log(p)I(p) → 0 as p→ 0+. The desired result follows from Theorem 4.4.

4.5.3 Two uniforms with overlapping supports

Setting. Here µ0 = U([0, 1]) and µ1 = U([a, a+ 1]) for some a ∈ [0, 1].
Claim. For every p ∈ (0, 1), we have

CPI(µp) 6 π−2 +
a2

3
(3pq(1 − a) + a)

and

CGI(µp) 6 2π−2 +
log(q) − log(p)

q − p

a2

3
(3pq(1 − a) + a).

Proof. It is known (see e.g. [19]) that CPI(U([0, 1]) = π−2 while CGI(U([0, 1]) = 2π−2. By
translation invariance, we also have CPI(U([1, 1+ a]) = π−2 and CGI(U([1, 1+ a]) = 2π−2.
The desired result follows from Theorem 4.4 since for p ∈ (0, 1),

I(p) =

∫ a

0

x2

q
dx+

∫ 1

a

a2

p+ q
dx+

∫ a+1

1

(1 + a− x)2

p
dx =

a2

3pq
(3pq(1 − a) + a).
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4.5.4 One Gaussian and a uniform

Setting. Here µ1 = N (0, 1) and µ0 = U([−1,+1]).
Claim. There exists a real constant C > 0 such that CGI(µp) > −C log(p) for every
p ∈ (0, 1). Also, CGI(µp) blows up at speed − log(p) as p → 0+. Moreover, µp satisfies
a sub-Gaussian concentration of measure for Lipschitz functions, uniformly in p ∈ (0, 1).
This similarity with the Bernoulli law B(p) suggests that the blow up phenomenon of
CGI(µp) is due to the asymptotic support reduction from R to [−1,+1] when p goes to
0+. Actually, Section 4.5.5 shows that this intuition is false.
Proof. We have f0 6 κf1 for some constant κ > 1. Also, for every p ∈ (0, 1), the result
of Section 4.5.1 gives that CGI(µp) 6 α − β log(p) for some constants α > 0 and β > 0
independent of p. Now, by Lemma 4.10,

150CGI(p) > Ψ(pF1(−2) + qF0(−2))

∫ 0

−2

1

pf1(u) + qf0(u)
du

= Ψ(pF1(−2))

∫ 0

−2

1

pf1(u) + qf0(u)
du

> −
(
F1(−2)

∫ −1

−2

1

f1(u)
du

)
log(p).

4.5.5 Surprising blow up

Setting. Here f1(x) = Z−1
1 e−x2

and f0(x) = Z−1
0 e−|x|a for some fixed real number a > 2,

with Z1 = π−1/2 and Z0 = 2Γ(a−1)a−1. Note that µ0 has lighter tails than µp with p > 0.
Claim. There exists a real constant C > 0 which may depend on a such that

CGI(µp) > C(− log(p))1−2a−1

for small enough p. In particular, CGI(µp) blows up as p→ 0+.
Comments. As mentioned in the introduction, we have max(CGI(µ0), CGI(µ1)) < ∞.
We have seen in Section 4.5.2 that CGI(µp) does not blow up as p → 0+ if a = 2. Here
a > 2, and µ0 has strictly lighter tails than µp for every p ∈ (0, 1), and moreover, this
difference is at the level of the log-power of the tails, not only at the level of the constants
in front of the log-power. The potential (-log-density) of µp has multiple wells, see Figure
1. This example shows also that the blow up speed of CGI(µp) as p → 0+ cannot be
improved by considering a mixture of fully supported laws. Note that µ0 → U([−1,+1])
as a→ ∞, and the result is thus compatible with Section 4.5.4.
Proof. Since f0 6 κf1 for some constant κ > 1, Section 4.5.1 gives CGI(µp) <∞ for every
p ∈ (0, 1). Moreover, p 7→ CGI(µp) is uniformly bounded on (p0, 1) for every p0 > 0. Let us
study the behavior of this function as p → 0. In the sequel we assume that p < p0 where
p0 satisfies p0Z0 = q0Z1. The immediate tails comparison gives qf0(x) 6 pf1(x) for large
enough x. Let us find some explicit bound on x. The inequality qf0(x) 6 pf1(x) writes
|x|a − x2 > log(qZ1) − log(pZ0). Now, |x|a − x2 >

1
2 |x|a for |x|a−2 > 2. The non-negative

solution of 1
2 |x|a = log(qZ1) − log(pZ0) is

xp =

(
2 log

(
q

p

Z1

Z0

))1/a

.
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If p is small enough, then |xp|a−2 > 2 and therefore, qf0(x) 6 pf1(x) for any |x| > xp.
Now, by Lemma 4.10, for small enough p,

150CGI(µp) > Ψ(pF1(−2xp) + qF0(−2xp))

∫ 0

−2xp

1

pf1(u) + qf0(u)
du.

For small enough p, we have max(F0, F1)(−2xp) < e−1 and thus, for some constant C > 0,

Ψ(pF1(−2xp) + qF0(−2xp)) > Ψ(pF1(−2xp)) > −pF1(−2xp) log(p) > C
e−4x2

p

xp
Ψ(p).

On the other hand, since qf0(x) 6 pf1(x) for |x| > xp, we get for some constant C > 0,

∫ 0

−2xp

1

pf1(u) + qf0(u)
du >

∫ −xp

−2xp

du

2pf1(u)
>
Ce4x2

p

pxp
.

Consequently, for some real constant C > 0,

150CGI(µp) > −C log(p)

x2
p

.

Now, by using the explicit expression of xp, we finally obtain for some real constant C > 0,

CGI(µp) > C (− log(p))1−2a−1
.
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Figure 1: Density and second derivative of − log-density of µp for Example 4.5.5 with
p = 1/100 and a = 4. The second plot reveals a deep multiple wells potential.

24



4.6 Multivariate mean-difference bound

It is quite natural to ask for a multidimensional counterpart of the mean-difference Lemma
4.3. Let us give some informal ideas to attack this problem. Let µ0 and µ1 be two
probability measures on R

d, and consider as usual the mixture µp = pµ1 + qµ0 with
p ∈ (0, 1) and q = 1 − p. It is well known (see for instance [51]) that if µ0 and µ1 are
regular enough, then there exists a map T : R

d → R
d such that the image measure T · µ0

of µ0 by T is µ1 and

W2(µ0, µ1)
2 =

∫

Rd

|T (x) − x|2 µ0(dx).

If µ(s) denotes the image of µ0 by x 7→ sT (x) + (1 − s)x for every 0 < s < 1, then

(Eµ1f − Eµ0f)2 =

(∫ 1

0

∫

Rd

(T (x) − x) · ∇f(sT (x) + (1 − s)x) dµ0(x) ds

)2

.

By Cauchy-Schwarz’s inequality, we get

(Eµ1f − Eµ0f)2 6

(∫

Rd

|T (x) − x|2 dµ0(x)

)(∫ 1

0

∫

Rd

|∇f(x)|2 dµ(s)(x) ds

)

and therefore

(Eµ1f − Eµ0f)2 6 W2(µ1, µ0)
2

∫

Rd

∫ 1

0
|∇f(x)|2 dµ(s)(x) ds.

This shows that in order to control the mean-difference term (Eµ1f − Eµ0f)2 by Eµp(|∇f |2),
it is enough to find a real constant Cp > 0 such that µ 6 Cpµp where

µ(A) =

∫ 1

0
µ(s)(A) ds.

Unfortunately, this is not feasible if for some s ∈ (0, 1), the support of µ(s) is not included
in the support of µp (union of the supports of µ0 and µ1 if p ∈ (0, 1)). This problem is
due to the linear interpolation used to define µ(s) via T . The linear interpolation will fail
if the support of µp is a non-convex connected set. Let us adopt an alternative pathwise
interpolation scheme. For each x ∈ S0 = supp(µ0), let us pick a continuous and piecewise
smooth interpolating path γx : [0, 1] → R

d such that γx(0) = x and γx(1) = T (x). Then
for every smooth f : R

d → R,

f(x) − f(T (x)) =

∫ 1

0
γ̇x(s)∇f(γx(s)) ds 6

√∫ 1

0
|γ̇x(s)|2 ds

√∫ 1

0
|∇f |2(γx(s)) ds.

As a consequence, we have

(Eµ0f − Eµ1f)2 6

(∫

S0

∫ 1

0
|γ̇x(s)|2 ds µ0(dx)

) (∫

S0

∫ 1

0
|∇f |2(γx(s)) ds µ0(dx)

)
.

Now, let µ(s) be the image measure of µ0 by the map x 7→ γx(s), where here again µ is

the measure defined by µ(A) =
∫ 1
0 µ(s)(A) ds. With this notation, we have

(Eµ0f − Eµ1f)2 6

(∫

S0

∫ 1

0
|γ̇x(s)|2 ds µ0(dx)

) (∫

Rd

|∇f |2(x)µ(dx)

)
.
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Note that (∫

S0

∫ 1

0
|γ̇x(s)|2 ds µ0(dx)

)
> W2(µ0, µ1)

2

with equality when γx is the linear interpolation map between x and T (x) for every x ∈ S0.
The mean-difference control that we seek for follows then immediately if there exists a real
constant Cp > 0 such that µ 6 Cpµp. The problem is thus reduced to the choice of an
interpolation scheme γ such that the support of µ is included in the support of µp (which
is the union of the supports of µ0 and µ1 as soon as 0 < p < 1). Let us give now two
enlightening examples.

Example 4.11 (When the linear interpolation map is optimal). Consider the two-
dimensional example where µ0 = U([0, 2] × [0, 2]) and µ1 = U([1, 3] × [0, 2]). If γ is the
natural linear interpolation map given by γx(s) = x+ se1 then µ(s) = U([s, s+ 2] × [0, 2])
is supported inside supp(µ0) ∪ supp(µ1). This is due to the convexity of this union. Also,
the linear interpolation map is here optimal. Moreover, elementary computations reveal
that

Cp =
1

min(p, q)
and W2(µ0, µ1)

2 = 1.

Therefore, for every 0 < p < 1 and any smooth f : R
2 → R,

(Eµ0f − Eµ1f)2 6
1

min(p, q)
Eµp(|∇f |2).

Example 4.12 (When the linear interpolation map fails). In contrast, for the
example where µ0 = U([0, 2] × [0, 2]) and µ1 = U([1, 3] × [1, 3]) and if γ is the natural
linear interpolation map given by γx(s) = x + s(e1 + e2) then µ(s) is not supported in
supp(µ0) ∪ supp(µ1) and this union is not convex. If A = [0, 1] × [2, 3] then µ(s)(A) > 0
for every 0 < s < 1 while µp(A) = 0 for every 0 < p < 1 and hence there is no finite
constant Cp > 0 such that µ 6 Cpµp. This shows that the linear interpolation map fails
here. Let us give an alternative interpolation map which leads to the desired result. We
set for every x ∈ supp(µ0) and every 0 6 s 6 1, with 1 = (e1, e1),

γx(s) =

{
(1 − s)x+ 2s1 if 0 6 s 6

1
2

sx+ 1 otherwise.

This corresponds to a two-steps linear interpolation between the squares [0, 2]2 and [1, 3]2

with intermediate square [1, 2]2. For every 0 6 s 6 1,

µ(s) =

{
U([2s, 2]2) if 0 6 s 6

1
2

U([1, 1 + 2s]2) otherwise.

Note that we constructed γ in such a way that µ(s) is always supported in supp(µ0) ∪
supp(µ1). Elementary computations reveal that for every 0 < p < 1,

∫

S0

∫ 1

0
|γ̇x(s)|2 ds µ0(dx) =

8

3
and µ 6

4

min(p, q)
µp.
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Finally, putting all together, we obtain for every 0 < p < 1 and smooth f : R
2 → R,

(Eµ0f −Eµ1f)2 6
32

3min(p, q)
Eµp(|∇f |2).

As a conclusion, one can retain that the natural interpolation problem associated to the
control of the mean-difference involves a kind of support-constrained interpolation for mass
transportation.
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2007. 2, 2

Compiled December 10, 2008
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