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Djalil Chafäı and Florent Malrieu

Preprint – May 2008

Abstract

Mixtures are convex combinations of laws. Despite this simple definition, a mixture
can be far more subtle than its mixed components. For instance, mixing Gaussian
laws may produce a wild potential with multiple wells. We study in the present work
fine properties of mixtures with respect to concentration of measure and Gross type
functional inequalities. We provide sharp Laplace bounds for Lipschitz functions in the
case of generic mixtures, involving a transportation cost diameter of the mixed family.
We also provide precise upper bounds for two-components mixtures. Additionally,
our analysis of Gross type inequalities for two-components mixtures reveals natural
relations with some kind of band isoperimetry and support constrained interpolation
via mass transportation. We show that the Poincaré constant of a two-components
mixture may remain bounded as the mixture proportion goes to 0 or 1 while the Gross
constant may surprisingly blow up. Additionally, this counter-intuitive result is not
reducible to support disconnections. As far as mixture of distributions are concerned,
the Gross inequality is less stable than the sub-Gaussian concentration for Lipschitz
functions. We illustrate our results on a gallery of concrete two-components mixtures.
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1 Introduction

Mixtures of distributions are ubiquitous in Stochastic Analysis, Modelling, Simulation, and
Statistics, see for instance the monographs [19, 21, 43, 44, 54]. Recall that a mixture of
distributions is nothing else but a convex combination of these distributions. For instance,
if µ0 and µ1 are two laws on the same space, and if p ∈ [0, 1] and q = 1 − p, then the law
pµ1 + qµ0 is a “two-components mixture”. More generally, a finite mixture takes the form
p1µ1 + · · · + pnµn where µ1, . . . , µn are probability measures on a common measurable
space and p1δ1 + · · ·+pnδn is a finite discrete probability measure. A widely used example
is given by finite mixtures of Gaussians for which µi = N (mi, σ

2
i ) for every 1 6 i 6 n. In

that case, for certain choices of m1, . . . ,mn and σ1, . . . , σn, the mixture

p1N (m1, σ
2
1) + · · · + pnN (mn, σ

2
n)

is multi-modal and its log-density is a multiple wells potential. For instance, each compo-
nent µi may correspond typically in Statistics to a sub-population, in Information Theory
to a channel, and in Statistical Physics to an equilibrium. A very natural example is given
by the invariant measures of finite Markov chains, which are mixtures of the invariant
measures uniquely associated to each recurrent classes of the chain. A more subtle exam-
ple is the local field of the Sherrington-Kirkpatrick model of spin glasses which gives rise
to a mixture of two univariate Gaussians with equal variances, see for instance [16].

At this point, it is enlightening to introduce a bit more abstract point of view. Let
ν be a probability measure on some measurable space Θ and (µθ)θ∈Θ be a collection
of probability measures on some common fixed measurable space X , such that the map
θ 7→ Eµθ

f is measurable for any fixed bounded continuous f : X → R. The mixture
M(ν, µθ∈Θ) is the law on X defined for any bounded measurable f : X → R by

EM(ν,µθ∈Θ)f =

∫

Θ

∫

X
f(x) dµθ(x) dν(θ) = Eν(θ 7→ Eµθ

f).

Here ν is the mixing law whereas (µθ)θ∈Θ are the mixed laws or the mixture components
or even the mixed family. With these new notations, and for the finite mixture example
mentioned earlier we have Θ = {1, . . . , n} and ν = p1δ1 + · · · + pnδn and

M(ν, (µθ)θ∈Θ) = M(p1δ1 + · · · + pnδn, {µ1, . . . , µn}) = p1µ1 + · · · + pnµn.

The mixture M(ν, µθ∈Θ) can be seen as a sort of general convex combination in the convex
set of probability measures on X . It appears for certain class of ν as a particular Choquet’s
Integral, see [48] and [20]. On the other hand, the case where the mixture components
are product measures is also related to exchangeability and De Finetti’s Theorem, see for
instance [9]. In terms of random variables, if (X,Y ) is a couple of random variables then
the law L(X) of X is a mixture of the family of conditional laws L(X|Y = y) with the
mixing law L(Y ). By this way, mixing appears as the dual of the so-called disintegration
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of measure. Here and in the whole sequel, the term “mixing” refers to the mixture of
distributions as defined above and has a priori nothing to do with weak dependence.

The first aim of the present work is to investigate the fine behavior of concentration of
measure for mixtures, for instance the behavior of the concentration of measure of a two-
components mixture pµ1 + qµ0 as min(p, q) goes to 0. It is well known that Poincaré and
Gross (logarithmic Sobolev) functional inequalities are powerful tools in order to obtain
concentration of measure. Also, our second aim is to investigate the fine behavior of the
Poincaré and Gross inequalities for mixtures, and in particular for two-components mix-
tures. Our work reveals striking unexpected phenomena. In particular, our results suggest
that the Gross inequality, which implies sub-Gaussian concentration, is very sensitive to
mixing, in contrast with the sub-Gaussian concentration itself which is far more stable.
As in [23] and [4], our work is connected to the more general problem of the behavior of
optimal constants for sequences of probability measures.

Let us start with the notion of concentration of measure for Lipschitz functions. Recall
that a function f : R

d → R is Lipschitz when

‖f‖Lip = sup
x 6=y

|f(x) − f(y)|
|x− y| <∞.

Let µ be a probability measure on R
d such that Eµ|f | <∞ for every Lipschitz function f .

This holds true for instance when µ has a finite first moment. We always make implicitly
this assumption in the sequel. We define now the log-Laplace αµ : R → [0,∞] of µ by

αµ(λ) = log sup
‖f‖Lip61

Eµ

(

eλ(f−Eµf)
)

. (1)

The Cramér-Chernov-Chebychev inequality gives immediately for every real number r > 0

βµ(r) = sup
‖f‖Lip61

µ(|f − Eµf | > r) 6 2 exp

(

sup
λ>0

(rλ− αµ(λ))

)

. (2)

Note that βµ is a uniform upper bound on the tails probabilities of Lipschitz images of
µ. We are interested in the control of βµ via αµ in the case where µ = M(ν, (µθ)θ∈Θ), in
terms of the mixing law ν and of the log-Laplace bounds (αµθ

)θ∈Θ for the mixed family.
We say that µ satisfies to sub-Gaussian concentration of measure for Lipschitz functions

when there exists a constant C ∈ (0,∞) such that for every real number λ

αµ(λ) 6
1

4
Cλ2. (3)

A direct consequence of this log-Laplace-Lipschitz quadratic bound is that for every r > 0

βµ(r) 6 2 exp

(

−r
2

C

)

. (4)

Actually, it was shown (see [18] and [12]) that up to constants, (3) and (4) are equivalent,
and are also equivalent to the existence of a constant ς ∈ (0,∞) and x0 ∈ R

d such that

∫

Rd

eς|x−x0|2 µ(dx) <∞. (5)
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Linear or quadratic upper bounds for αµ may be deduced from functional inequalities
such as Poincaré inequalities and Gross (logarithmic Sobolev) inequalities [26, 27]. More
precisely, let us focus on the case where µ is a law on R

d. We say that µ satisfies to a
Poincaré inequality of constant C ∈ (0,∞) when for every smooth h : R

d → R,

Varµ(h) 6 C E(|∇h|2) (6)

where Varµ(h) = Eµ(h2) − (Eµh)
2 is the variance of h for µ. The smallest possible C

is called the optimal Poincaré constant of µ and is denoted CPI(µ) with the convention
inf ∅ = ∞. Similarly, µ satisfies to a Gross inequality of constant C ∈ (0,∞) when

Entµ(h2) 6 C E(|∇h|2) (7)

for every smooth function f : R
d → R, where Entµ(h2) = Eµ(h2 log h2)−Eµ(h2) log Eµ(h2)

is the “entropy” of h2 for µ (with the convention 0 log(0) = 0). As for the Poincaré in-
equality, the smallest possible C is the optimal Gross constant of µ and is denoted CGI(µ)
with inf ∅ = ∞. Standard linearization arguments give that

ρ(Kµ) 6 CPI(µ) 6
1

2
CGI(µ) (8)

where ρ(Kµ) stands for the spectral radius of the covariance matrix Kµ of µ defined by
(Kµ)i,j = Eµ(xixj) − Eµ(xi)Eµ(xj) where xi and xj are the coordinates functions. A
wide class of laws satisfy to Poincaré and Gross inequalities. A basic example is given by
Gaussian laws for which equalities are achieved in (8). Note that CGI(µ) < ∞ implies
CPI(µ) <∞ but (10) shows that the converse is false. Note also that if µ has disconnected
support, then necessarily CPI(µ) = CGI(µ) = ∞. To see it, just consider a non constant
function h which is constant on each connected component of the support of µ. This is for
instance the case for for the two-component mixture µ = pµ1+qµ0 = M(pδ1+qδ0, {µ0, µ1})
with p ∈ (0, 1) and q = 1 − p where µ0 and µ1 have disjoint supports.

The Gross inequality (7) encloses a sub-Gaussian concentration of measure for Lipschitz
images of µ. Namely, using (7) with h = exp(1

2λf) for a real number λ and a smooth
Lipschitz function f : R

d → R gives via Rademacher’s Theorem and a standard argument
attributed to Herbst [38, Chapter 5] that for any reals λ and r > 0

αµ(λ) 6
1

4
CGIλ

2 and βµ(r) 6 2 exp

(

− r2

CGI

)

. (9)

The same method yields from (6) a sub-exponential upper bound for βµ of the form
c1 exp(−c2r), see [25] and [37, Section 2.5]. Beyond Gaussian laws, a criterion due to
Bakry and Émery [3, 2] (see also [46], and the ideas of Stam [51, 15]) states that if µ has
density e−V on R

d such that x 7→ V (x) − 1
2κ |x|2 is convex for some fixed real κ > 0 then

CPI(µ) 6 κ and CGI(µ) 6 2κ

with equality when µ is Gaussian. A striking result due to Caffarelli [13, 14] and based on
the Brenier-McCann Theorem and the Monge-Ampère equation states that such uniformly
log-concave laws are Lipschitz images of a Gaussian. It is immediate via Rademacher’s
Theorem that Poincaré and Gross inequalities are stable by Lipschitz maps, i.e.

CPI(f · µ) 6 ‖f‖2
LipCPI(µ) and CGI(f · µ) 6 ‖f‖2

LipCGI(µ)
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where f ·µ denotes the image measure of µ by f . The equality is achieved if f(x) = ax+ b
(translation and dilation). If Φ is the cumulative distribution function of the standard
Gaussian measure N (0, 1) on R, then Φ ·N (0, 1) = U([0, 1]) and since ‖Φ‖Lip 6 (2π)−1 we
get CPI(U([0, 1])) 6 (2π)−1 and CGI(U([0, 1])) 6 π−1. Actually, it is shown in [22] that

2CPI(U([0, 1])) = CGI(U([0, 1])) =
2

π2
.

On the real line, CPI and CGI can be controlled via “simple” variational bounds (see (20)
page 19). This allows to analyze the finiteness of these constants for laws lying between
the exponential and the Gaussian. Namely, if µa is the law on R with density proportional
to x 7→ e−|x|a for some fixed real a > 0, then (see [2, Chapter 6], [33], and [11])

CPI(µa) <∞ iff a > 1 while CGI(µa) <∞ iff a > 2. (10)

Both Poincaré and Gross inequalities are also stable by bounded perturbations, in the
sense that if µB has density eB with respect to µ then, with osc(B) = supB − inf B,

CPI(µB) 6 e2osc(B)CPI(µ) and CGI(µB) 6 e2osc(B)CGI(µ).

These bounds, due to Holley and Stroock [30], follow from variational formulas for variance
and entropy, see also [28] and [4] for further developments. In view of sub-exponential
or sub-Gaussian concentration bounds, the main advantage of (6) and (7) over a direct
approach based on αµ or βµ lies in the stability by tensor products, namely

CPI(µ1 ⊗ µ2) 6 max(CPI(µ1), CPI(µ2)) and CGI(µ1 ⊗ µ2) 6 max(CGI(µ1), CGI(µ2))

which leads to dimension-free sub-exponential and sub-Gaussian upper bounds for βµ⊗n

via αµ⊗n . It is important to realize that in general, αµ is not stable by tensor product in
the sense that the upper bound on αµ⊗n deduced from an upper bound for αµ may depend
on n. We refer to [12] and [24] and references therein for further details.

Recall that for every k > 1, the Wasserstein (or transportation cost) distance of order k
between two probability measures µ1 and µ2 on R

d is defined by (see [55, 56] and [49, 52])

Wk(µ1, µ2) = inf
π

(
∫

Rd×Rd

|x− y|k dπ(x, y)

)k−1

(11)

where π runs over the set of laws on R
d×R

d with marginals µ1 and µ2. TheWk-convergence
is equivalent to the weak convergence together with the convergence of moments up to
order k. In dimension d = 1, we have, by denoting F1 and F2 the cumulative distribution
functions of µ1 and µ2, with generalized inverses F−1

1 and F−1
2 , for every k > 1,

Wk(µ1, µ2)
k =

∫ 1

0

∣

∣F−1
1 (x) − F−1

2 (x)
∣

∣

k
dx and W1(µ1, µ2) =

∫

R

|F1(x) − F2(x)| dx
(12)

where the last expression of W1 follows from the Kantorovich-Rubinstein dual formulation

W1(µ1, µ2) = sup
‖f‖Lip61

(
∫

Rd

f dµ1 −
∫

Rd

f dµ2

)

. (13)
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Note that if µ1 does not give mass to points then µ2 = (F−1
2 ◦F1) ·µ1. The transportation

cost distances lead to another type of functional inequalities popularized by Marton [40,
41], Talagrand [53], and Bobkov & Götze [10]. Namely, we say that a probability measure
µ on R

d satisfies to a Wk inequality [38, 55, 56] when there exists a constant Ck ∈ (0,∞)
such that for every density f with respect to µ,

Wk(µ, fµ)2 6 CkEntµ(f). (14)

It is known [12, 18] that the W1 inequality is equivalent to a sub-Gaussian concentration
of measure for Lipschitz functions (3) and to a square exponential integrability (5). In
particular, the W1 inequality is not stable by tensor product (the constant may depend
on the tensor power). In contrast, the W2 inequality, which is stronger, is stable by tensor
products and is actually equivalent to a sub-Gaussian concentration of measure with a
constant independent of the dimension (see the recent work of Gozlan [24]).

It was shown by Otto & Villani [47] that the Gross inequality (7) implies the W2

inequality, and that the converse is true under some log-concavity assumption. Under the
same assumption, the square exponential integrability (5) implies the Gross inequality (7)
(see [1, 57]). We refer to [24, 6, 56] for recent accounts on these links. Back to mixtures,
we provide in Section 4.5.5 a simple example of a two-component mixture pµ1 + qµ0 for
which the log-concave curvature and the Gross constant blow up as p goes to 0 while the
sub-Gaussian concentration of measure for Lipschitz functions remains bounded.

The case of mixtures. The integral criterion (5) shows that if each component of a
mixture satisfies to a sub-Gaussian concentration of measure for Lipschitz functions, and
if the mixing law has compact support, then the mixture also satisfies to sub-Gaussian
concentration of measure for Lipschitz functions. Such bounds appear for instance in [8].
However, this observation does not give any fine quantitative estimate on the dependency
over the weights for a finite mixture. Regarding Poincaré and Gross inequalities, it is clear
that a finite mixture of Gaussians will satisfies to such inequalities since its log-density is
a bounded perturbation of a uniformly concave function. Here again, this does not give
any fine control on the constants. Notice also that if the union of the supports of the
mixture components is not connected, then the mixture cannot satisfy to a Poincaré or
Gross inequality, even if each component does.

An upper bound for the Poincaré constant of univariate finite Gaussian mixture was
provided by Johnson [32, Theorem 1.1 and Section 2]. Unfortunately, this upper bound
blows up when the minimum weight of the mixing law goes to 0. A more general upper
bound for finite mixtures of overlapping densities was obtained by Madras and Randall
[39, Theorem 1.2 and Section 5]. Here again, the bound blows up when the minimum
weight of the mixing law goes to 0. Some aspects of Poisson mixtures are considered by
Kontoyannis and Madiman [34, 35] in connection with compound Poisson processes and
discrete modified Gross inequalities.

Outline of the article. Recall that the aim of the present work is to study fine
properties of mixture of distributions with respect to concentration of measure for Lips-
chitz functions, and also with respect to Poincaré and Gross functional inequalities. The
analysis of various elementary examples shows actually that such a general objective is
very ambitious. Also, we decided to focus in the present work on more tractable sit-
uations. Section 2 provides general Laplace bounds for Lipschitz functions in the case
of generic mixtures. These upper bounds on αµ (and thus βµ) for a mixture µ involve
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the W1-diameter of the mixed family. Section 3 is devoted to upper bounds on αµ for
two-components mixtures µ = µp = pµ1 + qµ0. Our result is mainly based on a Laplace-
Lipschitz counterpart of the optimal Gross inequality for asymmetric Bernoulli measures.
In particular, we show that if µ0 and µ1 have sub-Gaussian concentration for Lipschitz
functions, then it is also the case for the mixture µp, with a quite satisfactory and intuitive
behavior as p goes to 0 or 1. In section 4, we study Poincaré and Gross inequalities for
two components mixtures. A decomposition of variance and entropy allows to reduce the
problem to the Poincaré and Gross inequalities for each component, to discrete inequali-
ties for the Bernoulli mixing law pδ1 + qδ0, and to the control of a mean-difference term.
This last term can be controlled in turn by using some support-constrained transporta-
tion, leading to very interesting open questions in dimension > 1. The Poincaré constant
of the two-component mixture remains bounded as min(p, q) goes to 0, while the Gross
constant may surprisingly blow up at speed − log(min(p, q)). This counter-intuitive result
shows that as far as mixture of distributions are concerned, the Gross inequality does not
behave like the sub-Gaussian concentration for Lipschitz functions. We also illustrate our
results on a gallery of concrete two-components mixtures. In particular, we show that the
blowing of the Gross constant as min(p, q) goes to 0 is not necessarily related to support
problems!

Open problems. The study of Poincaré and Gross inequalities for multivariate or
non-finite mixtures is an interesting open problem, for which we give some clues at the
end of Section 4 in terms of support-constrained transportation interpolation. There is
also a probably interesting link with the decomposition approach used in [31] for Markov
chains. Another interesting open problem is the development of a direct approach for Wk

inequalities (14) and for measure capacities inequalities [7] for mixtures, even in the finite
univariate case.

2 General Laplace bounds for Lipschitz functions

Intuitively, the concentration of measure of a finite mixture may be controlled by the
worst concentration of the components and some sort of diameter of the mixed family. We
shall confirm, extend, and illustrate this intuition for a (non necessarily finite) mixture
µ = M(ν, (µθ)θ∈Θ) by providing upper bounds for αµ. The key point is that if ‖f‖Lip <∞
and λ > 0 then

Eµ

(

eλf
)

eλEµf
= e−λEµf

∫

Θ
Eµθ

(

eλf
)

ν(dθ) 6

∫

Θ
eαθ(λ)+λ(Eµθ

f−Eµf) ν(dθ). (15)

Theorem 2.1 (Laplace bound via diameter). If

α = sup
θ∈Θ

αθ <∞ and W = sup
θ,θ′∈Θ

W1(µθ, µθ′) <∞

then for every λ > 0 we have

αµ(λ) 6 α(λ) +
1

8
min

(

8Wλ,W
2
λ2
)

.

Proof. The bound (15) implies that for every λ > 0,

αµ(λ) 6 α(λ) + sup
F

log

∫

Θ
eλ(Eµθ

f−Eµf) ν(dθ). (16)
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Thanks to the relation (13), we obtain

Eµθ
f − Eµf =

∫

Θ

(

Eµθ
f − Eµθ′

f
)

ν(dθ′)

6

∫

Θ
W1(µθ, µθ′) ν(dθ

′) 6 W.

This shows that the second term in the right hand side of (16) is bounded by Wλ. Alter-
natively, one can use the Hoeffding bound [29] which says that if X is a centered bounded
random variable with oscillation c = supX − infX then

E
(

eλX
)

6 e
1
8
λ2c2.

The desired bound in terms of W
2
λ2 follows by taking X = EµY

f − Eµf where Y ∼ ν
and noticing that c 6 supθ,θ′

(

Eµθ
f − Eµθ′

f
)

= W .

Example 2.2 (Finite mixtures). For a finite mixture µ = p1µ1+· · ·+pnµn = M(ν, (µi)16i6n)
where ν = p1δ1 + · · · + pnδn, the mixing measure ν is supported by a finite set. In that
case, Theorem 2.1 gives an immediate Laplace bound, involving the worst bound for the
mixture components (µi)16i6n (this cannot be improved in general). However, in Section
3, we provide sharper bounds by improving the dependency over ν in the case where n = 2.

Example 2.3 (Bounded mixtures of multivariate Gaussians). Here µθ = N (m(θ),Γ(θ))
where m : Θ → R

d and Γ : R
d → S+

d are two measurable bounded functions and S+
d is the

cone of symmetric nonnegative d×d matrices. Note that Γ is allowed to be singular (not of
full rank). We denote by λ1(θ) > · · · > λd(θ) the spectrum of Γ(θ) and C = supθ∈Θ λ1(θ).
Now fix some mixing distribution ν on Θ and consider the mixture µ = M(ν, (µθ)θ∈Θ).
Then for every λ > 0,

αµ(λ) 6
C

2
λ2 +

1

8
min(8Wλ,W

2
λ2).

One can deduce a bound of W from the following lemma.

Lemma 2.4. Let µ0 = N (m(0),Γ(0)) and µ1 = N (m(1),Γ(1)) be two Gaussian measures
on R

d. For θ ∈ {0, 1}, we denote by λ1(θ) > · · · > λd(θ) the ordered spectrum of Γ(θ) and
by (vi(θ))16i6d an associated orthonormal basis of eigenvectors. Assume (without loss of
generality) that vi(0) · vi(1) > 0 for every 1 6 i 6 d where “·” stands for the standard
Euclidean scalar product of R

d. Then W1(µ0, µ1) is bounded above by

|m(1) −m(0)| +

√

√

√

√

d
∑

i=1

{

(

√

λi(1) −
√

λi(0)
)2

+ 2
√

λi(1)λi(0)(1 − vi(1) · vi(0))

}

.

Proof. The triangle inequality for the W1 distance gives

W1(µ0, µ1) 6 W1(µ0,N (m(1),Γ(0))) +W1(N (m(1),Γ(0)), µ1)

6 |m(1) −m(0)| +W1(N (0,Γ(0)),N (0,Γ(1))).
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Now, if (Yi)16i6d are i.i.d. real random variables of law N (0, 1) then the law of

Xθ =

d
∑

i=1

Yi

√

λi(θ)vi(θ)

is N (0,Γ(θ)) for θ ∈ {0, 1}. Moreover, from the expression (11) we get

W1(N (0,Γ(0)),N (0,Γ(1)))2 6 (E|X1 −X0|)2 6 E(|X1 −X0|2).

At this step, we note that

|X1 −X0|2 =

d
∑

i=1

Y 2
i

∣

∣

∣

√

λi(1)vi(1) −
√

λi(0)vi(0)
∣

∣

∣

2

+ 2
∑

i<j

YiYj

(

√

λi(1)vi(1) −
√

λi(0)vi(0)
)

·
(

√

λi(1)vi(1) −
√

λi(0)vi(0)
)

.

Since (Yi) are i.i.d. N (0, 1) and (vi(θ))16i6d is orthonormal for θ ∈ {0, 1}, one has

E(|X1 −X0|2) =

d
∑

i=1

∣

∣

∣

√

λi(1)vi(1) −
√

λi(0)vi(0)
∣

∣

∣

2

=

d
∑

i=1

{

(

√

λi(1) −
√

λi(0)
)2

+ 2
√

λi(1)λi(0)(1 − vi(1) · vi(0))

}

.

Of course the assumptions of Theorem 2.1 may be relaxed. Instead of trying to deal
with generic abstract results, let us provide some highlighting examples.

Example 2.5 (Gaussian mixture of translated Gaussians). Here Θ = R and µθ =
N (θ, σ2) for some fixed σ > 0, and the mixing law is also Gaussian ν = N (0, τ2) for some
fixed τ > 0. In this case, α(λ) = 1

2σ
2λ2 but W is infinite since W1(µθ, µθ′) = |θ − θ′|. In

particular, Theorem 2.1 is useless. Nevertheless, the function θ 7→ g(θ) = Eµθ
f − Eµf is

Lipschitz since
∣

∣g(θ) − g(θ′)
∣

∣ 6 E
(
∣

∣f(X + θ)− f(X + θ′)
∣

∣

)

6
∣

∣θ − θ′
∣

∣,

where X ∼ N (0, 1). As a consequence,

sup
‖f‖Lip61

log

∫

Θ
eλ(Eµθ

f−Eµf) ν(dθ) 6
τ2λ2

2
,

and for any λ > 0

αµ(λ) 6
σ2 + τ2

2
λ2.

The same argument may be used more generally for position mixtures. For instance if η
is some fixed probability measure on R

d and µθ = η ∗ δθ for θ ∈ R
d then ∀λ > 0,

αµ(λ) 6 αη(λ) + αµ(λ).

In this particular case, µ = ν ∗ η and the bound above follows also by tensorization!
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Example 2.6 (Mixture of scaled Gaussians: from exponential to Gaussian tails).
Here we take Θ = [0,∞) and µθ = N (0, θ2) with a mixing measure ν of density

θ 7→ γ

Γ(γ−1)
exp (−θγ)I[0,∞)(θ)

where γ > 2 is some fixed real number. Since ν has a non-compact support, the mixture
µ cannot satisfy the integral criterion (5). This means that µ cannot have sub-Gaussian
tails. Note also that both α(λ) and W are infinite since

αθ(λ) =
θ2λ2

2
and W1(µθ, µθ′) =

√

2

π

∣

∣θ − θ′
∣

∣

where we used (12) for W1. Starting from (15), one has by Cauchy-Schwarz’s inequality

(

Eµ

(

eλf
)

eλEµf

)2

6

∫

R

eθ
2λ2

ν(dθ)

∫

R

e2λ(Eµθ
f−Eµf) ν(dθ). (17)

Note that ν satisfies condition (5) and αν(λ) 6 Cλ2 for some real constant C > 0. Here
and in the sequel, the constant C may vary from line to line and may be chosen independent
of γ. On the other hand, the centered function g(θ) = Eµθ

f − Eµf is 1-Lipschitz since

∣

∣g(θ) − g(θ′)
∣

∣ =
∣

∣Ef(θX)− Ef(θ′X)
∣

∣ 6
∣

∣θ − θ′
∣

∣E(|X|)

where X ∼ N (0, 1). This allows to bound the second term in the right hand side of (17)
as

∫

R

e2λ(Eµθ
f−Eµf) ν(dθ) 6 eαν (2λ)

6 e4Cλ2
.

If γ = 2 then αµ(λ) 6 (1 − 2λ2)−1/2 + 2Cλ2 if
√

2λ < 1, which gives the deviation bound

µ(F − Eµf > r) 6 e−Cr.

Assume in contrast that γ > 2. Since θ2λ2 6 γ−1θγ + Cλ
2γ

γ−2 , we have

∫ ∞

0
exp

(

θ2λ2
)

ν(dθ) 6 C exp
(

Cλ
2γ

γ−2

)

.

This gives αµ(λ) 6 Cλ
2γ

γ−2 + C which yields the deviation bound

µ(f − Eµf > r) 6 C exp
(

−Cr2−
4

γ+2

)

.

Note that ν goes to the uniform law on [0, 1] as γ → ∞ and the Gaussian tail reappears.

3 Concentration bounds for two-components mixtures

In this section, we investigate the special case where the mixing measure ν is the Bernoulli
measure B(p) = pδ1 + qδ0 where q = 1 − p. We are interested in the study of the sharp
dependence of the concentration bounds on p, especially when p is close to 0 or 1.
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Theorem 3.1 (Two-components mixture). Let µ0 and µ1 be two probability measures
on X and µ = pµ1 + qµ0 with p ∈ [0, 1] and q = 1− p. Define xp = max(p, q)/(2cp) where

cp =
q − p

4(log(q) − log(p))

with the conventions c1/2 = 1/8 and c0 = c1 = 0. Then for any λ > 0,

αµ(λ) 6 max(αµ0 , αµ1)(λ) +

{

cpλ
2W1(µ0, µ1)

2 if λW1(µ0, µ1) 6 xp

max(p, q)(λW1(µ0, µ1) − xp) otherwise.

Note that if min(p, q) → 0, then cp ∼ −(4 log(p))−1 → 0 and xp → ∞, and we thus
recover an upper bound of the form αµ 6 max(αµ1 , αµ2) as min(p, q) → 0, which is
satisfactory. The two different upper bounds given by Theorem 3.1 provide two different
upper bounds for the concentration of measure of the mixture µ, illustrated by the following
Corollary (the proof of the Corollary is immediate and is left to the reader).

Corollary 3.2 (Two-components mixtures with sub-Gaussian tails). Let µ0 and
µ1 be two probability measures on X and µ = pµ1 + qµ0 for some p ∈ [0, 1] with q = 1− p.
If there exists a real constant C > 0 such that for any λ > 0

max(αµ0 , αµ1)(λ) 6
1

2
Cλ2

then for every r > 0, with W = W1(µ0, µ1),

βµ(r) 6 2



























exp

(

− r2

2C + 4cpW
2

)

if r 6 max(p, q)
(

C
2cpW

+W
)

,

exp

(

− 1

2C
(r − max(p, q)W )2 − max(p, q)2

4cp

)

otherwise.

Proof of Theorem 3.1. We have µ = qµ0 + pµ1 = M(ν, {µ0, µ1}) where ν := qδ0 + pδ1.
For this special finite mixture, we get, as in the general case, for any F ∈ Lip(X ,R) and
any λ > 0,

log

(

Eµ

(

eλf
)

eλEµf

)

6 max(αµ0 , αµ1)(λ) + log

(

Eν

(

eλg
)

eλEνg

)

,

where g(i) := Eµi
f . At this step, we use the particular nature of ν, which gives the

identity
Eν

(

eλg
)

eλEνg
= coshp(λ(g(1) − g(0))),

where coshp(x) := peqx + qe−px. Since g(1) − g(0) = Eµ1f − Eµ0f , we get by (13)

−W1(µ0, µ1) 6 g(1) − g(0) 6 W1(µ0, µ1).

Since coshp(−x) = coshq(x) for any x ∈ R, we get for any λ > 0,

sup
‖F‖Lip61

(

Eν

(

eλg
)

eλEνg

)

= max (coshp, coshq)(λW1(µ0, µ1)).

11



Putting all together, we obtain, for any λ > 0,

αµ(λ) 6 max(αµ0 , αµ1)(λ) + log max (coshp, coshq)(λW1(µ0, µ1)),

Since the derivative of coshq − coshp is equal to pq(sinh(q·) − sinh(q·)), one has, for every
x > 0,

max (coshp, coshq)(x) = coshmin(p,q)(x).

Let us assume that p 6 q. Lemma 3.3 ensures that, for every x > 0,

log max (coshp, coshq)(x) = log coshp(x) 6 cpx
2.

On the other hand,
log coshp(x) = qx+ log

(

p+ qe−x
)

6 qx.

Now, for x = xp, the slope of x 7→ cpx
2 is equal to q and the tangent is y = q(x− xp). On

the other hand, the convexity of x 7→ log coshp(x) yields log coshp(x) 6 q(x−xp) for x > xp

(drawing a picture may help the reader). The desired conclusion follows immediately.

The proof of Theorem 3.1 relies on lemma 3.3 below which provides a Gaussian bound
for the Laplace transform of a Lipschitz function with respect to a Bernoulli measure.
This lemma can be seen as an improvement of the Hoeffding bound [29] in the case of a
Bernoulli measure.

Lemma 3.3 (Two points lemma). For any 0 6 p 6 1/2, we have

sup
x>0

x−2 log(peqx + qe−px) = cp =
q − p

4(log(q) − log(p))
(18)

with the natural conventions c0 = 0 and c1/2 = 1/8 as in Theorem 3.1. Moreover, the
supremum in x is achieved for x = 2(log(q) − log(p)).

The constant cp is also equal, as it will appear in the proof, to supλ>0 αB(p)(λ)/λ2. The
classical Hoeffding bound for this supremum is c1/2 = 1/8 which is the maximum of cp
over p. Additionally, the quantity pq/(4cp) is the optimal constant of the Gross inequality
for the asymmetric Bernoulli measure qδ0 + pδ1.

Proof of Lemma 3.3. Let us define xp = log(q/p) and β(x) = x−2ψ(x) where

ψ(x) = log(peqx + qe−px).

The function ψ is “strongly convex” at the origin (ψ(0) = ψ′(0) = 0 and ψ′′(0) = pq and
ψ′′′(0) > 0) and linear at infinity (ψ′(∞) = q). Therefore, the supremum of β is achieved
for some x > 0. The derivative of β has the sign of γ(x) := xψ′(x)− 2ψ(x). Furthermore,

γ′(x) = xψ′′(x) − ψ′(x) and γ′′(x) = xψ′′′(x).

As a consequence, γ′′ has the sign of ψ′′′ which is positive on (0, xp) and negative on
(xp,+∞). Since γ′(0) = 0 and γ′ achieves its maximum for x = xp and γ′ goes to −q at
infinity and there exists an unique yp > 0 (in fact yp > xp) such that γ′(yp) = 0. As a
conclusion, since γ(0) = 0 and γ is increasing on (0, yp) and γ(x) goes to −∞ as x goes to
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infinity, γ(x) is equal to zero exactly two times: for x = 0 and x = zp > yp > xp In fact,
zp is equal to 2xp. Indeed, we have

ψ′(x) = pq
eqx − e−px

peqx + qe−px
.

Now, we compute

ψ′(2xp) = pq
(q/p)2q − (p/q)2p

p(q/p)2q + q(p/q)2p
= · · · = q2 − p2 = q − p,

and

2ψ(2xp) = 2 log(p(q/p)2q + q(p/q)2p)

= 2 log((q + p)(q/p)q−p)

= 2xpψ
′(2xp).

Thus, 2xp is (the unique positive) solution of 2ψ(x) = xψ′(x). As a conclusion, cp =
ψ(2xp)/(4x

2
p) which gives the desired formula after some algebra.

Remark 3.4 (Advantage of direct Laplace bounds). Consider a mixture µ = pµ1 +
qµ0 of two Gaussian laws µ0 and µ1 on R with same variance σ2 and different means.
Corollary 3.2 ensures that for every r > 0,

βµ(r) 6 2 exp

(

− r2

2σ2 + 4cpW1(µ0, µ1)2

)

.

This bound remains relevant as σ goes to zero (we recover the bound for the Bernoulli
mixing measure ν = pδ1 + qδ0). On the other hand, any concentration bound deduced from
a Gross inequality would blow up as σ goes to zero, as we shall see in Section 4.

Remark 3.5 (Inhomogeneous tails). It is satisfactory to recover, when p goes to 0
or 1, the concentration bound of one of the component of the mixture. Nevertheless, one
could expect to recover the one of µ0 (and not only the maximum of the bounds of the
two-components). It is possible exhibit two regimes, corresponding to small and big values
of λ. Assume that µi = N (0, θ2

i ) for i ∈ {0, 1} with θ1 > θ0 > 0. We already know that

αµ(λ) 6
θ2
1λ

2

2
+ (θ1 − θ0)λ.

On the other hand, one has

Eµ

(

eλf
)

eEµ(λf)
6

∫

αµθ
(λ) ν(dθ) + log

∫

eHλ(θ)+λg(θ) ν(dθ),

where

Hλ(θ) = αµθ
(λ) +

∫

αµθ′
(λ) ν(dθ′) and g(θ) = Eµθ

f − Eµf.

Then, Lemma 3.3 ensures that

log

∫

eHλ(θ)+λg(θ) ν(dθ) 6 cp(Hλ(1) + λg(1) −Hλ(0) − λg(0))2

6 cp

(

1

ε
|Hλ(1) −Hλ(0)|2 + ε|λg(1) − λg(0)|2

)

.
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Choosing ε = λ leads to

log

∫

eHλ(θ)+λg(θ) ν(dθ) 6 cp

(

(θ2
1 − θ2

0)
2

4
+ (θ1 − θ0)

2

)

λ3.

As a conclusion αµ can be control by (at least) these two ways:

αµ(λ) 6







θ2
1λ2

2 + (θ1 − θ0)λ,
pθ2

1+qθ2
0λ2

2 + cp

(

(θ2
1−θ2

0)2

4 + (θ1 − θ0)
2
)

λ3.

The second one provide sharp bounds for λ 6 f(1/cp) whereas the second one is useful for
λ > f(1/cp) (where f is an increasing function which is computable).

4 Gross-Poincaré inequalities for two-components mixtures

It is known that functional inequalities such as Poincaré and Gross (logarithmic Sobolev)
inequalities provide, via Laplace exponential bounds, dimension free concentration bounds,
see for instance [38]. It is quite natural to ask for such functional inequalities for mixtures.
Before attacking the problem, some facts have to be emphasized.

Note that a probability measure µ with non-connected support cannot satisfy to a
Poincaré or to a Gross inequality (just consider a non-constant function which is constant
on each connected component). In particular, a mixture of distributions with disjoint
supports cannot satisfy to such functional inequalities. For instance, one can think about
the two-components mixture of uniforms pµ1 + qµ0 where µ0 = U(I) and µ1 = U(J) with
0 < p < 1 and I ∩ J = ∅. This observation suggests that in order to obtain a functional
inequality for a mixture, one has probably to control the considered functional inequality
for each component of the mixture and to ensure that the support of the mixture is
connected. It is important to realize that such a connectivity problem is due to the
peculiarities of the Poincaré and Gross functional inequalities, but does not pose a real
problem for the concentration of measure properties, as suggested by Theorem 3.1 and
Remark 3.4 for instance. In the sequel, we will focus on the case of two-components
mixtures, and try to get sharp bounds on the Poincaré and Gross constants for the mixture.

For the Gross inequality of two-components mixtures, we will make use of the following
two-points Lemma, obtained years ago independently by Diaconis & Saloff-Coste and
Higushi & Yoshida, see [50] and references therein.

Lemma 4.1 (Optimal Gross inequality for Bernoulli measures). For every p ∈
(0, 1) and every f : {0, 1} → R, and with the convention (log(q) − log(p))/(q − p) = 2 if
p = q = 1/2, we have

Entpδ1+(1−p)δ0

(

f2
)

6
log(q) − log(p)

q − p
pq(f(0) − f(1))2.

4.1 Decomposition of the variance and entropy of the mixture

Let µ0 and µ1 be two probability measures on R
d, p ∈ [0, 1], q = 1− p, ν = pδ1 + qδ0, and

µp = pµ1 + qµ0. Then, one can decompose the variance of f : R
d → R with respect to µp
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as

Varµp(f) = Eν(θ 7→ Varµθ
(f)) + Varν(θ 7→ Eµθ

f)

= Eν(θ 7→ Varµθ
(f)) + pq(Eµ0f − Eµ1f)2

6 max(CPI(µ0), CPI(µ1))Eµ(|∇f |2) + pq(Eµ0f − Eµ1f)2.

For the entropy, by using Lemma 4.1 for ν we can write

Entµp

(

f2
)

= Eν

(

θ 7→ Entµθ

(

f2
))

+ Entν

(

(θ 7→ Eµθ
f)2
)

6 Eν

(

θ 7→ Entµθ

(

f2
))

+
pq(log q − log p)

q − p
(Eµ0f − Eµ1f)2

6 max(CGI(µ0), CGI(µ1))Eµ(|∇f |2) +
pq(log q − log p)

q − p
(Eµ0f − Eµ1f)2.

We thus see that in both cases (Poincaré and Gross inequalities), the problem can be
reduced to the control of the mean-difference term (Eµ0f − Eµ1f)2 in terms of Eµ(|∇f |2)
for every smooth function f . Note that this task is impossible if µ0 and µ1 have disjoint
supports.

Remark 4.2 (Finite mixtures). Let (µi)16i6n be a family of probability measures on R
d.

Consider the finite mixture µ = M(ν, (µi)16i6n) with mixing measure ν = p1δ1+· · ·+pnδn.
The decomposition of variance is a general fact valid in particular for µ, and writes

Varµ(f) = Eν(θ 7→ Varµθ
(f)) + Varν(θ 7→ Eµθ

f) .

Here again, the first term in the right hand side may be controlled with the Poincaré
inequality for each of the components (µi)16i6n. For the second term of the right hand
side, it remains to notice that for every g : Θ = {1, . . . , n} → R,

Varν(g) =
1

2

∑

i,j

pipj(g(i) − g(j))2 =
∑

i<j

pipj(g(i) − g(j))2

which gives for g = Eµθ
(f) the identity

Varν(Eµθ
f) =

∑

i<j

pipj

(

Eµi
f − Eµj

f
)2
.

As for the two-components case, this further reduces the Poincaré inequality for µ to the
control of the mean-differences

(

Eµi
f − Eµj

f
)2

in terms of Eµ(|∇f |2). An analogous
approach for the entropy and the Gross inequality can be obtained by using [17, th. A1 p.
49] for instance.

4.2 Control of the mean-difference in dimension one

The following lemma below provides the control of the mean-difference term (Eµ0f − Eµ1f)2

in the case where µ0 and µ1 are probability measures on R (i.e. d = 1).
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Lemma 4.3 (Control of the mean-difference term in dimension one). Let µ0 and
µ1 be two probability distributions on R absolutely continuous with respect to the Lebesgue
measure. Let us denote by F0 (respectively F1) the cumulative distribution function and f0

(respectively f1) the probability density function of µ0 (respectively µ1). Let S = supp(µ0)∪
supp(µ1) and Co(S) its convex envelope. Then, for any p ∈ (0, 1), with µp = pµ1 + qµ0

and q = 1 − p,

(Eµ0f − Eµ1f)2 6 I(p)Eµp(f
′2) where I(p) =

∫

Co(S)

(F1(x) − F0(x))
2

pf1(x) + qf0(x)
dx,

and the constant I(p) cannot be improved. The function p 7→ I(p) is convex, and

1

2max(p, q)
I

(

1

2

)

6 I(p) 6
1

2min(p, q)
I

(

1

2

)

. (19)

Additionally, if S is not connected then I is constant and equal to ∞. Furthermore, the
convexity of I ensure that I(p) is finite for every p in (0, 1) if and only if

I(0+) = lim
p→0+

I(p) <∞ and I(1−) = lim
p→1−

I(p) <∞.

Proof. For a compactly supported f , an integration by parts gives for every θ ∈ {0, 1},

Eµθ
f =

∫

R

f(x)fθ(x) dx = −
∫

R

f ′(x)Fθ(x) dx.

Since F1 − F0 = 0 outside Co(S) we have

Eµ0f − Eµ1f =

∫

Co(S)
(F1(x) − F0(x))f

′(x) dx.

It remains to use the Cauchy-Schwarz inequality, which gives

(Eµ0f − Eµ1f)2 =

(

∫

Co(S)

F0(x) − F1(x)
√

pf1(x) + qf0(x)
f ′(x)

√

pf1(x) + qf0(x) dx

)2

6 I(p)

∫

Co(S)
f ′(x)2(pf1(x) + qf0(x))dx = I(p)Eµp(f

′2).

The equality case of the Cauchy-Schwarz inequality provides the optimality of I(p). The
other claims of the lemma are immediate.

4.3 Control of the Poincaré and Gross constants

By combining the decomposition of the variance and of the entropy given at the beginning
of the current section with Lemma 4.3 and Lemma 4.1, we obtain the following Theorem.

Theorem 4.4 (Poincaré and Gross inequalities for two-components mixtures).
Let µ0 and µ1 be two probability distributions on R absolutely continuous with respect to
the Lebesgue measure, and consider the two-components mixture µp = pµ1 + qµ0 with
0 6 p 6 1 and q = 1 − p. If I(p) is as in Lemma 4.3 then for every p ∈ (0, 1)

CPI(µp) 6 max(CPI(µ0), CPI(µ1)) + pqI(p)
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and

CGI(µp) 6 max(CGI(µ0), CGI(µ1)) +
log q − log p

q − p
pqI(p).

In particular, if supp∈(0,1) I(p) <∞ then the optimal Poincaré and Gross constant for µp

goes to the maximum constants of µ0 and µ1 as pq → 0.

Corollary 4.5 (Uniform Poincaré for two-components mixtures). Let µ0 and µ1

be two probability distributions on R absolutely continuous with respect to the Lebesgue
measure. If µ0 and µ1 satisfy to a Poincaré inequality with respective constants C0 and
C1 and if I(1/2) < ∞ then the mixture µp = pµ1 + qµ0 satisfies to a Poincaré inequality
with constant max(C0, C1) + I(1/2)/2 which does not depend on p ∈ [0, 1].

Proof. Thanks to (19), one has pqI(p) = max(p, q)min(p, q)I(p) 6 I(1/2)/2 and Theorem
4.4 provides the result.

Remark 4.6 (Blow-up of the Gross constant). Corollary 4.5 does not work for the
Gross inequality, since the upper bound on the constant blows up at speed − log(min(p, q))
as pq → 0. Surprisingly, we shall see in the sequel that this behavior is sharp and cannot
be improved in general for two-components mixtures.

4.4 The fundamental example of two Gaussians with identical variance

It was already observed by Johnson in [32, Theorem 1.1 page 536] that for the finite
univariate Gaussian mixture µ = p1N (m1, τ

2) + · · · + pnN (mn, τ
2), we have

CPI(µ) 6 τ

(

1 +
σ2

τ min16i6n pi
exp

(

σ2

τ min16i6n pi

))

where σ2 = (p1m
2
1+· · ·+pnm

2
n)−(p1m1+· · ·+pnmn)2 is the variance of p1δm1+· · ·+pnδmn .

This upper bound on the Poincaré constant blows up as min16i6n pi goes to 0. Madras
and Randall have also obtained [39, Theorem 1.2 and Section 5] upper bounds for the
Poincaré constant of non-Gaussian finite mixtures under an overlapping condition on the
supports of the components. As for the result of Johnson mentioned earlier, their upper
bound blows up when the minimum weight of the mixing law min16i6n pi goes to 0. In the
sequel, we show that the Poincaré constant may remain actually bounded as min16i6n pi

goes to 0. To fix ideas, we will consider the special case of a two-components mixture of two
Gaussian distributions N (−a, 1) and N (+a, 1). As usual, we denote by Φ (respectively
ϕ) the cumulative distribution function (respectively probability density function) of the
standard Gaussian measure N (0, 1).

Corollary 4.7 (Mixture of two Gaussians with identical variance). For any a > 0
and 0 < p < 1, let µ0 = N (−a, 1) and µ1 = N (+a, 1), and define the two-components
mixture µp = pµ1 + qµ0. Then

CPI(µp) 6 1 + pq4a2

(

Φ(2a)e4a2
+

2a√
2π
e2a2

+
1

2

)

and

CGI(µp) 6 2 +
log(q) − log(p)

q − p
pq4a2

(

Φ(2a)e4a2
+

2a√
2π
e2a2

+
1

2

)

.
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Additionally, a sharper upper bound for p = 1/2 is given by

CPI(µ1/2) 6 1 + a
2Φ(a) − 1

2ϕ(a)
and CGI(µ1/2) 6 2 + a

2Φ(a) − 1

ϕ(a)
.

Note that as a function of p ∈ (0, 1), the optimal constants are bounded and continuous
at p = 0 and p = 1. The bound (8) expressed in the univariate situation implies that CPI

is always greater than or equal to the variance of the probability measure. Here, the
variance of µp is equal to 1+4apq. Then the upper bound on the Poincaré constant given
above is sharp for any p ∈ (0, 1) as a goes to 0.

Proof. Lemma 4.3 ensures that p 7→ I(p) is a convex function: let us have a look at I(0+)
and I(1−) which are equal by symmetry. Since

Φ(x+ a) − Φ(x− a) =

∫ +a

−a
ϕ(x+ u) du 6 2a











ϕ(x+ a) if x < −a,
ϕ(0) if − a 6 x 6 a,

ϕ(x− a) if a < x,

one has

I(1−) =

∫

R

(Φ(x+ a) − Φ(x− a))2

ϕ(x− a)
dx

6 4a2

(
∫ −a

−∞

ϕ(x+ a)2

ϕ(x− a)
dx+ ϕ(0)2

∫ +a

−a

1

ϕ(x− a)
dx+

∫ +∞

+a
ϕ(x− a) dx

)

6 4a2

(

e4a2
∫ −a

−∞
e−

(x+3a)2

2
1√
2π

dx+
1√
2π

∫ 2a

0
e

x2

2 dx+

∫ +∞

0
ϕ(x) dx

)

6 4a2

(

Φ(2a)e4a2
+

2a√
2π
e2a2

+
1

2

)

.

Then, the first statement follows from Theorem 4.4. For the second one, by Lemma 4.8
given at the end of the section, we have

I

(

1

2

)

= 2

∫

R

Φ(x+ a) − Φ(x− a)

ϕ(x+ a) + ϕ(x− a)
(Φ(x+ a) − Φ(x− a)) dx

6 2ca

∫

R

(Φ(x+ a) − Φ(x− a)) dx

= 4aca.

This gives as expected I(1/2) 6 2a(2Φ(a) − 1)/ϕ(a).

The following lemma shows that I(1/2) is related to some kind of “band isoperimetry”.

Lemma 4.8 (Band bound). For any x ∈ R and any a > 0,

Φ(x+ a) − Φ(x− a)

ϕ(x+ a) + ϕ(x− a)
6

Φ(+a) − Φ(−a)
ϕ(+a) + ϕ(−a) = ca

Moreover, this constant cannot be improved. As an example, one has c1 ≈ 1.410686134.
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Proof. Assume that a = 1. Let c > 0 and define for any x ∈ R

α(x) = Φ(x+ 1) − Φ(x− 1) − c(ϕ(x+ 1) + ϕ(x− 1)).

One has α′(x) = 0 iff c(1 + x+ (x− 1)e2x) = e2x − 1. Thus, either x = 0, or

c−1 = β(x) = −1 + x coth(x).

The function β is even, convex, and achieves its global minimum 0 at x = 0. Therefore, the
equation α′(x) = 0 has three solutions {−xc, 0,+xc}, where xc > 0 satisfies cβ(xc) = 1.
Since limx→±∞ α(x) = 0, one has α 6 0 on R if and only if α(0) 6 0 and α′′(0) 6 0. The
condition α(0) 6 0 is fulfilled as soon as

c >
Φ(+1) − Φ(−1)

ϕ(+1) + ϕ(−1)

whereas the condition α′′(0) > 0 holds for any c.

If Ax = [x− a, x+ a] then ∂Ax = {x− a, x+ a}. If γ = N (0, 1) then

γ(Ax) = Φ(x+ a) − Φ(x− a) and γs(∂Ax) = ϕ(x+ a) + ϕ(x− a)

where γs is the surface measure associated to γ (see [36] and references therein). Lemma
4.8 expresses that for any A ∈ Ca = {Ax;x ∈ R}

γ(A) 6 caγs(∂A),

and equality is achieved for A = A0. The Gaussian isoperimetric inequality states that
(ϕ ◦ Φ−1)(γ(A)) 6 γs(∂A) for any regular A ⊂ R with equality when A is a half line.

Note also that from the definition of I(p) in Lemma 4.3, we get for every p ∈ (0, 1)

I(p) 6

(

sup
x∈Co(S)

|F1(x) − F0(x)|
pf1(x) + qf0(x)

)2

.

In particular, if the right hand side is finite then I(p) is finite.

4.5 Gallery of examples of one-dimensional two-components mixtures

Recall that if µ is a probability measure on R with density f > 0 and median m then

max(b−, b+) 6 CGI(µ) 6 16max(b−, b+) (20)

where

b+ = sup
x>m

µ([x,+∞)) log

(

1 +
1

2µ([x,+∞))

)
∫ x

m

1

f(y)
dy,

and

b− = sup
x<m

µ((−∞, x]) log

(

1 +
1

2µ((−∞, x])

)
∫ m

x

1

f(y)
dy.
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These bounds appear in [7, Remark 7 page 9] as a refinement of a famous criterion by
Bobkov and Götze based on previous works of Hardy and Muckenhoupt, see also [45]. More
generally, the notion of measure capacities constitutes a powerful tool for the control of
CPI and CGI, see [42] and [5, 7]. In the present article, we only use a weak version of such
criteria, stated in the following lemma, and which can be found for instance in [2, Chapter
6 page 107]. We will typically use it in order to show that CGI(p1µ+ qµ0) blows up as p
goes to 0 or 1 for certain choices of µ0 and µ1.

Lemma 4.9 (Crude lower bound). Let µ be some distribution on R with density f > 0
then for every median m of µ and every x ∈ R, by denoting Ψ(u) = −u log(u),

150CGI(µ) > Ψ(µ(−∞, x])

∫ m

x

1

f(y)
dy.

In this whole section, µ0 and µ1 are absolutely continuous probability measures on R

with cumulative distribution functions F0 and F1 and probability density functions f0 and
f1. For every 0 6 p 6 1, we consider the two-components mixture µp = pµ1 + qµ0. The
sharp analysis of the Gross constant for finite mixtures is a difficult problem. Also, we
decided to focus on some enlightening examples, by providing a gallery of special cases
of µ0 and µ1 for which we are able to control the dependence over p of the Poincaré and
Gross constant of µp. Some of them are quite surprising and reveal hidden subtleties of
the Gross inequality as min(p, q) goes to 0. . .

We have already considered the mixture of two Gaussians with identical variance in
section 4.4. In the next example, we consider a mixture of two Gaussians with identical
mean and different variances.

4.5.1 Two Gaussians with identical mean

Settings. µ1 = N (0, σ2) with σ > 1 and µ0 = N (0, 1). Also, µp → N (0, 1) as p→ 0.
Claim. For every p ∈ (0, 1), we have CGI(µp) < ∞. Moreover, p 7→ CGI(µp) is bounded
on (0, 1) and goes to 2σ2 = CGI(µ1) as p→ 0.
Proof. We assume (without loss of generality) that σ2 > 1. We have F0 6 κF1 for some
κ > 1. Once again, I(p) is bounded above by (2/p)I(1/2) < +∞ for every 0 < p < 1. One
can ask now if I(0+) <∞ or not. Let us define xp > 0 as follows:

xp =

√

2σ2

σ2 − 1
log

(

qσ

p

)

.

Then pf1(x) > qf0(x) if and only if |x| > xp. We have, for some C > 0,

I(p) 6 2

∫ −1

−∞

F1(x)
2

pf1(x) + qf0(x)
dx+ 2

∫ 0

−1

F1(x)
2

f0(x)
dx

6 2

∫ −1

−∞

1

x2

f1(x)
2

pf1(x) + qf0(x)
dx+ C,

since 2q > 1 and F1(x) 6 f1(x)/|x|. If p is sufficiently small then xp > 1 and

∫ −1

−∞

1

x2

f1(x)
2

pf1(x) + qf0(x)
dx 6 2

∫ −1

−xp

1

x2

f1(x)
2

f0(x)
dx+

1

p
F1(−xp).
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By the definition of xp, for some C > 0,

pF1(−xp) 6 Cpe−x2
p/(2σ2)

6 C

(

1

p

)
σ2

−2
σ2−1

.

If σ2 6 2, then this quantity is bounded as a function of p. On the other hand, for some
C > 0,

∫ −1

−xp

1

x2

f1(x)
2

f0(x)
dx 6 C

∫ −1

−xp

1

x2
e

σ2
−2

2σ2 x2

dx.

Once again, if σ2 6 2, then this function of p is bounded. If σ2 > 2, then, for some C > 0,

∫ −1

−xp

e
σ2

−2
2σ2 x2

dx 6 Ce
σ2

−2
2σ2 x2

p 6 C

(

1

p

)
σ2

−2

σ2−1

.

Finally, if σ2 6 2, then supp∈(0,1) I(p) < ∞, whereas if σ2 > 2, then for C > 0 and any
p < 1/2,

I(p) 6 C

(

1

p

)
σ2

−2
σ2−1

.

Since pI(p) → 0 as p→ 0, the desired result follows from Theorem 4.4.

4.5.2 Two Uniforms with overlapping supports

Settings. Here µ0 = U([0, 1]) and µ1 = U([a, a + 1]) for some a ∈ [0, 1].
Claim. For every p ∈ (0, 1), we have

CPI(µp) 6 π−2+a2
(

1 +
a

3
− pq

)

and CGI(µp) 6 2π−2+
log(q) − log(p)

q − p
a2
(

1 +
a

3
− pq

)

.

Proof. Recall that CPI(U([0, 1]) = π−2 while CGI(U([0, 1]) = 2π−2. By translation
invariance, we also have CPI(U([1, 1 + a]) = π−2 and CGI(U([1, 1 + a]) = 2π−2. The
desired result follows from Theorem 4.4 since for p ∈ (0, 1),

I(p) =

∫ a

0

x2

p
dx+

∫ 1

a

a2

p+ q
dx+

∫ a+1

1

(1 + a− x)2

q
dx =

a2

pq

(

1 +
a

3
− pq

)

.

4.5.3 One Gaussian and a sub-Gaussian

Settings. Here µ1 = N (0, 1) with density f1 while µ0 is absolutely continuous on R with
density f0 such that f0 6 κf1 for some finite real constant κ > 1. Note that µp → µ1 as
p→ 1.
Claim. For every 0 < p < 1 we have CPI(µp) 6 max(1, CPI(µ0)) + Dq. This constant
goes to max(1, CPI) as p → 1 and is additionally uniformly bounded when p runs over
(0, 1). Similarly, CGI(µp) 6 α − β log(p) for some constants α > 0 and β > 0 which do
not depend on p. As in the case of two-uniforms mixture, this upper bound blows up at
speed − log(p) as p goes to 0. This is actually the real behavior of the Gross constant in
certain situations as shown by section 4.5.4!
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Proof. Since µ1 = N (0, 1), we have CPI(µ1) = 1 and CGI(µ1) = 2. By hypothesis, we
have F0 6 κF1 and 1 − F0 6 κ(1 − F1). Thus, for some D > 0 and every 0 < p < 1,

I(p) 6
2(1 + κ2)

p

(
∫ 0

−∞

F 2
1 (x)

f1(x)
dx+

∫ +∞

0

(1 − F1(x))
2

f1(x)
dx

)

=
D

p
<∞.

Now Theorem 4.4 shows that CPI(µp) 6 max(1, CPI(µ0)) +Dq. The desired upper bound
for CGI(µp) follows by the same way and we leave the details to the reader.

4.5.4 One Gaussian and a uniform

Settings. Here µ1 = N (0, 1) and µ0 = U([−1,+1]). Note that µp → U([−1,+1]) as
p→ 0.
Claim. There exists a real constant C ∈ (0,∞) such that CGI(µp) > −C log(p) for every
p ∈ (0, 1). Also, CGI(µp) blows up at speed − log(p) as p tends to 0, as for the asymmetric
Bernoulli measure B(p) (see Lemma 4.1). Moreover, B(p) and the mixture µp satisfy to
a sub-Gaussian concentration of measure for Lipschitz functions, uniformly in p. This
similarity suggests that the blow up phenomenon of CGI(µp) is due to the asymptotic
support reduction from R to [−1,+1] when p goes to 0. Actually, section 4.5.5 shows that
this intuition is false.
Proof. We have f0 6 κf1 for some constant κ > 1. Also, for every p ∈ (0, 1), the result
of Section 4.5.3 gives that CGI(µp) 6 α − β log(p) for some constants α > 0 and β > 0
independent of p. Now, by Lemma 4.9,

150CGI(p) > Ψ(pF1(−2) + qF0(−2))

∫ 0

−2

1

pf1(u) + qf0(u)
du

= Ψ(pF1(−2))

∫ 0

−2

1

pf1(u) + qf0(u)
du

> −
(

F1(−2)

∫ −1

−2

1

f1(u)
du

)

log(p).

4.5.5 Surprising blowing mixture

Settings. Here f1(x) = Z−1
1 e−x2

and f0(x) = Z−1
0 e−|x|a for some fixed real number

a > 2, with Z1 = π−1/2 and Z0 = 2Γ(a−1)a−1. Note that µp → µ0 as p → 0. The limit
has smaller tails.
Claim. There exists a real constant C > 0 which may depend on a such that

CGI(µp) > C(− log(p))1−a−1

for small enough p. In particular, CGI(µp) blows up as p→ 0. Also, the blow up speed of
CGI as p→ 0 cannot be improved by considering a mixture of fully supported probability
measures! Note that µ0 → U([−1,+1]) as a → ∞, and the result is compatible with
section 4.5.4.
Proof. Since f0 6 κf1 for some constant κ > 1, the results of Section 4.5.3 gives CGI(µp) <
∞ for every p ∈ (0, 1). Moreover, p 7→ CGI(µp) is uniformly bounded on (p0, 1) for
every p0 > 0. Let us study the behavior of this function as p → 0. In the sequel we
assume that p < p0 where p0 satisfies p0Z0 = q0Z1. The immediate tails comparison
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gives qf0(x) 6 pf1(x) for large enough x. Let us find some explicit bound on x. The
inequality qf0(x) 6 pf1(x) writes |x|a − x2 > log(qZ1)− log(pZ0). Now, |x|a − x2 >

1
2 |x|a

for |x|a−2 > 2. The non-negative solution of 1
2 |x|a = log(qZ1) − log(pZ0) is

xp =

(

2 log

(

q

p

Z1

Z0

))1/a

.

If p is small enough, then |xp|a−2 > 2 and therefore, qf0(x) 6 pf1(x) for any |x| > xp.
Now, by Lemma 4.9, for small enough p,

150CGI(µp) > Ψ(pF1(−2xp) + qF0(−2xp))

∫ 0

−2xp

1

pf1(u) + qf0(u)
du.

For small enough p, we have max(F0, F1)(−2xp) < e−1 and thus, for some real constant
C > 0,

Ψ(pF1(−2xp) + qF0(−2xp)) > Ψ(pF1(−2xp)) > −pF1(−2xp) log(p) > C
e−4x2

p

xp
Ψ(p).

On the other hand, since qf0(x) 6 pf1(x) for |x| > xp, we have for some real constant
C > 0,

∫ 0

−2xp

1

pf1(u) + qf0(u)
du >

∫ −xp

−2xp

du

2pf1(u)
>
Ce4x2

p

pxp
.

Consequently, for some real constant C > 0,

150CGI(µp) > −C log(p)

x2
p

.

Now, by using the explicit expression of xp, we finally obtain for some real constant C > 0,

CGI(µp) > C (− log(p))1−a−1
.

4.6 Multivariate mean-difference bound

It is quite natural to ask for a multidimensional counterpart of the mean-difference Lemma
4.3. Let us give some informal ideas to attack this quite delicate problem. Let µ0 and
µ1 be two probability measures on R

d, and consider as usual the mixture µp = pµ1 + qµ0

with p ∈ (0, 1) and q = 1− p. It is well known (see for instance [55]) that if µ0 and µ1 are
regular enough, then there exists a map T : R

d → R
d such that the image measure T · µ0

of µ0 by T is µ1 and

W2(µ0, µ1)
2 =

∫

Rd

|T (x) − x|2 µ0(dx).

If we denote by µ(s) the image measure of µ0 by x 7→ sT (x)+ (1− s)x for every 0 < s < 1,
then

(Eµ1f − Eµ0f)2 =

(
∫ 1

0

∫

Rd

(T (x) − x) · ∇f(sT (x) + (1 − s)x) dµ0(x) ds

)2

.
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Figure 1: Density and − log-density of µp for Example 4.5.5 with p = 1/100 and a = 4.

By Cauchy-Schwarz’s inequality, we get

(Eµ1f − Eµ0f)2 6

(
∫

Rd

|T (x) − x|2 dµ0(x)

)(
∫ 1

0

∫

Rd

|∇f(x)|2 dµs(x) ds

)

and therefore

(Eµ1f −Eµ0f)2 6 W2(µ1, µ0)
2

∫

Rd

∫ 1

0
|∇f(x)|2 dµs(x) ds.

This shows that in order to control the mean-difference term (Eµ1f − Eµ0f)2 by Eµp(|∇f |2),
it is enough to find a real constant Cp > 0 such that µ 6 Cpµp where

µ(A) =

∫ 1

0
µ(s)(A) ds.

Unfortunately, this is not feasible if for some s ∈ (0, 1), the support of µ(s) is not included
in the support of µp (union of the supports of µ0 and µ1 if p ∈ (0, 1)). This problem is
due to the linear interpolation used to define µ(s) via T . The linear interpolation will fail
if the support of µp is a non-convex connected set. Let us adopt an alternative path-wise
interpolation scheme. For each x ∈ S0 = supp(µ0), let us pick a continuous and piecewise
smooth interpolating path γx : [0, 1] → R

d such that γx(0) = x and γx(1) = T (x). Then
for every smooth f : R

d → R

f(x) − f(T (x)) =

∫ 1

0
γ̇x(s)∇f(γx(s)) ds 6

√

∫ 1

0
|γ̇x(s)|2 ds

√

∫ 1

0
|∇f |2(γx(s)) ds.
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As a consequence, we have

(Eµ0f − Eµ1f)2 6

(
∫

S0

∫ 1

0
|γ̇x(s)|2 ds µ0(dx)

) (
∫

S0

∫ 1

0
|∇f |2(γx(s)) ds µ0(dx)

)

.

Now, let µ(s) be the image measure of µ0 by the map x 7→ γx(s), where here again µ is

the measure defined by µ(A) =
∫ 1
0 µ(s)(A) ds. With this notation, we have

(Eµ0f − Eµ1f)2 6

(
∫

S0

∫ 1

0
|γ̇x(s)|2 ds µ0(dx)

) (
∫

Rd

|∇f |2(x)µ(dx)

)

.

Note that
(
∫

S0

∫ 1

0
|γ̇x(s)|2 ds µ0(dx)

)

> W2(µ0, µ1)
2

with equality when γx is the linear interpolation map between x and T (x) for every x ∈ S0.
The mean-difference control that we seek for follows then immediately if there exists a real
constant Cp > 0 such that µ 6 Cpµp. The problem is thus reduced in the choice of an
interpolation scheme γ such that the support of µ is included in the support of µp (which
is the union of the supports of µ0 and µ1 as soon as 0 < p < 1). Let us give now two
enlightening examples.

Example 4.10 (When the linear interpolation map is optimal). Consider the two-
dimensional example where µ0 = U([0, 2] × [0, 2]) and µ1 = U([1, 3] × [0, 2]). If γ is the
natural linear interpolation map given by γx(s) = x+se1 then µ(s) = U([s, s+2]× [0, 2]) is
supported inside supp(µ0)∪ supp(µ1). This is due to the convexity of this union. Also, the
linear interpolation map is here optimal. Moreover, elementary computations reveal that
Cp = 1/min(p, q) and W2(µ0, µ1)

2 = 1. Therefore, for every 0 < p < 1 and any smooth
f : R

2 → R,

(Eµ0f − Eµ1f)2 6
1

min(p, q)
Eµp(|∇f |2).

Example 4.11 (When the linear interpolation map fails). In contrast, for the
example where µ0 = U([0, 2] × [0, 2]) and µ1 = U([1, 3] × [1, 3]) and if γ is the natural
linear interpolation map given by γx(s) = x + s(e1 + e2) then µ(s) is not supported in
supp(µ0) ∪ supp(µ1) and this union is not convex. If A = [0, 1] × [2, 3] then µ(s)(A) > 0
for every 0 < s < 1 while µp(A) = 0 for every 0 < p < 1 and hence there is no finite
constant Cp > 0 such that µ 6 Cpµp. This shows that the linear interpolation map fails
here. Let us give an alternative interpolation map which leads to the desired result. We
set for every x ∈ supp(µ0) and every 0 6 s 6 1, with 1 = (e1, e1),

γx(s) =

{

(1 − s)x+ 2s1 if 0 6 s 6
1
2

sx+ 1 otherwise.

This corresponds to a two-steps linear interpolation between the squares [0, 2]2 and [1, 3]2

with intermediate square [1, 2]2. For every 0 6 s 6 1,

µ(s) =

{

U([2s, 2]2) if 0 6 s 6 1
2

U([1, 1 + 2s]2) otherwise.
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Note that we constructed γ in such a way that µ(s) is always supported in supp(µ0) ∪
supp(µ1). Elementary computations reveal that for every 0 < p < 1

∫

S0

∫ 1

0
|γ̇x(s)|2 ds µ0(dx) =

8

3
and µ 6

4

min(p, q)
µp.

Finally, putting all together, we obtain for every 0 < p < 1 and smooth f : R
2 → R,

(Eµ0f −Eµ1f)2 6
32

3min(p, q)
Eµp(|∇f |2).

As a conclusion, one can retain that the natural interpolation problem associated to the
control of the mean-difference involves a kind of support-constrained interpolation for mass
transportation.
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