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Abstract

The total internal partition function of methane is revisited to provide reliable values at high tem-
perature. A multi-resolution approach is used to perform a direct summation over all the rovibrational
energy levels up to the dissociation limit. A computer code is executable on line at the URL : http://icb.u-
bourgogne.fr/JSP/TIPS.jsp to allow the calculation of the partition sum of methane at temperatures up
to 3000 K. It also provides detailed information on the density of states in the relevant spectral ranges.
The recommended values include uncertainty estimates. It is shown that at the upper limit of 3000 K, the
systematic error (underestimation) of previous calculations (HITRAN 2004) reaches −50% equivalent to a
temperature error of the order of +200 K.

Keywords : Partition sum; Methane; Computational spectroscopy; Rovibrational spectroscopy; Spectro-
scopic databases

1 Introduction
Methane plays a major role in the atmospheres of a number of astrophysical objects at temperatures up to
around 3000 K (see for instance [17, 13, 14]). Predicting high temperature spectra, needed to understand the
physical chemistry of these objects, implies accurate modelling of highly excited states as well as transition
intensities including hot bands. Deriving reliable values of the partition function represents one of the multiple
aspects of such a challenge. At present, due to the complexity of the modelling of spherical top spectra, the
calculation of the total internal partition function of methane relies on the basic harmonic oscillator and quasi-
rigid rotor approximations. For instance, the most recent reviews on the partition functions of various molecular
species [7, 6] have promoted the generalized use of the analytical formulae of McDowell [9] for spherical tops.
Furthermore, the HITRAN 2004 molecular spectroscopic database [11] includes data tables extrapolating these
formulae up to 3000 K, whereas the above approximations are valid up to around 1000 K only. The present
work was motivated by the need for reliable values in recent investigations on the high temperature emission
spectrum of methane [15].

Following the Boltzmann distribution at thermodynamic equilibrium, the contribution to the partition
sum of the subsequent layers of energy levels in any molecular system drastically depend on temperature.
Typically, for the methane molecule, at 2500K the maximum contribution is around 10 000 cm−1. Unfortunately,
this spectral region is far from being exhaustively modelled at high resolution. On the other hand, it is obvious
from the knowledge of the lower polyads of the molecule [5, 3] that the harmonic oscillator approximation
becomes qualitatively and quantitatively unrealistic. Furthermore, at this temperature, the contribution of
higher energy levels cannot be neglected up to around 35 000 cm−1 which is not far from the dissociation limit
of methane. Consequently, an exhaustive and realistic modelling of the full energy spectrum of the molecule is
required to get reliable values of the partition function up to 3000 K.

The present work was based on a multi-resolution approach to perform a direct summation over all the
rovibrational levels up to the dissociation limit. The partition sum Q(T ) is formally expressed as

Q(T ) =
X

i=all states

exp

µ
−Ei

kT

¶
=

X
j=all levels

gj exp

µ
−Ej

kT

¶
(1)

where gj denotes the total degeneracy of the Ej levels, i. e. the number of all possible states Ei including
electronic, vibrational and rotational degrees of freedom. Three sets of levels were considered in the energy
spectrum of methane. In the lower energy set, high-resolution modelling of the individual rovibrational energy
levels was performed. In the upper two sets, lower-resolution descriptions based on statistical considerations
were applied.
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The theoretical details are developped in the next section. The subsequent section describes the com-
puter implementation of the method. Several physical approximations, including the basic harmonic oscillator
and rigid rotor approximation were investigated for comparison and validation purposes. The last section is
devoted to quantitative estimates of the accuracy of the calculations as a function of temperature.

2 Theoretical model
The extremely large density of states in the higher-energy layers makes it impossible to model the rovi-

brational energy levels individually. The model developed in the present work combines, in a consistent way,
individual and statistical quantum descriptions of the methane spectrum. The lower layers of the energy spec-
trum are described through the well-proven effective Hamiltonian global approach [4, 5, 3]. The higher-energy
layers are extrapolated and statistically modelled on the basis of appropriate physical approximations. Three
sets of levels are considered according to

Q(T ) =
X

i=indiv levels

gi exp

µ
−ESTDS

i

kT

¶

+
X

j=stat levels

Gj exp
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Gk exp
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−EMorse

k
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¶
. (2)

Following the polyad pattern of methane, all the energy levels (individual or statistical) are labeled by
the polyad number p defined as

p = 2v1 + v2 + 2v3 + v4, (3)

where the vi are the vibrational quantum numbers associated to the four normal modes of the molecule,
and by the rotational quantum number J . The total degeneracy gi of the individual levels is derived from spin
statistics

gi = (2J + 1)ds (4)

where ds = 5, 5, 2, 3 and 3 for the A1, A2, E, F1 and F2 rovibrational species respectively. The calculation
of the three sums in Q(T ) is detailed in sections 2.1, 2.2 and 2.3. The calculation of the global degeneracies
Gj and Gk of the statistical levels is detailed in section 2.4.

2.1 Individual levels from the lower polyads

The lower levels were calculated individually using a unique rovibrational effective Hamiltonian imple-
mented in the STDS package [16]. They include the rovibrational levels fitted to high-resolution experimental
data for the lower five polyads : Ground State, Dyad, Pentad, Octad, Tetradecad (see [3, 10]) as well as ex-
trapolated levels up to a value Jmax of J fixed pragmatically to keep the calculation within a reasonable use of
computational resources. They include as well the predicted J = 0 levels of the subsequent polyads p = 6 to 9.
Three models corresponding to various orders of approximation have been considered (see Table 1).

The zero order corresponds to the usual harmonic oscillator and rigid rotor approximation. It was used
to validate our computer code by reproducing the alternative original calculation of McDowell [9]. Other test
calculations performed at the second order of approximation and at the highest order presently available for
the lower four polyads [10] - denoted as best in Table 1 - proved to be quite comparable. In fact, a second
order expansion was found to realize the best compromise regarding both accuracy and extrapolation reliability.
The corresponding second order parameters were those reported in [2]. Note that they were derived from a
second order fit of experimental data and not from truncation to the second order of a higher order fit. The
root mean square deviation of this second order fit was of the order of 1 cm−1 over the full range of presently
assigned lower-polyad experimental data. The corresponding characteristics of the polyads are given in Table 2
. For the calculation of Emean(p) all the vibrational sublevels were given the same weight independently of their
symmetry species. Note that Emean is systematically larger than the middle energy (Emax(p) + Emin(p))/2
reflecting the polyad specificity of methane. The values Ec(p, J = 0) refer to the zero point energy of the Morse
function for direct comparison with the values quoted in Table 3. The corresponding diagram is plotted in the
bottom panel of Figure 1.
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Table 1: Characteristics of the effective hamiltonian global description of the lower polyads

Hamiltonian Order
Polyad Number Polyad Name Jmax 0 2 best

0 Ground State 60 0 2 6
1 Dyad 50 0 2 6
2 Pentad 40 0 2 4
3 Octad 30 0 2 4
4 Tetradecad 20 0 2 4
5 Icosad 10 0 2 2
6 Triacontad 0 0 2 2
7 Tetracontad 0 0 2 2
8 Pentacontakaipentad 0 0 2 2
9 Heptacontad 0 0 2 2

The uncertainty of the predicted levels in the present work is estimated to range from 1 to 10 cm−1 or
more in the case of faraway extrapolated levels (section below). However, in contrast with the zero order approx-
imation, the main rovibrational couplings (Fermi, Coriolis, Darling Dennison, ...) and thus the anharmonicity
effects are explicitely taken into account in our model.

Table 2: Lower polyad characteristics (second order STDS prediction)

(1) (2) (3) (4) (5) (6) (7)
p Nvib(p) Emin(p) Emax(p) Emean(p) Ec(p, J = 0) Spin Sum
0 1 0.0 0.0 0.0 710.9 5
1 2 1310.1 1533.6 1421.9 2132.8 5
2 9 2587.1 3065.5 2840.9 3551.8 31
3 24 3870.3 4595.8 4265.3 4976.2 79
4 60 5121.3 6124.4 5681.1 6392.0 192
5 134 6375.7 7651.3 7097.0 7807.9 432
6 280 7599.7 9176.5 8500.9 9211.8 904
7 538 8823.7 10700.1 9901.3 10612.2 1720
8 996 10019.8 12221.9 11293.7 12004.6 3198
9 1746 11212.4 13742.1 12680.5 13391.4 5598

Nvib(p) is the number of vibrational sublevels in polyad p. All wavenumbers in cm
−1.

2.2 Rotationally extrapolated statistical levels from the lower polyads

The second set of levels in Eq. 2 consists of statistical rovibrational levels of the previous polyads rotationally
extrapolated up to the dissociation limit (and in any case J ≤ 100).We applied the following simple procedure.
For each polyad p (0 ≤ p ≤ 9), the rotational fine structure for J = Jmax, predicted using STDS (Table 1), was
considered as a reference pattern for the higher J rotational fine structures and duplicated after shifting and
scalling to account statistically for the above mentioned rovibrational couplings. It can be formally expressed
as

eEi(p, J) = eEc(p, J) + (Ei(p, Jmax)−Ec(p, Jmax))×
eEw(p, J)

Ew(p, Jmax)
(5)

for J > Jmax and i = 1, ..., Nrv(p, Jmax).

In this equation ∼ denotes quantities statistically estimated. Nrv(p, Jmax) is the exact number of
rovibrational levels for polyad p at J = Jmax. The rotational structure centers eEc(p, J) for J > Jmax were
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Figure 1: Schematic Energy Diagram showing the three sets of rovibrational levels included in the model. The so-called
phenomenological statistical levels extend up to the dissociation limit ste to 37 000 cm−1

calculated according to the quasi-rigid rotor approximationeEc(p, J) = Ec(p, J = 0) +B0J(J + 1)−D0J
2(J + 1)2 (6)

where B0 and D0 denote respectively the inertia and the centrifugal distortion constants.
The rotational structure widths eEw(p, J) for J > Jmax were set assuming a linear dependency of Coriolis

effects with J as justified by the matrix elements of the leading termseEw(p, J) = Ew(p, J = 0)× FCoriolis × J (7)

where the Coriolis expansion factor FCoriolis was set to 0.03 as determined from the statistical behaviour
observed on the lower polyads. Finally Ec(p, J = 0) and Ew(p, J = 0) = Emax(p) − Emin(p) are the centers
and widths as predicted from our STDS model (Table 2).

2.3 Phenomenological statistical levels from the upper polyads

The remaining higher excited levels were modelled using a statistical approach consistent with the observed
behaviour of the lower polyads. Several statistical studies have been devoted to molecular systems mainly
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focused on the subject of chaos. In particular, the density of levels in vibrational spectra of molecules has been
investigated yielding analytical expressions for the spectral density moments of systems of N coupled Morse
oscillators (see [1]). However these works are not directly suitable for the statistical description of the rotational
fine structure of methane polyads where strong bend-stretch interactions are involved. We have thus followed
a phenomenological approach for the third set of levels in Eq. 2. It consists of statistical rovibrational levels
vibrationally and rotationally extrapolated to polyads p = 10 and higher up to the dissociation limit. The
vibrational structure of these higher polyads was modelled in the frame of the Morse potential yielding the
vibrational energies

E(v) = ω(v + 1/2)− ω2

4D
(v + 1/2)2. (8)

In our model this expression, normally designed for a single oscillator with vibrational quantum number
v, was applied to estimate the polyad centers through the following substitutions : v −→ p : polyad number and
E(v) −→ Ec(p) : energy of the center of polyad p. The D parameter of the Morse function (dissociation limit)
was set to∆+Ec(0)/2 where∆ = 37 000 cm−1 derived from the experimental value of Ref. [8]. The wavenumber
of the fundamental level ω and the polyad number plim at the dissociation limit were then determined by two
boundary conditions.

• The first one, expressing the continuity between the lower-polyad effective Hamiltonian (STDS) prediction
and the Morse expression for higher polyads is written as

Ec(psup) = ω(psup + 1/2)−
ω2

4D
(psup + 1/2)

2 (9)

where psup denotes the number of the upper polyad predicted by STDS (psup = 9 in our case), and Ec(psup)
the corresponding center energy, yielding

ω =
2D

(psup + 1/2)

Ã
1−

r
1− Ec(psup)

D

!
= 1563.6 cm-1 (10)

• The second one determines plim from

D = Ec(plim) = ω(plim + 1/2)−
ω2

4D
(plim + 1/2)

2 = ωβ − ω2

4D
β2 (11)

where β = plim + 1/2. This equation gives β = 48.24 and thus plim was set to 47, the closest integer value
satisfying

plim ' β − 1
2
. (12)

A schematic diagram of the vibrational polyad centers is represented on Figure 2.

Obviously, the Morse model applied to the vibrational polyads is not directly suitable for the description
of the behaviour of the widths of the successive polyads. In fact, we assumed the same dissociation limit for
all the vibrational components of the polyads and thus repeated the above procedure for the maximum and
minimum energies of the polyads successively. Consistently, we applied similar continuity conditions to the
upper and lower limits of polyad p = 9 with the corresponding quantities Emax(9) predicted by STDS. Doing
so, the widths of the polyads were found to increase with the polyad number up to a maximum value (for
p ∼ 24) and then to decrease until the dissociation limit as quoted in Table 3. Of course, the accuracy of such
a model near the dissociation limit is hard to assess. Nevertheless, we believe it gives a description of the level
density much more realistic than the harmonic oscillator approximation at intermediate energies relevant for
the considered temperature range. Detailed calculations were made to quantify the effect of varying the unique
leading Morse parameter D on the partition sums. They were then used to estimate the uncertainty of our
results.

All wavenumbers in cm−1. N(p) is the total vibrational degeneracy of polyad p. The corresponding number of
vibrational levels is approximately equal to N(p)/2.4 (see text). Ec(p) is the polyad center relative to the Morse
minimum energy. Ew(p) = Emax −Emin is the polyad width.

Finally, on the basis of this modelling of the polyad vibrational structure, a rotational extrapolation
was performed applying the same procedure as for the second set of levels (see section 2.2).
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Figure 2: Schematic Energy Diagram showing the vibrational polyad centers. STDS refers to the prediction using the
global second order effective Hamiltonian fitted to high-resolution experimental data. From polyad number 10 up to the
dissociation limit, polyad centers are calculated using the phenomenological "Morse" approximation.

2.4 Total degeneracy of the predicted levels

According to the above model, the number of extrapolated statistical levels in the second and third sets
in Eq. 2 is equal to the number of levels in reference rotational structure patterns. Consequently, each level
represents statistically several invidual levels. In order to account rigorously for the actual total degeneracy
(essential for partition sum calculations), each statistical level was affected a degeneracy G(p, J) calculated by

G(p, J) = 3.2× (2J + 1)× N(p)

Nstat(p)
(13)

where N(p) and Nstat(p) denote respectively the exact vibrational degeneracy of polyad p and the corre-
sponding degeneracy of the statistical vibrational levels in the present model with Nstat(p) = N(psup). The
factor 3.2× (2J +1) holds for the mean total degeneracy of the rovibrational levels including spin statistics and
the degeneracy with respect to the magnetic quantum number. The values N(p) were taken from the expression
established by Sadovskii et al [12] using generating functions and reproduced below,

N(p) = 24Nlead(p) +
1

28

µ
563

15
p4 +

28457

180
p3 +

970241

2520
p2 +

204347

420
p+

3797

16

¶
+
(−1)p
210

µ
1

3
p3 +

13

2
p2 +

119

3
p+

299

4

¶
(14)

with the leading term

Nlead(p) +
1

212 · 5

µ
p8

4 · 27 · 7 +
13p7

27 · 7 +
3p6

2
+
13 · 37p5
27

¶
. (15)

The approximate number of vibrational levels of each polyad can be derived from the values quoted
in Table 3 by dividing N(p) by the factor 2.4 which represents the asymptotic mean spin statistical weight of
the vibrational levels. Due to their statistical character (arising from implicite averaging on both energy and
degeneracy), the accuracy of the second and third sets of levels in Eq. 2 is much less than the accuracy of the
first set. The uncertainty on energies is hard to estimate rigorously and may be as large as several hundreds of
cm−1. However the density and degeneracy of levels at energies relevant for the considered temperature range
are more realistic than using the standard harmonic oscillator approximation used so far to evaluate partition
sums.
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Table 3: Upper vibrational polyads of methane (Morse extrapolation)

p N(p) eEc(p) eEw(p)
9 4170 13391.4 2529.7
10 7061 14630.8 2725.2
11 11550 15837.8 2907.3
12 18348 17012.5 3075.8
13 28380 18154.7 3230.9
14 42900 19264.4 3372.4
15 63492 20341.8 3500.5
16 92234 21386.7 3615.1
17 131703 22399.3 3716.3
18 185185 23379.4 3803.9
19 256684 24327.1 3878.1
20 351208 25242.4 3938.8
21 474760 26125.2 3986.0
22 634712 26975.7 4019.7
23 839800 27793.7 4039.9
24 1100580 28579.4 4046.7
25 1429428 29332.6 4040.0
26 1841100 30053.4 4019.8
27 2352732 30741.8 3986.1
28 2984519 31397.7 3938.9

p N(p) eEc(p) eEw(p)
29 3759720 32021.3 3878.3
30 4705464 32612.4 3804.1
31 5852760 33171.1 3716.5
32 7237461 33697.4 3615.4
33 8900264 34191.3 3500.8
34 10887855 34652.8 3372.8
35 13252899 35081.8 3231.2
36 16055380 35478.5 3076.2
37 19362596 35842.7 2907.7
38 23250700 36174.5 2725.7
39 27804700 36473.9 2530.2
40 33120230 36740.9 2321.3
41 39303550 36975.5 2098.8
42 46473570 37177.6 1862.9
43 54761850 37347.4 1613.5
44 64314899 37484.7 1350.6
45 75294180 37589.6 1074.3
46 87878700 37662.1 784.4
47 102265020 37702.1 481.1

3 Computer code

Our computer code uses as input data a file containing 87 524 rovibrational energy levels of the lower
polyads predicted using the second order global effective Hamiltonian [2] implemented in the STDS package
[16]. Each record is labeled by the usual indices : the polyad number p, the value of J , the rovibrational
symmetry C, a running number α and the corresponding energy E. The quantum numbers J and C are used
to derive the degeneracy of the levels. Up to 600 K the statistical levels have no significant contribution so
that the summation includes only the primary individual levels contained in the input file (first set in Eq. 2).
At higher temperature the program generates the needed higher energy statistical levels and the corresponding
global degeneracies according to the model described above.

One of the first test calculations was to reproduce the values of Ref. [9] implemented in HITRAN 2004
[11] by performing a direct summation using our code within the frame of the standard harmonic oscillator and
rigid rotor approximation (i.e. zero order of approximation). It turned out that our values from direct summation
and the values derived from the McDowell formula [9] agreed within 1% in the full range of temperature from
10 to 3000 K, which represents a good validation of the correct statistical treatment of the level densities and
degeneracies for the higher polyads in our model.

A simplified version of our computer code is installed and executable at http://icb.u-bourgogne.fr/JSP/TIPS.jsp.
For any temperature below 3000 K, the program returns the partition sum calculated using the present approach
and for comparison the value derived from the McDowell formula [9]. The estimated uncertainty of the present
calculation (see section hereafter) is also provided. Useful modeling details about the polyads, the density of
levels and the density of quantum states of the molecule are included in downloadable output files (plain text
and portable LaTeX formats). The ASCII file containing the input 87 524 rovibrational energy levels mentioned
above is also available through the user interface.

Although the present work was focussed on high temperature needs, for completeness towards very low
temperature investigations, the separate contributions from the ortho-, meta- and para-methane are given when
the direct calculation is based on individual separable levels only (i. e. up to 600 K).
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Figure 3: Right part : Density of rovibrational levels predicted using the present work (plain line) and using the
harmonic approximation (dashed line). The discrepancies between the densities of levels predicted using the harmonic
approximation and the present modelling reach a factor three around 23 000 cm−1 and ten around 32 000 cm−1 (red
arrows). Left part : Partition functions for typical high temperatures showing the convergence properties of the partition
direct sums.

4 Results and discussion
The propagation of uncertainties from the rovibrational levels into the partition direct sum depends essen-

tially on the temperature. As mentioned in the preceeding section, up to 600 K, the contribution of statistically
extrapolated levels (second and third sets of levels in Eq. 2) is neglegible so that the precision of the correspond-
ing partition sum depends on the precision of the individual levels fitted to high-resolution experimental data
only. As mentioned earlier, calculations performed at various orders of approximation do not differ significantly
within this temperature range. Even the basic harmonic oscillator approximation gives reliable results. At very
low temperatures (below 50 K) similar test calculations revealed no sensible differences between the second
order model and higher order models justifying this choice of the second order in all cases.

Of course at higher temperatures (above 1000 K), the contribution of the statistically extrapolated levels
increases with temperature so that an important source of uncertainty arises from the unknown modelling error
on the highly excited polyads. In fact, the precise knowledge of the individual levels is not absolutely necessary
provided that a correct description of the density of states in spectral ranges relevant for each temperature
can be achieved. Figure 3 illustrates the impact of the various energy layers to the total partition sum at
typical temperatures. It can be seen that at 1000 K the partition sum is fully converged at around 15 000
cm−1. At this temperature, the discrepancy between the densities of levels (and the corresponding densities of
quantum states) predicted using the second order anharmonic model and the basic harmonic model is small.
The resulting difference between the zero order (HITRAN 2004) and the second order partition sum values is
−1.1%. Conversely, at 3000 K the energy levels close to the dissociation limit have a significant contribution to
the partition sum. The density of levels above 20 000 cm−1 is drastically underestimated using the zero order
model and exceeds one order of magnitude above 32 000 cm−1. The resulting difference between the HITRAN
2004 and the present work values reaches −50%. Note that, at this temperature, the zero order direct sum is
not fully converged at 37 000 cm−1.

To overcome the lack of theoretical or experimental validation of the modelling of bound states near
dissociation we did a series of test calculations by varying the dissociation limit around its experimental value
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[8]. It turned out that in the less favourable case (T = 3000 K), a ±5% variation of the dissociation limit around
37 000 cm−1 implied a ±3% variation of the partition direct sum at 3000 K, and only ±1.4% at 2500 K. These
values are equivalent to uncertainties on temperatures of the order of ∆T = ±10 K and∆T = ±4 K respectively.
The above considerations have been used to estimate the precision of the recommended values quoted in Table
4. The number of significant digits was matched to the estimated uncertainty of our calculations. As expected,
uncertainties increase rapidely with temperature reflecting the relative contribution of the higher energy levels.
They are also converted in terms of temperature uncertainties (column Equiv. ∆T of Table 4) since partition
functions are often involved in temperature retrieval processes. The values available from HITRAN 2004 (folder
Global Data Files [11]) are included for comparison. According to our direct calculation uncertainties, systematic
errors arising from the harmonic approximation make no doubt in the whole temperature range from 1000 to
3000 K. This is particularly true in the intermediate range from 1000 to 2000 K for which our estimated
uncertainties (less than 1%) are significantly smaller than the observed discrepancies. For higher temperatures
our estimated uncertainties become relatively large. Although more realistic than the previous ones our very
high temperature values need to be confirmed.

Table 4: Partition sum of methane (Present versus HITRAN 2004)

Present work HITRAN 2004 [11] HITRAN − Present
Temp. /K Value Uncertainty Equiv. ∆T (parsum.dat) Percent
100 116.4 < 0.1 % < 0.1 116.415997 0.01 %
200 326.6 < 0.1 % < 0.1 326.631038 0.00 %
300 602.8 < 0.1 % < 0.1 602.783207 -0.01 %
400 954.7 < 0.1 % < 0.1 954.176097 -0.05 %
500 1417.7 < 0.1 % < 0.1 1415.863977 -0.13 %
600 2045.7 < 0.1 % < 0.1 2040.847920 -0.25 %
700 2910.7 < 0.1 % < 0.1 2899.589576 -0.40 %
800 4109.1 < 0.1 % < 0.1 4085.949715 -0.58 %
900 5770.1 < 0.1 % < 0.1 5724.910637 -0.81 %
1000 8067.4 < 0.1 % < 0.1 7983.128758 -1.1 %
1100 1.1233×104 < 0.1 % < 0.1 11081.084249 -1.4 %
1200 1.5576×104 < 0.1 % < 0.1 15311.088000 -1.7 %
1300 2.151×104 < 0.1 % < 0.1 21053.744000 -2.2 %
1400 2.960×104 0.1 % < 0.1 28801.928000 -2.7 %
1500 4.058×104 0.1 % < 0.1 39195.464000 -3.5 %
1600 5.550×104 0.2 % < 0.1 53049.504000 -4.4 %
1700 7.569×104 0.3 % < 0.1 71405.104000 -5.7 %
1800 1.031×105 0.4 % 0.2 95576.712000 -7.4 %
1900 1.404×105 0.6 % 0.4 127212.960000 -9.4 %
2000 1.91×105 0.9 % 0.8 168386.400000 -12 %
2100 2.60×105 1.2 % 1.7 221649.840000 -15 %
2200 3.54×105 1.7 % 3.5 290181.040000 -18 %
2300 4.82×105 2.3 % 7 377872.080000 -22 %
2400 6.58×105 3.0 % 12 489486.880000 -26 %
2500 8.97×105 3.8 % 20 630824.480000 -30 %
2600 1.22×106 4.8 % 30 808914.880000 -34 %
2700 1.67×106 5.7 % 50 1032217.520000 -38 %
2800 2.27×106 6.7 % 65 1311021.600000 -42 %
2900 3.09×106 7.5 % 80 1657300.800000 -46 %
3000 4.19×106 8.3 % 120 2085888.000000 -50 %

5 Conclusion

A multi-resolution approach has been applied to the direct calculation of the partition function of methane
to get more reliable values up to 3000 K. In connexion with the STDS package [16], a computer code has been
written and installed on the web at http://icb.u-bourgogne.fr/JSP/TIPS.jsp to be executed on line. Precision
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estimates as well as detailed information on the density of levels and states of methane are provided as indicators
of the reliability of the results. The main conclusions of the present work may be summarized as follows : (i)
we have confirmed the validity domain (below 1000 K) of the harmonic approximation as formulated by the
original work of McDowell [9] using an independent alternative approach ; (ii) we have quantified the biais
resulting from the simple extrapolation of McDowell formula above 1000 K as implemented in the HITRAN
database [11] ; (iii) we have proposed alternative partition fonction values for high temperatures by taking into
account anharmonicity effects based on the present state of the art of the modelling of the energy spectrum of
the methane molecule. The present approach can be adapted to other molecular species having a similar polyad
structure and firstly to the isotopomers 13CH4, 12CH3D. The extension of such a multi-resolution approach to
model the absorption coefficient of methane is under study for high temperature applications in parallel with
line by line global analyses in progress.
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