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Introduction 

“omnis cellula e cellula”, in 1858, an important dogma in cell biology was born, when Rudolf 

Virchow established that every cell must derives from a pre-existing cell. And indeed cell 

division is the only way for life to expend, it is also the way for immortalization, and 

unfortunately when uncontrolled also the way for cancer. But unrevealing mechanisms 

leading to cell division took quite a while. How does a mother cell divide to give two 

daughters? This is known as the cell cycle, which describes a series of events that insures 

faithfully transition of the genetic information from one cell generation to the next. These 

dividing mechanisms have been conserved throughout evolution; they underlie growth and 

development in all living organisms and are central to their heredity and evolution. 

In eukaryotic cells, the cell cycle was first described as two distinct phases: interphase and 

mitosis that just precedes cell division. The interphase was later on divided into three phases, 

S-phase standing for DNA synthesis surrounded by two G-phases G1 and G2 standing for 

Gap-phases. Fully described by Walter Flemming in 1882, mitosis remains the most 

spectacular and sophisticated part of the cell cycle. In less than an hour the mother cell 

organizes a complex machine aim to separate its genetic information and all its subcellular 

components into two identical sets that will be inherited by the two daughter cells. If mitosis 

proceeds without any error it eventually ends up with cytokinesis corresponding to the 

physical separation of the two daughter cells. Theodor Boveri predicted errors during mitosis 

to be at the origin of cancer in 1902. Hundred years later the scientific community is still 

debating on whether or not this might be true. The coordination of progression through 

mitosis is mainly orchestrated by protein phosphorylation insured by several serine/threonine 

kinases. In this short review we will focus on the four main mitotic kinase families: the 

cyclin-dependent kinase: Cdks, the polo-like kinases: Plks, the Aurora kinases and the NIMA-

related kinases: Nerks. 
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“Cyclin Dependant Kinases” Cdks that must associate to a cyclin to become active kinases 

are key regulators of cell cycle progression. There are now about twelve Cdks; the fisrt one 

Cdk1 (or cdc2) has long been considered as THE cell cycle master kinase, thought to be 

responsible for all cell cycle transitions (1). This is true in yeast where Cdk1 kinase activity is 

required for the G1/S and the G2/M transition (2). In mammalian cell however, Cdk1 activity 

is only required for the G2/M transition (3). Cdk1 binds to cyclin A, cyclin B or Ringo to 

become an active kinase (4, 5). 

 

The “Polo-Like Kinases” Plks form a family of four different proteins that regulates many 

aspects of the cell cycle progression. They all share small conserved domains named polo-box 

required fort protein localization. Only Plk1 that is the most extensively studied, is a true 

mitotic kinase homolog to the Drosophila polo kinase (6). Plk2, Plk3 and Plk4 are more likely 

involved only in interphase. However, Plk4 activity is required for centriole duplication, an 

event that must be achieved before entering mitosis, and necessary to assemble the bipolar 

mitotic spindle (7).  

 

Aurora kinases were first identified in S.cerevisae and Drosophila (8, 9). Yeast cells possess 

only one Aurora-related kinase, invertebrates such Drosophila and C. elegans have two (A 

and B type) and mammals have three, named Aurora A, B and C (10). From an evolution 

point of view the A and B types have evolved from a common ancestor while C type have 

evolved from the B type (11). Consequently, Aurora A has distinct functions while Aurora B 

and C share same functions, though all three kinases are involved in the control of many 

processes required for mitosis. 
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 “NIMA related kinases” Nrks belong to a very large family of protein kinases with 13 

different Nek proteins in human, from Nek1 to Nek11 (Nek2A and Nek2B and Nek11L and 

Nek11S) (12). The belonging to the Nrk family is defined by the sequence homology with the 

kinase NIMA (Nerver In Mitosis A), a true Aspergillus nidulans mitotic kinase (13). However 

not all of the Nek kinases are involved in mitosis (14). Nek2 is the most studied of all; its 

activity is required for centrosome behavior and for cytokinesis (15, 16). 

 

Mitosis (figure 1) 

To get ready for mitosis 

Mitosis comprises many complex events that must be accomplished in less than an hour. The 

length of a human full cell cycle is approximately 24h during which a dividing cell is 

preparing itself to enter mitosis. First of all the cell must have replicated its DNA (S phase) 

and possess two full copies of its genome (G2 phase). Secondary the cell must also have 

duplicated its centrosome and possess two centrosomes (four centrioles). These centrosomes 

then need to go through a maturation process, meaning that proteins involved in mitotic 

microtubule nucleation, such as γ-tubulin for instance, must have been recruited to the 

centrosome before cells may enter mitosis. 

 

Prophase: leaving the starting blocks 

During the prophase stage, the chromatin start to condense to form well-defined 

chromosomes, each chromosome consists of two sister chromatids connected at the level of 

their centromeres. While centrosome maturation is continuing during prophase, duplicated 

centrosomes must have separated and started to migrate around the nucleus to reach opposite 

position (the two centrosomes are now separated by the nucleus). By the end of prophase the 

nuclear membrane starts to breakdown. 
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Prometaphase: a cell without nucleus 

At this the stage, the nuclear membrane has been dissolved, the chromosomes have become 

thicker. Centrosomes nucleate asters of microtubule that search for chromosomes to attach to. 

Other microtubules nucleated by the chromosomes will help to assemble the bipolar spindle. 

The chromosome centromeres where the kinetochores are assembled are an important 

attachment point for the microtubules. This attachment is controlled by the metaphase spindle 

checkpoint..  

 

Metaphase: being under surveillance 

The chromosomes have reached their maximum condensation state. One pair of sister 

chromatids linked together by cohesins forms each chromosome. Each pair of chromatid 

kinetochores must have one kinetochore attached to microtubules nucleated by a centrosome 

and the opposite kinetochore attached to microtubules emanating from the opposite 

centrosome. During all this process the spindle formation is controlled by the dynamic 

instability of the microtubules. At the end of metaphase, the spindle must be under tension 

with all the chromosome kinetochores attached to both centrosomes and aligned at the 

metaphase plate. Cell will remain in metaphase until all the above conditions are fulfilled 

leading to the spindle checkpoint switch off. 

 

Anaphase: chromosome segregation 

This stage is triggered once the cell has controlled the spindle is under tension and all the 

kinetochores have been captured by microtubules. When the spindle seems the most stable, 

the cohesins that maintain the sister chromatids are degraded and each sister chromatid is 

pulled towards each centrosome forming two identical set of chromosomes.  
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Telophase: get ready for cell division 

During anaphase while chromosomes are moving, many kinetochore proteins detached from 

chromosomes to remain at the center of the cell where a central spindle is assembled. A 

contractile actin ring forms under the surface of the plasma membrane, around the central 

spindle. All these events lead to a contraction of the plasma membrane at the middle of the 

cell that will form two cells attached by the midbody. 

 

Cytokinesis and abscission: daughter cells separation 

This is the less understood event of mitosis: the two daughter cells must separate. To do so, 

the midbody must be broken and one of the cells will inherit a flemming body (remaining of 

the midbody). But more importantly the cell must repair the plasma membrane to avoid 

leaking of cell contain. This is achieved by recruiting membrane vesicles from the previously 

dissolved Golgi. These vesicles also carry proteins required for cytokinesis. The very last step 

of cytokenesis called abscission is the physical separation of the two daughter cells.  

 

Control of mitosis by phosphorylation 

The protein kinases described here are all involved in the regulation of multiple events during 

mitotic progression. Analyzing the function of a mitotic kinase is not easy since knock down 

of the protein expression by RNA interference usually generates a phenotype that corresponds 

to the first event controlled by the enzyme. For instance, eliminating CDK1 leads to a cell 

cycle arrest in G2 phase. The cell doesn’t enter mitosis because CDK1 is required for the 

G2/M transition. But CDK1 is also required for progression through mitosis.  

The function of each kinase is also tightly linked to their localizations during progression 

through mitosis, “being at the right place at the right time” (figure 2). One can for instance 
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rescue Aurora B knock down by an Aurora A kinase chimera containing Aurora B 

localization sequences (17). 

 

CDK1/cyclinB activity delimits mitosis 

Cdk1/cyclin B activity appears in late G2 and peaks at metaphase (the middle of M phase) 

and is inactivated upon exit from mitosis by cyclin B destruction, degraded first on the spindle 

at the chromosome level together with cohesins (18). Cdk1 kinase plays important roles in 

early stages that contribute to the G2/M transition. Cdk1 phosphorylates motor proteins 

involved in centrosomes separation required for bipolar spindle assembly (19). Cdk1 

phosphorylates lamina inducing a destabilization of the nuclear structure leading to nuclear 

envelope breaks down (20). It also phosphorylates condensin contributing to chromosome 

condensation (21). When Cdk1 activity is maximum, it participates to the activation of the 

APC/C that insure the ubiquitination of the proteins targeted to be degraded at the 

metaphase/anaphase transition, including cyclin B and securin (22). 

 

Plk1: a very busy kinase 

Plk1 kinase activity peaks in mitosis. The kinase is composed of a catalytic domain and a 

PBD (polo Box Domain) that must bind to a docking protein previously phosphorylated by a 

priming kinase to allow Plk1 activation (23). Also, Plk1 is activated by phosphorylation of its 

T-loop by an activated kinase (24). Plk1 localizes to the centrosomes, the kinetochores and 

the midbody during mitosis. The kinase plays multiple roles during mitosis; it participates to 

the G2/M transition, its inhibition delays entry in mitosis. Among the Plk1 substrates one 

finds all the major players involved in the G2/M transition, CDC25, Myt1 and cyclin B1 (25-

27). Plk1 would be involved in the feed back loop that controls the activation of Cdk1/cyclin 

B. 
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Plk1 activity is also required for centrosome maturation by recruiting protein necessary to 

nucleate the microtubules that will participate to bipolar spindle assembly; the kinase also 

interacts with and phosphorylates many proteins involved in microtubules dynamic (28, 29). 

In addition to be localized and active at the centrosome level, Plk1 also localizes to the 

chromosome kinetochores (30) where its activity participates to the localization of spindle 

checkpoint proteins. The exact function of Plk1 at the kinetochores and its participation to the 

spindle checkpoint remains to be clarified. 

Plk1 is also required to activate the E3 Ubiquitine ligase APC/C required to trigger mitotic 

protein degradation. But although Plk1 directly phosphorylates APC/C subunits the effect of 

this phosphorylation on APC/C activity is minor (31) compare to the phosphorylation by 

Cdk1/cyclin B1 (32). However Plk1 contributes indirectly to APC/C activation by 

phosphorylating the APC/C-cdc20 inhibitor Emi1 in somatic cells. Phosphorylation of Emi1 

by Plk1 triggers Emi1 degradation and APC/C-cdc20 activation (33, 34). This contributes to 

metaphase-anaphase transition controlled by APC/C-cdc20 and M/G1 transition controlled by 

APC/C-cdh1. 

Finally evidence for a function of Plk1 in cytokinesis has been found in different organisms. 

Septum formation is impaired in the fission yeast kinase defective mutants while ectopic 

septum are formed when the kinase is overexpressed (35, 36). In Drosophila polo kinase 

mutant also shows cytokinesis defects at various stages of spermatogenesis (37). In vertebrate 

cells the kinase localizes at the midbody (38). Plk1 also interact with and phophorylates 

kinesin proteins required in cytokinesis such as MKLP1 (39). 

 

Aurora A: a centrosome protein 

Aurora A is activated by binding to some of its substrates like TPX2, a mechanism that 

insures a local activation of the kinase (40). Aurora A is restricted to the centrosome area 
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where it phosphorylates CDC25B contributing to G2/M transition (41). But unlike Cdk1, 

Aurora A is dispensable; its absence only delays entry into mitosis (42). Aurora A activity is 

required for centrosomes separation and maturation that consists in recruiting proteins 

involved in microtubule nucleation. The kinase phosphorylates motor proteins (43) and 

proteins required for astral microtubule nucleation (44). Aurora A might also be involved later 

in mitosis because its overexpression induced a bypass of the Taxol induced mitotic 

checkpoint (45). The kinase is involved in cytokinesis since its overexpression induced 

polyploidy aggravated in the absence of p53 (46). However, these two last points need to be 

investigated further, in particular the relationship between Aurora A and p53. Upon exit from 

mitosis Aurora A is degraded by the proteasome in a CDH1 dependant manner (47, 48) 

 

Aurora B: a chromosome passenger protein  

Aurora B participates to at least two protein complexes with INCENP, and with 

INCENP/survivin/Borealin (49). Those proteins form the chromosome passenger protein 

family, they localize to the kinetochores until the metaphase-anaphase transition occurs then 

they relocalize to the midody (50). Like Aurora A, Aurora B is activated by binding to some 

of its substrates. Aurora B clearly fulfills three distinct functions during mitosis. Aurora B is a 

histone kinase, it phosphorylates serines 10 and 28 on histone H3 and the serine 7 in the 

centromere histone variant CENP-A (51-53). The function of these phosphorylations is still 

debated: chromosome condensation? Loading of mitotic proteins on chromosome? Signaling 

mitosis? (54) 

Aurora B also phosphorylates MCAK (Mitotic Centromere–Associated Kinesin) that results 

in the inactivation of its microtubule depolymerase catalytic activity and its targeting to the 

kinetochores. MCAK is involved in the spindle checkpoint by correcting the non-amphitelic 

attachments of microtubules to the kinetochores (55). 
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Aurora B RNA interference or inhibition mainly induces the formation of polyploid cells 

indicating that Aurora B activity is required for cytokinesis. And indeed, the kinase 

phosphorylates vimentin, the kinesin ZEN-4/MKLP1 and MgcRacGAP, a GTPase Activating 

Protein (GAP) all required for cytokinesis (56-58). 

 

Aurora C: an Aurora B substitute? 

Aurora C is expressed only in testis (59). However overexpression of Aurora C has been 

observed in number of cancer cell lines and tumors (60, 61). Aurora C was first described as 

an anaphase centrosome protein (60). However it turn out that Aurora C when overexpressed 

behaved just like Aurora A in interphase and like Aurora B in mitosis (62, 63). Aurora C like 

other Aurora is activated by some of its substrates, in particular by Aurora B substrate such as 

INCENP (63). Not only Aurora C mimics Aurora B in mitosis but also it rescues Aurora B 

depleted cells (63). Strikingly, nobody has yet localized the endogenous protein nor analyzed 

whether the kinase is expressed in normal cells and what would be its function. 

 

NIMA: a kinase with many relatives 

NIMA (Never In Mitosis A) is an Aspergillus nidulans protein kinase. Mutations that 

inactivate the kinase led to a late G2 arrest with cells harboring duplicated but unseparated 

centrosomes (64). Among the 13 mammalian Nek, Nek2 is the closest NIMA relatives, its 

activity is absolutely required for mitosis. Nek2 phosphorylates C-Nap1 (Centrosomal Nek2-

Associated Protein 1). Its phosphorylation is required for centrosome separation that is a 

prerequisite to bipolar spindle assembly (65). Nek2, at least in Drosophila, might also have a 

role late in mitosis since its overexpression leads to cytokinesis defects (16). These functions 

again are related to the localization of the kinase: the centrosomes and the kinetochores. 

Human cells express two isoforms of Nek2, Nek2A and Nek2B. Nek2A is degraded by the 
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APC/C upon entry into mitosis whereas Nek2B remains stable during mitosis (15, 66). Nek2 

is activated by trans-autophophorylation and inhibited by dephosphorylation by the 

phosphatase PP1 (67).  

Other members of the Nrk kinase family play roles during mitosis. Nek6 that is highly 

expressed during mitosis is required for mitosis progression because its inhibition provokes a 

metaphase arrest (68, 69). Nek9 that is a mitotic centrosome kinase, phosphorylates and 

activates Nek6 (68). Inhibition of Nek9 impairs bipolar spindle assembly (70). 

 

Mitotic kinases and cancer 

In 1914, Theodore Bovary proposed aneuploidy (abnormal chromosome number) arising 

from mitotic defects as a mechanism that might lead to oncogenesis. Abnormal mitosis can 

indeed generate cells with multiple centrosomes and abnormal number of chromosomes 

frequently observed in cancer cells (71).  

Theodor Beoveri was right; chromosome instability and aneuploidy generate genetic defects 

that are hallmarks of tumorigenesis. They arise through defects during mitosis when 

chromosomes are unequally segregated between the two daughter cells. Neoplastic 

development is a multisteps mechanism due to an accumulation of genetic defects that breaks 

the balance between growth-inhibitory signal and division-promoting signal. Tumors then 

would derive from one cell in which the growth-inhibitory signal is down regulated (loss of 

tumor suppressor genes) and the division-promoting signal is elevated (gain of proto-

oncogenes). One of the best examples is the transformation of human cell line achieved by co-

expression of the SV40 large-T oncoprotein, the H-ras oncogene and the telomerase catalytic 

subunit (72). 

Chromosome segregation is a finely regulated process insured by the mitotic spindle that is a 

highly dynamic microtubule-based structure. The mitotic spindle is composed of two 
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centrosomes connected by microtubules to the chromosomes aligned at the metaphase plate in 

the centre of the structure. In every pair of sister chromatid, each chromatid is connected to 

opposite centrosomes forming amphitelic attachment. During segregation each sister 

chromatid migrates to one pole of the cell leading to the formation of two identical groups of 

chromosome. This bipolarity is necessary to form two daughter cells with the same DNA 

content during cytokinesis. In mammalian cells, each spindle pole is organized around a 

centrosome. Remarkably, in cancer cells the number, the structure and the function of 

centrosomes are often abnormal and correlate with aneuploidy and chromosome instability. 

So, because the mitotic spindle plays a central role in chromosome segregation, many proteins 

involved in its establishment and in its regulation are often mis-regulated in cancers. This is 

the case for the mitotic protein kinases Cdk1, Aurora A, B and C, Plk1, and Nek2 protein 

kinases (figure 3).  

 

CDKs  

Alterations of Cdks have rarely been observed in cancer, overexpression of Cdk1 and Cdk2 

has been reported in colon adenomas (73, 74). However alterations of proteins that regulate 

Cdks such as cyclins, Cdk-activating enzymes and CKI, are frequently observed (75, 76).  For 

instance cyclin A is overexpressed in lung carcinoma and elevated expression correlated with 

shorter survival (77). But the best proves that Cdk hyperactivities are involved in cancer is the 

fact that drugs inhibiting Cdk s are particularly effective to inhibit tumor progression. A large 

variety of compounds are actually on the market and their successes are due to their effects, 

inhibition of cell proliferation, activation of apoptosis and in some cases they can even trigger 

differentiation (78-80). 

 

Aurora A 
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The gene encoding Aurora A is located on chromosome 20q13. This chromosome region is 

frequently found amplified in human cancers, and the amplification is associated with over-

expression of the protein kinase (81). This Aurora A amplification/over-expression is detected 

in cancers like breast, colon, pancreatic, bladder, ovarian, prostate cancer and neuroblastoma 

(82-85). Furthermore the Aurora A gene copy number correlates with chromosomal instability 

and aneuploidy in human bladder tumour. Overexpression of the kinase also correlates with 

clinical aggressiveness of the tumour (84, 86). Aurora A has also been found mutated in 

several cancers, the mutation that is proposed to be due to polymorphism designs Aurora A as 

a candidate susceptibility gene (87). 

In vitro Aurora A kinase over-expression induces aneuploidy and abnormal centrosome 

numbers leading to cell tumorigenic transformation (82, 83). Long term overexpression of 

Aurora A is also sufficient to induce tumour formation in mice, after a long period of genomic 

instability (88). However it is not clear how the kinase induces tumorigenesis, it has been 

proposed that Aurora A overexpression would be sufficient to escape negative regulation by 

tumour suppressor pathway. Aurora A kinase interacts with and phosphorylates the tumour 

suppressor protein p53. Phosphorylation of p53 induced its degradation through mdm2 (89) 

and reduced it transactivation activity (90). Because p53 plays a major role in carcinogenesis, 

its interaction with Aurora A might be important in the kinase oncogenic activity. Moreover 

Aurora A kinase is a RasGap Src homology 3 domain binding protein and forms a complex 

with RasGap and Survivin proteins. This interaction inhibits Aurora A activity (91). Because 

RasGap is also a negative regulator of Ras pathway, it has been suggested that in cell 

overexpressing Ras, there would not be enough RasGap to inactivate both Ras and Aurora A 

leading to Aurora A hyperactivity participating to oncogenesis.  

 

Aurora B 
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Aurora B overexpression has been found in many cancers like colorectal cancer (92, 93) or 

thyroid carcinoma (94). In colorectal and prostate cancer, Aurora B over-expression increases 

in correlation with the tumour malignancy (92, 95). However unlike Aurora A, Aurora B gene 

has never been found amplified and the origin of Aurora B over-expression is actually 

unknown. Also unlike Aurora A, Aurora B is not an oncogene, but its over-expression 

induces metastasis. Aurora B over-expression results in hyper-phosphorylation of histone H3 

on serine 10 (96). This increase in serine10 phosphorylation is observed on lagging 

chromosomes during mitosis (96). Does hyperphosphorylation of histone H3 induce 

chromosome instability and aneuploidy? It seems so since, lagging chromosomes have been 

observed in cells transfected with a Ser10 phospho-mimetic form of histone H3 (96). Whether 

hyperphosphorylation of H3 participates to segregation defect is obvious, whether it 

participates to metastases apparition is not clear. Although Aurora B over-expression in 

cancer cells correlates with genetic instability (97) how Aurora B expression is linked to 

cancer remains to be determined. However inhibition of Aurora kinases (especially with anti-

Aurora B drugs) efficiently reduced tumour growth in mice (98). 

 

Aurora C 

Little is know about this third member of Aurora kinase family. In normal physiological 

conditions Aurora C is expressed only in testis, (59). However cancer cell lines expressed the 

kinase (60). Aurora C is highly expressed in human thyroid carcinoma cell lines and tissues, 

where its expression correlates with the aggressiveness of the tumour (61). Over-expression 

of Aurora C gives rise to polyploid cells. Like for the other Aurora kinases, the phenotype is 

aggravated in the absence of p53 (62). Because Aurora C is very close to Aurora B one would 

expect over-expression of Aurora C to have the same consequences than over-expression of 

Aurora B. 
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Plk1 

Over-expression of Plk1 in rodent cells is sufficient to confer a transform phenotype 

indicating that Plk1 is a potential oncogene (99). In agreement with this data, Plk1 has been 

found over-expressed in a large variety of cancers (100 for review). And high level of Plk1 is 

a sign of bad prognosis in several cancers (101-105). Beside over-expression, mutation in 

Plk1 has been observed in cancers; some of the mutations inhibit the interaction of Plk1 with 

Hsp90 and stabilize the kinase leading to a hyperactivity of Plk1 (106). Like for Aurora 

kinases, overexpression of Plk1 generates genomic instability by triggering the formation of 

polyploid cells (107) frequently observed in cancer cells (108). Taking together these data 

designed Plk1 as a good target for inhibitors used as anti-cancer drugs. And indeed inhibition 

of Plk1 was reported to have different effects in cancer cells versus normal cells (28). 

Inhibition of Plk1 arrests tumour cells in culture as well as it reduces tumour growth in mice 

indicating that the kinase is absolutely required for cells that highly proliferate (109-110). 

 

Nek2 

Ewing’s tumour cell line derived (a paediatric osteosarcoma) and non-Hodgkin lymphoma 

show elevated level of Nek2 mRNA, and the transcript level increase correlates with 

aggressiveness (111). Nek2 is also over-expressed in cervical and prostate carcinoma as well 

as in gastric and breast in which the chromosomal region 1q32 corresponding to the human 

Nek2 gene locus is amplified (six times in breast cancer) (112, 113). Nek2 is not a proto-

oncogene, however its over-expression provokes defects in centrosome organization and 

function. In HBL100 cells over-expression of human Nek2 induces the formation of 

aneuploid cells containing abnormal numbers of centrosomes a hallmark of cancer cells (71). 
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Conclusion 

The short review only describes the most known mitotic protein kinases, we voluntarily 

omitted checkpoint kinases and others to make this review comprehensive for people that are 

not use to protein kinase world. One sure thing is that many other mitotic protein kinases 

remain to be discovered and studied as proved by some screen recently performed to search 

for novels kinases (114). 
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Figure legends 

 

figure 1 : The different phases of the mitosis 

During the interphase the cell’s nucleus is well defined, with two pairs of centrioles adjacent 

to the nucleus. At the end of the interphase, the genome has been duplicated but the 

chromosomes are not distinguishable. When prophase starts, the nucleoli disappear and the 

chromatin starts to coil and fold into observable chromosomes, the spindle forms and the 

centrosomes move apart. During prometaphase, the nuclear membrane breaks down and some 

of spindle microtubules attach to sister chromatids at the kinetochores. The microtubules start 

to deplace the chromatid pairs to form a metaphase plate. At the metaphase the chromosomes 

have moved to the center of the dividing cell along the metaphase plate. Identical chromatids 

are attached to kinetochore fibers radiating from opposite ends of the parent cell. The sister 

chromatids begin to separate at the anaphase when the spindle microtubules pull separating 

chromosomes to opposite poles. During telophase, daughter nuclei begin to assemble with 

nuclear envelopes appearing around chromosomes. Nucleoli reappear and chromosomes 

decondense. The last step of mitosis is the cytokinesis step. It occurs when a contractile ring 

of actin and myosin filaments constricts the plasma membrane at the equator, triggering the 

physical division of the two daughter cells. 

figure 2 : Localization of the major mitotic kinase through the mitotic phase. 

One of the clue to succeed in mitosis for mitotic kinases, is to be “at the right place at the 

right moment”. The short summary of where the kinases have been found gives an idea of the 

complexity of the controls insured by mitotic protein kinases.  

figure 3: An overview of relationship between mitotic kinase expression and cancer 
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As mitosis regulators, the expression levels of the major mitotic kinases are crucial for cell 

division. In many cancers, up and down regulation of their expression have been observed, 

underlying the importance to follow the expression level of mitotic kinases for developing 

new targeted therapy. 
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