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1. On a selective reuse of Krylov subspaces in Newton-Krylov
approaches for nonlinear elasticity

P. Gosselet1, C. Rey2

1. Introduction. We consider the resolution of large-scale nonlinear problems
arising from the finite-element discretization of geometrically non-linear structural
analysis problems. We use a classical Newton Raphson algorithm to handle the
non-linearity which leads to the resolution of a sequence of linear systems with non-
invariant matrices and right hand sides. The linear systems are solved using the
FETI-2 algorithm. We show how the reuse, as a coarse problem, of a pertinent se-
lection of the information generated during the resolution of previous linear systems,
stored inside Krylov subspaces, leads to interesting acceleration of the convergence of
the current system.

Nonlinear problems are a category of problems arising from various applications
in mathematics, physics or mechanics. Solving these problems very often leads to a
succession of linear problems the solution to which converges towards the solution to
the considered problem. Within the framework of this study, all linear systems are
solved using a conjugate gradient algorithm. It is well known that this algorithm is
based on the construction of the so-called Krylov subspaces, on which depends its
numerical efficiency and its convergence behaviour.

The purpose of this paper is to accelerate the convergence of linear systems by
reusing information arising from previous resolution processes. Such an idea has al-
ready led to a classical algorithm for invariant matrices [8] which has been successfully
extended to the case of non invariant matrices [6, 7]. We here propose, thanks to a
spectral analysis of linear systems, to select the most significant part of the informa-
tion generated during conjugate gradient iterations to accelerate the convergence via
an augmented Krylov conjugate gradient algorithm.

The remainder of this paper is organized as follows: section 2 addresses characteris-
tic properties of preconditioned conjugate gradient, section 3 exposes the acceleration
strategies, section 4 gives numerical assessments and section 5 concludes the paper.

2. Basic properties of preconditioned conjugate gradient. We consider
the linear system Ax = b solved with a M -preconditioned conjugate gradient (A and
M are N×N real symmetric positive definite matrices). We note xi the ith estimation
to x = A−1b, ri = b − Axi = A(x − xi) the associated residual and zi = M−1ri the
preconditioned residual. In order to concentrate the notations, we also note with
capital letters matrices built from set of vectors, e.g. Ri = (r0, . . . , ri−1). Given
initialization x0, preconditioned conjugate gradient iteration consists in searching

xi ∈ {x0} + Ki(M−1A, z0) with ri ⊥ Ki(M−1A, z0)
where Ki(M−1A, z0) is the ith Krylov subspace

Ki(M−1A, z0) = Span(z0, . . . , (M−1A)i−1z0) = Range(Zi)
(2.1)
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Ax = b with CT ri = 0 Iterations i = 0, . . . , s

PC = Id − C
(
CT AC

)−1
CT A zi = PCM−1ri (w0 = z0)

Initialization (x00 is arbitrary) wi = zi +
i−1∑
j=0

βj
i wj βj

i = − (zi, Awj)
wj , Awj

x0 = C
(
CT AC

)−1
CT b + PCx00 xi+1 = xi + αiwi αi =

(ri, zi)
(wi, Awi)

r0 = b − Ax0 ri+1 = ri − αiAwi

Property: RT
i Zi and WT

i AWi are diagonal

Figure 2.1: Augmented Preconditioned Conjugate Gradient

2.1. Augmented conjugate gradient. The augmentation consists in defining
full-ranked constraint matrix C and imposing CT ri = 0. It leads to the definition of
a modified Krylov subspaces K̃i(M−1A, z0, C) [2]:

K̃i(M−1A, z0, C) = Ki(M−1A, z0) ⊕ Range(C)
xi ∈ {x0} + K̃i(M−1A, z0, C) with ri ⊥ K̃i(M−1A, z0, C)

(2.2)

The augmented preconditioned conjugate gradient can be implemented with a pro-
jected algorithm (fig. 2.1): initialization and projector PC ensure orthogonality con-
ditions.

Remark 2.1 Although no optimality result holds anymore when matrix A is non-
positive, conjugate gradient still proves good convergence behaviour [5].

Remark 2.2 As M is definite positive, it can be factorized under Cholevsky’s form
M = LLT . Following [9] we prove that the M-preconditioned C-augmented conjugate
gradient is equivalent to a non-preconditioned Ĉ-augmented conjugate gradient Âx̂ = b̂
with :

Â = L−1AL−T x̂i = LT xi b̂ = L−1b Ĉ = LT C

ŵi = LT wi ẑi = LT zi r̂i = L−1ri βj
i = β̂j

i αi = α̂i
(2.3)

2.2. Ritz’s spectral analysis of symmetric system. Ritz’s values and vec-
tors (θj

i , ŷ
j
i )1�j�i defined in equation (2.4) are the eigenelements of the projection of

matrix Â onto K̃i(Â, r̂0, Ĉ), they converge (i → N) to eigenelements of matrix Â [5].

V̂i orthonormal basis of K̃i(Â, r̂0, Ĉ) Diagonalization Bi = QB
i ΘiQ

B
i

T

Bi = V̂ T
i ÂV̂i Rayleigh’s matrix Θi = Diag(θj

i )1�j�i

QB
i

T
QB

i = Id, Ŷi = V̂iQ
B
i

(2.4)

Ritz’s representation of conjugate gradient provides meaningful information. Es-
pecially, the convergence of Ritz’s values is directly linked to the convergence of the
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conjugate gradient:

x̂ − x̂i = π(Â)(x̂ − x̂0) with π(ξ) =
i∏

j=1

θj
i − ξ

θj
i

(2.5)

3. Choice of optional constraints. The choice of matrix Ĉ is a very accurate
problem which requires a study of the governing factors of the convergence of the con-
jugate gradient [11]. The condition number, which is proved to decrease [1] whatever
the Ĉ matrix may be, is not sufficient for a relevant analysis. In the remainder of the
paper, we will call ”active” eigenelements that are excited by (i.e. non-orthogonal to)
the initial residual and ”effective” active eigenelements that are not yet properly esti-
mated by Ritz’s elements. Only effective condition number influences the convergence
rate: when an eigenvalue is sufficiently well approximated inside the Krylov subspace,
the conjugate gradient acts as if it had been suppressed from the resolution process.
This explains the superconvergent behaviour of the conjugate gradient: when highest
eigenvalues are sufficiently well approximated by Ritz’s values, the effective condition
number is very low and the convergence rate very high. So a good way to ensure a
decrease of the effective condition number is to put active eigenvectors of Â inside
matrix Ĉ.

However, computing a priori active eigenvectors of a system is as expensive as
solving it, hence in this section we first show, inspiring from [9], how a posteriori
computation can be achieved costlessly when reusing information generated during
the conjugate gradient process, then we propose within the framework of multiple
systems resolution to use approximation of the eigenvectors of previous systems as
constraints to accelerate the convergence of current system.

3.1. Efficient computation of Ritz’s elements. Hessemberg matrix Hi aris-
ing from Lanczos’ procedure is a specific tridiagonal Rayleigh matrix the coefficients
of which can be recovered from the coefficients of the conjugate gradient:

R̂i = (
r̂0

‖r̂0‖ , . . . , (−1)i−1 r̂i−1

‖r̂i−1‖ ) orthonormal basis of K̃i(Â, r̂0, Ĉ)

Zi = (
z0

(z0, r0)
, . . . ,

(−1)i−1zi−1√
(zi−1, ri−1)

) M-orthonormal basis of Ki(M−1A, z0, C)

Hi = R̂
T

i ÂR̂i = ZT
i AZi

Hi = Tridiag(ηj−1, δj , ηj) with ηj =

√
βj−1

j

αj
and δj =

1
αj

+
βj−2

j−1

αj−1

(3.1)

So a tridiagonal Rayleigh matrix can be computed without vector manipulation,
and a specific Lapack procedure can then be used to compute the eigenelements. To
have an action on the non-symmetric preconditioned problem, we define ”transported
Ritz’s vectors” Yi = L−T Ŷi = ZiQ

H
i , they verify the following orthonormalities:

Y T
i AYi = Θi and Y T

i MYi = Idi (3.2)

3.2. Selective reuse of Krylov subspaces. We focussed on the interest of
reusing eigenvectors (or at least good estimations) as constraints. Our strategies are
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based on the simple equivalence Ĉ = (ŷj
i ) ⇔ C = (yj

i ) which means that a spectral
action can be achieved acting directly on the preconditioned problem.

We now consider the resolution of a sequence of linear systems Akxk = bk (k � 1
stands for the number of the linear system, matrices and right hand sides are non-
invariant) with augmented conjugate gradient. We propose two strategies based on
the reuse of spectral information.

The first strategy is a simple total reuse of Ritz’s vectors which is equivalent, since
Range(Yi) = Range(Wi) = Ki(M−1A, z0, C), to a total reuse of Krylov subspaces:
matrix Ck is built concatenating all previous Krylov subspaces Ck = (W1, . . . , Wk−1)
(C1 = 0). As all the information is reused without selection, this strategy gives the
best decrease of the number of iterations of the conjugate gradient expectable from
the reuse of Krylov subspaces. Of course it quickly leads to huge Ck matrices and
expensive computations to handle the augmented algorithm. Note that when Ak is
invariant (∀k, Ak = A), CkT

ACk is a diagonal matrix and this algorithm is equivalent
to a multiple right hand side conjugate gradient [8].

The second strategy aims at reducing the dimension of matrices Ck concentrating
the information stored inside Krylov subspaces into few vectors. It is managed through
the spectral analysis exposed above and the selection of Ritz’s vectors associated to
converged Ritz’s values. The convergence of the values is estimated computing the
values for the last two iterations and comparing them.

for j � (i + 1), θj
i is converged if

∣∣∣∣∣
θj

i − θj−1
i−1

θj
i

∣∣∣∣∣ � ε (3.3)

4. Numerical assessment. We now assess the reuse of Krylov subspaces on
the computation of the buckling of a clamped-free beam (fig. 4.1). The beam is
a composite structure made up of Saint-Venant–Kirchoff materials, fibers are 1000
times stiffer than the matrix. It is decomposed into 32 substructures. We use Newton
Raphson’s algorithm [10] to linearize the problem, the resolution is then conducted
in 28 linear systems with non-invariant matrices Kkuk = fk (k is the linear system
number). The linear systems are solved with FETI-2 method equipped with Dirichlet’s
preconditioner and superlumped projector.

Figure 4.1: Buckling of the beam
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P = Id − QGI

(
GT

I QGI

)−1
GT

I

PC = Id − (PC)
(
(PC)T FI(PC)

)−1 (PC)T FI

Initialization (λ00 is arbitrary)
λ01 = QGI

(
GT

I QGI

)−1
e λ02 = (PC)

(
(PC)T FI(PC)

)−1 (PC)T d
λ0 = PC(Pλ00 + λ01) + λ02

r0 = d − FIλ0

Iterations i = 0, . . . , s

zi = PCPF̃−1
I PT ri

wi = zi +
i−1∑
j=0

βijwj (w0 = z0)

λi+1 = λi + αiwi βij = − (wj , FIzi)
(wj , FIwj)

ri+1 = ri − αiFIwi αi =
(wi, ri)

(wi, FIwi)

Figure 4.2: Two-level FETI algorithm

4.1. Application of the reuse of Krylov subspaces to FETI-2. The Finite
Elements Tearing and Interconnecting (FETI) method was first introduced by Farhat
and Roux [4]. It consists in solving with a projected conjugate gradient the system
arising from dual domain decomposition method. FETI-2 [3] solves the same problem
with augmented conjugate gradient. Readers should refer to referenced papers for
a complete description, we only show here the specificity of our strategies applied
to FETI-2 method (fig. 4.2). With notations from [3], the system arising from the
condensation writes:

(
FI −GI

−GT
I 0

) (
λ
α

)
=

(
d
−e

)
(4.1)

The first level projection P and initialization λ01 handle floating substructures, second
level projector PC and initialization λ02 handle the augmentation associated to matrix
C. Note that constraints have to be made compatible with the first level projector
(PC)T ri = 0. In the case of FETI algorithm, the augmentation possesses a mechanical
interpretation: PT ri represents the jump of the displacement field between substruc-
tures. Constraints matrix C then ensures a weak continuity of the displacement field.
Forming and factorizing the so-called coarse problem matrix

(
(PC)T F (PC)

)
is a

complex operation requiring all-to-all exchanges between substructures, in a parallel
processing context these operations are penalizing then matrix C has to be chosen as
small as possible.

We checked that for this class of problem Dirichlet’s preconditioner is positive
for all the systems. We also verified the imbrication of the kernel of local ma-
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trices ∀(substructure s, system k) Ker(K(s)k+1
) ⊂ Ker(K(s)k

) which implies that
∀k Range(Gk+1

I ) ⊂ Range(Gk
I ). So all previous Krylov subspaces are built orthogo-

nally to the Gk
I matrix, hence when using vectors from Krylov subspaces as constraints

we already have P kCk = Ck. Then the two projectors are decoupled which suppresses
time consuming step of making constraints admissible.

4.2. Performance results. The first point concerns the choice of the ε param-
eter introduced in section 3.2 to determine whether Ritz’s values are converged or not.
Experiments (e.g. fig. 4.3) showed that the criterion is either very low (> 10−14) or
very high (> 10−8), value ε can then be chosen inside a wide range without modifying
the selection, typically we chose ε = 10−13.

Figure 4.3: Convergence of Ritz’s values Figure 4.4: Action of Selective Reuse:
number of constraints

Figure 4.5: Action of Selective Reuse:
number of iterations

Figure 4.6: Action of Selective Reuse:
CPU time

Figures 4.4, 4.5 and 4.6 summarize the action of the reuse of Krylov subspaces
through the resolution of the linear systems. First figure 4.4 shows how effective
the selection is: the number of constraints is quickly divided by a factor 2. Figure
4.5 presents the evolution of the number of iterations per linear system, the total
reuse corresponds to the best result expectable from the reuse of Krylov subspaces,
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the number of iterations is divided by a factor 10, which proves the interest of the
information stored inside Krylov subspaces. The selective reuse also proves interesting:
with a two-time smaller constraints space, its performance results are quite near the
total reuse. Figure 4.6 shows the performance results in terms of CPU time: the total
reuse is already relevant, the selective reuse since its performance results in terms of
iterations are almost equivalent with a lower number of constraints leads to impressive
gain, it is 60% faster than the non accelerated method.

Figure 4.7: Ritz’s spectrum, no constraint Figure 4.8: Ritz’s spectrum, selective reuse

Figure 4.9: Evolution of the error, no con-
straint

Figure 4.10: Evolution of the error, selec-
tive reuse

Figures 4.7 and 4.8 enable us to check the spectral action announced above, they
represent the Ritz’s spectrum for 4 linear systems (the 1st, 5th, 10th and 28th). The
selective reuse filters the highest and the negative values, and suppresses part of mid-
range values, giving better spectral properties for the resolution. Figures 4.9 and 4.10
show how the resolution process is improved by the selective reuse: two actions are
combined, first a better initialization is found, second the superconvergence is achieved
from the beginning of the resolution.
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5. Conclusion. In this paper we considered the resolution of a sequence of lin-
ear systems arising from geometrically nonlinear structural analysis, with a FETI-2
method. We proposed an algorithm to realize a spectral analysis of linear systems
solved with a conjugate gradient algorithm with positive preconditioner. We showed
that the complete reuse of former Krylov subspaces has already led to good perfor-
mance results and that a selective reuse of Ritz vectors associated to Ritz’s values
giving good estimates of eigenvalues gave even better computational performance (up
to 60% CPU time gain). Next studies will focuss on additional selection criteria for
the Ritz vectors based on the activity of former vectors for the resolution of cur-
rent system, the aim is to be even more selective and to suppress vectors containing
information which is non-relevant for the current system.

We authors acknowledge support from the Centre Informatique National Enseigne-
ment Superieur (CINES) for computational resources.
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