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I. INTRODUCTION

Electrothermal microactuator is generally composed of two suspended beams (arm) joined at the free end. This device generates deflection through asymmetric heating of the hot and cold Polysilicon arms with different crosssection or different length. The cold arm and hot arm are usually made of Polysilicon. When current pass through the microactuator, the higher heat generation in the longer hot arm causes it to heat and expand more than the cold arm. Therefore, this differential expansion forces the tip of device to rotate. The fabrication process is a combination of surface and bulk micromachining technique. The performance of these micro actuators is related to the best rise of temperature to obtain a desired deflection using minimal power.

Many efforts have been carried out to explore the characterization and behaviour of electro-thermally driven microactuators [START_REF] Pan | An electro-thermally and laterally driven Polysilicon microactuator[END_REF][START_REF] Lee | Optimization of an electro-thermally and laterally driven microactuator[END_REF][START_REF] Huang | Analysis and design of Polysilicon thermal flexure actuator[END_REF][START_REF] Chen | Analysis of the optimal dimension on the electrothermal microactuator[END_REF][START_REF] Kuang | Numerical simulation of a Polysilicon thermal flexure actuator[END_REF]. The motivation of all of these efforts is to increase actuator performance by structure optimization. C. Pan and W. Hsu [START_REF] Pan | An electro-thermally and laterally driven Polysilicon microactuator[END_REF] presented a microactuator based on different lengths but the same cross sections for cold arm and hot arm. They investigated length beam effect on the actuator tip deflections by FEA.

In this paper, the influence of geometrical variations on the actuator tip deflections has been explored using analytical and FEA. Different models have been generated and analyzed considering variation of beam lengths, beam lengths ratio and air gaps. An electrothermal model of Polysilicon thermal microactuator similar to Pan's actuator architecture has been developed (fig. 1). To verify the validity of model, analytical and simulation results are compared with experimental results, for similar geometries and input data, presented by C. Pan and W. Hsu. There is a good agreement between these results in low input voltages (about 8 volts). As it was been reported previously by M. Shamshirsaz and M. Gheisarieha [START_REF] Shamshirsaz | Analysis of Polysilicon electrothermal microactuators with temperature-dependent properties[END_REF], the deviation of theoretical results from experimental results in high input voltages is principally due to temperature dependency of Polysilicon properties and particularly Polysilicon thermal expansion coefficient.

II. FINITE ELEMENT MODEL

A three dimensional analysis of the electrothermally excited microactuators is developed using finite element analysis simulation program. A non-linear analysis is treated considering coupled-field multiphysics analysis. The geometric dimensions and material properties of the microactuator are presented in table 1. IV. ANALYTICAL MODEL Pan's actuator architecture is presented in fig. 1. Usually an extended jaw is connected at the end of the microactuator to use it as a microgripper. Analytical analysis of the microactuator consists of two parts; electro-thermal model and thermo-mechanical model that will be discussed in below.

IV-1 Electro-thermal model

In the thermal analysis, heat transfer in perpendicular direction of arm axis is ignored because of small cross section comparing to arm lengths. Heat transfer analysis is investigated considering heat conduction and heat convection. Conduction takes places in the juncture of microactuator to the anchors. Heat dissipations through air also have an important role in thermal analysis. Heat dissipation through radiation is neglected [START_REF] Yan | Modeling of two-hot-arm horizontal thermal actuator[END_REF].

The coordinate systems for thermal analysis are shown in fig. 2. Under steady state condition the rate of heat generation and losses for a longitudinal element must be equal: Considering temperature distributions on the arms, the linear thermal elongations of hot and cold arms are:

(

By solving the electro thermal equations, and will be introduced in the thermo-mechanical deflection equations.

IV-2 Thermo-mechanical model

The structure of thermal actuator is similar to a plane rigid frame. To solve this statically indeterminate structure, the consistent deformation method is used [8].

By introducing flexibility coefficient compatibility equations can be established and solved simultaneously. Actuator deflection is calculated applying a virtual unit force and unit moment at point C. Applying consistent deformation method, the virtual moments along the beam can be obtained.

represent the virtual moment due to unit force and unit moment respectively. According to the virtual work method for the deflection, so the microactuator angle θ and deflection u can be determined by:

( 5 ) [START_REF] Shamshirsaz | Analysis of Polysilicon electrothermal microactuators with temperature-dependent properties[END_REF] The extended jaw's tip deflection for small angles is: V. RESULTS AND CONCLUSIONS The results show a good agreement between analytical, FEA results and experimental results obtained by Pan and Hsu [START_REF] Pan | An electro-thermally and laterally driven Polysilicon microactuator[END_REF] (fig. 3). By introducing geometrical variations, the results indicate that deflection increases with hot arm length (L 1 ) as it was expected. Analytical and FEA results demonstrate that the microactuator deflection becomes maximum for an optimal beam length ratio value near L 2 /L 1 =0.46 regardless of hot beam length (fig. 4). Pan and Hsu [START_REF] Pan | An electro-thermally and laterally driven Polysilicon microactuator[END_REF] reported an optimal value near L 2 /L 1 =0.4 and 0.5 with lengths of the long beam being 750 and 500 µm, respectively using only FEA. Tip deflection increases with decreasing air gap (fig. 5). For the microactuators with longer hot arm, the tip deflection is more affected by the beam length ratio and air gap variation.
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 1 Fig. 1: Electro-thermally driven microactuator designed by Pan and Hsu [1].

Figure 2 :

 2 Figure 2: Coordinate systems for thermal analysis of microactuator.

  thickness β: Convection heat transfer coefficient : Ambient temperature : Thermal conductivity : Current density : Electrical resistivity of Polysilicon.

  loads. Flexibility coefficients can be calculated by Maxwell law due to abundant forces [8]. Calculating redundant forces and moment, moments along the arm and the tip section can be obtained.
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  Figure3: Deflection versus input voltages: Theoretical and Finite Element results comparing with expeimental results obtained by Pan and Hsu [1].

Figure 4 :

 4 Figure 4: Deflection versus beam length ratio: Theoretical and Finite Element results for an input voltage of 8 volts.

Figure 5 :

 5 Figure 5: Deflection versus gap: Theoretical and Finite Element results for an input voltage of 8 volts.
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	9-11 April 2008			
		FOR FINITE ELEMENT ANALYSIS	
	Mechanical		Electric loadings:	
	Properties:			
	Young's		Input voltage	
	modulus of	158×10 9 Pa		8 V
	polySi			
	Poisson's ratio	0.066	Resistivity	5×10 -4 Ωm
	Density	2320Kg		
		m -3		
	Thermal		Geometric	
	properties:		dimensions	
	Conductivity coefficient	41 W m -1 °C-1	Gap between beams	5 ≤ g ≤10 µm
	Expansion	2.7×10 -6	Length of long beam	L1=500, 600,
	coefficient	°C-1		750 µm
	Specific coefficient	700 J kg -1 °C-1	Length of short beam	0.1L1≤L2≤0.8L1
	Convection coefficient	50 W m -2 °C-1	Width of beams	W= 2.8 µm
	Ambient temperature	20 °C	Thickness of beams	t ' =2 µm
			Length of extension	
			beam	L=40 µm
			Contact pads	200µm×200µm
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Finally, the results indicate that for current structure, the tip deflection is highly sensitive to geometrical variations. For the longest hot arm in this study, respecting an optimal value of 0.46 for L 2 /L 1 in microactuator design , an increase of 100% for tip deflection can be achieved. In low input voltages, the variation of geometrical dimensions and air gap influences, principally, heat conduction, heat dissipation by convection and microactuator stiffness.