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Abstract - Measured damping coefficients of six different 

perforated micromechanical test structures are compared with 
damping coefficients given by published compact models. The 
motion of the perforated plates is almost translational, the 
surface shape is rectangular, and the perforation is uniform 
validating the assumptions made for compact models. In the 
structures, the perforation ratio varies from 24% - 59%. The 
study of the structure shows that the compressibility and inertia 
do not contribute to the damping at the frequencies used 
(130kHz - 220kHz). The damping coefficients given by all four 
compact models underestimate the measured damping 
coefficient by approximately 20%. The reasons for this 
underestimation are discussed by studying the various flow 
components in the models. 

 

I.  INTRODUCTION 
Perforations are used in micromechanical squeeze-film 

dampers for several reasons. The main purpose is to reduce 
the damping and spring forces of oscillating structures due to 
the gas flow in small air gaps. Generally, the modeling 
problem is quite complicated, since the damping force acting 
on the moving structure depends on the 3D fluid flow in the 
perforations, in the air gap, and also around the structure. 
Compact models have been published in the literature, but 
their verification is generally questionable. Verification 
methods used are FEM solutions of the Navier-Stokes 
equations of the fluid volume and measurements [1].  

 
In this paper, responses of four compact models are 

compared with measured responses of test structures. Six 
different perforated plates (figures 1 and 2) with different 
topologies have been measured at their first out-of-plane 
resonant frequencies, and the damping coefficients have been 
calculated from the quality factors (Q values) and effective 
masses. The measurement setup, the testing procedure and 
specimens characteristics are presented in [2]; here it is 
observed that dynamic parameters of the microsystem 
characterizing the fluidic and structural coupling can be 
extracted from the experimental frequency response function 
(FRF). The dynamic performance of microstructures are 
discussed based on the analytical solutions to perforated 
parallel-plate problems in [3], [4] and [5]. Since the 
perforation is uniform, the motion is almost translational, and 
also since the shape of the surface is rectangular, analytic 

damping models are applicable. 
First, the oscillating flow is analyzed using several 

characteristic numbers, the applicable modeling method is 
then chosen, the damping coefficients are calculated and 
compared with the measured ones. Finally, the results are 
discussed. 

 

II.  TEST STRUCTURES AND MEASUREMENTS 
Figures 1 and 2 show the structures of the test specimen. 

The height of the plate hc = 15µm, the air gap height h = 
1.6µm. Table I shows the other dimensions of the measured 
devices. In the table, q is the perforation ratio in percent, in 
this case q = MNs0

2/(LW), M and N are the number of holes in 
the length and width directions, respectively. 

 

 
Fig. 1. Geometrical shape and dimensions of the vibrating structures. 
 
The measurements are made using the interferometric 

microscope Fogale ZoomSurf 3D (figure 3), with 20x 
objective magnification factor, 0.1nm of vertical resolution 
and 0.6µm of lateral resolution. 

The Frequency Shift technique is used, consisting of the 
excitation of the structure by an alternate voltage, the 
frequency of which is progressively increased by discrete 
steps. For each level of actuation frequency, the 
corresponding amplitude of vibration is stored and the 
experimental FRF is plotted for the detection of the resonance 
peak (figure 4). The first detection is made across a wide 
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frequency range (0-500kHz) in order to roughly locate the 
resonance; five successive identical detections are then 
performed across a more precise and narrow range. These are 
statistically treated to extract the values of resonance reported 
in Table II. 

TABLE I 
DIMENSIONS OF MEASURED TOPOLOGIES 

type L 
[µm] 

W 
[µm] M×N L:W s0 

[µm] 
s1 

[µm] q % 

A 372.4 66.4 36x6 6:1 5.0 5.2 24 
B 363.9 63.9 36x6 6:1 6.1 3.9 37 
C 373.8 64.8 36x6 6:1 7.3 3.0 50 
D 369.5 64.5 36x6 6:1 7.9 2.3 59 
E 363.8 123.8 36x12 3:1 6.2 3.8 38 
F 363.8 243.8 36x24 3:2 6.2 3.8 38 

 

 
Fig. 2. Microscope image of specimen F. 

 
The measurement technique described uses a red 

monochromatic light source for the interferometric fringes 
detection. The vibration amplitude is detected optically in 
correspondence of a selectable region (detection window) of 
the specimen, located at the center of the suspended plate. 
The output value of the oscillation amplitude is averaged 
between the values captured by each pixel of the CCD 
camera inside the active window. 

 

  
Fig. 3. Interferometric microscope Fogale ZoomSurf 3D (a) and the 20x 

Nikon objective (b). 
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Fig. 4. Displacement vs. frequency diagram of specimen C. 

The quality factor is extracted from the experimental 
curve, that was previously interpolated by a 6-order 
polynomial; the damping coefficient is finally calculated 
from the quality factor, resonant frequency and the effective 
mass by means of the method of the half power bandwidth. 
These are shown in Table II. The effective mass is calculated 
from FEM eigenmode analysis. The mass ratio α is the ratio 
between the modal mass and total mass. 

TABLE II 
MEASURED DAMPING COEFFICIENTS AND RESONANT FREQUENCIES OF SIX 

DIFFERENT TEST STRUCTURES 

type cm measured 
[10-6Ns/m] 

f0 measured 
[kHz] mass ratio α 

A 47.38 201.637 0.918 
B 19.46 204.329 0.893 
C 9.863 211.011 0.885 
D 7.609 222.282 0.856 
E 38.22 173.904 0.946 
F 67.44 138.564 0.974 

 
It is ensured that the amplitude of the oscillation is small 

compared with the gap height, and the static bias voltage 
caused by the excitation signal and DC bias voltage does not 
deflect the plate changing the air gap height. 

 

III.  MODELING OF THE DAMPING COEFFICIENT 

A.  Analysis of the fluid flow  
The actual mass is supported with thin beams in such a 

way that the movement of the mass is approximately 
translational. This justifies starting with an analysis where the 
velocity of the plate surface is constant.  

 
Flow patterns 

In perforated dampers in perpendicular motion, two 
different flow patterns can be distinguished. The first is the 
“closed borders” pattern, where the fluid flows only through 
the holes. The second pattern, the “closed holes” pattern 
considers only the flow from the damper borders. In practical 
dampers both patterns exist simultaneously. The perforation 
ratios q (the area of the surface without holes divided by the 
area of the holes) are here considerably high, ranging from 
24% - 59%. Also, the holes are relatively wide compared to 
the air gap height. It is then evident that the first “closed 
borders” flow pattern is strong here. Here compact models 
that consider both flow patterns are selected; the contribution 
the flow patterns in the measured cases will be discussed later 
in this paper.  

 
Rarefied gas 

Air at standard atmospheric conditions is used in the 
measurements. The pressure PA = 101kPa, the density ρ = 
1.155 kg/m3, the viscosity coefficient µ = 18.5⋅10-6 Ns/m2, 
and the mean free path λ = 65nm. The air gap height h  = 
1.6µm, which makes the Knudsen number of the air gap flow 
Kch = λ/h to be 0.04, and the smallest hole diameter is 5µm 
making the Knudsen number of the perforation Ktb = λ/s0  to 
be 0.013. The estimated contributions to the damping 
coefficient are 1/(1 + 6Kch) and  1/(1 + 7.567Ktb), that is -24% 
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and -9.8%, respectively. The assumption of a slightly rarefied 
gas is justified, and the slip velocity model is sufficient.  

 
Compressibility 

Next, the contribution of compressibility is analyzed. This 
can be made by studying the squeeze number. For a rigid 
surface, the squeeze number is 

2

212
hP

W

A

ωησ =  (1)  

W is here the smallest, “dominating” characteristic 
dimension. For example, for case A without holes 

ωσ 6108.3 −⋅=  (2) 
At 200kHz σ = 4.8. This means that without perforation, 

compressibility should be considered (when σ ∼ 20, the 
viscous and spring forces are equal). When the surface is 
perforated, the situation changes completely. The 
characteristic dimension can now be estimated to be the space 
between the holes. In case A this is 5.2µm. The squeeze 
number now becomes σ = 0.03 at 200kHz. This is an 
overestimate of the real situation, since accounting for the 
damping in the holes will make the effective squeeze number 
considerably smaller. 

According to the squeeze number analysis, the spring 
forces are negligible compared with the damping forces, and 
noncompressible gas can be assumed without loss of any 
accuracy. The damping coefficient can be considered 
constant up to several MHz.  

Also, it is expected that the spring force due to the gas is 
much smaller than the force due to the effective spring of the 
mechanical structure. The frequency shift due to gas 
compressibility is expected to be very small. The spring force 
in the system is only due the effective spring of the mass-
spring system. The spring coefficient can also be considered 
constant at least up to several MHz. 

 
Gas Inertia 

One can suspect that the inertia of the gas may contribute 
to the damping coefficient. The place where the inertia is the 
largest is the “widest” flow channel, that is the perforation 
holes.  

The contribution of inertia is characterized by the 
Reynolds number Re, specified for a circular channel as [6]: 

µ
ωρ 2

e
rR =  (3) 

The “worst” case, where the inertial is the largest, is case 
D where the hole diameter is the largest.  If the square 
channel is approximated with a circular channel having a 
radius of r = 4µm, that’s half of the hole side, gives Re = 
0.998·10-6ω, and at 200 kHz Re = 1.255. The real and 
imaginary parts of the impedance are equal when Re ~ 6. The 
additional imaginary part does not directly influence the 
damping coefficient, but the change is due to the frequency 
dependent real part. At Re ~ 6, the change in the real part in 
only 3.2% [6]. 

This Reynolds number study shows that the inertia needs 
not to be considered even in the accurate analysis. 

B.  Compact models  
A model for the noncompressible perforation cell is 

sufficient, as indicated in the study above. Four models that 
consider both “closed holes” and “closed borders” flow 
patterns are selected to be compared. The first one, M1, is a 
model by Bao [3] for a rectangular damper that is much 
longer than wide. In this model the air gap regime flow 
resistance, the flow resistance of a circular perforation, and 
its constant elongation are included. Continuum flow 
conditions are assumed. The 2nd model M2 has been also 
presented in [3], but now an arbitrary rectangular surface is 
assumed. Next, the model M3 in [4] is used. The air gap flow 
resistance model, the circular perforation flow channel 
model, and four different elongations of the flow channels, 
that vary depending on the ratios of the cell dimensions, are 
included in the model. Slip velocity conditions are used for 
the air gap and the perforations. The 4th model, M4, is made 
especially for square holes [5]. It includes similar 
components as the previous model and accounts also for the 
rarefied gas in the slip flow regime. 

Model M4 for square perforations accepts directly the 
dimensions given in Table I (size of the perforation cell sx = 
s0 + s1). To apply the other models, an effective radius of the 
circular perforation r0 and the cell rx need to be specified 
first. Matching the areas of the actual cell sx

2, and the 
equivalent circular cell πr0

2 gives 

π
x

x
sr =  (4) 

The radius r0 is determined by requiring the acoustic 
impedances of square and rectangular channels to match. For 
relatively small Knudsen numbers this leads to approximately 
[3], [4] 

0
0

0 547.0
2

096.1 ssr ≈=  (5) 

The Appendix shows all equations needed in computing 
the damping coefficients using models M1…M4. 

IV.  SIMULATION RESULTS AND DISCUSSION 
The results of the comparison are shown in Table III. ∆i is 

the relative error of the simulated damping coefficient cs of 
model Mi compared to the measured damping coefficients.  

TABLE III 
RELATIVE ERRORS OF THE COMPACT MODELS 

type ∆1 [%] 
M1 

∆2 [%] 
M2 

∆3  [%] 
M3 

∆4 [%] 
M4 

A -23.53 -25.74 -33.51 -33.27 
B -16.36 -18.06 -21.02 -21.96 
C -5.21 -6.59 -4.11 -6.65 
D -14.66 -15.72 -12.46 -15.29 
E -17.27 -18.94 -19.03 -20.14 
F -4.77 -6.70 -5.19 -6.52 

 
The results of models M3 and M4 are quite close to each 

other, the largest error between them is only 2.8%-points, 
showing that the effective radius approach is sufficient. 
Continuum conditions were assumed for M1 and M2, giving 
approximately 10% larger values than with slip velocity 
conditions. If these models are corrected to account for the 
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rarefied gas, the errors become approximately 10% worse, 
than those shown in Table III. 

The drag on the sidewalls is expected to increase the 
damping coefficient since the structure is relatively high. The 
models do not account for this drag force. The moving 
supporting beams will have also an additional contribution to 
the damping. The length of the supporting beams in all cases 
is about Lb = 122µm, and their widths are about Wb = 4µm. A 
rough approximation for the contribution of the supporting 
beams is 

)61(
)3.1(

3
4

ch
3

3
bb

b Kh
hWL

c
+
+

=
µ

 (6) 

This gives a damping coefficient of cb = 0.16⋅10-6 Ns/m. 
This approximation shows that the damping due to the beams 
is very small. 

The responses of models M1 and M2 are quite close. One 
could expect that the error of M1 would be larger in case E 
and especially in case F, since the length to width ratio is 
quite small in these cases. The explanation for this can be 
found by studying the contribution of the different flow 
patterns. This can be easily done using the perforation cell 
model that assumes the “closed borders” flow pattern, where 
the pressure distribution is independent of the shape of the 
damper. The flow resistances RP for a perforation cell in [4] 
and [5] are derived using this assumption. The damping 
coefficient becomes simply cP = NMRP (MN is the number of 
holes). Table IV shows the errors of the damping coefficients 
cP compared with the measured values using the models for 
circular cells, M5, and rectangular cells, M6, as presented in 
[4] and [5], respectively. 

TABLE IV 
RELATIVE ERROR OF “PERFORATION CELL” COMPACT MODELS 

type ∆5 [%] 
M5 

∆6 [%] 
M6 

A -17.25 -16.92 
B -7.81 -9.00 
C 7.38 4.36 
D -3.55 -6.83 
E -11.45 -12.73 
F 0.37 -1.08 

 
The results in Table IV show that the “closed borders” 

flow pattern is the dominant one. The contribution of the 
“closed holes” flow is only 6% - 16% of the damping 
coefficient. This explains why models M1 and M2 differ only 
slightly in this case: the contribution of the shape-dependent 
damping is quite small. 

TABLE V 
RELATIVE CONTRIBUTIONS OF THE FLOW RESISTANCES OF MODEL M5 
type Rs  [%] Ris  [%] Rib [%] Ric  [%] Rc [%] Re  [%] 
A 8.15 9.78 0.78 5.63 68.01 7.65 
B 7.62 12.94 1.87 5.13 64.05 8.40 
C 6.48 15.30 3.50 4.55 61.19 8.98 
D 4.51 14.49 5.03 4.06 62.59 9.31 
E 7.51 13.18 2.00 5.07 63.80 8.45 
F 7.51 13.18 2.00 5.07 63.80 8.45 
 
To study further the sources of damping, Table V shows 

the contributions of the flow resistance components in M5 
[4]. The flow resistance of the perforations RS is the most 

significant source of damping; its contribution is 
approximately 65%. The 2nd important contribution comes 
from the intermediate region resistances RIS, RIB, and RIC: 15 
- 20%. Next important is the elongation at the perforation 
outlet RE, about 8%.  

V.  CONCLUSIONS 
Measured damping coefficients have been compared to 

those obtained with four different compact models for 
perforated dampers. After analyzing the oscillating flow with 
several characteristic numbers, sufficient models were 
selected. Only translational motion was assumed. The results 
of all models were quite close to each other, a systematic 
underestimate of the damping coefficient was about -20%. 
The reasons for this were discussed and the contribution of 
various flow components were presented. For a more 
accurate analysis, the realistic modes of the plates should be 
considered. It is expected that the “closed holes” flow pattern 
will become relatively stronger in this case. 

The comparison showed also how a model for circular 
perforations can be used to model square holes.  
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APPENDIX 
This Appendix contains equations for four compact 

models M1…M4. The dimensions and symbols in Fig. 1 are 
used: the length and width of the perforated plate are L and 
W. The side lengths of the square holes and the square 
perforation cells are s0 and sX = s0 + s1, respectively. 

A.  Model M1 equations 
The equations for a narrow hole plate (L>>W) are given 

in  [3]. Note, in the following equations a = W/2 and b = L/2. 
The equivalent radii for the circular cell and hole are given in 
Eqs. (4) and (5). The damping coefficient c is 
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B.  Model M2 equations 
The equations for an arbitrary shaped rectangular plate are 

also included in [3]. Also, in the following equations a = W/2 
and b = L/2. The equivalent radii for the circular cell and hole 
are given in Eqs. (4) and (5). The damping coefficient c is 

 
( ) ( )

3

3 22
h

bac µγ−=  

where 
( )

( )
( )

( )[ ]
∑
∞

= +

+

−−=

,...5,3,1 2
3

22

2

2

3

2
32

2/1

2/1
tanh24

/2sinh
/1sinh63

n nn

n

πα

ακ
πα

π
κα

α
αααγ

 

a
l

b
a == ακ ,  

Above, l is the same as used in M1 equations. 
C.  Model M3 equations 

A model for a circular perforation cell is derived in [4], 
and the damping coefficient of a rectangular perforated plate 
is given in the paper. Note, in the following equations a = W 
and b = L. The equivalent radii for the circular cell and hole 

are given in Eqs. (4) and (5). The damping coefficient c is 
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The flow resistance of a single perforation cell is 
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where the elongations are 
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The flow rate coefficients and Knudsen numbers for the 
air gap and the holes are 
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D.  Model M4 equations 
A model for a rectangular perforation cell has been given 

in [5]. Note, in the following equations a = W and b = L.  The 
damping coefficient c is given by (C1), where RP for a 
rectangular hole is 
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where the elongations are 
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The equation for ∆E includes a misprint in [5]. The 
corrected equation is shown above.  

The flow rate coefficients and Knudsen numbers for the 
square hole are 
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The effective radius is 
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