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Abstract-. This paper presents a reduced-order model for the 

Reynolds equation for deformable structure and large 
displacements. It is based on the model established in [11] 
which is piece-wise linearized using two different methods. The 
advantages and drawbacks of each method are pointed out. The 
pull-in time of a microswitch is determined and compared to 
experimental and other simulation data. 

  

I.  INTRODUCTION 

 

Correct modelling of damping is essential to capture the 
dynamic behaviour of a MEMS device. Our interest is 
squeeze-film damping which models the behaviour of a fluid 
in small gaps between a fixed surface and a structure moving 
perpendicular to this surface. The lateral dimensions of the 
surfaces are large compared to the gap and the system is 
considered isothermal. Squeeze film damping is then 
governed by the Reynolds equation [1]: 
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where ( )tyxG ,,  is the distance between the moving and the 
fixed surface, ( )tyxP ,,  is the pressure, µ the effective 
viscosity of the fluid [1]. For small excitation frequencies or 
amplitudes the squeezed film behaves as a linear damper. 
For larger amplitudes or frequencies, the gas has no time to 
flow away and the pressure builds up creating a stiffening 
effect coupled to a nonlinear damping. A complete review 
on this equation and its different regimes can be found in [3].  

Coupling the Reynolds equation to the equation governing 
the mechanical behaviour of the microstructure leads to a 
nonlinear system of partial differential equations (PDEs), 
which has no analytical solution and must be simplified 
thanks to some assumptions. The most commonly made 
assumptions are the following: 

- uniform displacements, i.e. 0=
∂
∂=

∂
∂

y
G

x
G   

- steady-state sinusoidal excitation, i.e. ( )tGG e ωsin=  
[4] 

- small displacements, i.e. gGG += 0  and 0Gg << , 
where 0G  is the nominal gap of the structure at rest or 
close to a static equilibrium [5]. 

- small pressure variations, i.e. pPP += 0  and 

0Pp << , where 0P  is the ambient pressure. 
These hypotheses prove to be useful in a variety of 

applications, if only for gaining insight of nonlinear damping 
phenomena. However, in many cases, it is difficult to justify 
their use: for example, it is clear to see that none of the first 
three hypotheses holds when trying to estimate the switching 
time of a micro-switch. Most micro-switches do not undergo 
uniform displacements, nor can these displacements be 
considered small, and the behaviour of a micro-switch is 
fundamentally transient.  

To date, the most notable attempts to tackle the problem of 
reduced-order modelling (ROM) of squeeze-film damping 
with large, non-uniform displacements have been made by 
Younis et al. [5-7], Mehner et al. [4], Yang et al. [8], Hung 
and Senturia [9] and Rewienski and White [10]. In [5-7], the 
authors solve the linearized Reynolds equation for a 
displacement of the beam around an operating point. In [4], 
the authors use a modal projection method to calculate 
modal frequency-dependent damping and stiffening 
coefficients close to a determined operating point. To extend 
this approach to large displacements, Mehner [4] gives an 
analytical expression of these coefficients as a function of 
mechanical modal coordinates established by fitting of 
simulation data for different initial deformations. These 
approaches are all based on several steady-state sinusoidal 
calculations [5-7] or simulations [4], which increase the time 
for setting up the reduced-order model. The most general 
approaches may well be those developed in [8-10]. These 
approaches, although very general, have a high 
computational cost (because of the nonlinear /multiphysics 
/transient simulation they require) and their accuracy 
depends, to some degree, on the choice of the training 
trajectory.  
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II. CONSTRUCTION OF THE REDUCED-ORDER MODEL 
 

We work on the variable 0PPp −=  , supposing 

0Pp << . (1) has then the following form: 
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The first reduction step is based on modal projection of (2) 
which is first transformed via a change of variable on p (3).  

)2/3( −= Gp ϕ                     (3) 
 

The aim of this change of variable is to obtain a spatial 
operator on φ for which the Laplacian eigenmodes are more 
relevant than for the operator in (2), conserving its self-
adjoint property thus guarantying convergence of the 
solution. The reduced-order model may be written as: 
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and 

∫∫
Ω

− Ω= dGA lkkl ϕϕ2                        (7) 

where x and s are respectively the vectors of the mechanical 
modal coordinates of the moving structure, and the modified 
squeeze coordinates. For a structure under electrostatic 
actuation, one may write the full coupled model as:  
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where pe(x) is the electrostatic force. The Euler-Bernoulli 
equation is used to model the mechanical part. Large 
displacement effects can be taken into account. Let us write 
(8) in a more compact way: 

)())(())(())((( tuttt
dt
d zBzfzg +=    (9) 

where z is the state vector including all modal coordinates.  

III.  PIECEWISE LINEARIZATION BASED ON AN INPUT TRAJECTORY 

 
The cost of evaluating the terms g(z(t)), f(z(t)), and B(z(t)) 

can be reduced using the piecewise linear approach 
described in [10]. The fact that the coefficients in (3) only 
depend on the mechanical modal coordinates reduces the 
cost of construction of the piecewise linear model, which has 
the following structure: 
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where iJG  and iJF  are respectively the jacobians of the 

functions g(z) and f(z) at the linearization points iz  and 

(z)Felec corresponds to the electrostatic force. Two 
problems arise from the piecewise linearization: the choice 
of the linearization points and the weighting procedure. We 
choose the linearization points from a simulation of the fully 
nonlinear reduced model (8). A new linearization point is 
chosen when a point is “far enough” from the already chosen 
points. The state variables must be normalized to calculate 
the distances in state-space. The weighting procedure is the 
one described in [14].We work on the example of a 
microswitch also treated in [8-10]. We use the piecewise 
linear reduced order model to determine the switching time 
of the device for a step voltage between 9 and 10.5 V at 
atmospheric ambient pressure. The 21 linearization points 
are chosen along a 9.5V input training trajectory. The time 
integration scheme is not exactly implicit because the 
weights are calculated from the last step point. Fig.1 shows 
the response to a 10V input using a linear model, the modal 
projection model, and the piecewise linearized model. Fig.2 
shows the experimental and simulated data presented in [9] 
and results of our piecewise linear reduced model of order 6 
for the switching time. 
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Fig. 1- Middle point displacement for the 9.5 V step voltage training trajectory, 
a 10 V full reduced model simulation,  piecewise linearized model, and linear 

model.. 
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Fig. 2- Pull-in time (s) versus applied voltage (V) for 0P =1.013×105 Pa. 
Comparison of the experimental and simulated results presented in [16] to the 
simulated results obtained with our reduced-order model. The chosen squeeze 

modes correspond to xk =0, 2 and yk =1, 3.  

IV. TRAJECTORY-INDEPENDENT REDUCED ORDER MODEL 

We can notice that the nonlinear terms in (8) depend only 
on the mechanical modal coordinate and that the model is 
linear with respect to the modified squeeze coordinates. It 
can be written as: 

 PE(x)zxBxFPzxG +=− )())()((
dt
d       (11) 

The piecewise linearization described in section II doesn’t 
take advantage of this structure. This second piecewise 
linearized model is based on the linearization of the terms G, 
FP and B. As they only depend on the on mechanical 
coordinate, there is no need for a training trajectory. It is 
sufficient to discretize in an appropriate way the space 
corresponding to the mechanical coordinates. This is a great 
advantage as the resulting model does not depend on the 
relevance of a training trajectory, as opposed to the model 
presented in section II. On the other hand the resulting 
equation is nonlinear which increases the resolution cost.  

 
Number of 
linearization 
points 

Middle point 
displacement 
error (in %) 

Pull-in time 
error (in %) 

10 21 7 
14 5 2.5 
19 1 2 
30 0.5 0.1 

Table 1 Middle point displacement error and pull-in time error for different 
number of linearization points compared to the full reduced model. 

 

This equation is integrated in time using a fully implicit 
Euler scheme. At each step the nonlinear equation is solved 
using the Matlab “fsolve” function. Table 1 shows results for 

an input step voltage of  9.1 V. This model yields better 
displacement error and correct results are obtained for a 
minimum number of linearization points of around 15 which 
is less than the model obtained using the approach described 
in [10].  

 
V. CONCLUSION 

 
We have presented a piecewise linear model of squeeze-

film damping for flexible structure and large displacements 
with the restriction of small pressure variations. The model 
is based on a modal projection method and is then piecewise 
linearized using two different methods. The advantages and 
drawbacks of each method were pointed out. The first 
method [10] is very general whereas the second takes 
advantage of a specificity of the equation structure. This last 
method appears to be more efficient, although the final 
system that must be solved remains nonlinear. The pull-in 
time of a microswitch was determined and compared to 
experimental and other simulation data. 
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