T Veijola 
  
A Lehtovuori 
  
Numerical and Compact Modelling of Squeeze-film Damping in RF MEMS Resonators

Oscillatory gas flow in squeeze-film dampers is studied up to frequencies where the length of the acoustic wave is comparable with the dimensions of the air gap. Damping and spring forces are calculated both numerically and analytically from the linearized 2D Navier-Stokes equations. In addition to the low frequency region of inertialess gas, where the use of the Reynolds equation is limited, the new model considers several additional phenomena. These are the inertia of the gas, the transition from isothermal to adiabatic conditions, and the gap resonances at frequencies where the acoustic wavelength is comparable to the air gap height. Velocity and temperature slip conditions are considered to make the model valid in micromechanical structures where the air gap heights are of the order of a micrometer. An approximate compact model is derived combining the low frequency model and the gap resonance model. The accuracy of the compact model is studied by comparing its response to the numerical results calculated with the finite element method. The agreement is very good in a wide frequency band when the ratio of the damper width and the gap height is greater than 10. The numerical study and the compact model are directly applicable in predicting the damping and the resonance frequency shift due to air in RF MEMS resonators having narrow air gap widths and operating at frequencies where the wavelengths become comparable to the flow channel dimensions.

I. INTRODUCTION

It has been reported RF MEMS resonators that operate at frequencies up to 1 GHz [START_REF] Wang | 1.156-GHz Self-Aligned Vibrating Micromechanical Disk Resonator[END_REF], [START_REF] Wang | 1.51-GHz Nanocrystalline Diamond Micromechanical Disk Resonator With Material-Mismatched Isolating Support[END_REF]. Since these devices can operate also at atmospheric pressures, models predicting the quality factor and resonance frequency shift due to air are needed. The challenges in the modelling are the small acoustic wavelengths that might become comparable with the dimension of the damper width and even the air gap height, and the small dimensions of micromechanical devices that invalidate the continuum flow assumptions.

Squeeze-film damping in air gaps of oscillating structures has been traditionally modelled with the Reynolds equation [START_REF] Blech | On Isothermal Squeeze Films[END_REF], [START_REF] Griffin | A Study of Fluid Squeeze-Film Damping[END_REF]. It considers the viscous gas flow and the compressibility and assumes constant pressure across the air gap. With an effective viscosity, the rarefied gas phenomenon can be considered. This extends the model to be used for micromechanical devices and or low ambient pressure. However, the Reynolds equation is usable only up to a certain frequency where the inertial forces can be neglected (Reynolds number 1). This limitation can be avoided using a modified form of the Reynolds equation considering the inertia in the gap flow [START_REF] Veijola | Compact Models for Squeezed-Film Dampers with Inertial and Rarefied Gas Effects[END_REF] together with non-isothermal conditions [START_REF] Beltman | Air Loads on a Rigid Plate Oscillating Normal to Fixed Surface[END_REF], [START_REF] Beltman | Viscothermal Wave Propagation Including Acousto-Elastic Interaction, Part I: Theory[END_REF]. This viscoelastic wave propagation model is not directly applicable to model MEMS devices, since it assumes continuum boundary conditions.

When the frequency of the oscillation is so high that the length of the acoustic wave becomes comparable to the height of the air gap, the constant pressure assumption across the air gap breaks down. This situation has been studied and modelled in [START_REF] Veijola | Model for Gas Damping in Air Gaps of RF MEMS Resonators[END_REF]. The study shows that since the gas is trapped in the gap, it is justified to assume closed damper borders in deriving the model. The analytic model derived in [START_REF] Veijola | Model for Gas Damping in Air Gaps of RF MEMS Resonators[END_REF] models accurately the damper in the higher frequency region where the air gap resonances occur.

In this paper, numerical simulation of the linearized Navier-Stokes equations are first used to study the oscillating flow in the air gap of a 1D squeeze-film damper in a wide frequency band. Slip velocity and temperature boundary conditions at the surfaces, and zero pressure conditions at the damper borders are applied. A finite element method (FEM) software is used in the study.

Next, reduced linearized Navier-Stokes equations are presented that consider the variable pressure across the air gap to be able to include the gap resonances in the model [START_REF] Veijola | Model for Gas Damping in Air Gaps of RF MEMS Resonators[END_REF]. The gap resonances are solved at high frequencies and the squeeze film phenomenon is solved at lower frequencies. Then, these results are combined to have a compact approximate model for a wide frequency regime. Finally, the compact model is compared with the numerical model to verify its accuracy.

II. OSCILLATING GAS FLOW IN A SQUEEZE-FILM DAMPER

A. Topology of the damper

Figure 1 shows the topology of the studied 1D squeezefilm damper. It is assumed that the 3rd dimension l y is much larger than l x justifying the study of the 2D gas flow in the cross-section. The gas is bounded by two rigid parallel surfaces, and the upper surface is oscillating with a small amplitude of w 0 in the z direction. Trivial zero-pressure boundary conditions are used at the borders of the damper.

B. Damping and spring forces

The damper is characterized with a mechanical impedance Z m = -F w0 , that is calculated from the force F acting on the moving surface having a velocity of w 0 in the z direction. The damping coefficient c is the real part of Z m and the spring coefficient k is the real part of iωZ m .

C. Characteristic numbers

The behaviour of the flow in a narrow air gap is described by a few characteristic numbers. The Reynolds number Re (the square of the shear wave number s) is the ratio between inertial and viscous forces: s 2 = Re = ωh 2 0 ρ 0 /η, where ρ 0 is the density of the gas, η is the viscosity coefficient, and h 0 is the characteristic height of the air gap.

The reduced frequency k = ωh 0 /c 0 is a measure of the ratio between the gap width h 0 and the acoustic wave length. c 0 = γp 0 /ρ 0 is the speed of sound in free space, where γ = c P /c V is the specific heat ratio and p 0 is the ambient pressure. The Prandtl number Pr characterizes the thermal properties. Here we use the square root of Pr,

φ = √ Pr = ηc P κ , (1) 
where c P is the specific heat at constant pressure and κ is the thermal conductivity.

A frequency-domain analysis with small perturbation amplitudes is assumed, and the equations are presented in normalized form. The small-amplitude perturbation variables: pressure, temperature and density are specified with p = p 0 + pe iωt , T = T 0 + T e iωt , ρ = ρ 0 + ρe iωt , (2) respectively.

D. Linearized Navier-Stokes equations

Beltman [START_REF] Beltman | Air Loads on a Rigid Plate Oscillating Normal to Fixed Surface[END_REF] has derived linearized dimensionless form of the Navier-Stokes equations. The equations are in 2D (ydirection is not considered):

iu = -g kγ ∂p ∂x + 1 s 2 g 2 ∂ 2 u ∂x 2 + ∂ 2 u ∂z 2 + g 3s 2 ∂ ∂x g ∂u ∂x + ∂w ∂z (3) iw = -1 kγ ∂p ∂z + 1 s 2 g 2 ∂ 2 w ∂x 2 + ∂ 2 w ∂z 2 + 1 3s 2 ∂ ∂z g ∂u ∂x + ∂w ∂z (4) g ∂u ∂x + ∂w ∂z = -ikρ (5) p = ρ + T (6) iT = 1 s 2 φ 2 g 2 ∂ 2 T ∂x 2 + ∂ 2 T ∂z 2 + i γ -1 γ p, ( 7 
)
where u and w are velocity components in the x and z directions, respectively. The equations are in normalized form such that velocities u and w are normalized to the speed of sound c 0 and the dimensions x and z are normalized with the characteristic dimensions l x and h 0 , respectively. p, ρ, and T represent small relative variations around p 0 , ρ 0 and T A , respectively. The narrowness of the gap is g = h 0 /l x .

E. Numerical modeling

To study gas flow in the air gap, pressure, velocity, and temperature of the 1D-damper in Fig. 1 are simulated with a FEM solver for visco-acoustic flow [START_REF] Malinen | A Finite Element Method for the Modeling of Thermo-Viscous Effects in Acoustics[END_REF] in multiphysical FEM software ELMER [START_REF] Pironneau | Elmer -Finite Element Solver for Multiphysical Problems[END_REF]. It solves linearized Navier-Stokes equation presented in ( 3)-( 7) as a function of frequency.

In this study, parameters for air at standard atmosphere conditions are used, see Table I. The air gap height is h 0 = 1µm and the length is l x = 5µm. The upper surface oscillates in the z-direction with a constant velocity amplitude of 1 m/s (w 0 = 1). To demonstrate the trapping of the gas in the air gap at high frequencies, Fig. 2 shows forces acting on the upper surface as a function of frequency in two cases. First, the borders are assumed to be open (zero pressure) and then they are assumed to be closed (zero velocity). The amplitude responses are identical above a certain frequency indicating that at high frequencies the flow velocity in the x direction becomes insignificant. Hence, at high frequencies the gas is trapped in the gap corresponding the closed border assumption, even for open border conditions.

Figure 3 shows simulated pressure, velocity, and temperature amplitude distributions for the open border case at certain frequencies, represented with verticals in Fig. 2. These frequencies represent different flow regions that will be studied closer. Resonances occur both in the x and y directions: squeeze film phenomenon at lower frequency when the gas flows out from the gap and gap resonances at higher frequency when the gas is trapped in the gap. (b) First resonance in the x direction. Its frequency f x,N is determined by the wave propagation velocity in the x direction and the length of the structure. The squeeze film resonant frequencies are

f x,N ≈ Nc e 4L , N = 2, 4, . . . ( 8 
)
where L is the characteristic length of the damper and c e is the effective speed of sound in the x-direction. The temperature profile in Fig. 3 indicates non-isothermal conditions. (c) First (anti)resonance f z,1 in the x-direction: pressure is not constant across the gap, small velocity (trapped situation). The N th air gap resonance frequency is

f z,N ≈ Nc 0 4h 0 , N = 1, 2, 3, . . . ( 9 
)
where h 0 is the height of the gap. Odd values of N give antiresonances, while even values of N give resonances. Air gap resonances occur at clearly higher frequency than the squeeze film resonance if the gap is narrow (h 0 l x ). Non-isothermal conditions. (d) 2nd gap resonance f z,2 : pressure, velocity and temperature vary mainly in the z-direction, practically adiabatic conditions.

F. Reduced equations for the approximative model

In order to derive the compact model, a reduced set of NSequations is needed. The complete set of 2D equations ( 3)-( 7) will be reduced by removing insignificant terms. Equation ( 3) is first written in the following form:

iu = - g kγ ∂p ∂x + 4g 2 3s 2 ∂ 2 u ∂x 2 + 1 s 2 ∂ ∂z ∂u ∂z + g 3 ∂w ∂x ( 10 
)
Since velocity u varies less in the x-direction than in the zdirection, and g is small, term ∂ 2 u/∂x 2 can be ignored. Also, due to translational velocity excitation, the term ∂w/∂x is very small and is ignored here. At low frequencies, k is small and (4) reduces simply to ∂p/∂z = 0. At high frequencies ∂ 2 w/∂x 2 is small due to the excitation, and ∂u/∂x is small in (4) due to the trapped situation. Temperature variations are slower in the x direction than in the z direction, and g is small in [START_REF] Beltman | Viscothermal Wave Propagation Including Acousto-Elastic Interaction, Part I: Theory[END_REF], making the term ∂ 2 T /∂x 2 to vanish. The reduced equations are:

iu = - g kγ ∂p ∂x + 1 s 2 ∂ 2 u ∂z 2 (11) iw = - 1 kγ ∂p ∂z + 4 3s 2 ∂ 2 w ∂z 2 (12) 
g ∂u ∂x + ∂w ∂z = -ikρ (13) p = ρ + T (14) iT = 1 s 2 φ 2 ∂ 2 T ∂z 2 + i γ -1 γ p. ( 15 
)
These equations are identical with the "narrow gap" equations specified in [START_REF] Beltman | Air Loads on a Rigid Plate Oscillating Normal to Fixed Surface[END_REF], but they include an additional equation [START_REF] Veijola | Extending the Validity of Existing Squeezed-Film Damper Models with Elongations of Surface Dimensions[END_REF]. The strategy to have an approximate solution for the equations above is the following. First, the equations are further reduced to have the trapped air situation. This is accomplished assuming flow in the z direction only, that is, u(x) = 0, and solving the velocity profile w(z). Next, the narrow gap situation is assumed ignoring (4), and a differential equation for the pressure distribution is derived. 

G. Air gap resonance region

It was shown numerically that at high frequencies the gas is trapped in the air gap, and moves only in the z direction. The problem has been studied closer in [START_REF] Veijola | Model for Gas Damping in Air Gaps of RF MEMS Resonators[END_REF], where both a simplified model with adiabatic conditions and a complete model are given.

H. Squeeze film damping region

Next, the lower frequency (squeeze-film damping) region is studied in order to derive the compact model for the mechanical impedance of the damper. This is accomplished by using the equations ( 11)-( 15) for narrow gap problems, that is, Eq, ( 12) will be ignored in the following analysis.

The solution strategy is similar to the one in [START_REF] Beltman | Air Loads on a Rigid Plate Oscillating Normal to Fixed Surface[END_REF], but here the slip velocity and temperature conditions are used instead of the continuum boundary conditions.

The slip boundary conditions for the gas velocity u and the temperature T are used at the surfaces:

u = ∓K s ∂u ∂z z=0,z=1 T = ∓K T ∂T ∂z z=0,z=1 (16) 
The Knudsen number K n = λ/h 0 is a measure of gas rarefaction. It is a ratio between the mean free path λ and the nominal displacement h 0 . Here, the mean free path is specified as

λ = η ρ 0 π 2RT 0 (17) 
where R = c Vc P . In this paper, we use the quantity K s = σ P λ/h 0 as a measure of the rarefaction instead of K n . Since λ is inversely proportional to pressure, K s increases as the pressure drops below the ambient pressure. In this paper σ P = 1 is assumed. K T is the "thermal Knudsen number" [START_REF] Karniadakis | Micro Flows, Fundamentals and Simulation[END_REF] 

K T = 2 -α T α T 2γ γ + 1 K n φ 2 , ( 18 
)
where α T is the energy accommodation coefficient and γ is the specific heat ratio.

Since the pressure was assumed to be constant on a cross section, p and ∂p/∂x are independent of z in ( 11) and (15). Therefore, the temperature can be solved from (15). Solution is searched in form T (z) = b+c cosh[ξ(z - 1 2 )] and applying boundary conditions in ( 16) results in

T = γ -1 γ pA(φs, K T , z), ( 19 
)
where the temperature profile is described with

A(s, K s , z) = 1 - cosh[ √ is(z -1 2 )] cosh( √ is/2) + √ isK s sinh( √ is/2) . ( 20 
)
Remark, that although the pressure is assumed to be constant in z-direction, the temperature depends on z. Next, the density is solved from ( 14) resulting in ρ = p/m(φs, K T , z) where

m(φs, K T , z) = 1 - γ -1 γ A(φs, K T , z) -1 . ( 21 
)
Equation ( 11) has the same form as (15) for temperature and u can be solved when p = p(x) yielding

u = ig kγ ∂p ∂x A(s, K s , z). ( 22 
)
The differential equation for the pressure distribution in the x-direction is derived from ( 13) by averaging the velocity u and density ρ across the gap:

g 1 0 ∂u ∂x dz + ik 1 0 ρ dz = - ∂w ∂z z=1 . ( 23 
)
Since the mechanical impedance is specified at z = 1, the term in the right hand side has not been averaged across the gap. Instead of the average velocity in the z direction, the excitation velocity at the upper surface (z = 1) is used here. Inserting u from ( 22) and ρ from ( 14) into (23) gives a general frequency-domain model for 1D air gaps

g 2 B(s, K s ) ikγ ∂ 2 p(x) ∂x 2 - ik n(φs, K T ) p(x) = ∂w ∂z z=1 . ( 24 
)
where

B(s, K s ) = 1 0 A(s, K s , z) dz (25) = √ is -(2 -is 2 K s ) tanh( √ is/2) √ is + is 2 K s tanh( √ is/2)
and the similar integration of m(φs, K T , z) gives the polytropic constant

n(φs, K T ) = 1 - γ -1 γ B(φs, K T ) -1 . ( 26 
)
The function n is the result of thermal effects. It is generally complex-valued signifying a phase shift between the pressure and density perturbation. Hence, it models the losses due to gas compressibility that are important in the transition regime when conditions change from isothermal to adiabatic. At low frequencies (φs 1), the flow is isothermal leading to n = 1 and at high frequencies (φs 1), B(s, K s ) approaches 1 and n → γ (adiabatic conditions).

Equation ( 24) is solved with trivial pressure boundary conditions p(± 1 2 ) = 0. The solution is searched in form where σ c is the complex squeeze number

p(x) = b cosh(cx) + d, yielding p(x) = n(φs, K T ) ik cosh( √ iσ c x) cosh( √ iσ c /2) -1 ∂w ∂z z=1 , (27) 
σ c = ik 2 γ g 2 B(s, K s )n(φs, K T ) = is 2 σ 12B(s, K s )n(φs, K T ) ,
(28) where the traditional squeeze number σ is defined as σ = 12ηl 2

x ω/(p 0 h 2 0 ). It specifies the ratio between the spring force due to the gas compressibility and the force due to the viscous flow.

I. Complete approximate model

The resulting force acting on the surface is

F = 1/2 -1/2 1/2 -1/2 p(x) dx dy (29) = n(φs, K T ) ik 2 √ iσ c tanh( iσ c /2) -1 ∂w ∂z z=1 ,
where the velocity excitation is calculated when z = 1.

In (32) the last derivative is still unknown. Two different velocity functions w(z) has been derived in [START_REF] Veijola | Model for Gas Damping in Air Gaps of RF MEMS Resonators[END_REF] assuming closed damper boundaries and gap resonances.

The simpler model gives at z = 1

∂w ∂z z=1 = w 0 q tanh(q) (30) 
and the more complicated model gives

∂w ∂z z=1 = C 1 r 1 e r1 + C 2 r 2 e r2 + C 3 r 3 e r3 + C 4 r 4 e r4 , ( 31 
)
respectively. Coefficients C i and r i are given in the Appendix.

The un-normalized force becomes

F = - l x l y n(φs, K T )p 0 iωh 0 2 √ iσ c tanh( iσ c /2) -1 ∂w ∂z z=h0 .
(32) Equation ( 32) is the complete model to calculate the force as a function of frequency for a velocity excitation. The damping force is the real part of F .

III. RESULTS

In the following, the results of the compact model are compared to numerical FEM simulations which can be considered as exact results. Then, the importance of the included features in the compact model is studied by comparing the responses of published models in a wide frequency band. In the following figures, magnitude or real part is denoted with × at left-side axis and phase (or spring coefficient) with 2 at right-side axis.

A. 2D FEM Simulations

FEM simulations were performed with a solver for dissipative acoustic flow [START_REF] Malinen | A Finite Element Method for the Modeling of Thermo-Viscous Effects in Acoustics[END_REF] included in Elmer [START_REF] Pironneau | Elmer -Finite Element Solver for Multiphysical Problems[END_REF] software. The solver gives the results directly at specified frequencies. Since the compact model considers a 1D damper, 2D FEM simulations are sufficient here. A sinusoidal velocity amplitude of 1 m/s was used as the excitation. The symmetry of the structure was utilized in the FEM simulations; only a half of the air gap was simulated. Slip velocity and temperature conditions were applied, and the thermal boundary conditions were set for ideally thermally conducting surfaces. Boundary conditions p(±l x /2) = 0 were used at the borders. A mesh of 8000 elements was used, and the simulation was performed at 81 frequencies from 10 kHz to 1 GHz. The grid convergence showed that the element count is sufficient. Gas parameters for air in Table I were used in the simulations.

B. Validity of the compact model

Several numerical simulations were performed to be able to test the validity and accuracy of the compact model for the 1D squeeze-film damper derived in the previous section.

Here, the accurate model for the air gap region in Appendix A is used. Table II summarizes the dimensions of all simulated damper topologies. The simulated topologies were limited to cases where the ratio l x /h 0 ≥ 10. With smaller ratios the zero pressure border condition is not justified. Also, the pressure is no more constant across the gap even at small frequencies. These phenomena have been studied in [START_REF] Veijola | Extending the Validity of Existing Squeezed-Film Damper Models with Elongations of Surface Dimensions[END_REF] regime is between the squeeze-film and the gap resonance regions.

Table II summarizes the resonant frequencies detected from the amplitude/phase responses of all simulated topologies. Here, the resonant frequencies are those where the phase of the impedance crosses zero.

To see the validity of the resonant frequency approximations in [START_REF] Veijola | Model for Gas Damping in Air Gaps of RF MEMS Resonators[END_REF] and [START_REF] Malinen | A Finite Element Method for the Modeling of Thermo-Viscous Effects in Acoustics[END_REF], they are compared with the results in Table II. The effective speed of sound propagating in the gap is

c e = c 0 5(1 + 2K s ) 6γ (33) 
The fundamental resonant frequencies f x,2 and f z,1 become 6.94 MHz and 43.52 MHz respectively, for a topology of a width of 20 µm and gap height of 2 µm.

IV. CONCLUSIONS

With these models, the Reynolds equation has been extended to be applicable to rapidly oscillating surfaces and rarefied gas conditions in addition to modelling damping at low frequencies. It was shown that the compact model is in good agreement with numerical FEM simulation results. Slip conditions are used to have an accurate model also for small air gaps typical in MEMS devices.

In this study, idealistic border conditions for the damper borders were assumed. These conditions are not justified in cases where the aspect ratio (l x /h 0 ) is not small. To model accurately such cases, the flow outside the gap should be considered [START_REF] Veijola | Extending the Validity of Existing Squeezed-Film Damper Models with Elongations of Surface Dimensions[END_REF]. It is straightforward to extend the approach to 2D squeeze damper topology considering the y dimension.

The solver for viscous acoustic flow in the Elmer software [START_REF] Pironneau | Elmer -Finite Element Solver for Multiphysical Problems[END_REF] turned out to be very useful in studying the squeeze-film phenomena at the high frequency regime.
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 532 Fig. 3. Amplitude profiles of pressure p, velocity u, and temperature T at different frequencies. a) f = 1 MHz, b) f = 30 MHz, c) f = 100 MHz, d) f = 180 MHz

  Finally, the flow profile w(z) is inserted in the differential c EDA Publishing/DTIP 2008 ISBN: 978-2-35500-006-5 9-11 April 2008 equation that is solved for perpendicular motion and zero pressure boundary conditions.
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 454 Figure 4 compares frequency responses of numerical and compact models in a case when l x = 20 µm and h 0 = 2 µm.The simulated data is presented in two forms: (a) amplitude/phase of the impedance Z m , and (b) damping/spring coefficients. Both responses show that the compact model response is very accurate at low and high frequencies, but there is a noticeable error in the compact model just below the first gap resonance frequency. This was expected, since this

APPENDIX A

An exact solution for ( 12) -( 15) is presented considering the non-adiabatic thermal conditions and boundary conditions for velocity and temperature. After some manipulation, the following fourth order differential equation results

(A1) for velocity w and

(A2) for temperature T as well. In this Appendix, the derivatives with the respect to z are denoted with primes (T = ∂ 4 T /∂z 4 ), and the dependence on z is denoted by, e.g., w(z) or T (z). These homogenous linear equations with constant complex coefficients have a characteristic equation

The roots of the characteristic equation are

and thus the solution of (A1) is

Constants C 1 , C 2 , C 3 , and C 4 are determined using boundary conditions:

Therefore, the temperature is written as function of velocity w. Equations ( 12) -( 15) reduce now to

where

)

)

Solving T from (A10) and (A11) and p from ( 5), ( 6) and (A16) yields

where B 1 and B 2 are the auxiliary variables:

Equation (A16) can be used to utilize the boundary conditions for temperature in (A9) to solve the velocity:

After applying boundary conditions for velocity in (A8) in addition to the conditions above, the following system of equations results:

where

Solving the system of equations (A19)-(A22) gives the coefficients C i in (A7) which are

)

where G = w 0 /(e r3e r4 ), (A27)

H 2 = (e r2e r4 )/(e r3e r4 ), (A29)

)

), (A32)