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Abstract-In this paper, the bulge test is used to determine the 

mechanical properties of very thin dielectric membranes. 
Commonly, this experimental method permits to determine the 
residual stress (σ0) and biaxial Young’s modulus (E/(1- υ)). 
Associating square and rectangular membranes with different 
length to width ratios, the Poisson’s ratio (υ) can also be 
determined. LPCVD Si3N4 monolayer and Si3N4/SiO2 bilayer 
membranes, with thicknesses down to 100 nm, have been 
characterized giving results in agreement with literature for  
Si3N4, E = 212 ± 14 GPa, σ0 = 420 ± 8 and υ = 0.29.   

  

I. INTRODUCTION 

The development of Micro Electro Mechanical Systems 
(MEMS) has become an economic stake since 80’s and more 
recently the Nano Electro Mechanical Systems (NEMS) 
began to be developed with the downscaling trend. However, 
with the downscaling, accurate measurement of mechanical 
properties becomes a hot challenge especially since these 
properties may depend on the fabrication process. This may 
have consequences on MEMS performances and reliability 
[1-3]. Furthermore, architectures are more and more 
complex such as multilayers which make the determination 
of mechanical properties more difficult for each constituent 
material. 

So far, no mechanical method exists for the simultaneous 
determination of the three main mechanical parameters: 
Young’s modulus E, residual stress σ0 and Poisson’s ratio υ,  
except the well-known “Bulge test” method. Indeed, the 
bulge test is commonly used to determine the residual stress 
σ0 and the biaxial Young’s modulus E/(1-υ) on square or 
circular membranes. Some authors have also shown that the 
association of membranes with different shapes permits the 
determination of the Poisson’s ratio [4, 5]. However, few 
studies deal with the determination of the Poisson’s ratio of 
very thin film membranes with significant results [5]. 
Indeed, J. S. Mitchell et al. [6] relate the difficulties in 
determining this ratio because the bulge test method is very 
sensitive to the geometrical errors. 

In this study, an attempt was made to determine E, σ0 and 
υ by means of bulge test on very thin (~ 100 nm)  Si3N4 
square and rectangular membranes with different length to 
width ratio (1 < b/a < 12).  Few similar studies have been 
made on dielectric membranes with thicknesses down to 100 
nm. 

In this work, we have also assessed the mixture law as a 
general rule to extract the Young’s modulus, residual stress 
and Poisson’s ratio of each film of submicron thick 
Si3N4/SiO2 bilayers. 

  

II. BACKGROUND 

The bulge test consists in applying a pressure P on a 
membrane and in measuring its maximal deflection h at its 
center (Fig. 1). 

   
Fig. 1. Bulge test principle 

 
Mechanical properties like Young’s modulus E, the 

residual stress σ0 and the Poisson’s ratio υ can be determine 
from [8-10]: 

( )
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t represents the membrane thickness, 2a and 2b are the 
membrane width and length, respectively.  C1 (b/a) and α are 
coefficients that depend on the membrane shape and f (υ, 
b/a) depends also on the membrane shape and on the 
Poisson’s ratio. We can note that in the case of large 
deflections (h/t >> 1), the second term in Eq. 1 (depending 
on α) can be neglected.  

Lots of studies have been made to optimize the coefficient 
values as a function of the membrane shape and in order to 
take into account the particular clamping conditions of 
micromachined membranes [4-5] [10-13]. Tab. I presents 
different values of C1 (b/a), f (υ, b/a)) and α found in the 
literature as a function of the membrane shape.  

In this study, the coefficients C1 (b/a) and f (υ, b/a) have 
been recalculated with Finite Element simulations (FE) using 
ANSYS software in order to verify their validity for very 
thin films membranes (~ 100 nm) and to compare with the 
literature values (Sees paragraph IV). 

This experimental method is efficient to determine the 
residual stress σ0 and the biaxial Young’s modulus E/(1-υ) 
on thin film. Eq. 1 shows that E and υ are highly correlated 
and to find one of these parameters, the other must be 
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assumed. To determine υ independently of E, experiments 
performed on square and rectangular membranes must be 
associated [4-6]. Indeed, it is possible to compare the ratio of 
the cubic coefficients in Eq. 1 to the ratio of the function f 
(υ, b/a) for square and rectangular membranes (Eq. 2). 

 
4

SquareRect Rect

square Square Rect

aSlope f ( ,b / a)
Slope f ( ,b / a) a

 υ=  υ  
  (2) 

 
Moreover, the experimental results of J. J. Vlassak et al. 

[5], for rectangular membranes with b/a > 4, showed that 
membranes can be considered as infinite along the length 
and the deflection is independent to the aspect ratio.  

The other interest of this study is to apply this method in 
the case of very thin multilayer films by using the simple 
formula of the mixture law (Eq. 3) [14-15] which can be 
applied for E, σ0 and υ.  

 
1 2 n

composite 1 2 n
total total total

t t tM M M M
t t t

= + + ⋅⋅⋅ +  (3) 

 
Mcomposite represents either the biaxial modulus or the 

residual stress of the composite membrane with n layers. t1, 
t2… tn are the thicknesses of each component layer, ttotal is 
the multilayer thickness and M1, M2… Mn represent either 
E/(1-υ) or σ0 of each layer. 

 

III. SAMPLE PREPARATION AND EXPERIMENTAL SETUP 

A. Sample preparation  
Dielectric membranes have been fabricated on <100> p-

type, double-side polished, 100 mm silicon substrates using 
a standard micromachining process. Silicon nitride films 
have been deposited at 835 °C by LPCVD on thermally 
oxidized silicon substrates (Fig. 2). Two wafers issued from 
the same fabrication process have been processed: Si3N4 film 
(first wafer) with a thickness of 104 nm and bilayer 
Si3N4/SiO2 film (second wafer) with a thickness of 188 nm 
(t(Si3N4) = 90 nm and t(SiO2) = 98 nm). Free standing 
membranes have been obtained through silicon anisotropic 
etching in a KOH solution (Fig. 2). Several samples have 
been obtained with different shapes (square and rectangular). 
The resulting sample characteristics are summarized in Tab. 
II. 
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Fig. 2. Membranes fabrication: process steps 

Pressure-deflection measurements (P (h)) have been 
performed using a WYCO NT1100 white-light 
interferometer microscope (Fig. 3). Pressures ranging from 
10 mbar to 1 bar (depending on geometry) have been 
applied. Wax has been used to fix our samples on a sample 
holder. 

 

 
Fig. 3. Optical interferometer setup 

 

 IV. RESULTS AND DISCUSSION 

A. Finite Element simulations  
Finite Element (FE) simulations, using ANSYS® 

software, have been developed in order to check if the 
coefficients C1 (b/a) and f (υ, b/a) that were found in the 
literature were always valid for our very thin membranes. 
Fig. 4 shows the evolution of these two coefficients as a 
function of the b/a ratio for 100 nm thick, 1 mm width 
membranes. An arbitrary Young's modulus value of 220 GPa 
and a Poisson’s ratio of 0.3 have been chosen for this study.  

The obtained results are in close agreement with literature 
values. Moreover, as shown by J. J. Vlassak et al. [5], for 
increasing b/a values from 5, C1 (b/a) and f (υ, b/a) become 
quasi independent of the b/a aspect ratio (see Fig. 4).  
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Fig. 4. Evolution of C1 (b/a) and f (υ, b/a) as a function of the shape b/a for 
1 mm width, 100 nm thick membranes and assuming a Young's modulus of 

220 GPa and a Poisson’s ratio of 0.3 
 

TABLE I 
EXAMPLES OF COEFFICIENTS USED FOR DIFFERENT SHAPES 

b/a α [8] C1 f (υ, b/a) f (0.3, b/a) 

1 1.26 × 10-3

3.39 [5] 
3.45 [12] 
3.42 [10] 
3.39 (FE) 

(0.8+0.062υ)-3 [5] 
1.994(1-0.271υ) [12] 
1.91(1-0.207υ) [10] 

1.82 
1.83 
1.79 

1.80 (FE) 

2 2.54 × 10-3 2.19 [10] 
2.18 (FE) 

1.08(1-0.181υ) [10] 1.02 [10] 
1.0 (FE) 

∞ 2.6 × 10-3 2 [5] 
2 (FE) 

8/[6(1+υ)] [5] 1.02 
0.9 (FE) 
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In this study, according to the simulations, the analytical 
model proposed by J. J. Vlassak et al. is still valid for our 
200 nm thick or less membranes and it was used to 
determine the mechanical properties of the Si3N4 monolayer 
and the Si3N4/SiO2 bilayer self-standing films. 

B. Experimental results 
In the case of 2M, 3M and 4M samples, with the same 

geometrical parameters (Tab. II), experimental results have 
been obtained with a good reproducibility. Moreover, for all 
membranes, no hysteresis phenomenon has been observed 
during load and unload cycles showing a linear behavior of 
the membranes despite of the large induced deflections (> 90 
µm). 

A P/h as a function of h² normalized representation of the 
pressure-displacement results can be made in order to extract 
the y-intercept and the slope of the curves (see fig. 5 and 6). 
A Poisson’s ratio of 0.3 for LPCVD Si3N4 was assumed 
according to the literature values [16] to calculate the 
Young’s modulus E and the residual stress σ0 for both Si3N4 
and Si3N4/SiO2 membranes. These values are summarized in 
Tab. II for each sample.  For the monolayer Si3N4 
membranes, a mean Young’s modulus value of 212 ± 14 
GPa and a mean residual stress of 420 ± 8 MPa have been 
found.  For the composite Si3N4/SiO2 bilayer membranes, the 
results were 147 ± 8 GPa and 107 ± 2 MPa for the Young’s 
modulus and the residual stress, respectively.  
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Fig. 5. Normalized pressure-displacement (P = f (h²)) curves of Si3N4 

membranes 
 

Si3N4/SiO2 linearisation
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Fig. 6. Normalized pressure-displacement (P/h = f (h²)) curves of Si3N4/SiO2 

membranes 
 

TABLE II 
RESULTS OBTAINED FOR EACH MEMBRANE USING υ = 0.3 

 n° 2a (mm) 2b (mm) b/a σ0 (MPa) E (GPa)

1M 3.104 3.104 1 439±27 210±16

2M 2.131 2.131 1 400±27 217±19

3M 2.131 2.131 1 409±25 214±16

4M 2.14 2.14 1 429±29 211±18

Si
3N

4  
(t 

= 
10

4 
nm

) 

5M 1.138 2.131 1.9 414±34 219±26

1B 1.89 1.89 1 104±8 150±14

2B 0.662 0.662 1 113±9 153±17

3B 0.750 0.750 1 100±8 156±17

4B 1.39 7.80 5.6 103±8 139±15Si
3N

4/S
iO

2 

(t 
= 

18
8 

nm
) 

5B 0.27 3.28 12.1 115±10 145±16
 

C. Determination of the Poisson’s ratio  
Tab. III shows the different Poisson's ratio values obtained 

for different pairs of samples and from the analytical model 
proposed by Vlassak et al. and from Eq. 2.  

 

TABLE III 
CALCULATED POISSON RATIO FOR Si3N4 AND Si3N4/SiO2 MEMBRANES 

  υ ∆υ 

5M/1M 0.22 0.05 

5M/2M 0.29 0.07 

5M/3M 0.27 0.06 Si
3N

4 

5M/4M 0.24 0.05 

4B/1B 0,33 0.05 

4B/2B 0.38 0.09 

4B/3B 0.41 0.09 

5B/1B 0.23 0.05 

5B/2B 0.29 0.08 

Si
3N

4/S
iO

2 

5B/3B 0.33 0.09 
 
In the case of Si3N4 membranes, a Poisson’s ratio 

scattering is observed between 0.22 and 0.29 for an expected 
value between 0.25 and 0.3 (LPCVD Si3N4). As regards the 
Si3N4/SiO2 bilayer membranes, the composite Poisson’s ratio 
results are more scattered and higher than for the Si3N4 
monolayer (0.23 < υ < 0.41) whereas values lower than 
those of Si3N4 monolayer membranes were expected (except 
for 5B/1B samples). Even if the Poisson’s ratio obtained for 
Si3N4 monolayers are close to the expected value, it is 
obvious that the determination of an accurate Poisson’s ratio 
is very difficult, especially for bilayer membranes. 
Moreover, the high uncertainties in Tab. III are calculated 
from the lateral dimensions uncertainties showing the 
importance to know accurately these geometrical parameters.  

Membranes that were issued from the same wafer should 
have the same mechanical properties but differences lower 
than 10 % were observed on Young’s modulus results (Tab. 
II). These differences could come from the presence of a 
film thickness gradient or a stress gradient across each 
wafer. In this study, a mean thickness value was assumed for 
each wafer to calculate the mechanical properties. This may 
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also explain the scattering on the Poisson’s ratio values 
calculated for Si3N4. Moreover, sometimes we have 
observed underetching profiles on some Si3N4/SiO2 
membranes when lateral dimensions were lower than 1 mm 
(see Fig. 7). Even for large length/width ratio, this slightly 
changes the clamping conditions of the membranes and may 
etching influence the experimental results. 

The model used to determine the Poisson’s ratio is also 
critical. For example, for mono or multilayer membranes, the 
model of E. Bonnotte et al. leads to extreme Poisson’s ratio 
values (>0.45) compared to that of J. J. Vlassak et al. This 
last model is the most appropriate to calculate υ.  

 

  
Fig. 7. Si3N4/SiO2 Back-side membranes after anisotropic wet etching 

(pictures obtained using interferometer microscope)  
 
However, when two membranes, square and rectangular, 

lead to very close values for the Young’s modulus (we can 
assume that the film thickness is similar for the two samples 
and that the clamping conditions are good), then a precise 
determination of the Poisson’s ratio can be made. Indeed, the 
1M (square) and 5M (rectangular) Si3N4 membranes, lead to 
very close Young’s modulus values  and the calculated 
Poisson’s ratio (Tab. II and III), in close agreement with 
literature values for LPCVD Si3N4 [5, 7, 16]. The same 
observation can be made for the 1B and 5B Si3N4/SiO2 
membranes giving a composite Poisson’s ratio of 0.23. 

D. Application of mixture law  
Using the mixture law (Eq. 3), an attempt was made in 

order to calculate the mechanical properties of thermal SiO2 
with our experimental results.  

With E (Si3N4) ≈ 212 GPa and E (Si3N4/SiO2) ≈ 147 GPa, 
we obtained E (SiO2) ≈ 87 GPa. With σ0 (Si3N4) ≈ 420 MPa 
and σ0 (Si3N4/SiO2) ≈ 107 MPa, we obtained a compressive 
stress σ0 (SiO2) ≈ -180 MPa. Finally, with υ (Si3N4) ≈ 0.29 
and υ (Si3N4/SiO2) ≈ 0.23, we obtained υ (SiO2) ≈ 0.17. 

The mechanical properties calculated on thermal SiO2 are 
in close agreement with the literature values [17-19]. 

 

V. CONCLUSION 

These results show that the determination of E, σ0 and υ 
by means of the bulge test method remains possible even for 
deep submicron monolayer or multilayer thin films. Large 
deflections can be imposed to the membranes without any 
plastic deformation, which simplifies the associated 
mechanical model. Finite Element simulations show that the 
coefficient values found by J. J. Vlassak et al. were well 
suited for our studied samples. But the accuracy of the 
results depends strongly on the geometrical parameters 
especially the thickness of the membranes. Young’s modulus 
values and residual stress have been determined with 
accuracy better than 10 %. But the accuracy on the Poisson's 

ratio is about 20% in the best case. This highlights the 
difference between theory and experience because achieving 
well-controled free-standing submicron thick films is not 
trivial. Finally, a simple mixture law has given promising 
results on standard materials. 
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