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Abstract-This special session on 3D TSV´s will highlight some 
of the fabrication processes and used technologies to create vias 
from the frontside of an active circuit to its backside and 
potential implementation solutions to form complex systems 
leveraging these novel possibilities. General techniques for via 
formation are discussed as well as advanced integration 
solutions leveraging the power of 3D TSV´s. 

  

I.  INTRODUCTION 

For decades, ideas to bring contacts from the highly 
populated frontside of electronic circuitry has been the holy 
grail of integration techniques. Since the early 1990´s, 
technical progress has enabled semiconductor engineers to 
continuously work towards this goal /1,2,3,4/. Processes that 
allowed the formation of holes through the bulk silicon, 
allowed to thin down the bulk substrate to minimize the 
overall process time, and the development of deposition 
processes to insulate and fill the created holes, forming 
electrically conductive vias are enablers for today´s 3D 
TSV´s. 

It took until recently, to bring all these processes and the 
associated quality assurance to a point, where synergy really 
allows to define processes capable of being implemented in 
volume manufacturing. This paper provides an overview on 
established techniques for: 

- thinning of wafers towards 150…5µm remaining 
substrate thickness 

- creating well defined holes through the bulk 
material 

- insulating the semiconductor material and 
- forming a conductive interconnect between the 

pads on front and backside of the device 
In addition, alternatives to these process sequences as well 

as methods to integrate such devices in a complex system are 
reviewed. 

II.  PROCESSES FOR VIA FORMATION 

Generally, the concepts to route contacts from the front to 
the backside can be classified in two categories: 

a) routing of multiple contacts towards and through large 
via holes with thin film lines and re-routing them on 
the backside to their final position 

b) creating through-holes underneath or in the pad to be 
routed, insulating and filling the via 

c) creating through-holes in the pad to be routed, 
insulating and filling the via.   

 
Concepts like a) (Figure 1 a and b) have been used to 

create lidding structures for MEMS and RF devices as well 
as CSP type of integrated systems for MEMS components 
/5,6/.  They do not fall in the current focus of research 
interest of complex microelectronic circuit manufacturers, as 
they do not provide the required via density for modern 
chips, e.g. coming with sub 100µm contact pitches 
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Figure 1: Routed via concepts through KOH etched holes for 

a) RF (courtesy Hymite) and b) MEMS systems 
(courtesy Sonion MEMS) 

 
Concepts like b) & c), depicted in Figure 2 a and b are 

more suitable to the requirements of high density circuits, 
routing a couple of hundred contacts to the backside of a 
single chip. 

 

   
Figure 2: Blind TSV via with side wall copper fill (courtesy 
University of Arkansas), laser drilled through via with side 

wall fill based on laminate dielectric /7/ 
 

As silicon wafers coming out of a fab have thicknesses 
ranging from 500 with 100mm wafers to 800µm for 300mm 
wafers, all currently available processes to create holes are 
hard pressed to realize fast, high quality and precise micro 
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holes. With the advent of mainstream thinning technology, 
these finalized wafers are backgrinded to 150µm remaining 
silicon and less. Table I shows the target thickness and the 
suggested processes to achieve a high quality surface. 

TABLE I  - Processes for Wafer Thinning 

 
For the subsequent processes, typically the range of 

150…10µm is targeted, thereby allowing to use of today´s 
standard processes of backgrinding, etching and CMP /1/. 

At these remaining silicon thickness, hole drilling 
techniques as of Table II become economical even with the 
required precisions. 

TABLE II 
Hole Drilling Techniques 

Sources: /8, 9, 10/ 

                                                 
1 Processes may target the formation of TSV´s before or after the actual 
processing of the electronic circuit. Respective denominators refer to FEOL 
and BEOL via formation. 

 
While the etching processes can be tailored to stop on the 

pad and under pad metallization layers, this is more critical 
with the laser. Here, before the thinning process, usually 
some additional µm of a compatible metal are deposited on 
top of the existing pads. Drilling into or even through these 
enables also a larger interconnect annulus. 

 

    
Figure 3: a) KOH etched silicon @ 54.7°; 

b) DRIE etched via (courtesy of ALCATEL); 
c) Laser Drilled Vias (courtesy of XSIL) 

 
Silicon as semiconductor material requires an insulative 

cover of the hole´s sidewalls. For this, low temperature 
PECVD oxide deposition or organic insulators like PI or 
BCB are used. Finally, CVD (tungsten) or electro(less) 
deposition of copper is used to fill the vias (Figure 4 a and 
b). 

 

   
Figure 4: Solid filled vias a)W-CVD (courtesy IZM), 

b) Cu-ED (courtesy NEXX) 
 

A variation of this filling is just to cover the sidewalls and 
use a high step coverage process to route thus created 
contacts to the final pads /11 / (Figure 5). 

 
Figure 5: Thin film via contact (courtesy SCHOTT) 

 

III. SYSTEM INTEGRATION CONCEPTS 

After the described process sequence, a device with 
backside contacts is available. For the system integration 
concepts, this is just another technology in the tool box to 
create highly integrated complex functions. From the system 
aspect, both sides –front and backside- are accessible for 

Target 
thickness 

Process Comment 

~300um Coarse Backgrinding 
Stress relief etch 
suggested 

~100um 
Fine Backgrinding, 
stress relief etch  

After Coarse 
Backgrinding,  
Stress relief etch 
using wet etching or 
Atmospheric 
Downstream Plasma 

~50µm 
 Fine Backgrnding, 
etching 

Similar like above, 
better parameter 
control, slower 
process 

~10µm 
Wet etching or ADP 
etching 

Backside crack 
removal becomes 
mandatory to 
increase devices 
stability 

10µm Wet etching + CMP 
Photo receptors start 
to be influenced by 
missing substrate 

~2µm 
Intermediate layer 
release or CMP 

Removal of nearly 
all non-CMOS-
functional silicon 

 
Technique 

Wet Etching 
Plasma (DRIE) 

Etching 
Laser drilling 

Hole 
fabrication 

speed 

1..11µm/min Up to 50µm/min 
2400 
vias/s 

Position 
precision 

Mask defined ++ Mask defined ++ 

Conveyer 
system: 
several 

µm 

Aspect ratio 1:1…60 1:80 1:7 

Precision Sub um Sub µm ~10µm 

Quality of 
hole 

excellent Good (scallops) Very good 

Example 
figure 

Figure 3a Figure 3b Figure 3c 
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interconnect with other devices. TSV`s currently target 
mainly memory chips like FLASH and DRAM, as these 
have identical sizes, identical pad-arrangements and have a 
high wafer yield, making them ideal for a wafer-to-wafer 
integration (Figure 6).  

 

 
Figure 6: 3D Chip Stack using TSV´s 

(courtesy Yole) 
 
However, system integration does not stop there. The tool 

boxes allow also to integrate non-identical devices (hetero-
system integration) using state of the art assembly and 
packaging techniques. 

Redistribution processes in combination with thin chips 
allow multiple layers of circuitry to be integrated on one chip-
substrate (Figure 7) or as a complex stack (Figure 8). 

 

 
Figure 7: Thin chip integration on chip 

 

 
Figure 8: Top/bottom routed set of chips for 

3D complex system integration 
(courtesy iNEMI, IZM) /12/ 

 
Optical systems have been demonstrated to benefit from 3D 

TSV´s (Figure 9 and Figure 10) /13/ similar like MEMS 
devices (e.g. for mirror devices). 

 

 
Figure 9: 3D TSV used for a camera chip in CSP format 

(courtesy SCHOTT) 

 
Figure 10: True wafer level CSP opto package 

(courtesy SCHOTT) 
 

With optical systems, the combination of wafer-to-wafer 
integration to merge the optical function of a lens layer with the 
sensor chips, a hybrid integration on the connected backside 
allows to build extremely small and lightweight fully integrated 
cameras with enhanced functionality (Figure 11).  
 

 
Figure 11: Hybrid integration of additional circuitry on the 

backside of a TSV enabled camera system 
 

MEMS integrated systems can benefit from short signal 
paths and ultrasmall integration /14/. 

In addition, hybrid integration targets directly two of the 
biggest issues with the concept of wafer-to-wafer 
interconnects: Chip size and chip yield. 

As mentioned, with memory chips running at some 95% 
yield and identical dimensions, microprocessors, MEMS and 
CMOS optical sensors have a significantly lower yield (down 
to ~30%) and are –by nature- of different size. A wafer-to-
wafer interconnect would require a huge sacrifice of silicon for 
the smaller chips and a multiple yield loss. Hybrid integration 
foregoes this problem by enabling the use of “known good 
dies”. 

Hybrid integration is conducted using advanced pick and 
place equipment and the respective interconnect processes like 
flip chip or thin film interconnect for chip-first approaches (e.g. 
shown in Figure 7). The pick&place process enables also the 
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use of small SMD devices, indispensable in forming today´s 
integrated systems. 

IV. CONCLUSION 

3D TSV´s have come a long way since their first conception. 
While the general packaging advancement has still an edge 
w.r.t. manufacturing, it is quite obvious that future 
advancement in 3D TSV as well as associated integration 
techniques will enable integrated system densities and new 
products that have not been possible until now. 
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