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Presentation of a Game Semantics for First-Order Propositional Logic

Game semantics aim at describing the interactive behaviour of proofs by interpreting formulas as games on which proofs induce strategies. In this article, we introduce a game semantics for a fragment of first order propositional logic. One of the main difficulties that has to be faced when constructing such semantics is to make them precise by characterizing definable strategies -that is strategies which actually behave like a proof. This characterization is usually done by restricting to the model to strategies satisfying subtle combinatory conditions such as innocence, whose preservation under composition is often difficult to show. Here, we present an original methodology to achieve this task which requires to combine tools from game semantics, rewriting theory and categorical algebra. We introduce a diagrammatic presentation of definable strategies by the means of generators and relations: those strategies can be generated from a finite set of "atomic" strategies and that the equality between strategies generated in such a way admits a finite axiomatization. These generators satisfy laws which are a variation of bialgebras laws, thus bridging algebra and denotational semantics in a clean and unexpected way.

Denotational semantics were introduced to provide useful abstract invariants of proofs and programs modulo cut-elimination or reduction. In particular, game semantics, introduced in the nineties, have been very successful in capturing precisely the interactive behaviour of programs. In these semantics, every type is interpreted as a game, that is as a set of moves that can be played during the game, together with the rules of the game, formalized by a partial order on the moves of the game indicating the dependencies between the moves. Every move in these games is to be played by one of the two players, called Proponent and Opponent, who should be thought respectively as the program and its environment. Interactions between these two players are sequences of moves respecting the partial order of the game, called plays. Every program is characterized by the set of such interactions that it can have with its environment during an execution and thus defines a strategy reflecting the interactive behaviour of the program inside the game specified by the type of the program.

In particular, the notion of pointer game, introduced by Hyland and Ong [START_REF] Hyland | On Full Abstraction for PCF: I, II and III[END_REF]) and independently by [START_REF] Nickau | Hereditarily sequential functionals[END_REF]), gave a fully abstract model of PCF -a simply-typed λ-calculus extended with recursion, conditional branching and arithmetical constants. It has revealed that PCF programs generate strategies with partial memory, called innocent because they react to Opponent moves according to their own view of the play. Thus innocence -together with another condition called well-bracketing -is in their setting a characterization of definable strategies, that is strategies which are the interpretation of a PCF term. This seminal work has lead to an extremely successful series of semantics: by relaxing in various ways the innocence constraint on strategies, it became suddenly possible to characterize the behaviour of PCF programs extended with imperative features like states, references, etc.

Unfortunately, these constraints are very specific to game semantics and remain difficult to link with other areas of computer science or algebra. Moreover, the conditions used to characterize definable strategies are very subtle and combinatorial and are thus sometimes difficult to work with. In particular, showing that these conditions are preserved under composition of strategies usually requires a fairly large amount of work.

Generating instead of restricting. In this paper, we introduce a game semantics for a fragment of first-order propositional logic and describe a monoidal category Games of games and strategies in which the proofs can be interpreted. Instead of characterizing definable strategies of the model by restricting the strategies we consider to strategies satisfying particular conditions, we show that we can equivalently use here a kind of converse approach: we explain how to generate definable strategies by giving a presentation of those strategies, i.e. we show that a finite set of definable strategies can be used to generate all definable strategies by composition and tensoring and finitely axiomatize the equality between strategies obtained this way.

We we mean precisely by a presentation is a generalization of the usual notion of presentation of a monoid (or a group, . . . ) presentation to monoidal categories. For example, consider the bicyclic monoid B whose set of elements is N × N and whose multiplication * is defined by

(m 1 , n 1 ) * (m 2 , n 2 ) = (m 1 -n 1 + max(n 1 , m 2 ), n 2 -m 2 + max(n 1 , m 2 ))
This monoid admits the presentation p, q | pq = 1 , where p and q are two generators and pq = 1 is an equation between two elements of the free monoid M on {p, q}. This means that B is isomorphic to the free monoid M on two generators p and q quotiented by the smallest congruence ≡ (with respect to multiplication) such that pq ≡ 1, where 1 is the unit of the free monoid. More explicitly, the morphism of monoids ϕ : M → B defined by ϕ(p) = (1, 0) and ϕ(q) = (0, 1) is surjective and induces an injective functor from M/ ≡ to B: two words w and w ′ have the same image under ϕ if and only if w ≡ w ′ .

Similarly, we give in this paper a finite set of typed generators from which we can generate a free monoidal category G by composing and tensoring generators. We moreover give a finite set of typed equations between morphisms of G and write ≡ for the smallest congruence (with respect to composition and tensoring) on morphisms. Then we show that the category G/ ≡, which is the category G whose morphisms are quotiented by the congruence ≡, is equivalent to the category Games of definable strategies. As a byproduct we obtain the fact that the composite of two definable strategies is well-defined which was not obvious from the definition we gave.

Strategies as refinements of the game. Game semantics has revealed that proofs in logics describe particular strategies to explore formulas. A formula A is a syntactic tree expressing in which order its connectives must be introduced in cut-free proofs of A: from the root to leaves. In this sense, it can be seen as the rules of a game whose moves correspond to introduction rules of connectives in logics. For instance, consider a formula A of the form ∀x.P ⇒ ∀y.∃z.Q

(1)

where P and Q are propositional formulas which may contain free variables. When searching for a proof of A, the ∀y connective must be introduced before the ∃z connective and the ∀x connective can be introduced independently. The game -whose moves are firstorder connectives -associated to this formula is therefore a partial order on the first-order connectives of the formula which can be depicted as the following diagram (to be read from the bottom to the top)

∃z ∀x ∀y (2) 
Existential connectives should be thought as Proponent moves (the strategy gives a witness for which the formula holds) and the universal connectives as Opponent moves (the strategy receives a term from its environment, for which it has to show that the formula holds).

Informally, in a first-order propositional logic, the formula (1) can have proofs of the three following shapes . . . It should be noted that they are all refinements of the partial order (2) corresponding to the formula, in the sense that they have more dependencies between moves: proofs add causal dependencies between connectives.

P [t/x] ⊢ Q[t ′ /z] P [t/x] ⊢ ∃z.Q P [t/x] ⊢ ∀y.∃z.Q ∀x.P ⊢ ∀y.∃z.Q . . . P [t/x] ⊢ Q[t ′ /z] P [t/x] ⊢ ∃z.Q ∀x.P ⊢ ∃z.Q ∀x.P ⊢ ∀y.∃z.Q . . . P [t/x] ⊢ Q[t ′ /z] ∀x.P ⊢ Q[t ′ /z]
To understand exactly what dependencies which are added by proofs we are interested in, we shall examine precisely proofs of the formula ∃x.P ⇒ ∃y.Q

(3) which induces the following game

∃x ∃y

By permuting the use of introduction rules, a proof of the formula (3) . . . x as free variable. If the variable x is free in t then the rule introducing ∃y can only be done after the rule introducing the ∃x connective. This will be reflected by a causal dependency in the strategy corresponding to the proof, depicted by an oriented wire:

P ⊢ Q[t/
We thus build a monoidal category Games of games and strategies. Its objects are games, that is total orders on a set whose elements (the moves) are polarized (they are either Proponent or Opponent moves). Its morphisms σ : A → B between two objects A and B are the partial orders ≤ σ on the moves of A (with polarities inverted) and B which are compatible with both the partial orders of A and of B, i.e. does not create cycle with those partial orders.

The logic we have chosen to model here (the fragment of first-order propositional logic without connectives) is deliberately very simple in order to simplify our presentation of the category Games. We believe however that the techniques used here are very general and could extend to more expressive logics. satisfying coherence axioms and such that γ B,A • γ A,B = id A⊗B . A monoidal category C is strictly monoidal when the natural isomorphisms α, λ and ρ are identities. To simplify our presentation, in the rest of this paper we only consider strict monoidal categories. Formally, it can be shown that it is not restrictive, using MacLane's coherence theorem (MacLane(1971)): every monoidal category is monoidally equivalent to a strict one.

Presentations of monoidal categories

A (strict) monoidal functor F : C → D between two strict monoidal categories C and D if a functor F between the underlying categories C and D such that F (A ⊗ B) = F (A)⊗F (B) for every objects A and B of C, and F (I) = I. A monoidal functor F between two strict symmetric monoidal categories C and D is symmetric when it transports the symmetry of C to the symmetry of D, that is when

F (γ A ) = γ F (A) .
A monoidal natural transformation θ : F → G between two monoidal functors F, G : C → D is a natural transformation between the underlying functors F and G such that θ A⊗B = θ A ⊗ θ B for every objects A and B of C, and θ I = id I . A monoidal natural transformation θ : F → G between two strict symmetric monoidal functors is said to be symmetric.

Two monoidal categories C and D are monoidally equivalent when there exists a pair of monoidal functors F : C → D and G : D → C and two invertible monoidal natural transformations η : Id C → GF and ε : F G → Id D .

Monoidal theories

A monoidal theory T is a strict monoidal category whose objects are the natural integers such that the tensor product on objects is given by addition of integers. By an integer n, we mean here the finite ordinal n = {0, 1, . . . , n -1} and the addition is given by m+ n = m + n. A symmetric monoidal theory is a monoidal theory where the category is moreover required to be symmetric. An algebra F of a monoidal theory T in a strict monoidal category C is a strict monoidal functor from T to C. Every monoidal theory T and strict monoidal category C give rise to a category Alg C T of algebras of T in C and monoidal natural transformations between them. Examples of such categories are given in Section 3. Monoidal theories and symmetric monoidal theories are sometimes called respectively PRO and PROP, these terms were introduced by Mac Lane in (MacLane(1965)) as abbreviations for respectively "category with products" and "category with products and permutations".

Monoidal theories generalize equational theories: in this setting, operations are typed, and can moreover have multiple outputs as well as multiple inputs.

Presentations of monoidal categories

In this section, we recall the notion of presentation of a monoidal category by the means of 2-dimensional generators and relations.

Suppose that we are given a set E 1 whose elements are called atomic types. We write E * 1 for the free monoid on the set E 1 and i 1 : E 1 → E * 1 for the corresponding injection; the product of this monoid is written ⊗ and its unit is written I. The elements of E * 1 are called types. Suppose moreover that we are given a set E 2 , whose elements are called generators, together with two functions s 1 , t 1 : E 2 → E * 1 which to every generator associate a type called respectively its source and target. We call a signature such a 4-uple (E 1 , s 1 , t 1 , E 2 ):

E 1 i1 E 2 s1 }} } } } } } } } } } } } t1 }} } } } } } } } } } } } E * 1
In particular, every strict monoidal category C generates a signature by taking E 1 to be the objects of the category C, E 2 its morphisms, such that for every morphism f : A → B, we have s 1 (f ) = i 1 (A) and t 1 (f ) = i 1 (B). Conversely, every signature (E 1 , s 1 , t 1 , E 2 ) generates a free strict monoidal category E described as follows. If we write E * morphisms of this category and i 2 : E 2 → E * 2 for the injection of the generators into this category, we get a diagram

E 1 i1 E 2 s1 }} } } } } } } } } } } } t1 }} } } } } } } } } } } } i2 E * 1 E * 2 s1 o o t1 o o
in Set together with a structure of monoidal category on the graph

E * 1 E * 2 s1 o o t1 o o where the morphisms s 1 , t 1 : E * 2 → E * 1 are the morphisms (unique by universality of E * 2 ) such that s 1 = s 1 • i 2 and t 1 = t 1 • i 2 . More explicitly, the category E has E *
1 as objects and its set E * 2 of morphisms is the smallest set such that 1 there is a morphism

f : A → B in E * 2 for every element f of E 2 such that s 1 (f ) = A and t 1 (f ) = B (this is the image by i 2 of f ), 2 there is a morphism id A : A → A in E * 2 for every element A of E * 1 , 3 for every morphisms f : A → B and g : B → C in E * 2 there is a morphism g • f : A → C in E * 2 , 4 for every morphisms f : A → B and g : C → D in E * 2 there is a morphism f ⊗ g : A ⊗ C → B ⊗ D in E *
2 , quotiented by equalities imposing that 1 composition is associative and admits identities as neutral element, 2 the tensor product is associative and admits id I as neutral element, 3 identities form a monoidal natural transformation id : Id → Id: for every objects A and B,

id A ⊗ id B = id A⊗B
4 tensor product and composition are compatible in the sense that for every morphisms

f : A → B, g : B → C, f ′ : A ′ → B ′ and g ′ : B ′ → C ′ , (g • f ) ⊗ (g ′ • f ′ ) = (g ⊗ g ′ ) • (f ⊗ f ′ ) The size |f | of a morphism f : A → B in E is defined inductively by |id| = 0 |f | = 1 if f is a generator |f 1 ⊗ f 2 | = |f 1 | + |f 2 | |f 2 • f 1 | = |f 1 | + |f 2 |
In particular, a morphism is of size 0 if and only if it is an identity. This construction is a particular case of Street's 2-computads (Street(1976)) and Burroni's polygraphs [START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF]) who made precise the sense in which the generated monoidal category is free on the signature. In particular, the following notion of equational theory is a specialization of the definition of a 3-polygraph to the case where there is only one 0-cell. Definition 1. A monoidal equational theory is a 7-uple s 1 ,t 1 ,E 2 ,s 2 ,t 2 ,E 3 ) where (E 1 ,s 1 ,t 1 ,E 2 ) is a signature together with a set E 3 of equations and two morphisms s 2 , t 2 : E 3 → E * 2 , as pictured in the diagram

E = (E 1 ,
E 1 i1 E 2 s1 }} } } } } } } } } } } } t1 }} } } } } } } } } } } } i2 E 3 s2 }} } } } } } } } } } } } t2 }} } } } } } } } } } } } E * 1 E * 2 s1 o o t1 o o such that s 1 • s 2 = s 1 • t 2 and t 1 • s 2 = t 1 • t 2 .
Every equational theory defines a monoidal category E/ ≡ obtained from the monoidal category E generated by the signature (E 1 , s 1 , t 1 , E 2 ) by quotienting the morphisms by the congruence ≡ generated by the equations of the equational theory E: it is the smallest congruence (with respect to both composition and tensoring) such that s 2 (e) ≡ t 2 (e) for every element e ∈ E 3 . We say that a monoidal equational theory E is a presentation of a strict monoidal category M when M is monoidally equivalent to the category E generated by E.

We sometimes informally say that an equational theory

E = (E 1 , s 1 , t 1 , E 2 , s 2 , t 2 , E 3 ) has a generator f : A → B to mean that f is an element of E 2 such that s 1 (f ) = A and t 1 (f ) = B.
We also say that the equational theory has an equation f = g to mean that there exists an element e of E 2 such that s 2 (e) = f and t 2 (e) = g. We say that two equational theories are equivalent when they generate monoidally equivalent categories. A generator f in an equational theory E is superfluous when the equational theory E ′ obtained from E by removing the generator f and all equations involving f , is equivalent to E. Similarly, an equation e is superfluous when the equational theory E ′ obtained from E by removing the equation e is equivalent to E. An equational theory is minimal when it does not contain any superfluous generator or equation.

Remark 2. An equational presentation (E 1 , s 1 , t 1 , E 2 , s 2 , t 2 , E 3 ) where E 1 is reduced to a set with only one object {1} generates a monoidal category which is a monoidal theory.

Presented categories as models

Suppose that a strict monoidal category M is presented by an equational theory E. We write E/ ≡ for the category generated by E. The proof that E presents M can generally be decomposed in three parts:

1 M is a model of the equational theory E: there exists a functorfrom the category E/ ≡ to M. This amounts to check that there exists a functor F : E → M such that for every morphisms f, g

: A → B in E, f ≡ g implies F f = F g. 2 M is a fully-complete model of the equational theory E: the functor -is full.
3 M is the initial model of the equational theory E: the functoris faithful.

We say that a morphism f :

A → B of E/ ≡ represents the morphism f : A → B of M.
Usually, the first point is a straightforward verification and the second point is easy to show. Proving that the functoris faithful often requires more work. In this paper, we use the methodology introduced by Lafont in [START_REF] Lafont | Towards an algebraic theory of Boolean circuits[END_REF]). We first define canonical forms which are (not necessarily unique) canonical representatives of the equivalence classes of morphisms of E under the congruence ≡ generated by the equations of Eproving that every morphism is equal to a canonical form can be done by induction on the size of the morphisms. Then we show that the functoris faithful by showing that all the canonical forms which have the same image underare equal.

It should be noted that this is not the only technique to prove that an equational theory presents a monoidal category. In particular, Joyal and Street have used topological methods [START_REF] Joyal | The Geometry of Tensor Calculus, I[END_REF]) by giving a geometrical construction of the category generated by a signature, in which morphisms are equivalence classes under continuous deformation of progressive plane diagrams (their construction is detailed a bit more in Section 1.5). Their work is for example extended by Baez and Langford in [START_REF] Baez | Higher-dimensional algebra IV: 2-tangles[END_REF]) to give a presentation of the 2-category of 2-tangles in 4 dimensions. The other general methodology the author is aware of, is given by Lack in [START_REF] Lack | Composing PROPs[END_REF]), by constructing elaborate monoidal theories from simpler monoidal theories. Namely, a monoidal theory can be seen as a monad in a particular span category and monoidal theories can therefore be composed, given a distributive law between their corresponding monads. We chose not to use those methods because, even though they can be very helpful to build intuitions, they are difficult to formalize and even more to mechanize -we believe indeed that some of the tedious proofs given in this paper could be somewhat automated. The associativity law for monoids (see Section 2.2)

µ • (µ ⊗ M ) = µ • (M ⊗ µ)
can therefore be represented graphically as

= Suppose that (E 1 , s 1 , t 1 , E 2 ) is a signature. Every element f of E 2 such that s 1 (f ) = A 1 ⊗ • • • ⊗ A m and t 1 (f ) = B 1 ⊗ • • • ⊗ B n
where the A i and B i are elements of E 1 , can be represented by a diagram Bigger diagrams can be constructed from these diagrams by composing and tensoring them, as explained above. Joyal and Street have shown in details in [START_REF] Joyal | The Geometry of Tensor Calculus, I[END_REF]) that the category of those diagrams, modulo continuous deformations, is precisely the free category generated by a signature (which they call a tensor scheme). For example, the equality

(M ⊗ µ) • (µ ⊗ M ⊗ M ) = (µ ⊗ M ⊗ M ) • (M ⊗ µ)
in the category C given in the example above; this can be shown by continuously deforming the diagram on the left-hand side below into the diagram on the right-hand side: = All the equalities, given in Section 1.3, satisfied by the monoidal category generated by a signature have a similar geometrical interpretation.

Some algebraic structures

In this section, we recall the categorical formulation of some well-known algebraic structures (monoids, bialgebras, . . . ). It should be noted that we give those definitions in the setting of a monoidal category which is not required to be symmetric. We suppose that (C, ⊗, I) is a strict monoidal category, fixed throughout the section. A symmetric monoid is a monoid which admits a symmetry γ : M ⊗ M → M ⊗ M which is compatible with the operations of the monoid in the sense that it makes the diagrams

Symmetric objects

M ⊗ M ⊗ M M⊗µ µ⊗M / / M ⊗ M µ M ⊗ M µ / / M and I ⊗ M M % % K K K K K K K K K K η⊗M / / M ⊗ M µ M ⊗ I
M ⊗ M ⊗ M µ⊗M M⊗γ / / M ⊗ M ⊗ M γ⊗M / / M ⊗ M ⊗ M M⊗µ M ⊗ M γ / / M ⊗ M M ⊗ M ⊗ M M⊗µ γ⊗M / / M ⊗ M ⊗ M M⊗γ / / M ⊗ M ⊗ M µ⊗M M ⊗ M γ / / M ⊗ M M ⊗ M γ & & L L L L L L L L L L M η⊗M ; ; v v v v v v v v v η⊗M / / M ⊗ M M ⊗ M γ & & L L L L L L L L L L M M⊗η ; ; v v v v v v v v v M⊗η / / M ⊗ M (5) commute. Graphically, = = = =
A commutative monoid is a symmetric monoid such that the diagram

M ⊗ M µ # # H H H H H H H H H M ⊗ M γ 8 8 r r r r r r r r r r µ / / M commutes. Graphically, = (6) 
A commutative monoid in a symmetric monoidal category is a commutative monoid whose symmetry corresponds to the symmetry of the category: γ = γ M,M . In this case, the equations ( 5) can always be deduced from the naturality of the symmetry of the monoidal category.

A comonoid (M, δ, ε) in C is an object M together with two morphisms

δ : M → M ⊗ M and ε : M → I
respectively drawn as and satisfying dual coherence diagrams. An similarly, the notions symmetric comonoid, cocommutative comonoid and cocommutative comonoid can be defined by duality.

An equational theory of monoids

The definition of a monoid can be reformulated internally using the notion of equational theory.

Definition 4. The equational theory of monoids M has only one object 1 and two generators µ : 2 → 1 and η : 0 → 1 subject to the equations

µ • (µ ⊗ id 1 ) = µ • (id 1 ⊗ µ) and µ • (η ⊗ id 1 ) = id 1 = µ • (id 1 ⊗ η)
We write M for the monoidal category generated by the equational theory M. It can easily be seen that a monoid M in a strict monoidal category C is essentially the same as a functor from M to C. More precisely, Property 5. The category Alg C M of algebras of the monoidal theory M in C is equivalent to the category of monoids in C.

Similarly, all the algebraic structures introduced in this section can be defined using algebraic theories. Remark 6. The presentations given here are not necessarily minimal. For example, in the theory of commutative monoids the equation on the right-hand side of ( 4) is derivable from the equation ( 6), the equation on the left-hand side of (4) and one of the equations ( 5):

= = =
A minimal presentation of this equational theory with three generators and seven equations is given in [START_REF] Massol | Minimality of the system of seven equations for the category of finite sets[END_REF]). However, not all the equational theories introduced in this paper have a known presentation which is proved to be minimal.

Bialgebras

A bialgebra (B, µ, η, δ, ε, γ) in C is an object B together with four morphisms 

f : (A, µ A , η A , δ A , ε A , γ 1 ) → (B, µ B , η B , δ B , ε B , γ B ) is a morphism f : A → B of C preserving the structure of bialgebra, that is (f ⊗ f ) • µ A = µ B • f , f • η A = η B , etc.
The symmetric bialgebra is commutative (resp. cocommutative) when the induced symmetric monoid (B, µ, η, γ) (resp. symmetric comonoid (B, δ, ε, γ)) is commutative (resp. cocommutative), and bicommutative when it is both commutative and cocommutative.

A qualitative bialgebra is a bialgebra (B, µ, η, δ, ε, γ) such that the diagram

B ⊗ B µ # # F F F F F F F F F B δ ; ; x x x x x x x x x B / / B commutes. Graphically, =
A bialgebra B in a symmetric monoidal category is a bialgebra whose symmetry morphism γ corresponds with the symmetry of the category γ B,B .

Similarly to what has been explained for monoids in Section 2.3, an equational theory of bialgebras, etc. can be defined. We write B for the equational theory of bicommutative bialgebras and R for the equational theory of bicommutative qualitative bialgebras.

Dual objects

An object L of C is said to be left dual to an object R when there exists two morphism η : I → R ⊗ L and ε : L ⊗ R → I called respectively the unit and the counit of the duality and respectively pictured as and making the diagrams

L ⊗ R ⊗ L L⊗ε $ $ J J J J J J J J J J L η⊗L : : t t t t t t t t t t L / / L and R ⊗ L ⊗ R ε⊗R % % J J J J J J J J J J R R⊗η 9 9 t t t t t t t t t t R / / R commute. Graphically, = and =
We write D for the equational theory associated to dual objects and D for the generated monoidal category. If C is category, two dual objects in the monoidal category End(C) of endofunctors of C, with tensor product given on objects by composition of functors, are adjoint endofunctors of C. More generally, the theory of adjoint functors in a 2-category is given in [START_REF] Schanuel | The Free Adjunction[END_REF]), the definition of D is a specialization of this construction to the case where there is only one 0-cell.

A presentation of relations

We now introduce a presentation for the category Rel of finite ordinals and relations. This result is mentioned in Examples 6 and 7 of [START_REF] Hyland | Symmetric Monoidal Sketches[END_REF]) and is proved in three different ways in [START_REF] Lafont | Equational Reasoning with 2-Dimensional Diagrams[END_REF]), [START_REF] Pirashvili | On the PROP Corresponding to Bialgebras[END_REF]) and [START_REF] Lack | Composing PROPs[END_REF]). The proof we give here has the advantage of being simple to check and can be extended to give a presentation of the category of games and strategies, see Section 4.4.

The simplicial category

The simplicial category ∆ is the strict monoidal category whose objects are the finite ordinals and whose morphisms f : m → n are the monotone functions from m to n.

It has been known for a long time that this category is closely related to the notion of monoid, see [START_REF] Maclane | Categories for the Working Mathematician[END_REF]) or [START_REF] Lafont | Towards an algebraic theory of Boolean circuits[END_REF]) for example. This result can be formulated as follows:

Property 7. The monoidal category ∆ is presented by the equational theory of monoids M.

In this sense, the simplicial category ∆ impersonates the notion of monoid.

Dually, the monoidal category ∆ op , which is isomorphic to the category of finite ordinals and (weakly) monotonic functions f : m → n such that f (0) = 0, impersonates the notion of comonoid: Property 8. The monoidal category ∆ op is presented by the equational theory of comonoids.

In the next Section, we show how to extend these results to the monoidal category of multirelations.

Multirelations

A multirelation R between two sets A and B is a function from A × B → N. It can be equivalently be seen as a multiset whose elements are in A × B, or as a matrix over N, or as a span 

R 2 • R 1 = (a, c) → b∈B R 1 (a, b) × R 2 (b, c).
Again, this corresponds to the usual composition of matrices if we see R 1 and R 2 as matrices over N, and as the span obtained by computing the pullback

R 2 • R 1 y y s s s s % % K K K K R 1 s1 || | t1 & & L L L L L R 2 s2 x x r r r r r t2 ! ! B B B A B C if we see R 1 and R 2 as spans in Set. The cardinal |R| of a multirelation R : A → B is defined by |R| = (a,b)∈A×B R(a, b).
We write MRel for the monoidal theory of multirelations: its objects are finite ordinals and morphisms are multirelations between them. It is a strict symmetric monoidal category with the tensor product ⊗ defined on two morphisms R 1 :

m 1 → n 1 and R 2 : m 2 → n 2 by R 1 ⊗ R 2 = R 1 ∪ R 2 : m 1 + m 2 → n 1 + n 2 and the morphisms R γ m,n = (m × n) ∪ (n × m) : m + n → n + m
as symmetry. In particular, the following multirelations are morphisms in MRel:

R µ = (i, j) → 1 : 2 → 1 R η = (i, j) → 1 : 0 → 1 R δ = (i, j) → 1 : 1 → 2 R ε = (i, j) → 1 : 1 → 0 R γ = (i, j) → 0 if i = j, 1 otherwise. : 2 → 2
We now show that multirelations are presented by the equational theory B bicommutative bialgebras. We write B for the monoidal category generated by B.

Lemma 9. In MRel, (1, R µ , R η , R δ , R ε ) is a bicommutative bialgebra.
For every morphism φ : m → n in B, where m > 0, we define a morphism Sφ : m+ 1 → n by

Sφ = φ • (γ ⊗ id m-1 )
We introduce the following notation which is defined inductively by is either or

These morphisms are called stairs: a stair is therefore either id 1 or Sφ ′ where φ ′ is a stairs. The length of a stairs is defined as 0 if its of the first form and the length of the stairs plus one if it is of the second form. We define the following notion of canonical form inductively: φ is either (7) or there exists a canonical form φ ′ such that φ is either

D i φ ′ = or Eφ ′ =
In the latter case we write respectively φ as D i φ ′ (where the index i is the length of the stairs) or as Eφ ′ . Showing that identities are equal to canonical forms require the slightly more general following lemma.

Lemma 10. Any morphism f = η ⊗ • • • ⊗ η ⊗ id n : m → m is equal to a canonical form.
Proof. By induction on n. The result is immediate when n = 0. Otherwise, we have the equalities of Figure 2 in Appendix which show that f is equal to a morphism of the form D i (Eφ), where φ is equal to a canonical form by induction hypothesis.

Lemma 11. For every morphism φ : m → n, where m > 0, for all indices i and j such that 0 ≤ i ≤ n and 0 ≤ j ≤ n, we have

D j (D i φ) = D i (D j φ)
Proof. The proof is done by examining separately the cases j < i, i = j and j > i and showing the result for each case using in particular the derivable equalities shown in Figure 3 in Appendix.

From this we deduce that Lemma 12. Every multirelation R : m → n is represented by a canonical form and two canonical forms representing R are equal.

Proof. This is proved by induction on m and on the cardinal |R| of R.

1 If m = 0 then R is represented by a unique normal form which is of the form (7). 2 If m > 0 and for every j < n, R(0

, j) = 0 then R is of the form R = R ε ⊗ R ′ and
R is necessarily represented by a canonical form Eφ ′ where φ ′ is a canonical form representing R ′ : (m -1) → n, which exists by induction hypothesis. 3 Otherwise, R is necessarily represented by a canonical form of the form D k φ ′ , where k is such that R(0, k) > 0 and φ ′ is a canonical form represented by the relation

R ′ : m → n defined by R ′ (i, j) = R(i, j) -1 if i = 0 and j = k, R(i, j) else.
and such a canonical form exists by induction hypothesis.

By Lemma 11, two canonical forms φ 1 and φ 2 representing R, obtained by choosing different values for k in case 3 during the construction of the canonical form are equal.

Lemma 13. Every morphism f : m → n in B is equal to a canonical form.

Proof. The proof is done by induction on the size |f | of f .

-If |f | = 0 then m = n and f = id m which is equal to a canonical form by Lemma 10.

-

If |f | > 0 then f is of the form f = h • g where |h| = 1 and |g| = |f | -1. By induction hypothesis, g is equal to a canonical form φ. Since h is of size 1, it is of the form h = id m2 • h ′ • id m1
where h is either µ, η, δ, ε or γ. We show the result by case analysis. For the lack of space, we only detail the case where h ′ = µ. There are four cases to handle which are shown in Figures 4,5, 6 and 7.

Theorem 14. The category MRel of multirelations is presented by the equational theory B of bicommutative bialgebras.

Relations

The monoidal category Rel has finite ordinals as objects and relations as morphisms. This category can be obtained from MRel by quotienting the morphisms by the equivalence relation ∼ on multirelations defined as follows. Two multirelations

R 1 , R 2 : m → n are such that R 1 ∼ R 2 whenever ∀i < m, ∀j < n, R 1 (i, j) = 0 iff R 2 (i, j) = 0 (8) 
This induces a full monoidal functor F from MRel to Rel. We still write R µ , R η , R δ , R ε and R γ for the images by this functor of the corresponding multirelations. We denote R for the monoidal category generated by the equational theory R of qualitative bicommutative bialgebras.

Lemma 15. For every morphism φ : m → n in R, where m > 0, for every index i such that 0 ≤ i ≤ n, we have

D i (D i φ) = D i φ Proof. See Figure 8 in Appendix.
From this Lemma, we deduce that:

Theorem 16. The category Rel of relations is presented by the equational theory R of qualitative bicommutative bialgebras.

Proof. Since Rel can be obtained from MRel by quotienting morphisms, by Lemma 9, (1, R µ , R η , R δ , R ε , R γ ) is still a bialgebra in Rel and moreover it satisfies the additional equation making it a qualitative bialgebra. Therefore Rel is a model of the equational theory R. Moreover, R is a complete axiomatization of Rel. In order to show this, we use the same notion of canonical form as in the previous Section: we have to show that two canonical forms representing the same relation are equal. This amounts to check that two canonical forms representing two multirelations R 1 and R 2 , which are equivalent by the relation ( 8), are equal. This can easily be done using Lemmas 11 and 15.

4. A game semantics for first-order propositional logic 4.1. First-order propositional logic Suppose that we are given a fixed first-order language L, that is 1 a set of proposition symbols P, Q, . . . with given arities, 2 a set of function symbols f, g, . . . with given arities, 3 a set of first-order variables x, y, . . .. Terms t and formulas A are respectively generated by the following grammars:

t ::= x | f (t, . . . , t) A ::= P (t, . . . , t) | ∀x.A | ∃x.A
We suppose that application of propositions and functions always respect arities. Moreover, we suppose here that there are proposition and function symbols of any arity (this is needed for the definability result of Proposition 19). Formulas are considered modulo renaming of variables. Substitution A[t/x] of a free variable x by a term t in a formula A is defined as usual, avoiding capture of variables. We consider the logic associated to these formulas, where proofs are generated by the following inference rules:

A[t/x] ⊢ B ∀x.A ⊢ B (∀-L) A ⊢ B A ⊢ ∀x.B (∀-R) (with x not free in A) A ⊢ B ∃x.A ⊢ B (∃-L) A ⊢ B[t/x] A ⊢ ∃x.B (∃-R) (with x not free in B) P (t 1 , . . . , t n ) ⊢ P (t 1 , . . . , t n ) (Ax) A ⊢ B B ⊢ C A ⊢ C (Cut)

Games and strategies

Definition 17. A game A = (M A , λ A , ≤ A ) consists of a set of moves M A , a polarization function λ A : M A → {-1, +1} which to every move m associates its polarity, and a partial order ≤ A on moves such that every move m ∈ M A defines a finite downward closed set

m ↓ = { n ∈ M A | n ≤ A m }.
A move m is said to be a Proponent move when λ A (m) = +1 and an Opponent move else.

Suppose that A and B are two games. Their tensor product A ⊗ B is defined by

M A⊗B = M A ⊎ M B , λ A⊗B = λ A + λ B and ≤ A⊗B =≤ A ∪ ≤ B .
The opposite game A * of the game A is defined by

A * = (M A , -λ A , ≤ A ).
Finally, the arrow game A ⊸ B is defined by

A ⊸ B = A * ⊗ B.
A game A is filiform when the associated partial order is total. Two partial orders ≤ and ≤ ′ on a set M are compatible when their relational union ≤ ∪ ≤ ′ is still an order (i.e. is acyclic).

Definition 18. A strategy σ on a game A is a partial order ≤ σ on the moves of A which is compatible with the order of the game and is moreover such that for every moves

m, n ∈ M A , m < σ n implies λ A (m) = -1 and λ A (n) = +1. (9) 
The size |A| of a game A is the cardinal of M A and the size |σ| of a strategy σ : A is the cardinal of the set

{ (m, n) ∈ M A × M A | m < σ n }.
If σ : A ⊸ B and τ : B ⊸ C are two strategies, their composite τ • σ : A ⊸ C is the partial order ≤ τ •σ on the moves of A ⊸ C, defined as the restriction to the set of moves of A ⊸ C of the transitive closure of the union ≤ σ ∪ ≤ τ of the partial orders ≤ σ and ≤ τ considered as relations. The identity strategy id A : A ⊸ A on a game A is the strategy such that for every move m of A we have

m L ≤ id A m R if λ(m) = -1 and m R ≤ id A m L if λ(m) = +1 when m L (resp. m R )
is the instance of the move m in the left-hand side (resp. right-hand side) copy of A. It can easily be checked that for every strategy σ :

A → B we have id B • σ = σ = σ • id A .
Since the composition of strategies is defined in the category of relations, we still have to check that the composite of two strategies σ and τ is actually a strategy. Preservation of the polarization condition (9) by composition is easily checked. However, proving that the relation ≤ τ •σ corresponding to the composite strategy is acyclic is more difficult: a direct proof of this property is combinatorial and a bit lengthy. For now, we define the category Games as the smallest category whose objects are filiform games, whose morphisms between two games A and B contain the strategies on the game A ⊸ B and is moreover closed under composition. We will deduce in Corollary 28 that strategies are in fact the only morphisms of this category from our presentation of the category.

If A and B are two games, the game A B (to be read A before B) is the game defined by

M A B = M A ⊎ M B , λ A B = λ A + λ B
and ≤ A B is the transitive closure of the relation

≤ A ∪ ≤ B ∪ { (a, b) | a ∈ M A and b ∈ M B }
This operation is extended as a bifunctor on strategies as follows. If σ : A → B and τ : C → D are two strategies, the strategy σ τ : A C → B D is defined as the transitive closure of the relation

≤ σ τ = ≤ σ ∪ ≤ τ
This bifunctor induces a monoidal structure (Games, , I) on the category Games, where I denotes the empty game.

We write O for a game with only one Opponent move and P for a game with only one Proponent move. It can be easily remarked that filiform games A are generated by the following grammar

A ::= I | O A | P A A game X 1 • • • X n I
where the X i are either O or P is represented graphically as X 1

. . .

X n

A strategy σ : A → B is represented graphically by drawing a line from a move m to a move n whenever m ≤ σ n. For example, the strategy µ P : P P → P is the strategy on (O O) ⊗ P in which both Opponent move of the left-hand game justify the Proponent move of the right-hand game. When a move does not justify (or is not justified by) any other move, we draw a line ended by a small circle. For example, the strategy ε P : P → I drawn as is the unique strategy from P to I.

With these conventions, we introduce notations for some morphisms which are depicted in Figure 1 (perhaps a bit confusingly, the tensor product ⊗ on this figure is the tensor). A proof π : A ⊢ B is interpreted as the strategy σ : A ⊸ B. The corresponding partial order ≤ σ is defined as follows. For every Proponent move P interpreting a quantifier which is introduced by a rule

A game semantics for proofs

A[t/x] ⊢ B ∀x.A ⊢ B (∀-L) or A ⊢ B[t/x] A ⊢ ∃x.B (∃-R)
every Opponent move O interpreting an universal quantification ∀x on the right-hand side of a sequent, or an existential quantification ∃x on the left-hand side of a sequent, is such that O ≤ σ P whenever the variable x is free in the term t. The partial order interpreting a proof π can easily be shown to be a strategy. For example, a proof

P ⊢ Q[t/z] (Ax) P ⊢ ∃z.Q (∃-R) ∃y.P ⊢ ∃z.Q (∃-L) ∃x.∃y.P ⊢ ∃z.Q (∃-L)
is interpreted respectively by the strategies and when the free variables of t are {x, y}, {x}, {y} and ∅.

The following Proposition shows that our game semantics contains only definable strategies.

Proposition 19. For every strategy σ : A → B in Games, there exists two propositions P and Q such that A = ⊓ 1 . . . ⊓ k P , B = ⊓ 1 . . . ⊓ l Q and there exists a proof π :

⊓ 1 . . . ⊓ k P ⊢ ⊓ ′ 1 . . . ⊓ ′ l Q such that π = σ,
where ⊓ i and ⊓ ′ i is either ∀ or ∃.

An equational theory of strategies

Definition 20. The equational theory of strategies is the equational theory G with two types O and P and 13 generators depicted in Figure 1 such that

-(O, µ O , η O , δ O , ε O , γ O ) is a bicommutative qualitative bialgebra,
the Proponent structure is adjoint to the Opponent structure in the sense that the equations of Figure 9 hold.

We write G for the monoidal category generated by G.

Remark 21. The generators µ P , η P , δ P , ε P , γ P and γ OP are superfluous in this presentation. However, removing them would seriously complicate the proofs. where X is either P or O and ψ ′ is of the form (12), or there exists a canonical form φ ′ such that φ is either

D X i φ ′ = or E X φ ′ = or A i φ ′ =
where X is either P or O. In the latter case, we write respectively φ as D X i φ ′ (where i is the length of the stairs), or as E X φ ′ or as A i φ ′ (where i is the length of the stairs).

Lemma 24. For any morphism φ, we have

D X j (D X i φ) = D X i (D X j φ) A i (A j φ) = A j (A i φ) D X i (D X i φ) = D X i φ D O i (A j φ) = A j (D O i φ
) whenever both members of the equalities are defined, where X is either P or O.

Lemma 25. Every strategy σ : A → B is represented by a canonical form and two canonical forms representing the same strategy are equal.

Proof. This is proved by induction on the respective sizes |A| and |σ| of A and σ.

1 If |A| = 0 then σ is necessarily represented by canonical form of the form (10), which is unique. 2 If A = X A ′ , where X is either P or O and M X = {m}, and for every move n ∈ M A⊸B we have m < σ n then σ is necessarily represented by a canonical form E X φ ′ where φ ′ is a canonical form representing the restriction of σ to A ′ ⊸ B. 3 Otherwise, A is of the form A = X A ′ , where X is either P or O and M X = {m}.

A canonical form φ of σ is necessarily of one of the two following forms.

φ = D X i φ ′ where n is the i-th move of B and is such that m < σ n, and φ ′ is a canonical form representing either the strategy σ or the strategy σ ′ which is the same strategy as σ excepting that m < σ ′ n -for the construction part of the lemma we obviously chose the second possibility in order for the induction to work.

φ = A i φ ′ where n is the i-th move of A and is such that m < σ n, and φ ′ is a canonical form representing the strategy σ ′ which is the same strategy as σ excepting that m < σ ′ n.

By Lemma 24, two canonical forms φ 1 and φ 2 representing σ, obtained by choosing different values for n in case 3 are equal.

Lemma 26. Every morphism f : A → B of G is equal to a canonical form.

Proof. The proof is similar to the proof of Lemma 13.

Theorem 27. The category Games is presented by the equational theory G.

As a direct consequence of this Theorem, we deduce that Corollary 28. The composite of two strategies is a strategy.

In particular, acyclicity is preserved by composition.

Conclusion

We have constructed a game semantics for the fragment of first-order propositional logic without connectives and given a presentation of the category Games of games and definable strategies. Our methodology has proved very useful to ensure that the composition of strategies was well-defined.

We consider this work much more as a starting point to bridge semantics and algebra than as a final result. The methodology presented here seem to be very general and many tracks remain to be explored.

First, we would like to extend the presentation to a game semantics for richer logic systems like first-order propositional logic with conjunction and disjunction. Whilst we do not expect many technical complications, this case is much more difficult to grasp and manipulate since a presentation of such a semantics would be a 4-polygraph (one dimension is added since games would be trees instead of lines) and corresponding diagrams now live in a 3-dimensional space.

It would be interesting to know whether it is possible to orient the equalities in the presentations in order to obtain strongly normalizing rewriting systems for the algebraic structures described in the paper. Such rewriting systems are given in [START_REF] Lafont | Towards an algebraic theory of Boolean circuits[END_REF])for monoids and commutative monoids for example -but finding a strongly normalizing rewriting system presenting the theory of bialgebras is still an open problem.

Finally, many of the proofs given here are repetitive and we believe that many of them could be (at least partly) automated or mechanically checked. However, finding a good representation of diagrams, in order for a program to be able to manipulate them, is a difficult task that we should address in subsequent works. 

1. 1 .

 1 Monoidal categories A monoidal category (C, ⊗, I) is a category C together with a functor ⊗ : C × C → C and natural isomorphisms α A,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C), λ A : I ⊗ A → A and ρ A : A ⊗ I → A satisfying coherence axioms (MacLane(1971)). A symmetric monoidal category C is a monoidal category C together with a natural isomorphism γ A,B : A ⊗ B → B ⊗ A

  1.5. String diagrams String diagrams provide a convenient way to represent the morphisms in the category generated by a presentation. Given an object M in a category C, a morphism µ : M ⊗M → M can be drawn graphically as a device with two inputs and one output of type M as follows: or simply as when it is clear from the context which morphism of type M ⊗ M → M we are picturing (we sometimes even omit the source and target of the morphisms). Similarly, the identity id M : M → M can be pictured as The tensor f ⊗ g of two morphisms f : A → B and g : C → D is obtained by putting the diagram corresponding to f above the diagram corresponding to g: So, for instance, the morphism µ ⊗ M : M ⊗ M ⊗ M → M ⊗ M can be drawn diagrammatically as Finally, the composite g • f of two morphisms f : A → B and g : B → C can be drawn diagrammatically by putting the diagram corresponding to g at the right of the diagram corresponding to f and by "linking the wires". Thus, the diagram corresponding to the morphism µ • (µ ⊗ M ) : M ⊗ M → M is

A

  symmetric object of C is an object S together with a morphism γ : S ⊗ S → S ⊗ S called symmetry and pictured as such that the diagrams S ⊗ S ⊗ S S⊗γ γ⊗S / / S ⊗ S ⊗ S S⊗γ / / S ⊗ S ⊗ S γ⊗S S ⊗ S ⊗ S γ⊗S / / S ⊗ S ⊗ S S⊗γ / / S ⊗ S ⊗ S and called the Yang-Baxter equations. Remark 3. When the monoidal category C is symmetric, every object S has a symmetry γ = γ S,S induced by the symmetry of the category. 2.2. Monoids A monoid (M, µ, η) in C is an object M together with two morphisms µ : M ⊗ M → M and η : I → M called respectively multiplication and unit and pictured respectively as and such that the diagrams

µ

  : B ⊗ B → B η : I → B δ : B → B ⊗ B ε : B → I γ : B ⊗ B → B ⊗ B respectively drawn as and such that γ : B ⊗ B → B ⊗ B is a symmetry for B, (B, µ, η, γ) is a symmetric monoid and (B, δ, ε, γ) is a symmetric comonoid. Those two structures should be coherent, in the sense that the diagrams

  Set -for the latest case, the multiset representation can be recovered from the span by R(a, b) = |{ e ∈ R | s(e) = a and t(e) = b }| for every element (a, b) ∈ A × B. If R 1 : A → B and R 2 : B → C are two multirelations, their composition is defined by

  Figure 1. Generators of the strategies.

Lemma 22 .A

 22 With the notations of 20, we have: -(P, µ P , η P , δ P , ε P , γ P ) is a qualitative bicommutative bialgebra, -the Yang-Baxter equalities = hold whenever (X, Y, Z) is either (O, O, O), (P, O, O), (P, P, O) or (P, P, P ), dually for the counit of duality). Property 23. In the category Games with the monoidal structure induced by , the games O and P together with the morphisms introduced at the end of Section 4.2 induce a strategy structure in the sense of Definition 20. We extend the proofs of Section 3 to show that G is a presentation of the category Games. canonical form is either of the form φ = ψ • θ φ is (10) where a morphism of the form θ is defined inductively by θ is either void or (11) where θ ′ is of the form (11), and ψ is defined inductively by ψ is either void or or (12)

g

  is of the form Diφ ′ and f is equal to = which is of the form Dj φ where φ is equal to a canonical form by induction hypothesis.

Figure 4 .

 4 Figure 4. First case in proof of Lemma 13.

Figure 5 .

 5 Figure 5. Second case in proof of Lemma 13.

Figure 6 .

 6 Figure 6. Third case in proof of Lemma 13.g is of the form Eφ ′ and and f is equal to

Figure 7 .Figure 8 .

 78 Figure 7. Fourth case in proof of Lemma 13.

  Here P [t/x] denotes the formula P where every occurrence of the free variable x has been replaced by the term t. These proofs introduce the connectives in the orders depicted respectively below

			∀x.P ⊢ ∃z.Q
			∀x.P ⊢ ∀y.∃z.Q
	∀x	∀y	∀y
	∀y	∀x	∃z
	∃z	∃z	∀x
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