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ASYMPTOTIC NORMALITY OF WAVELET ESTIMATORS OF THE

MEMORY PARAMETER FOR LINEAR PROCESSES

F. ROUEFF AND M.S. TAQQU

TELECOM ParisTech and Boston University

Abstract. We consider linear processes, not necessarily Gaussian, with long, short or

negative memory. The memory parameter is estimated semi-parametrically using wavelets

from a sample X1, . . . , Xn of the process. We treat both the log-regression wavelet estima-

tor and the wavelet Whittle estimator. We show that these estimators are asymptotically

normal as the sample size n → ∞ and we obtain an explicit expression for the limit vari-

ance. These results are derived from a general result on the asymptotic normality of the

empirical scalogram for linear processes, conveniently centered and normalized. The scalo-

gram is an array of quadratic forms of the observed sample, computed from the wavelet

coefficients of this sample. In contrast with quadratic forms computed on the Fourier coef-

ficients such as the periodogram, the scalogram involves correlations which do not vanish

as the sample size n → ∞.
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2 F. ROUEFF AND M.S. TAQQU

1. Introduction

We consider a real-valued process X
def
= {Xk}k∈Z, not necessarily stationary and for any

positive integer k, let ∆kX denote its k-th order difference. The first order difference is

[∆X]t
def
= Xt −Xt−1 and ∆k is defined recursively.

Definition 1 (M(d) processes). The process X is said to have memory parameter d, d ∈ R

(in short, is an M(d) process) and short-range spectral density f∗ if for any integer k >

d − 1/2, the k-th order difference process ∆kX is weakly stationary with spectral density

function

f∆kX(λ)
def
= |1 − e−iλ|2(k−d) f∗(λ) λ ∈ (−π, π), (1)

where f∗ is a non-negative symmetric function which is continous and non-zero at the

origin.

M(d) processes encompass both stationary and non-stationary processes, depending on

the value of the memory parameter d. The function

f(λ) = |1 − e−iλ|−2df∗(λ) (2)

is called the generalized spectral density of X. It is a proper spectral density function when

d < 1/2. In this case, the process X is covariance stationary with spectral density function

f . The process X is said to have long-memory if 0 < d < 1/2, short-memory if d = 0 and

negative memory if d < 0; the process is not invertible if d < −1/2. The factor f∗ is a

nuisance function which determine the “short-range” dependence.

In a typical semiparametric estimation setting (see for instance [9, 3, 8]), the following

additional assumption is often considered.

Assumption 1. There exists β ∈ (0, 2], γ > 0 and ε ∈ (0, π] such that for all λ ∈ [−ε, ε],

|f∗(λ) − f∗(0)| ≤ Lf∗(0) |λ|β . (3)

Moreover, f∗(0) > 0.

We consider an M(d) process satisfying the following linear assumption.

Assumption 2. There exists a non-negative integer K such that

[∆KX]k =
∑

t∈Z

a(K)(k − t) ξt , (4)

where {a(K)(t), t ∈ Z} is a real-valued sequence satisfying
∑

t(a
(K)(t))2 <∞ and

(A-1) {ξl, l ∈ Z} is a sequence of independent and identically distributed real-valued

random variables such that E[ξ0] = 0, E[ξ20 ] = 1 and κ4
def
= E[ξ40 ] − 3 is finite.
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Here the linear assumption may only apply to a K-order increment of X to allow X to

be non-stationary.

Our goal is to estimate d by using a Discrete Wavelet Transform (DWT) of X. In order

to study the asymptotic properties of the estimator, we use a central limit theorem for an

array of squares of decimated linear processes, established in [10], see Theorems 1 and 2 in

this reference. Using this result, we extend to the non-Gaussian linear processes setting,

asymptotic normality results for wavelet estimation of the memory parameter d, that have

been obtained so far for Gaussian processes (see [4, Thoerem 1] and [7, Theorem 5]). We

treat both the log-regression wavelet estimator and the wavelet Whittle estimator.

In Section 3, we give a simplified formulation of the central limit theorem [10, Theorem 2]

and apply it to the Discrete Wavelet Transform setting, obtaining a result on the asymptotic

distribution of the scalogram of a linear memory process as the scale index and the number

of observed wavelet coefficients both tend to infinity, see Theorem 2. We then consider two

estimators of the memory parameter d, the log–regression wavelet estimator in Section 4

and the wavelet Whittle estimator in Section 5. Using Theorem 2, we show that both these

estimators are asymptotically normal.

2. Definition of the empirical scalogram of a finite sample

We now introduce the wavelet setting and recall the definition of the scalogram and the

empirical scalogram. Introduce the functions φ(t), t ∈ R, and ψ(t), t ∈ R, which will play

the role of the father and mother wavelets respectively, and let φ̂(ξ)
def
=

∫
R
φ(t)e−iξt dt and

ψ̂(ξ)
def
=

∫
R
ψ(t)e−iξt dt denote their Fourier transforms. We suppose that the wavelets φ

and ψ satisfy the following assumptions :

(W-1) φ and ψ are integrable and have compact supports, φ̂(0) =
∫

R
φ(x)dx = 1 and

∫
R
ψ2(x)dx = 1.

(W-2) There exists α > 1 such that supξ∈R |ψ̂(ξ)| (1 + |ξ|)α <∞,

(W-3) The function ψ has M vanishing moments, i.e.
∫

R
tlψ(t) dt = 0 for all l =

0, . . . ,M − 1

(W-4) The function
∑

k∈Z
klφ(· − k) is a polynomial of degree l for all l = 0, . . . ,M − 1.

We now define what we call the DWT of X in discrete time. Define the family {ψj,k, j >

0, k ∈ Z} of translated and dilated functions

ψj,k(t) = 2−j/2 ψ(2−jt− k) . (5)

Using the scaling function φ, we first define the functions

Xn(t)
def
=

n∑

k=1

Xk φ(t− k) and X(t)
def
=

∑

k∈Z

Xk φ(t− k) (6)
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The (details) wavelet coefficients are then defined as follows, for all j ≥ 0, k ∈ Z,

Wj,k
def
=

∫ ∞

−∞
X(t)ψj,k(t) dt. (7)

These wavelet coefficients are the DWT of X. If the support of the scaling function φ is

included in (−T, 0) for some integer T ≥ 1, then xn(t) = x(t) for all t = 0, . . . , n − T + 1.

If the support of the wavelet function ψ is included in (0,T), then, the support of ψj,k is

included in the interval (2jk, 2j(k + T)). Hence

Wj,k =

∫ ∞

−∞
Xn(t)ψj,k(t) dt , (8)

for all (j, k) ∈ In, where

In
def
= {(j, k) : j ≥ 0, 0 ≤ k ≤ 2−j(n − T + 1) − T} . (9)

For any j, the wavelet coefficients {Wj,k}k∈Z are obtained by discrete convolution and

downsampling. More precisely, under (W-1), for all j ≥ 0, k ∈ Z,

Wj,k =
∑

l∈Z

xl hj,2jk−l = (hj,· ⋆ X)2jk = (↓j [hj,· ⋆ X])k, (10)

where hj,l
def
= 2−j/2

∫ ∞
−∞ φ(t + l)ψ(2−jt) dt, ⋆ denotes the convolution of discrete sequences

and, for any sequence {ck}k∈Z, (↓j c)k = ck2j . For all j ≥ 0, Hj(λ)
def
=

∑
l∈Z

hj,le
−iλl denotes

the discrete Fourier transform of {hj,l}l∈Z,

Hj(λ)
def
= 2−j/2

∫ ∞

−∞

∑

l∈Z

φ(t+ l)e−iλlψ(2−jt) dt. (11)

For all j ≥ 0 and all m = 0, . . . ,M − 1,

∑

l∈Z

hj,l l
m = 2−j/2

∫ ∞

−∞
ψ(2−jt)

∑

l∈Z

φ(t+ l)lmdt .

Under assumption (W-4), t 7→ ∑
l∈Z

φ(t+ l)lm is a polynomial of degree m and (W-3) there-

fore implies that
∑

l∈Z
hj,l l

m = 0; equivalently, the trigonometric polynomial Hj satisfies
dmHj(λ)

dλm

∣∣∣
λ=0

= 0, m = 0, . . . ,M − 1 and thus admits a zero at 0 of degree at least equal to

M . Therefore, Hj(λ) can be factorized as

Hj(λ) = (1 − eiλ)MH̃j(λ) , (12)

where H̃j(λ) is a trigonometric polynomial. Hence, the wavelet coefficient (10) may be

computed as

Wj,k = (↓j [h̃j,· ⋆∆MX])k (13)

where {h̃j,l}l∈Z are the coefficients of the trigonometric polynomial H̃j.
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Let then {φ,ψ} be a pair of scale function and wavelet satisfying (W-1)–(W-4). Let

X = {Xk, k ∈ Z} be a process such that ∆MX is weakly stationary and define the DWT

{Wj,k, j ≥ 0, k ∈ Z} of X by (7). By (13), {Wj,k, k ∈ Z} is a weakly stationary process

for all scales j ≥ 0.

Definition 2. The scalogram of X is the non-negative sequence {σ2
j , j ≥ 0} of variances

of {Wj,k, k ∈ Z}, namely

σ2
j

def
= Var[Wj,0] = E

[
W 2

j,0

]
, j ≥ 0 . (14)

Remark 1. Observe that, under Assumption 2, if M ≥ K, then ∆MX is a centered weak

stationary process and the scalogram of X is well defined.

Wavelet estimators of the memory parameter d are typically based on quadratic forms of

the wavelet coefficients. This is reasonable because, for large scale j, log σ2
j is approximately

an affine function of j with slope (2 log 2) d (see [6]) and, given n observations X1, . . . ,Xn,

σ2
j can be estimated by the empirical second moment

σ̂2
j

def
= n−1

j

nj−1∑

k=0

W 2
j,k , (15)

which is a quadratic form on the wavelet coefficients. Here we denote by nj the number of

available wavelet coefficients at scale index j, namely, from (9),

nj = [2−j(n− T + 1) − T + 1] , (16)

where T is the size of the time series and [x] denotes the integer part of x. It is important to

note that although the wavelet coefficient Wj,k does not depend on n, the empirical second

moment σ̂2
j does through nj.

Definition 3. Let {φ,ψ} be a pair of scale function and wavelet satisfying (W-1)–(W-4)

and n ≥ 1. Let us denote the maximal scale index J = J(n) by

J
def
= max{j : nj > 0} =

⌈
log2

(
n− T + 1

T

)⌉
, (17)

where nj is defined by (16). The empirical scalogram of the sample {X1, . . . ,Xn} is the

non-negative process {σ̂2
j , j ≥ 0}, where

• for all j = 1, . . . , J , σ̂2
j is defined by (15),

• and by convention, σ̂2
j = 0 for j > J .

The estimator of the memory parameter d can then be obtained as follows :
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(1) by regressing the logarithm of the empirical variance log(σ̂2
i ) for a finite number of scale

indices j ∈ {L, . . . , U} where L is the lower scale and U ≤ J is the upper scale in the

regression, see Section 4.

(2) by minimizing a contrast derived from the likelihood of an array of independent Gauss-

ian random variables each row j ∈ {L, . . . , U} of which having empirical variance

log(σ̂2
i ), see Section 5.

3. Joint weak convergence of the empirical scalogram of a linear process

We let
L−→ denote the convergence in law. For convenience, we first state a CLT based

on results of [10].

Theorem 1. Let {vi,j(t), t ∈ Z} be real-valued sequences satisfying
∑

t∈Z
v2
i,j(t) <∞ for all

i = 1, . . . , N and j ≥ 0. Suppose that there exist δ > 1/2, ε ∈ (0, π], a sequence of [−π, π)-

valued functions Φj(λ) defined on λ ∈ R and continuous functions v∗i,∞, i = 1, . . . , N ,

defined on R such that

sup
j≥0

sup
|λ|≤ε

2−j/2|v∗i,j(λ)|(1 + 2j |λ|)δ <∞ , (18)

lim
j→∞

2−j/2v∗i,j(2
−jλ)eiΦj(λ) = v∗i,∞(λ) for all λ ∈ R , (19)

n
1/2
j

∫ π

0
1(|λ| > ε) |v∗i,j(λ)|2 dλ→ 0 as j → ∞ , (20)

where v∗i,j denotes the Fourier series associated to the sequence {vi,j(t), t ∈ Z},

v∗i,j(λ) = (2π)−1/2
∑

t∈Z

vi,j(t) e−iλt . (21)

Define {Zi,j,k, i = 1, . . . , N, j ≥ 0, k ∈ Z} as

Zi,j,k =
∑

t∈Z

vi,j(2
jk − t) ξt , i = 1, . . . , N, k ∈ Z, j ≥ 0 , (22)

where {ξt, t ∈ Z} satisfies (A-1). Then, for any diverging sequence (nj), as j → ∞,

n
−1/2
j

nj−1∑

k=0





Z2
1,j,k − E[Z2

1,j,k]
...

Z2
N,j,k − E[Z2

N,j,k]




L−→N (0,Γ) , (23)

where Γ is the covariance matrix defined by

Γi,i′ = 4π

∫ π

−π

∣∣∣∣∣∣

∑

p∈Z

v∗i,∞v
∗
i′,∞(λ+ 2pπ)

∣∣∣∣∣∣

2

dλ , 1 ≤ i, i′ ≤ N . (24)
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Moreover, one has

lim
j→∞

E
[
Z2

i,j,0

]
=

∫ ∞

−∞

∣∣v∗i,∞(λ)
∣∣2 dλ <∞ . (25)

Proof. Observe first that we allowed ε = π, in which case Condition (20) is always satisfied

since the integral vanishes for all j ≥ 0. The CLT (23) is a strict application of Theorem 1

in [10] for ε = π and Theorem 2 in [10] for ε < π. Using the notations of [10] we have here

γj = 2j for all j ≥ 0 and λi,∞ = 0 for all i = 1, . . . , N . Observe that in this case, in these

two theorems, Ci,i′ = 1 and w∗
i,i′ = v∗i,∞v

∗
i′,∞ for all i, i′ = 1, . . . , N . The limit (25) follows

from Relation (15) in Proposition 1 in the same paper, see also Remark 11. �

Remark 2. When the convergence rate to the limit (25) is fast enough, we will be able to

replace the expectations in (23) by
∫ ∞
−∞

∣∣∣v∗i,∞(λ)
∣∣∣
2

dλ, i = 1, . . . , N , which does not depend

on j.

In the Gaussian case the spectral density of the wavelet coefficients is sufficient for study-

ing the quadratic forms (15) since second order properties fully determine the distribution

of the wavelet coefficients. This is not so in the linear case, which we consider in this paper.

It is possible, however, to establish a multivariate central limit theorem for the empirical

scalogram.

Theorem 2. Let X be an M(d) process with short-range spectral density f∗ and suppose

that Assumption 2 holds. Assume that (W-1)–(W-4) hold with

1/2 − α < d ≤M and K ≤M . (26)

Let L = L(n) be a scale index depending on n such that L(n) → ∞ and n2−L(n) → ∞ as

n→ ∞. Assume that one of the two following conditions hold.

sup
λ∈(−π,π)

f∗(λ) <∞ (27)

(n2−L(n))1/22L(n)(1−2α−2d) → 0 as n→ ∞ . (28)

Then, as n→ ∞, one has the folowing central limit:

{√
n2−L(n)2−2L(n)d(σ̂2

L(n)+u − σ2
L(n)+u), u ≥ 0

}
L−→

{
Q(d)

u , u ≥ 0
}
, (29)

where Q
(d)
�

denotes a centered Gaussian process defined on N with covariance function

Λu,u′(d) = Cov
(
Q

(d)
u , Q

(d)
u′

)
, u, u′ ≥ 0, given by

Λu,u′(d)
def
= 4π (f∗(0))2 24d(u∨u′)+u∧u′

∫ π

−π

∣∣D∞,|u−u′|(λ)
∣∣2 dλ , (30)
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with, for all u ≥ 0 and λ ∈ (−π, π),

D∞,u(λ)
def
=

∑

l∈Z

|λ+ 2lπ|−2d eu(λ+ 2lπ) ψ̂(λ+ 2lπ)ψ̂(2−u(λ+ 2lπ)). (31)

and eu(ξ)
def
= 2−u/2[1, e−i2−uξ, . . . , e−i(2u−1)2−uξ]T .

Remark 3. We assume 1 − 2α − 2d < 0 in (26) so that (28) imposes a sufficiently fast

growth rate on L(n) as n→ ∞. On the other hand this rate has to be slow enough for the

assumption n2−L(n) → ∞ to hold.

Proof. In (4), the sequence {a(K)(t), t ∈ Z} depends on K. To define a quantity which

does not, we go to the Fourier domain and set

a∗(λ)
def
= (2π)−1/2 (1 − e−iλ)−K

∑

t∈Z

a(K)(t) e−iλt ,

where the sum over t ∈ Z converges in the sense of L2(−π, π). This function a∗(λ) satisfies

|a∗(λ)|2 = |1 − e−iλ|−2d f∗(λ) = f(λ) , (32)

where f is defined in (2). Moreover, by (13), since K ≤ M (see Condition (26)), for all

j ∈ N and k ∈ Z, the wavelet coefficients of X can be expressed as

Wj,k = (↓j [h̃j,· ⋆∆M−K(a(K) ⋆ ξ)])k .

Since h̃j,· is a finite sequence, we obtain that

Wj,k =
∑

t∈Z

aj(k2
j − t) ξt , (33)

where {aj(t), t ∈ Z} is the sequence h̃j,· ⋆ ∆M−K(a(K)) which is characterized by the

L2(−π, π) converging series

a∗j(λ)
def
= (2π)−1/2

∑

t∈Z

aj(t) e−iλt = H̃j(λ)(1 − e−iλ)Ma∗(λ) , (34)

which, in view of (12), can be simply written as

a∗j(λ) = Hj(λ)a∗(λ) . (35)

To prove the theorem, we need to show that, for any integer ℓ ≥ 0, one has

√
n2−L2−2Ld









σ̂2
L − σ2

L

σ̂2
L+1 − σ2

L+1
...

σ̂2
L+ℓ − σ2

L+ℓ









L−→N
(
0,

[
Λu,u′(d), u, u′ = 0, . . . , ℓ

])
. (36)
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To this end, we will apply Theorem 1 by relating the right-hand side of (36) to the right-

hand side of (23) and by expressing the empirical scalogram σ̂2
L+u, 0 ≤ u ≤ ℓ in terms of

Zi,j,k with adapted indices j, k and i.

We let j = L+ℓ, that is j is the maximal scale in (36). We let k take values k = 0, . . . , nj ,

where nj, given by (16) is the number of wavelet coefficients available at the maximal scale

j. In Theorem 1, Zi,j,k is viewed as the ith component of a k-wise stationary vector, with

i = 1, . . . , N . In order to recover this stationarity from the set of wavelet coefficients used

to compute the empirical variances in (36), we do as follows. We represent i as i = 2ℓ−u + v

where u ∈ {0, . . . , ℓ} and v ∈ {0, . . . , 2ℓ−u − 1} and let N =
∑ℓ

u=0 2ℓ−u = 2ℓ+1 − 1. For each

(u, v), we set i = 2ℓ−u + v, j = L+ ℓ, and

vi,j(t)
def
= 2−LdaL+u(t+ v2L+u), t ∈ Z , (37)

where aL+u is defined in (33). Thus if we focus on a scale j′ ≥ L and express it as

j′ = L+ u = j − ℓ+ u (see Figure 1), we have

vi,j(t) = 2−Ldaj′(t+ v2j′), t ∈ Z . (38)

Hence, by definition of Zi,j,k in (22), one has

Zi,j,k =
∑

t∈Z

vi,j(2
jk − t)ξt

= 2−Ld
∑

t∈Z

aj′(2
j′{2ℓ−uk + v} − t) ξt

= 2−LdWj′,2ℓ−uk+v . (39)

By (16),

nj′ = 2−(j−ℓ+u)(n− T + 1) − T + 1 = 2ℓ−u nj + (T − 1)(2ℓ−u − 1),

and hence by (14), (15) and (39),

2−2Ld
(
σ̂2

j′ − σ2
j′
)

= n−1
j′ 2−2Ld

nj′−1∑

k′=0

(W 2
j′,k′ − E[W 2

j′,k′])

= n−1
j′

2ℓ−u−1∑

v=0




nj−1∑

k=0

{
Z2

i,j,k − E[Z2
i,j,k]

}


 +Rj′ , (40)

where j′ = j − ℓ+ u, k′ = 2ℓ−uk + v, i = 2ℓ−u + v and

Rj′
def
= n−1

j′

(T−1)(2ℓ−u−1)−1∑

v=0

{
Z2

i,j,nj
− E

[
Z2

i,j,nj

]}
. (41)
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We then have

2−2Ld





σ̂2
L − σ2

L

σ̂2
L+1 − σ2

L+1
...

σ̂2
L+ℓ − σ2

L+ℓ




= An





∑nj−1
k=0 {Z2

1,j,k − E[Z2
1,j,k]}∑nj−1

k=0 {Z2
2,j,k − E[Z2

1,j,k]}
...

∑nj−1
k=0 {Z2

N,j,k − E[Z2
N,j,k]}




+





RL

RL+1

...

RL+ℓ




, (42)

where

An
def
=





0 . . . . . . 0

2ℓ times︷ ︸︸ ︷
n−1

L . . . n−1
L

0 . . . 0

2ℓ−1 times︷ ︸︸ ︷
n−1

L+1 . . . n
−1
L+1 0 . . . 0

...
...

...

n−1
L+ℓ 0 . . . 0 0 . . . 0 0 . . . 0





(43)

is an (ℓ+ 1) ×N matrix. The entries are n−1
j′ = n−1

L+u, where u goes from 0 (top line) to ℓ

(bottom line), see Figure 1.

L j′ L+ ℓ = j

-�

j′ − L = u
-�

j − j′ = ℓ− u

Figure 1. This figure indicates the relationship between the various variables.

Let us check that the assumptions of Theorem 1 apply to (37), that is, we show that (18),(20)

and (19) are verified for vi,j(t) defined by (37). Using (38), (21), (34) and (35), we get

v∗i,j(λ) = 2−Ld eiλv2j′

a∗j′(λ)

= 2−Ld eiλv2j′

Hj′(λ)a∗(λ) .

By continuity of f∗ at the origin we have supλ∈(−ε,ε)

√
f∗(λ) ≤ C for some C > 0 and

ε ∈ (0, π]. Morever, under (27), we may set ε = π. By (32) and (2) we get, for all

λ ∈ (−ε, ε),
|a∗(λ)| ≤ |1 − e−iλ|−d

√
C ≤

√
C |λ|−d .

By [6, Proposition 3], we have, for all λ ∈ (−π, π),
∣∣∣Hj′(λ) − 2j′/2φ̂(λ)ψ̂(2j′λ)

∣∣∣ ≤ C 2j′(1/2−α)|λ|M
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and
∣∣Hj′(λ)

∣∣ ≤ C 2j′/2 |2j′λ|M (1 + 2j′ |λ|)−α−M ,

where C is a positive constant and α and M are defined in (W-2) and (W-3), respectively.

Using that j = L+ ℓ and j′ = L+ u for some u only depending on i and L, j′ = j + O(1),

the last 4 displays and Condition (26) easily yield

|v∗i,j(λ)| ≤ C 2j/2 (1 + 2j |λ|)−α−d for all λ ∈ (−ε, ε) (44)
∫ π

ε
|v∗i,j(λ)|2 dλ ≤ C 2L(1−2α−2d)

∫ π

ε
f∗(λ) dλ , (45)

and the bound

∣∣∣2−j/2v∗i,j(2
−jλ) − 2(u−ℓ)/2−Ld eiλv2u−ℓ

φ̂(2−jλ)ψ̂(2u−ℓλ)a∗(2−jλ)
∣∣∣

= 2−j/2−Ld
∣∣a∗(2−jλ)

∣∣
∣∣∣Hj′(2

−jλ) − 2j′/2φ̂(2−jλ)ψ̂(2u−ℓλ)
∣∣∣

≤ C 2−j(α+M) |λ|M−d , (46)

valid for 2−j |λ| ≤ ε with C denoting some positive constant depending neither on λ nor

on j ≥ 0. Relation (44) is (18) with δ = α + d > 1/2. Under (27), ε = π and (20)

trivially holds (see the proof of Theorem 1). Otherwise, since (16) and n2−L → ∞ imply

nj ∼ n2−j = n2−L−ℓ, Relations (45), (28) and the fact that f∗ is always integrable away of

the origin (since |1− e−iλ|K−df∗(λ) is a spectral density and |1− e−iλ|K−d is lower bounded

for λ away of zero) imply (20). By (W-1), φ̂ is continuous at the origin where it takes value

1 and using (46), (32), (2) and the continuity of f∗(λ) at λ = 0, we have, for all λ ∈ R,

φ̂(2−jλ)2−Ld|a∗(2−jλ)| → 2ℓd
√
f∗(0) |λ|−d as j → ∞ .

Hence we obtain (19) with

v∗i,∞(λ) = 2(u−ℓ)/2+ℓd eiλv2u−ℓ √
f∗(0) |λ|−d ψ̂(2u−ℓλ) (47)

for all i = 2ℓ−u + v such that u ∈ {0, . . . , ℓ} and v ∈ {0, . . . , 2ℓ−u − 1}, and

eiΦj(λ) def
=

a∗(λ)

|a∗(λ)| .

Since (18),(20) and (19) hold and nj → ∞, we may apply Theorem 1 and obtain (23).

Observe that (16) and n2−L → ∞ imply, for j′ = L+ u ∈ {L, . . . , L+ ℓ},

nj′ = n2−j′ +O(1) ∼ n2−L−u → ∞ as n→ ∞ .
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Since (n2−L)1/2n−1
j′ ∼ (n2−L)1/2(n2−L−u)−1 = (n2−j)−1/22−ℓ/22u ∼ n

−1/2
j 2−ℓ/22u, (43)

yields, as n→ ∞,

√
n2−L An ∼ n

−1/2
j 2−ℓ/2 A∞ with A∞

def
=





0 . . . . . . 0

2ℓ times︷ ︸︸ ︷
1 . . . 1

0 . . . 0

2ℓ−1 times︷ ︸︸ ︷
2 . . . 2 0 . . . 0

...
...

...

2ℓ 0 . . . 0 0 . . . 0 0 . . . 0





.

The general term is 2u for u ∈ {0, . . . , ℓ}. Relations (25) and (41) give that, for j′ = L+u ∈
{L, . . . , L+ ℓ},

√
n2−LE[Rj′ ] = O

(
(n2−L)−1/2

)
→ 0 as n→ ∞ .

Applying (23), (42), the two last displays and Slutsky’s lemma, we get (36) with

Λ(d) = 2−ℓ A∞ΓAT
∞ = 2−ℓ



2u+u′

2ℓ−u−1∑

v=0

2ℓ−u′

−1∑

v′=0

Γ2ℓ−u+v,2ℓ−u′+v′





0≤u,u′≤ℓ

,

where the indices (u, u′) run from (0, 0) (top left corner) to (u, u′) = (ℓ, ℓ) (bottom right

corner) and Γi,i′ is defined by (24) with v∗i,∞ and v∗i′,∞ defined by (47) for i, i′ ∈ 1, . . . , N =

2ℓ+1 − 1. To conclude the proof, it remains to check that the entries of Λu,u′(d) as defined

above are equal to those given in (30). We shall do that for u′ ≥ u since the alternative

case is obtained by observing that Λu,u′(d) = Λu′,u(d). Replacing Γi,i′ and then v∗i,∞ and

v∗i′,∞ by these expressions and denoting

λp
def
= λ+ 2pπ, λ ∈ R, p ∈ Z ,

we get, for 0 ≤ u, u′ ≤ ℓ,

Λu,u′(d) = 2−ℓ+u+u′

2ℓ−u−1∑

v=0

2ℓ−u′

−1∑

v′=0

4π (f∗(0))2

×
∫ π

−π
2u+u′−2ℓ+4ℓd

∣∣∣∣∣∣

∑

p∈Z

eiλp(v2u−ℓ−v′2u′
−ℓ) |λp|−2d ψ̂(2u−ℓλp)ψ̂(2u′−ℓλp)

∣∣∣∣∣∣

2

dλ

= (f∗(0))2 4π 22(u+u′)+ℓ(4d−3)
2ℓ−u−1∑

v=0

∫ π

−π
Gu,u′,v(λ) dλ , (48)
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where Gu,u′,v is a (2π)-periodic function defined by

Gu,u′,v(λ)
def
=

2ℓ−u′

−1∑

v′=0

∣∣∣∣∣∣

∑

p∈Z

ei λp(v2u−ℓ−v′2u′
−ℓ)gu,u′(2u′−ℓλp)

∣∣∣∣∣∣

2

,

with

gu,u′(λ)
def
= |2ℓ−u′

λ|−2dψ̂(2u−u′λ)ψ̂(λ), λ ∈ R .

Writing p = 2ℓ−u′

q + r with q ∈ Z and r ∈ {0, . . . , 2ℓ−u′ − 1} and transforming a sum over

p into a sum over q and r, we get

Gu,u′,v(λ) =

2ℓ−u′

−1∑

v′=0

∣∣∣∣∣∣

2ℓ−u′

−1∑

r=0

ei λr(v2u−ℓ−v′2u′
−ℓ)

∑

q∈Z

ei 2u−u′

v2qπgu,u′(2u′−ℓλr + 2qπ)

∣∣∣∣∣∣

2

=
2ℓ−u′

−1∑

v′=0

∣∣∣∣∣∣

2ℓ−u′

−1∑

r=0

e−i λrv′2u′
−ℓ

hu,u′,v(2
u′−ℓλr)

∣∣∣∣∣∣

2

,

where

hu,u′,v(λ)
def
=

∑

q∈Z

ei 2u−u′

vλqgu,u′(λq) .

Hence

Gu,u′,v(λ) =
2ℓ−u′

−1∑

v′=0

2ℓ−u′

−1∑

r=0

2ℓ−u′

−1∑

r′=0

e−i 2π(r−r′)v′2u′
−ℓ

hu,u′,v(2
u′−ℓλr)hu,u′,v(2u′−ℓλr′) .

In the last display, observe that v′ only appear in the complex exponential argument.

Moreover we have
∑2ℓ−u′

−1
v′=0 e−i 2π(r−r′)v′2u′

−ℓ
= 0 except for r = r′ in which case it equals

2ℓ−u′

. Hence,

Gu,u′,v(λ) = 2ℓ−u′

2ℓ−u′

−1∑

r=0

∣∣∣hu,u′,v(2
u′−ℓλr)

∣∣∣
2
.

Applying [10, Lemma 1] with g =
∣∣hu,u′,v

∣∣2 and γ = 2ℓ−u′

gives

∫ π

−π
Gu,u′,v(λ) dλ = 2ℓ−u′

∫ π

−π

2ℓ−u′

−1∑

r=0

∣∣∣hu,u′,v(2
u′−ℓλr)

∣∣∣
2

dλ

= 22ℓ−2u′

∫ π

−π

∣∣hu,u′,v(λ)
∣∣2 dλ .
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Inserting this equality in (48) and using that Λu,u′(d) = Λu′,u(d), we get, for all 0 ≤ u ≤
u′ ≤ ℓ,

Λu,u′(d) = (f∗(0))2 4π 22u+4du′−ℓ

×
2ℓ−u−1∑

v=0

∫ π

−π

∣∣∣∣∣∣

∑

q∈Z

|λq|−2dei 2−(u′
−u)vλq ψ̂(2−(u′−u)λq)ψ̂(λq)

∣∣∣∣∣∣

2

dλ .

For v ∈ {0, . . . , 2ℓ−u − 1}, we write v = v′ + k2u′−u with v′ ∈ {0, . . . , 2u′−u − 1} and

k ∈ {0, . . . , 2ℓ−u′ − 1} and transform the sum over v into a sum over v′ and k. But

since exp
{

i2−(u′−u)vλq

}
= exp

{
i2−(u′−u)v′λq

}
exp {ikλ}, and

∑2ℓ−u′

−1
k=0

∣∣eikλ
∣∣2 = 2ℓ−u′

, we

obtain

Λu,u′(d) = (f∗(0))2 4π 24du′+u2−(u′−u)

×
2u′

−u−1∑

v′=0

∫ π

−π

∣∣∣∣∣∣

∑

q∈Z

|λq|−2dei 2−(u′
−u)v′λq ψ̂(2−(u′−u)λq)ψ̂(λq)

∣∣∣∣∣∣

2

dλ .

Relation (30) finally follows by observing that the vector with entries

2−(u′−u)/2
{
ei 2−(u′

−u)v′λq , v′ = 0, . . . , 2u′−u − 1
}

is precisely eu′−u(λq). �

To obtain a result valid for an asymptotically infinite weighted sum of the empirical

scalogram {σ̂2
L+u−σ2

L+u, u ≥ 0} as in Theorem 3 below, we need a bound for the covariance

Λu,u′(d) defined in (30) and a bound for the centered empirical scalogram. The two following

results provide the bounds.

Lemma 1. Suppose that ψ satisfies (W-1)–(W-3) and let d ∈ (1/2 − α,M ]. Then, there

exists C only depending on d and ψ such that, for all u ≥ 0,
∫ π

−π
|D∞,u(λ)|2 dλ ≤ C 2u(1/2−2d) .

Proof. See Relation (72) in [7]. An alternative is to use that Λ0,u(d) = Cov
(
Q

(d)
0 , Q

(d)
u

)

and thus the Cauchy-Schwarz Inequality yields |Λ0,u(d)|2 ≤ |Λ0,0(d)||Λu,u(d)|. Using (30),

we get, setting f∗(0) = 1

4π24du

∫ π

−π
|D∞,u(λ)|2 dλ ≤ 4π2(2d+1/2)u

∫ π

−π
|D∞,0(λ)|2 dλ .

The results follows from the fact that |D∞,0(λ)| is bounded for d ∈ (1/2 − α,M ] un-

der (W-1)–(W-3), see Remark 1 in [5]. �
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Lemma 2. Let X be an M(d) process with short-range spectral density f∗ and suppose that

Assumption 2 holds. Assume that (W-1)–(W-4) hold with Condition (26) on M and α.

Then, there exists a positive constant C such that, for all n ≥ 1 and j ∈ {0, 1, . . . , J},

E
[∣∣σ̂2

j − σ2
j

∣∣] ≤ C
{

2(1/2+2d)j n−1/2 + 2j(1−2α)
}
. (49)

If moreover Condition (27) holds on f∗, one has

Var
(
σ̂2

j

)
≤ C2 2(1+4d)j n−1 . (50)

Proof. We use the same notations as in Theorem 2 to express σ̂2
j in terms of a decimated

linear process, but since here only one scale needs to be considered, we take L = j = j′

(hence u = ℓ = 0 and i = 1). In this case (40) reads as

2−2jd(σ̂2
j − σ2

j ) = n−1
j

nj−1∑

k=0

{
Z2

1,j,k − E[Z2
1,j,k]

}
, (51)

where Z1,j,k =
∑

t∈Z
v1,j(t)ξt with v1,j(t) = 2−jdaj(t). If (27) holds, then v1,j satisfies (18)

with ε = π and (19) (see the proof of Theorem 2) and, by Lemmas 5 and 6 in [10], we get

sup
j,n

Var



n−1/2
j

nj−1∑

k=0

Z2
1,j,k



 <∞ . (52)

Since nj ≍ n2−j for j ∈ {0, 1, . . . , J}, (50) follows.

If (27) does not hold, v1,j satisfies (18) for some ε > 0 which may no longer be taken equal

to π (as a consequence of (44) in the proof of Theorem 2) and, applying [10, Proposition 4]

with λ1,j = 0, we get

2−2jd(σ̂2
j − σ2

j ) = n
−1/2
j



n−1/2
j

nj−1∑

k=0

{Ẑ2
1,j,k − E[Ẑ2

1,j,k]} +Rj



 ,

where Ẑ1,j,k satisfies (18) with ε = π and (19) and hence (52) and Rj satisfies, for some

positive constant C not depending on j,

E [|Rj |] ≤ C
[
n

1/2
j Ij + I

1/2
j

]
, (53)

where

Ij
def
=

∫ π

0
1(|λ− λ1,∞| > ε)

∣∣v∗1,j(λ)
∣∣2 dλ . (54)

Since f∗ is always integrable away of the origin, the bound (45) implies (recall that here

L = j) ∫ π

ε
|v∗1,j(λ)|2 dλ ≤ C 2(1−2α−2d)j .
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Hence, we obtain, for some constant C not depending on j nor n,

E

[
2−2jd|σ̂2

j − σ2
j |

]
≤ C n

−1/2
j

[
1 + n

1/2
j 2(1−2α−2d)j + 2(1−2α−2d)j/2

]

≤ C n
−1/2
j

[
2 + n

1/2
j 2(1−2α−2d)j

]
,

where we used 1−2α−2d < 0 in Condition (26). Since nj ≍ n2−j Relation (49) follows. �

We now prove the main result of this section.

Theorem 3. Let {wu(n), n, u ≥ 0} be an array of real numbers such that wu(n) → wu for

all u ≥ 0 as n→ ∞ and

lim
ℓ→∞

∑

u>ℓ

sup
n≥0

|wu(n)|2(1/2+2d)u = 0 . (55)

Then, under the assumptions of Theorem 2, as n→ ∞,

√
n2−L2−2Ld

J−L∑

u=0

wu(n){σ̂2
L+u − σ2

L+u}
L−→N



0,
∑

u,u′≥0

wuΛu,u′(d)wu′



 , (56)

where J is defined in (17).

Proof. We denote, for all ℓ ≥ 0,

Sn,ℓ =
√
n2−L2−2Ld

ℓ∑

u=0

wu(n){σ̂2
L+u − σ2

L+u}

and

S̃n,ℓ =
√
n2−L2−2Ld

ℓ∑

u=0

wu{σ̂2
L+u − σ2

L+u} .

Theorem 2 then gives that, for any ℓ ≥ 0, as n→ ∞,

S̃n,ℓ
L−→N



0,
∑

0≤u,u′≤ℓ

wuΛu,u′(d)wu′



 .

Note that (55) implies
∑

u>ℓ |wu|2(1/2+2d)u → 0 as ℓ→ ∞, hence, using Lemma 1 and (30),

we have
∑

ℓ<u,u′

∣∣wuΛu,u′(d)wu

∣∣ ≤ C
∑

ℓ<u≤u′

|wuwu| 24du′+u2(u′−u)(1/2−2d)

≤ C
∑

ℓ<u

|wu|2(1/2+2d)u ×
∑

ℓ<u′

|wu′ |2(1/2+2d)u′

→ 0 as ℓ→ ∞.

The left-hand side of (56) is Sn,J−L. We decompose it as

Sn,J−L = [Sn,J−L − Sn,ℓ] +
[
Sn,ℓ − S̃n,ℓ

]
+ S̃n,ℓ
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From the last 3 displays and applying [1, Theorem 3.2], it is sufficient to prove that

lim
ℓ→∞

lim sup
n→∞

E

[
|Sn,J−L − Sn,ℓ| +

∣∣∣Sn,ℓ − S̃n,ℓ

∣∣∣
]

= 0 . (57)

To obtain this limit, we need to separate the case where Condition (27) holds from the one

where it is replaced by Condition (28). Under Condition (27), we apply (50); under (28),

we apply (49). Let us for instance check the second case (the first one is similar, although

simpler). The bound (49) implies

E

[∣∣∣Sn,ℓ − S̃n,ℓ

∣∣∣
]
≤ C

ℓ∑

u=0

|wu −wu(n)|(2(1/2+2d)u + 2L(1−2α−2d)
√
n2−L 2(1−2α)u) ,

which, using wu → wu(n) and (28), tends to 0 as n→ ∞ for all ℓ ≥ 0, and

E [|Sn,J−L − Sn,ℓ|]

≤ C

[
∑

u>ℓ

|wu(n)|2(1/2+2d)u + 2L(1−2α−2d)
√
n2−L

∑

u>ℓ

|wu(n)|2u(1−2α)

]

≤ C
[
1 + 2L(1−2α−2d)

√
n2−L

]∑

u>ℓ

|wu(n)|2(1/2+2d)u ,

(since 1−2α < 2d in Condition (26)) which tends to 0 as n→ ∞ followed by ℓ→ ∞ by (28)

and (55). This yields (57), which achieves the proof. �

4. The log-regression estimation of the memory parameter

The wavelet-based regression estimator of the memory parameter d involves regressing

the scale spectrum estimator σ̂2
j , defined in (15), with respect to the scale index j. More

precisely, an estimator of the memory parameter d is obtained by regressing the logarithm

of the empirical variance log(σ̂2
i ) for a finite number of scale indices j ∈ {L, . . . , L+ℓ} where

L = L(n) ≥ 0 is the lower scale and 1+ ℓ ≥ 2 is the number of scales used in the regression.

For a sample size equal to n, this estimator is well defined for L and ℓ such that ℓ ≥ 1 and

L+ ℓ ≤ [log2(n− T + 1) − log2(T)] , (58)

where the right-hand side of this inequality is the maximal index j such that nj ≥ 1. The

regression estimator can be expressed formally as

d̂n(L,w)
def
=

L+ℓ∑

j=L

wj−L log
(
σ̂2

j

)
, (59)

where the vector w
def
= [w0, . . . , wℓ]

T of weights satisfies

ℓ∑

i=0

wi = 0 and 2 log(2)

ℓ∑

i=0

iwi = 1 . (60)
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One may choose, for example, w corresponding to the weighted least-squares regression

vector, defined by

w = DB(BTDB)−1b ,

where B
def
=

[
1 1 . . . 1

0 2 . . . ℓ

]T

is the so-called design matrix, D is a definite positive matrix

and

b
def
= [0 (2 log(2))−1]T . (61)

Ordinary least square regression corresponds to the case where D is the identity matrix.

In [6], the process X was assumed Gaussian and a bound for the mean square error

and an asymptotic equivalent to the variance of d̂n(L,w) were obtained. The asymptotic

normality is established in [5], also under the Gaussian assumption. Here we show that the

asymptotic normality holds under the weaker linear assumption.

Theorem 4. Let X be an M(d) process with short-range spectral density f∗ and suppose

that Assumptions 1 and 2 hold. Under (W-1)–(W-4)with

(1 + β)/2 − α < d ≤M and K ≤M , (62)

if, as n→ ∞, L(n) is such that

(n2−L(n))−1 + n2−(1+2β)L(n) → 0 , (63)

then one has the following central limit:
√
n2−L(n)

(
d̂n(L,w) − d

)
L−→N

(
0,wT V(d)w

)
, (64)

where

K(d)
def
=

∫ ∞

−∞
|ξ|−2d |ψ̂(ξ)|2 dξ , (65)

and V(d, ψ) is the (1 + ℓ) × (1 + ℓ) matrix defined as

Vi,j(d, ψ)
def
=

4π22d|j−i|2i∧j

K(d)2

∫ π

−π

∣∣D∞,|j−i|(λ)
∣∣2 dλ 0 ≤ i, j ≤ ℓ , (66)

Proof. The only assumptions of Theorem 2 that are not included in our set of assumptions

here are (27) and (28). The former is verified if ε = π in Assumption 1. If ε < π, (28) holds as

a consequence of (62) and (63). Hence Theorem 2 applies (note that (62) implies (26) since

β > 0). Applying [7, Theorem 1], under (W-1)–(W-4), we have the following approximation:

∣∣∣σ2
j − f∗(0)K(d) 22jd

∣∣∣ ≤ C f∗(0)L 2(2d−β)j (67)

where σ2
j is defined in (14) and K(d) in (65). This, with Theorem 2, [5, Relation (39)]

and [5, Proposition 3], gives the result. �
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Remark 4. The centering in (29) in Theorem 2 involved the expected value whereas the

centering in (64) in Theorem 4 does not. In order to deal with the corresponding bias,

Condition (26) is strengthened by (62).

5. The wavelet Whittle estimation of the memory parameter

We now consider the semi-parametric estimator introduced in [7]. As the log-regression

estimation, this estimator is also based on the scalogram but is defined as the maximizer of

a Whittle type contrast function (see [7, Eq. (20)]),

d̃n(L,U)
def
= Argmin

d′∈R



log




U∑

j=L

2−2d′jnj σ̂
2
j



 + 2d′ log(2)J



 with J def
=

∑U
j=L j nj

∑U
j=L nj

.

d̃n, which involves the scales L ≤ j ≤ U , is a wavelet analog of the local Whittle Fourier

estimator studied in [9] (often referred to as semiparametric Gaussian estimator) and is

therefore called the local Whittle wavelet estimator. To prove the asymptotic normality of

d̃n, we will use Theorem 3.

We denote, for all integer ℓ ≥ 1,

ηℓ
def
=

ℓ∑

j=0

j
2−j

2 − 2−ℓ
and κℓ

def
=

ℓ∑

j=0

(j − ηℓ)
2 2−j

2 − 2−ℓ
, (68)

ρ2(d, ℓ)
def
=

π

(2 − 2−ℓ)κℓ(log(2)K(d))2
×

{
I0(d) +

2

κℓ

ℓ∑

u=1

Iu(d) 2(2d−1)u
ℓ−u∑

i=0

2−i

2 − 2−ℓ
(i− ηℓ)(i+ u− ηℓ)

}
, (69)

ρ2(d,∞)
def
=

π

[2 log(2)K(d)]2

{
I0(d) + 2

∞∑

u=1

Iu(d) 2(2d−1)u

}
, (70)

where K(d) is defined in (65).

Theorem 5. Let X be an M(d) process with short-range spectral density f∗ and suppose

that Assumptions 1 and 2 hold. Under (W-1)–(W-4) with Condition (62) on α and M , if,

as n→ ∞, the lower scale L(n) is such that

L(n)(n2−L(n))−1/8 + n2−(1+2β)L(n) → 0 , (71)

and the upper scale U(n) is such that

U(n) − L(n) → ℓ ∈ {1, 2 . . . ,∞},

then one has the following central limit:
√
n2−L(n)

(
d̃n(L(n), U(n)) − d

)
L−→N

(
0, ρ2(d, ℓ)

)
, (72)
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where ρ2(d, ℓ) for ℓ <∞ and ℓ = ∞ are defined in (69) and (70) respectively.

Remark 5. Condition (71) is similar to (63) but n2−L(n) → ∞ is replaced by the stronger

condition L(n)(n2−L(n))−1/8 → 0, which holds for example, if n2−L(n)/nγ has a positive

limit for some γ > 0 as usually verified.

Proof. Assume f∗(0) = 1 without loss of generality. The proof is the same as that of [7,

Theorem 5] until Eq. (66),

(n2−L)1/2 (d̂n − d) =
(n2−L)−1/2 Ŝn

2 log(2)K(d) (2 − 2−(U−L))κU−L
(1 + oP(1)) , (73)

where

Ŝn
def
=

U∑

j=L

[j − J ] 2−2jd njσ̂
2
j .

Thus, using
∑U

j=L[j − J ]nj = 0 and (14), we get

E

[
Ŝn

]
=

U∑

j=L

[j −J ]nj

(
2−2jd σ2

j − f∗(0)K(d)
)

= O(n2−(1+β)L) = o
(
(n2−L)1/2

)
,

where the O-term follows from (67), the fact that L < J < L + 1 (see [7, Eq (61)]) and

nj ≤ n2−j and the o-term follows from (71).

Hence it only remains to establish a CLT for Ŝn similar to that of [7, Proposition 10] but

under the assumptions of Theorem 5. This is obtained by observing that

(n2−L)−1/2 Ŝn = (n2−L)1/2 2−2Ld
U−L∑

u=0

wu(n)σ̂2
j

with u = j − L and

wu(n)
def
= [u− (J − L)] 2−2ud nL+u

n2−L
, u ∈ {0, . . . , U − L} ,

which satisfies

sup
n

|wu(n)| ≤ C u2−(2d+1)u, u ∈ {0, . . . , U − L} ,

and by applying Theorem 3. �

Appendix A. Wavelet coefficients linear filters

Assumption (W-1) implies that φ̂ and ψ̂ are everywhere infinitely differentiable. When (W-1)

holds, Assumptions (W-3) and (W-4) can be expressed in different ways. (W-3) is equivalent

to asserting that the first M − 1 derivative of ψ̂ vanish at the origin and hence

|ψ̂(λ)| = O(|λ|M ) as λ→ 0. (74)
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And, by [2, Theorem 2.8.1, Page 90], (W-4) is equivalent to

sup
k 6=0

|φ̂(λ+ 2kπ)| = O(|λ|M ) as λ→ 0. (75)

Many authors suppose that the ψj,k are orthogonal and even that they are generated by

a multiresolution analysis (MRA). Assumptions (W-1)–(W-4) in Section 3 are satisfied in

these cases, φ being the scaling function and ψ is the associated wavelet. In this paper,

however, we do not assume that wavelets are orthonormal nor that they are associated to a

multiresolution analysis. We may therefore work with other convenient choices for φ and ψ

as long as (W-1)–(W-4) are satisfied. A simple example is to set, for some positive integer

N ,

φ(x)
def
= 1⊗N

[0,1](x) and ψ(x)
def
= CN

dN

dxN
1⊗2N

[0,1] (x),

where 1A is the indicator function of the set A, f⊗N denotes the N -th self-convolution of

a function f and CN is a normalizing constant such that
∫ ∞
−∞ ψ2(x)dx = 1. It follows that

|φ̂(ξ)| = |2 sin(ξ/2)/ξ|N and |ψ̂(ξ)| = CN |ξ|N |2 sin(ξ/2)/ξ|2N .

Using (74) and (75), one easily checks that (W-1)–(W-4) are satisfied with M and α equal

to N . Of course the family of functions {ψj,k} are not orthonormal for this choice of the

wavelet function ψ (and the function φ is not associated to a MRA).
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