
HAL Id: hal-00277643
https://hal.science/hal-00277643

Submitted on 6 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Central Limit Theorems for arrays of decimated linear
processes

François Roueff, Murad S. Taqqu

To cite this version:
François Roueff, Murad S. Taqqu. Central Limit Theorems for arrays of decimated linear processes.
Stochastic Processes and their Applications, 2009, 119 (9), pp.3006-3041. �10.1016/j.spa.2009.03.009�.
�hal-00277643�

https://hal.science/hal-00277643
https://hal.archives-ouvertes.fr


ha
l-

00
27

76
43

, v
er

si
on

 1
 -

 6
 M

ay
 2

00
8

CENTRAL LIMIT THEOREMS FOR ARRAYS OF DECIMATED

LINEAR PROCESSES

F. ROUEFF AND M.S. TAQQU

TELECOM ParisTech and Boston University

Abstract. Linear processes are defined as a discrete-time convolution between a kernel

and an infinite sequence of i.i.d. random variables. We modify this convolution by intro-

ducing decimation, that is, by stretching time accordingly. We then establish central limit

theorems for arrays of squares of such decimated processes. These theorems are used to

obtain the asymptotic behavior of estimators of the spectral density at specific frequen-

cies. Another application, treated elsewhere, concerns the estimation of the long-memory

parameter in time-series, using wavelets.
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1. Introduction

Consider a linear process, that is, a weakly stationary sequence

∑

t∈Z

v(k − t)ξk, k ∈ Z, where
∑

t∈Z

v2(t) <∞

and {ξt, t ∈ Z} is a centered white noise sequence, that is an uncorrelated sequence with

mean zero. We shall sometimes make the following additional assumptions on {ξt, t ∈ Z}.

Assumptions A

(A-1) {ξt, t ∈ Z} is a sequence of independent and identically distributed real-valued

random variables such that E[ξ0] = 0, E[ξ20 ] = 1.

(A-2) {ξt, t ∈ Z} satisfies (A-1) and κ4
def
= E[ξ40 ] − 3 is finite.

We will allow decimation and consider, moreover, not one but N linear sequences, all using

the same {ξt, t ∈ Z}.

Definition 1. An array of N–dimensional decimated linear processes is a process admitting

the following linear representation,

Zi,j,k =
∑

t∈Z

vi,j(γjk − t) ξt , i = 1, . . . , N, k ∈ Z, j ≥ 0 , (1)

where {ξt, t ∈ Z} is a centered weak white noise, (γj)j≥0 is a diverging sequence of positive

integers and, for all i = 1, . . . , N and j ≥ 0, {vi,j(t), t ∈ Z} is real-valued and satisfies
∑

t∈Z
v2
i,j(t) <∞.

Remark 1. Zi,j,k involves three indices. The index i = 1, . . . , N is used to define an N -

variate version, the index j labels the decimation factor γj, and the index k corresponds to

time. Because of the presence of the factor γj in (1), Zi,j,k is not a usual convolution. It can

be viewed as a decimated convolution of a white noise in the sense that, after convolution,

one keeps only values spaced by γj . A typical choice of decimation is γj = 2j , j ≥ 0.

Our goal is to study the asymptotic behavior of the sample mean square of Zi,j,k, namely

to find conditions on the kernels vi,j, the decimation factor γj and normalization nj, so that

the normalized vector


n

−1/2
j

nj−1∑

k=0

(
Z2

i,j,k − E
[
Z2

i,j,k

])
, i = 1, . . . , N





converges to a multivariate normal N (0,Γ) distribution. We want also to characterize the

limiting covariance matrix Γ. Thus we are interested in the sum of squares of the Zi,j,k.
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Such results are useful in estimation. In section 4, for example, we apply our result to

obtain a central limit theorem for the estimator f̂n(0) of the spectral density at the origin

f(0) of a linear process. This CLT is compared to [2], Eq (3.9), as discussed in Remark 13.

Another, more involved application, which involves wavelets, can be found in [7].

The paper is structured as follows. In Section 2, we indicate the main assumptions. The

central limit theorems (Theorems 1 and 2) for decimated sequences are stated in Section 3.

Section 4 contains an application to the estimation of the value of spectral density at the

origin (Theorem 3). Section 5 contains technical lemmas. Theorems 1, 2 and 3 are proved

in Sections 6, 7 and 8 respectively.

2. Main assumptions

Our assumptions will be expressed in terms of the Fourier series of the ℓ2 sequences

{vi,j(t), t ∈ Z}, namely

v∗i,j(λ) = (2π)−1/2
∑

t∈Z

vi,j(t) e−iλt . (2)

We suppose that for any i = 1, . . . , N , as j → ∞, the Fourier series v∗i,j concentrates around

some frequency λi,∞ ∈ [0, π). By ”concentrate”, we mean that when adequately normalized,

translated and rescaled around these frequencies, the series v∗i,j converges as j → ∞ to

some limit functions v∗i,∞, with a uniform polynomial control (see Eq (7) and (8) below).

Because of the particular structure of the γj–decimation in (1), however, in order to derive

the asymptotic behavior for the processes, we need to introduce sequences of frequencies

(λi,j)j≥0 that satisfy some special conditions and converge to λi,∞ for all i = 1, . . . , N . We

shall first specify the conditions on the Fourier series v∗i,j, the frequencies λi,∞ and the limit

functions v∗i,∞, and then comment on these conditions.

Condition C

• There exist a N–dimensional array of frequencies (λi,j)i∈1,...,N,j≥0 valued in [0, π) such

that, for all i = 1, . . . , N ,

γjλi,j ∈ 2πZ+, for j large enough , (3)

λi,j → λi,∞ , as j → ∞ , (4)

if λi,∞ = 0 , then λi,j = 0, for j large enough . (5)

and, for all 1 ≤ i < i′ ≤ N ,

if λi,∞ = λi′,∞ , then λi,j = λi′,j, for j large enough . (6)
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• Moreover there exist δ > 1/2 and a sequence of [−π, π)-valued functions Φj(λ) defined

on λ ∈ R such that

sup
j≥0

sup
λ∈[0,π)

γ
−1/2
j |v∗i,j(λ)|(1 + γj|λ− λi,j|)

δ <∞ , (7)

lim
j→∞

γ
−1/2
j v∗i,j(γ

−1
j λ+ λi,j)e

iΦj(λ) = v∗i,∞(λ) for all λ ∈ R , (8)

The following remarks provide some insight into these conditions.

Remark 2. Equations (4) and (8) imply that the spectral density λ 7→ |v∗i,j|
2(λ) of the

undecimated stationary process

Wi,j,k =
∑

t∈Z

vi,j(k − t) ξt , k ∈ Z ,

concentrates, as j → ∞ around the frequency λi,∞. In practical applications of the theorem,

the limiting frequencies {λi,∞, i ∈ 1, . . . , N} are given. However, one can often easily find

sequences (γj)j≥0 and (λi,j)j≥0 that satstisfy Conditions (3) and (4) hold. In the particular

case where the λi,∞ are such that q λi,∞ ∈ 2πZ for all i = 1, . . . , N and some positive integer

q, one may take λi,j = λi,∞ and γj as a multiple of q. This happens for instance when the

limiting frequencies are all at the origin, that is, λ1,∞ = · · · = λN,∞ = 0 and γj = 2j .

Remark 3. The presence of the phase function Φj in (8) offers flexibility and implies that

γ
−1/2
j v∗i,j(γ

−1
j λ + λ0) converges to v∗i,∞(λ) up to a common change of phase. Observe,

however, that Φj should not depend on i and thus, for N > 1, Condition (8) is not equivalent

to requiring that γ
−1/2
j |v∗i,j(γ

−1
j λ+λi,j)| converges to |v∗i,∞(λ)| for all i. The presence of the

phase Φ is consistent with the fact that the asymptotic covariance matrix Γ defined in (24)

is invariant through a common phase translation of the functions v∗i,∞ for all i = 1, . . . , N .

Remark 4. Condition (6) states that if two limits λi,∞ and λi′,∞ are equal, then the λi,j

and λi′,j which converge to them must coincinde for large enough j. Condition (5) has a

similar interpretation.

Remark 5. Conditions (6) and (8) imply that, for all 1 ≤ i ≤ i′ ≤ N such that λi,∞ = λi′,∞,

lim
j→∞

γ−1
j [v∗i,jv

∗
i′,j](γ

−1
j λ+ λi,j) = [v∗i,∞v

∗
i′,∞](λ) for all λ ∈ R . (9)

Here z denotes the conjugate of the complex z.

Remark 6. Since vi,j(t) is real valued, since vi,j(t) is real-valued, we have

v∗i,j(−λ) = v∗i,j(λ) . (10)
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Thus, Conditions (7) and (9) imply that

sup
j≥0

sup
λ∈(−π,π)

γ
−1/2
j |v∗i,j(λ)|(1 + γj ||λ| − λi,j |)

δ <∞ , (11)

lim
j→∞

γ−1
j [v∗i,jv

∗
i′,j](γ

−1
j λ− λi,j) = [v∗i,∞v

∗
i′,∞](−λ) for all λ ∈ R . (12)

In particular, if λi,∞ = λi′,∞ = 0, by (5), (9) and (12), we have

[v∗i,∞v
∗
i′,∞](λ) = [v∗i,∞v

∗
i′,∞](−λ) . (13)

Remark 7. Since (γj) is a diverging sequence and λi,j → λi,∞ ∈ [0, π), for any λ ∈ R, for j

large enough, we have γ−1
j λ+λi,j ∈ [0, π). Hence Conditions (7) and (8) imply that, for all

i = 1, . . . , N ,

sup
λ∈R

∣∣v∗i,∞(λ)
∣∣ (1 + |λ|)δ <∞ . (14)

To better understand these assumptions, we start with a result on the asymptotic behav-

ior of the cross-covariance function for the array (1). In this proposition, we set, without

loss of generality, N = 2.

Proposition 1. Let {Zi,j,k, i = 1, 2, j ≥ 0, k ∈ Z} be an array of 2–dimensional decimated

linear processes as defined by (1). Assume that Condition (C) holds for some λi,∞ ∈ [0, π)

and functions v∗i,∞, i = 1, 2, from R → Z. Then, for all k, k′ ∈ Z, as j → ∞,

Cov
(
Z1,j,k, Z2,j,k′

)
→ C1,2

∫ ∞

−∞
w∗

1,2(λ) eiλ(k′−k) dλ , (15)

where, for any i, i′ ∈ {1, 2},

w∗
i,i′(λ) =

1

2

[
v∗i,∞(−λ)v∗i′,∞(−λ) + v∗i,∞(λ)v∗i′,∞(λ)

]
, λ ∈ R , (16)

and

Ci,i′ =





0 if λi,∞ 6= λi′,∞

1 if λi,∞ = λi′,∞ = 0

2 if λi,∞ = λi′,∞ > 0

. (17)

Proof. Using (1) and Parseval’s theorem, we have

Cov
(
Z1,j,k, Z2,j,k′

)
=
∑

t∈Z

v1,j(γjk − t)v2,j(γjk
′ − t) (18)

=

∫ π

−π
[v∗1,jv

∗
2,j ](λ) eiγjλ(k′−k) dλ . (19)

We now consider separately the three cases λ1,∞ 6= λ2,∞, λ1,∞ = λ2,∞ > 0 and λ1,∞ =

λ2,∞ = 0.
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1) Suppose λ1,∞ 6= λ2,∞. Then by (7), there is a constant C > 0 such that

∣∣Cov
(
Z1,j,k, Z2,j,k′

)∣∣ ≤ Cγj

∫ π

0
(1 + γj |λ− λ1,j|)

−δ(1 + γj|λ− λ2,j|)
−δ dλ

→ 0 as j → ∞ , (20)

since γj → ∞, δ > 1/2 and |λ1,j − λ2,j| has a positive limit.

2) Suppose λ1,∞ = λ2,∞ > 0. Setting λ = γ−1
j ξ + λ1,j and using (3), we have

∫ π

0
[v∗1,jv

∗
2,j ](λ) eiγjλ(k′−k) dλ =

∫ γj(π−λ1,j)

−γjλ1,j

γ−1
j [v∗1,jv

∗
2,j ](γ

−1
j ξ + λ1,j) eiξ(k′−k) dξ

→

∫ ∞

−∞
[v∗1,∞v

∗
2,∞](ξ) eiξ(k′−k) dξ as j → ∞, (21)

where the limit follows from Conditions (6), (4), (7), (9) and dominated convergence.

Similarly we have
∫ 0

−π
[v∗1,jv

∗
2,j ](λ) eiγjλ(k′−k) dλ→

∫ ∞

−∞
[v∗1,∞v

∗
2,∞](−ξ) eiξ(k′−k) dξ as j → ∞,

by using (12) instead of (9). The last display, (19) and (21) yield

Cov
(
Z1,j,k, Z2,j,k′

)
→ 2

∫ ∞

−∞
w∗

1,2(ξ) eiξ(k′−k) dξ as j → ∞ . (22)

3) Suppose finally λ1,∞ = λ2,∞ = 0. Setting λ = γ−1
j ξ gives

∫ π

−π
[v∗1,jv

∗
2,j](λ) eiγjλ(k′−k) dλ =

∫ γjπ

−γjπ
γ−1

j [v∗1,jv
∗
2,j ](γ

−1
j ξ) eiξ(k′−k) dξ

→

∫ ∞

−∞
[v∗1,∞v

∗
2,∞](ξ) eiξ(k′−k) dξ

by using Conditions (5), (7), (9) and dominated convergence. The last display, (20)

and (21) yield (15).

�

3. Main results

We let
L

−→ denote the convergence in law. Our first result provides the asymptotic

behavior of the sample mean square of an array of a decimated linear sequence under a

global assumption on the behavior of the spectral density (the bound (7)). A local version

of this assumption is considered in Theorem 2.

Theorem 1. Let {Zi,j,k, i = 1, 2, j ≥ 0, k ∈ Z} be an array of N–dimensional decimated

linear processes as defined by (1). Assume (A-2) and that γj is even for j large enough. For
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each i = 1, . . . , N , we let λi,∞ denote a frequency in [0, π) and v∗i,∞ a continuous R → Z

function such that Condition (C) holds. Then, for any diverging sequence (nj),

n
−1/2
j

nj−1∑

k=0




Z2
1,j,k − E[Z2

1,j,k]
...

Z2
N,j,k − E[Z2

N,j,k]




L
−→N (0,Γ) , (23)

where Γ is the covariance matrix defined by

Γi,i′ = 4πCi,i′

∫ π

−π

∣∣∣∣∣∣
∑

p∈Z

w∗
i,i′(λ+ 2pπ)

∣∣∣∣∣∣

2

dλ , 1 ≤ i, i′ ≤ N , (24)

where Ci,i′ and w∗
i,i′ are defined in (17) and (16).

Remark 8. From (14), it follows that the doubly infinite sum in (24) is well defined and

bounded on λ ∈ R and hence Γ is well defined.

Remark 9. The number of time indices k appearing in the centered sum in (23) is nj and

asymptotic normalization occurs as j and nj tend to ∞.

Remark 10. The presence of the factor γj in (1), and hence of decimation, is essential for the

Central Limit Theorem to hold in this generality because it ensures that the dependence

of the Zi,j,k’s decreases sufficiently fast as j → ∞. Decimation of this type is typically

encountered in settings involving wavelets, or more generally filter banks, see [5].

Remark 11. In applications, the expectations in (23), which depend on j, will be approx-

imated by quantities that are independent of j. To see why this is possible, observe that,

applying Relation (15) in Proposition 1 with k = k′ = 0 and i = i′ = 1, . . . , N , we get

lim
j→∞

E
[
Z2

i,j,0

]
=

∫ ∞

−∞

∣∣v∗i,∞(λ)
∣∣2 dλ <∞ . (25)

Thus, when the convergence rate to this limit is fast enough, the expectations in (23) can

be replaced by
∫∞
−∞

∣∣∣v∗i,∞(λ)
∣∣∣
2

dλ, i = 1, . . . , N , which does not depend on j.

We have assumed in (7) a bound for v∗i,j(λ) for λ ∈ (−π, π). This bound implies that the

spectral density of the process Zi,j,� defined in (1) is bounded on (−π, π). We shall weaken

this assumption by only assuming a local bound around the frequency λi,j as follows.

Theorem 2. Assume that all the conditions of Theorem 1 hold except that (7) is replaced

by

sup
j≥0

sup
|λ−λi,∞|≤ε

γ
−1/2
j |v∗i,j(λ)|(1 + γj |λ− λi,j|)

δ <∞ , (26)
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where ε > 0 is arbitrary small. Suppose in addition that

n
1/2
j

∫ π

0
1(|λ− λi,∞| > ε) |v∗i,j(λ)|2 dλ→ 0 as j → ∞ . (27)

Then the conclusion of Theorem 1, that is, the CLT (23), still holds.

Remark 12. Since (7) is replaced by the local condition (27), we impose the additional

condition (27) on the growth of nj. This condition does not appear in the conditions of

Theorem 1, where it was only required that nj → ∞.

4. Application to spectral density estimation

Let {X(u), u ∈ Z} be a standard linear process,

Xu =
∑

t∈Z

a(u− t) ξt , (28)

where {ξt, t ∈ Z} is a centered weak white noise with unit variance and {a(t), t ∈ Z} is

real-valued sequence such that
∑

k a
2
k <∞ with Fourier series

a∗(λ) = (2π)−1/2
∑

t∈Z

a(t) e−iλt . (29)

Then {Xk, k ∈ Z} admits the following spectral density

f(λ) = |a∗(λ)|2 , λ ∈ (−π, π) .

For simplicity, as in Section 3 of [2], we consider the problem of estimating f(0) from

observations X1, . . . ,Xn.

Let us denote by W a bounded R → R function with compact support and by Ŵ its

Fourier transform,

Ŵ (ξ) =

∫ ∞

−∞
W (t)e−iξt dt .

Let (γj) be any diverging sequence of even integers.

We let N = 1, and λ1,j = λ1,∞ = 0 for all j ≥ 0, which yields (3), (4), (5) and (6) in

Condition (C).

Define

Z1,j,k = γ
−1/2
j

∑

u∈Z

W (k − γ−1
j u)Xu . (30)

We assume that

(H-1) As λ→ 0,

f(λ) = f(0) +O(|λ|2) . (31)
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(H-2) the support of W is included in [−1, 0], supξ∈R |Ŵ (ξ)|(1 + |ξ|)β < ∞ with β > 1

and ∫ ∞

−∞

∣∣∣Ŵ (λ)
∣∣∣
2

dλ = 1 (32)

Assumptions (H-1) and (H-2) are related to the standard bias control of kernel estimates

of the spectral density (see Lemma 8 below).

Define

nj = [γ−1
j (n+ 1)] . (33)

For all k = 0, . . . , nj − 1, since W (k − γ−1
j u) vanishes for u ≤ 0 and u ≥ n+ 1, we have

Z1,j,k = γ
−1/2
j

n∑

u=1

W (k − γ−1
j u)Xu .

In other words, {Z1,j,k, k = 0, . . . , nj − 1} can be computed from the n observations

X1, . . . ,Xn. Thus

f̂n(0) = n−1
j

nj−1∑

k=0

Z2
1,j,k

can be used as an estimator of f(0). The following theorem provides a central limit result

for f̂n(0).

Theorem 3. Assume (H-1) and (H-2) with β > 2. Let (γn) be a diverging sequence of even

integers such that γ−1
n n→ ∞ Then, as n→ ∞,

E

[
f̂n(0)

]
= E

[
Z2

1,n,0

]
= f(0) +O(γ−2

n ) . (34)

If moreover (A-2) in Section 3 holds and

n1/2γ1/2−2β
n → 0 , (35)

then

(γ−1
n n)1/2{f̂n(0) − E

[
Z2

1,n,0

]
}

L
−→N (0, σ2) , (36)

where

σ2 = 2π f(0)2
∫ π

−π


∑

p∈Z

∣∣∣Ŵ (λ+ 2pπ)
∣∣∣
2




2

dλ .

Remark 13. Our CLT (36) can be compared with [2, Eq. 3.9], although the estimators

are different since ours involve a decimation and the one in [2] is expresses as a weighted

integral of the standard periodogram. In (36), our γn has a role similar to the q = qn

for their estimator. Our bias estimate (34) has a faster decrease than the corresponding

one O(q−1) in [2], see the last display in their Section 3. Our conditions also differ from

those of [2]. Our conditions on the weight sequence a(t) is much more general, since we
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assume a polynomial decrease neither of this sequence nor of a(t) − a(t + 1), as assumed

for the corresponding (causal) sequence (ψj) in Assumption 2.1 of [2]. Standard results on

spectral estimation (see e.g. [1, Theorem 9.4.1]) usually assume the even stronger condition
∑

t |a(t)| < ∞. On the other hand we do assume that the noise sequence {ξt} has fourth

finite moment (see (A-2)) while only a finite 2 + β moment (with β > 0 arbitrary small) is

assumed in [2]. It is an open question whether similar moment condition can be used for

our estimator f̂n(0).

5. Technical lemmas

The following lemma will be used several times.

Lemma 1. Let g be a (2π)-periodic locally integrable function. Then for all positive integer

γ, the function defined by

gγ(λ) =

γ−1∑

p=0

g(γ−1(λ+ 2pπ))

is (2π)-periodic. Moreover, one has
∫ π

−π
g(λ) dλ = γ−1

∫ π

−π
gγ(λ) dλ . (37)

Proof. Observe that, for all λ ∈ R,

gγ(λ+ 2π) =

γ−1∑

p=0

g
(
γ−1 (λ+ (p+ 1) 2π)

)

=

γ−1∑

p=1

g
(
γ−1 (λ+ 2pπ)

)
+ g

(
γ−1 (λ+ γ2π)

)
= gγ(λ) ,

since g(γ−1(λ+γ2π)) = g(γ−1λ) by the (2π)-periodicity of g. Hence gγ(λ) is (2π)-periodic.

With a change of variable, one gets

γ−1

∫ 2π

0
gγ(λ) dλ =

γ−1∑

p=0

∫ 2πγ−1

0
g(ξ + 2pπγ−1) dξ =

∫ 2π

0
g(ξ) dξ .

Relation (37) follows by (2π)-periodicity of the integrands. �

The next lemma relates the rates of decrease of two functions with the rate of decrease

of their convolution.

Lemma 2. Let δ > 0. For all T > 0 and t0 ∈ [0, T/2), we let hT,t0(t), t ∈ R be the even

and T -periodic function such that

hT,t0(t) = (1 + |t− t0|)
−δ for all t ∈ [0, T/2] .
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Let g be an integrable non-negative function on R such that

g(t) ≤ c0|t|
−δ−1 for |t| ≥ 1. (38)

Then there exists a positive constant c, depending only on δ, ‖g‖1 =
∫∞
−∞ g(s) ds and c0

such that, for all T > 0, t0 ∈ [0, T/2), and t ∈ [0, T/2],

g ∗ hT,t0(t) =

∫ ∞

−∞
g(t− u)hT,t0(u) du ≤ c(1 + |t− t0|)

−δ . (39)

Proof. Let t0 ∈ [0, T/2). We shall use the bound, valid for all t ∈ R,

g ∗ hT,t0(t) ≤ ‖g‖1 . (40)

This bound yields (39) only for t close enough to t0. We shall derive a different bound valid

only for t ∈ [0, T/2] with |t− t0| ≥ 2, namely

g ∗ hT,t0(t) ≤ 21−δ c0 δ
−1 |t− t0|

−δ + ‖g‖1 (1 + |t− t0|/2)
−δ . (41)

Applying (40) for |t− t0| ≤ 2 and (41) for |t− t0| ≥ 2 yields (39).

Hence it only remains to establish (41) for t ∈ [0, T/2] with |t − t0| ≥ 2. We shall

suppose that t ∈ [t0 + 2, T/2] (the case t ∈ [0, t0 − 2] is obtained similarly). Let u such that

|t − u| ≤ |t− t0|/2. Then t − (t − t0)/2 ≤ u ≤ t + (t − t0)/2 and thus, using that t ≤ T/2

implies t+ t/2 ≤ T − t/2, we get (t+ t0)/2 ≤ u ≤ T − (t+ t0)/2. Observe that the middle

point between (t+ t0)/2 and T − (t+ t0)/2 is T/2. Since hT,t0(u) is decreasing on [t0, T/2],

and symmetric around T/2, we get hT,t0(u) ≤ hT,t0((t+ t0)/2) = (1 + |t− t0|/2)
−δ . Hence

we may bound hT,t0(u) by 1 for |t−u| > |t− t0|/2 and by (1+ |t− t0|/2)
−δ otherwise, which

gives ∫ ∞

−∞
g(t− u)hT,t0(u) du ≤

∫

|s|>|t−t0|/2
g(s) ds + ‖g‖1 (1 + |t− t0|/2)

−δ .

Since |t− t0| ≥ 2 we may apply the bound (38) in the integral of the RHS of the previous

display. Hence we get (41), which concludes the proof. �

The following lemma is used, in particular, to bound f̂j in the proof of Theorem 2. It

will be used again in the proof of Lemma 6 below. Applying it, one can bound gj,γj
(λ)

independently of j and λ, where gj,γj
is defined as in Lemma 1 with g replaced by gj , and

the sequence gj satisfies a uniform bound of the form (7), namely

sup
j≥0

sup
λ∈[−π,π)

|gj(λ)|(1 + γ ||λ| − λj|)
δ <∞ ,

with λj → λ∞ ∈ [0, π) as j → ∞.
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Lemma 3. Let δ > 1/2. Then

sup
t∈R

sup
t′∈R

∑

p∈Z

(1 +
∣∣|t+ 2pπ| − t′

∣∣)−2δ <∞ . (42)

Moreover, as u→ ∞,

sup
t∈R

sup
t′∈R

∑

p∈Z

(1 +
∣∣|t+ 2pπ| − t′

∣∣)−δ(1 +
∣∣|t+ 2pπ| − t′ − u

∣∣)−δ → 0 . (43)

Proof. Let S(t, t′) =
∑

p∈Z
(3π + ||t+ 2pπ| − t′|)−2δ. Since, for any t′, t 7→ S(t, t′) is (2π)–

periodic we have

sup
t∈R

sup
t′∈R

S(t, t′) = sup
t′∈R

sup
t:|t−t′|≤π

S(t, t′) . (44)

Suppose that t, t′ ∈ R are such that |t− t′| ≤ π. Then for any a, b ∈ R, we have, if t+a ≥ 0,

∣∣|t+ a| − t′ − b
∣∣ ≥ |a− b| − π , (45)

and, if t+ a ≤ 0,

∣∣|t+ a| − t′ − b
∣∣ =

∣∣t− t′ + 2t′ + a+ b
∣∣ ≥ |2t′ + a+ b| − π . (46)

Adding 3π to each of the last two displays with a = 2pπ and b = 0, we get that, for all

|t− t′| ≤ π and p ∈ Z,

(3π +
∣∣|t+ 2pπ| − t′

∣∣)−2δ ≤ (2|p|π + 2π)−2δ + (|2t′ + 2pπ| + 2π)−2δ . (47)

Since
∑

p∈Z
(2|p|π + π)−2δ < ∞ and supt′∈R

∑
p∈Z

(|2t′ + 2pπ| + π)−2δ < ∞, Relation (44)

gives that supt∈R supt′∈R S(t, t′) <∞ and (42) follows.

We now prove (43). Let

S(t, t′, u) =
∑

p∈Z

(3π +
∣∣|t+ 2pπ| − t′

∣∣)−δ(3π +
∣∣|t+ 2pπ| − t′ − u

∣∣)−δ .

As above, we have

sup
t∈R

sup
t′∈R

Sj(t, t
′) = sup

t′∈R

sup
t:|t−t′|≤π

Sj(t, t
′) . (48)

Suppose that t, t′ ∈ R are such that |t− t′| ≤ π. Adding 3π to (45) and (46) with a = 2pπ

and b = u, we have

(3π +
∣∣|t+ 2pπ| − t′ − u

∣∣)−δ ≤ (|2pπ − u| + 2π)−δ + (|2t′ + 2pπ + u| + 2π)−δ .
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Using (48), (47) and the previous display, we obtain

sup
t∈R

sup
t′∈R

S(t, t′, u) ≤
∑

p∈Z

(|2pπ| + 2π)−δ(|2pπ − u| + 2π)−δ

+ sup
t′∈R

∑

p∈Z

(|2t′ + 2pπ| + 2π)−δ(|2t′ + 2pπ + u| + 2π)−δ

+ sup
t′∈R

∑

p∈Z

(|2pπ| + 2π)−δ(|2t′ + 2pπ + u| + 2π)−δ

+ sup
t′∈R

∑

p∈Z

(|2t′ + 2pπ| + 2π)−δ(|2pπ − u| + 2π)−δ .

Since the three functions in t′ appearing in the right-hand side of the last display are π-

periodic the supt′∈R can be replaced by sup|t′|≤π/2. Since |2t′ + 2pπ| ≥ |2pπ| − π and

|2t′ + 2pπ + u| ≥ |2pπ + u| − π for |t′| ≤ π/2, we thus obtain

sup
t∈R

sup
t′∈R

S(t, t′, u) ≤ 4
∑

p∈Z

(|2pπ| + π)−δ(|2pπ + u| + π)−δ → 0 as u→ ∞ ,

which conclude the proof. �

The following lemma will be used in the proof of Lemma 6.

Lemma 4. Let p be a positive integer. For all C
p-valued function g ∈ L2(−π, π) and n ≥ 1,

define

Mn(g)
def
=

{∑

k∈Z

(
1 −

|k|

n

)

+

|ck|
2

}1/2

=

{
n−1∑

k=−n+1

(
1 −

|k|

n

)
|ck|

2

}1/2

, (49)

where ck = (2π)−1/2
∫ π
−π g(λ) eikλ dλ and | · | denotes the Euclidean norm in any dimension.

Then, for all g1 and g2 in L2(−π, π),

|Mn(g1) −Mn(g2)| ≤

(∫ π

−π
|g1(λ) − g2(λ)|2 dλ

)1/2

. (50)

Moreover, for all g in L2(−π, π), as n→ ∞,

Mn(g) →

(∫ π

−π
|g(λ)|2 dλ

)1/2

. (51)

Proof. See [6, Lemma 1 (Appendix B)]. �

The following lemmas are used to compute the limiting covariances (106) and (24).

Lemma 5. Let {Zi,j,k, i = 1, 2, j ≥ 0, k ∈ Z} be an array of 2–dimensional decimated

linear processes as defined by (1). Assume (A-2). Then for all j ≥ 0 and all n ≥ 1, one
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has

1

n
Cov

(
n−1∑

k=0

Z2
1,j,k,

n−1∑

k=0

Z2
2,j,k

)
= 2Aj(n) + κ4Bj(n) , (52)

where

Aj(n) =
n−1∑

τ=−n+1

(1 − |τ |/n)

(∑

u∈Z

v1,j(u)v2,j(γjτ + u)

)2

(53)

and

Bj(n) =
∑

u∈Z

v2
1,j(u)

n−1∑

τ=−n+1

(1 − |τ |/n) v2
2,j(γjτ + u) . (54)

Proof. Using a standard formula for cumulants of products, we have

Cov

(
n−1∑

k=0

Z2
1,j,k,

n−1∑

k=0

Z2
2,j,k

)
=

n−1∑

k=0

n−1∑

k′=0

Cov
(
Z2

1,j,k, Z
2
2,j,k′

)

=2

n−1∑

k=0

n−1∑

k′=0

Cov2
(
Z1,j,k, Z2,j,k′

)

+

n−1∑

k=0

n−1∑

k′=0

cum
(
Z1,j,k, Z1,j,k, Z2,j,k′, Z2,j,k′

)
.

By definition of {Zi,j,k, i = 1, 2, k ∈ Z} the covariance and the fourth-order cumulant in the

previous display read respectively

Cov
(
Z1,j,k, Z2,j,k′

)
=
∑

t∈Z

v1,j(γjk − t)v2,j(γjk
′ − t)

and

cum
(
Z1,j,k, Z1,j,k, Z2,j,k′ , Z2,j,k′

)
= κ4

∑

t∈Z

v2
1,j(γjk − t)v2

2,j(γjk
′ − t) .

The two last displays thus give (52). �

Lemma 6. Let Aj(n) and Bj(n) be defined by (53) and (54), respectively, and v∗i,j by (2).

Then the following inequalities hold for all j ≥ 0 and all n ≥ 1 :

Aj(n) ≤ 2π

∫ π

−π

∣∣∣∣∣∣
γ−1

j

γj−1∑

p=0

[v∗1,jv
∗
2,j](γ

−1
j (λ+ 2πp))

∣∣∣∣∣∣

2

dλ (55)

Bj(n) ≤

∫ π

−π

∣∣v∗1,j(λ)
∣∣2 dλ

∫ π

−π


γ−1

j

γj−1∑

p=0

∣∣∣v∗2,j(γ
−1
j (λ+ 2πp))

∣∣∣




2

dλ . (56)
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Suppose moreover that γj → ∞ as j → ∞, γj is an even integer for j large enough and that

Condition (C) holds for some λi,∞ ∈ [0, π) and R → Z functions v∗i,∞, i = 1, 2. Then, as

(n, j) → (∞,∞),

Aj(n) → 2π C1,2

∫ π

−π

∣∣∣∣∣∣
∑

p∈Z

w∗
1,2(λ+ 2πp)

∣∣∣∣∣∣

2

dλ , (57)

where C1,2 and w∗
1,2 are defined in (17) and (16) respectively. Moreover,

lim
j→∞

sup
n≥1

|Bj(n)| = 0 . (58)

Proof. Step 1. Using properties of the convolution of square summable sequences, we have,

for all t ∈ Z,
∑

u∈Z

v1,j(u)v2,j(t+ u) =

∫ π

−π
v∗1,j(λ)v∗2,j(λ) ei tλ dλ .

For any τ ∈ Z, applying Lemma 1 to the (2π)-periodic function λ 7→ v∗1,j(λ)v∗2,j(λ) ei γjτλ,

one gets

∑

u∈Z

v1,j(u)v2,j(γjτ + u) = (2π)−1/2

∫ π

−π


(2π)1/2γ−1

j

γj−1∑

p=0

v∗1,j(ξj,p(λ))v∗2,j(ξj,p(λ))


 ei τλ dλ ,

where

ξj,p(λ)
def
= γ−1

j (λ+ 2πp) . (59)

Using the notation of Lemma 4, we can express Aj(n) defined in (53), as

Aj(n) = (Mn(gj))
2 (60)

where

gj(λ) = (2π)1/2γ−1
j

γj−1∑

p=0

v∗1,j(ξj,p(λ))v∗2,j(ξj,p(λ)) . (61)

The bound (50) in Lemma 4 with g1 = gj and g2 = 0 thus gives (55).

Step 2. Let us now show (56). Since

v2,j(γjτ + u) = (2π)−1/2

∫ π

−π
v∗2,j(λ) eiλ(γjτ+u)dλ ,

we can apply Lemma 1 to the (2π)-periodic function λ 7→ v∗2,j(λ) ei λ(γjτ+u) for all u and τ

in Z and get

v2,j(γjτ + u) = (2π)−1/2

∫ π

−π


γ−1

j

γj−1∑

p=0

v∗2,j(ξj,p(λ))ei uξj,p(λ)


 ei τλ dλ .
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Using the Parseval formula, we get, for all u ∈ Z,

n−1∑

τ=−n+1

(1 − |τ |/n) v2
2,j(γjτ + u) ≤

∑

τ∈Z

v2
2,j(γjτ + u)

=

∫ π

−π

∣∣∣∣∣∣
γ−1

j

γj−1∑

p=0

v∗2,j(ξj,p(λ))ei uξj,p(λ)

∣∣∣∣∣∣

2

dλ

≤

∫ π

−π


γ−1

j

γj−1∑

p=0

∣∣v∗2,j(ξj,p(λ))
∣∣



2

dλ .

Observing that the resulting bound is independent of u ∈ Z and using the Parseval formula
∑

u∈Z
v2
1,j(u) =

∫ π
−π

∣∣∣v∗1,j(λ)
∣∣∣
2

dλ, we obtain the bound (56) for Bj(n) defined in (54).

Step 3. We now establish the limit (57) successively in the cases λ1,∞ 6= λ2,∞ and λ1,∞ =

λ2,∞. The (2π)-periodicity of v∗1,jv
∗
2,j and Lemma 1 entail that gj (defined in (61)) is (2π)-

periodic. By definition of Mn in Lemma 4, it follows that, for any j ≥ 0 and any τ ∈ R,

Mn(gj) = Mn(g
(τ)
j ) with g

(τ)
j (λ) = gj(λ− τ), λ ∈ R , (62)

since the modulus of the Fourier coefficients of gj and g
(τ)
j are equal. In the following we

will take τ = πγj . Observe that, for all p ∈ {0, . . . , γj − 1}, λ ∈ (0, 2π) and j ≥ 0,

ξj,p(λ− πγj) ∈ (−π, π) . (63)

Consider the case where λ1,∞ 6= λ2,∞, which, by (4), implies

γj|λ1,j − λ2,j | → ∞ as j → ∞ . (64)

Using (63), (61), (62), (63) and (11), we have, for some constant C > 0, for all j ≥ 0,

sup
λ∈(0,2π)

∣∣∣g(πγj )
j (λ)

∣∣∣ = sup
λ∈(0,2π)

|gj(λ− πγj)|

≤ C

γj−1∑

p=0

1∏

i=0

(1 + γj ||ξj,p(λ− πγj)| − λi,j|)
−δ

≤ C sup
t,t′∈R

∑

p∈Z

(1 +
∣∣|t+ 2πp| − t′

∣∣)−δ

× (1 +
∣∣|t+ 2πp| − t′ − γj|λ1,j − λ2,j |

∣∣)−δ

→ 0 as j → ∞,
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by (64) and (43) in Lemma 3. Applying (60), (62) and the bound (50) in Lemma 4 with

g1 = gj and g2 = 0 yields

Aj(n) = (Mn(g
(πγj )
j ))2 ≤

∫ π

−π
|g

(πγj )
j |2 dλ .

The last two displays and the (2π)-periodicity of gj imply Aj(n) → 0 as j → ∞. This

proves (57) since by (17), C1,2 = 0 when λ1,∞ 6= λ2,∞.

We now consider the case λ1,∞ = λ2,∞. By Condition (6), we have λ1,j = λ2,j for all j

large enough. Let pj = γjλ1,j/(2π) + γj/2 so that

λ1,j = λ2,j = 2πγ−1
j pj − π . (65)

By Condition (3) and since γj is even for j large enough by assumption, we get that pj is

an integer for j large enough. Writing

γj−1∑

p=0

=

[γj/2]−1∑

p=0

+

γj−1∑

p=[γj/2]

=

[γj/2]−(γj−pj)−1∑

q=−(γj−pj)

+

γj−pj−1∑

r=[γj/2]−pj

,

where q = p−(γj−pj) and r = p−pj and observe that, with these definitions, (59) and (65),

we have ξj,q(λ) = γ−1
j (λ+2πq) = γ−1

j [(λ−πγj)+2πp]+ 2πγ−1
j pj −π = ξj,p(λ−πγj)+λ1,j,

and, similarly, ξj,q(λ) = ξj,p(λ− πγj) − λ1,j, so that g
(πγj )
j (λ) = gj(λ− πγj) defined in (62)

and (61), can be expressed as

g
(πγj )
j (λ) = (2π)1/2




[γj/2]−(γj−pj)−1∑

q=−(γj−pj)

v∗1,jv
∗
2,j

γj
(ξj,q(λ) − λ1,j)

+

γj−pj−1∑

r=[γj/2]−pj

v∗1,jv
∗
2,j

γj
(ξj,r(λ) + λ1,j)


 . (66)

Since limj→∞ γj = ∞ and, by Condition (4), limj→∞ λi,j = λi,∞ ∈ [0, π), we have limj→∞ γ−1
j pj ∈

[1/2, 1) and thus

−(γj − pj) → −∞ and γj − pj − 1 → ∞ , (67)

namely, that in (66), the upper limit of the first sum tends to ∞ and the bottom limit of

the second sum tends to −∞. We now consider the remaining limits. If λ1,∞ = λ2,∞ > 0,

then limj→∞ γ−1
j pj falls in the open interval (1/2, 1) and thus

[γj/2] − (γj − pj) − 1 → ∞ and [γj/2] − pj → −∞, . (68)

If λ1,∞ = λ2,∞ = 0, using (5), (65) implies pj = γj/2 and thus, for j large enough so that

pj is integer–valued and γj even,

[γj/2] − (γj − pj) − 1 = −1 and [γj/2] − pj = 0 . (69)
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In view of (59), Conditions (6), (7) and (8) (which imply (9), (11) and (12)), (67), (68), (69)

and dominated convergence yield, for all λ ∈ (0, 2π),

g
(πγj )
j (λ) → g∞(λ) as j → ∞ , (70)

where

g∞(λ) = (2π)1/2


∑

q∈Z

[v∗1,∞v
∗
2,∞](−λ− 2πq) +

∑

r∈Z

[v∗1,∞v
∗
2,∞](λ+ 2πr)




if λ1,∞ = λ2,∞ > 0, and

g∞(λ) = (2π)1/2

[
−1∑

q=−∞

[v∗1,∞v
∗
2,∞](−λ− 2πq) +

∞∑

r=0

[v∗1,∞v
∗
2,∞](λ+ 2πr)

]

if λ1,∞ = λ2,∞ = 0. By definition of w∗ in (16) and using (13), one has [v∗1,∞v
∗
2,∞](−λ) =

[v∗1,∞v
∗
2,∞](λ) = w∗

1,2(λ), the two previous displays read

g∞(λ) = (2π)1/2 C1,2

∑

p∈Z

w∗
1,2(λ+ 2πp) . (71)

Conditions (7) and (8) imply (14), thus that g∞(λ) is bounded, hence square integrable on

λ ∈ (−π, π). Moreover, applying the same dominated argument as above, one has

lim
j→0

∫ π

−π

∣∣∣g(πγj )
j (λ) − g∞(λ)

∣∣∣
2

dλ = 0 . (72)

One gets by (62), (50) and (72)

|Mn(gj) −Mn(g∞)|2 ≤

∫ π

−π
|gj(λ) − g∞(λ)|2 dλ→ 0 as j → ∞. (73)

By applying the limit (51) with g = g∞, one gets

Mn(g∞)2 →

∫ π

−π
|g∞(λ)|2 dλ (74)

as n → ∞. Hence, setting Mn(gj) = (Mn(gj) −Mn(g∞)) +Mn(g∞), the limit (57) follows

from (60), (71), (73) and (74).

Step 4. We now establish the limit (58). By Condition (7), we have

sup
j≥0

∫ π

−π

∣∣v∗1,j(λ)
∣∣2 dλ <∞ . (75)



CLT FOR ARRAYS OF DECIMATED LINEAR PROCESSES 19

Using similar arguments as above and Condition (7), we have

∫ π

−π


γ−1

j

γj−1∑

p=0

∣∣v∗2,j(ξj,p(λ))
∣∣



2

dλ = γ−1
j

∫ 2π

0




γj−1∑

p=0

γ
−1/2
j

∣∣v∗2,j(ξj,p(λ− πγj))
∣∣



2

dλ

≤ C γ−1
j

∫ 2π

0




γj−1∑

p=0

(1 + ||λ+ 2π(p − γj/2)| − γjλ2,j|)
−δ




2

dλ (76)

Using that ||a+ b| − c| ≥ ||b| − c| − |a| and λ ∈ [0, 2π], we have

||λ+ 2π(p − γj/2)| − γjλ2,j | ≥ |2π|p − γj/2| − γjλ2,j| − 2π

Take j large enough so that γj is even. Since λ2,j ∈ [0, π), as p ∈ {0, . . . , γj − 1}, 2π|p −

γj/2| − γjλ2,j is a sequence of numbers with lag 2π and belonging to [−γjπ, γjπ] and can

thus be written as a sequence 2πq+c, where q belongs to {−γj/2, . . . , γj/2} and c to [−π, π]

so that

|2π|p − γj/2| − γjλ2,j | − 2π ≥ 2π|q| − 3π .

From the last two displays, we have

(5π + ||λ+ 2π(p− γj/2)| − γjλ2,j |)
−δ ≤ (2π)−δ(1 + |q|)−δ ,

with q describing {−γj/2, . . . , γj/2} as p describes {0, . . . , γj − 1}. Inserting this bound

in (76), we get

∫ π

−π


γ−1

j

γj−1∑

p=0

∣∣v∗2,j(ξj,p(λ))
∣∣



2

dλ ≤ C γ−1
j




γj/2∑

q=0

(1 + q)−δ




2

for some constant C not depending on j ≥ 0. Since the last right-hand side of the previous

display tends to 0 as j → ∞ for any δ > 1/2, with (75) and (56), we obtain (58). �

Remark 14. The factor 4π = 2 × 2π in (24) is due to the factor 2 in the right-hand side

of (52) and the presence of 2π in the right-hand side of (57).

Corollary 1. Let {Zi,j,k, i = 1, 2, j ≥ 0, k ∈ Z} be an array of 2–dimensional decimated

linear processes as defined by (1). Assume (A-2), that γj is even for j large enough and

that Condition (C) holds for some λi,∞ ∈ [0, π) and R → Z functions v∗i,∞, i = 1, 2. Then,

for all k, k′ ∈ Z, as j → ∞,

Cov
(
Z2

1,j,k, Z
2
2,j,k′

)
→ 2C2

1,2

(∫ ∞

−∞
w∗

1,2(λ)eiλ(k′−k) dλ

)2

, (77)
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where C1,2 and w∗
1,2 are defined in (17) and (16), and, as (n, j) → (∞,∞),

1

n
Cov

(
n−1∑

k=0

Z2
1,j,k,

n−1∑

k=0

Z2
2,j,k

)
→ 4πC1,2

∫ π

−π

∣∣∣∣∣∣
∑

p∈Z

w∗
1,2(λ+ 2πp)

∣∣∣∣∣∣

2

dλ . (78)

Proof. Setting n = 1 in (52) and (53) and replacing v1,j(−t) by v1,j(γjk − t) and v2,j(−t)

by v2,j(γjk
′ − t) so that Z1,j,0 is replaced by Z1,j,k and Z2,j,0 by Z2,j,k′, we get

Cov
(
Z2

1,j,k, Z
2
2,j,k′

)
= 2Aj(1) + κ4Bj(1)

= 2

(∑

t∈Z

v1,j(γjk − t)v2,j(γjk
′ − t)

)2

+ κ4Bj(1) ,

and thus (77) follows from (58), (18) and (15).

Relation (78) is obtained by applying Lemmas 5 and 6. �

6. Proof of Theorem 1

We first establish two Central Limit Theorems which will be used in the proof of Theo-

rem 1. The first involves a sequence of linear filters of the sequence {ξt, t ∈ Z}.

Proposition 2. Define, for all i = 1, . . . , N , j ≥ 0, k ∈ Z,

Zi,j =
∑

t∈Z

vi,j(t) ξt , (79)

where for all i = 1, . . . , N and j ≥ 0, {vi,j(t), t ∈ Z} is real-valued and satisfies
∑

t∈Z
v2
i,j(t) <

∞ and {ξt, t ∈ Z} satisfies (A-1). Assume that

lim
j→∞

sup
t∈Z

|vi,j(t)| = 0 for all i = 1, . . . , N , (80)

lim
j→∞

∑

t∈Z

(
vi,j(t)vi′,j(t)

)
= Σi,i′ for all i, i′ = 1, . . . , N , (81)

where Σ is a N ×N given matrix. Then, as j → ∞,



Z1,j

...

ZN,j




L
−→N (0,Σ) . (82)

Remark 15. A study on the weak convergence of such sequence without assuming Assump-

tion (A-1) can be found in [4].

Proof. This is a standard application of the Lindeberg-Feller Central Limit Theorem. Using

the Cramér-Wold device for vectorial Central Limit Theorem and since for any column
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vector ζ ∈ R
N , the linear combination

∑N
i=1 ζiZi,j can be written as in (79) with vi,j(t)

replaced by vj(t; ζ) =
∑N

i=1 ζivi,j(t), which satisfies

lim
j→∞

sup
t∈Z

|vj(t; ζ)| = 0 for all i = 1, . . . , N ,

lim
j→∞

∑

t∈Z

(vj(t; ζ)vj(t; ζ)) = ζT Σζ ,

it is sufficient by (80) and (81) to prove the result for N = 1, in which case we simply denote

v1,j(t) by vj(t) and Σ by σ2. Let (mj) be a sequence of integers tending to infinity with j,

such that
∑

|t|≥mj

v2
j (t) ≤ 2−j .

We now show that the Lindeberg conditions hold for the sequence
∑

|t|≤mj
vj(t)ξt. The first

holds because, by (81),

lim
j→∞

∑

|t|≤mj

Var(vj(t)ξt) = lim
j→∞

∑

|t|≤mj

v2
j (t)

def
= σ2 .

The second holds because, for all ǫ > 0,

∑

|t|≤mj

E
[
v2
j (t)ξ

2
t 1(|vj(t)ξt| ≥ ǫ)

]
≤

(∑

t∈Z

v2
j (t)

)
E
[
ξ20 1(|ξ0| ≥ ǫ/Sj)

]
,

where Sj = supt∈Z |vj(t)|, and, by (80), the right-hand side of the last display tends to 0 as

j → ∞. This concludes the proof. �

The second Central Limit Theorem deals with m-dependent arrays. Recall that {Yk} is

said to be m-dependent if, for all p ≥ 1 and all k1, . . . , kp such that k1 +m ≤ k2, . . . , kp−1 +

m ≤ kp, Yk1
, . . . , Ykp

are independent.

Proposition 3. Let m be a fixed integer and (nj) a sequence of integers such that nj → ∞

as j → ∞. Let {Yj,k, k = 0, . . . , nj − 1, j ≥ 1} be an array of R
d-valued random vectors,

such that, for each j ≥ 0, {Yj,k, k = 0, . . . , nj − 1} has zero mean, is strictly stationary and

m-dependent. Assume that there exists a d×d matrix Γ and a centered stationary R
d-valued

process {Yk, k ≥ 0} with finite variance such that

Yj,�
L

−→Y
�

as j → ∞ , (83)

lim
j→∞

Cov
(
Yj,k, Yj,k′

)
= Cov (Yk,Yk′) for all k, k′ ≥ 0 (84)

lim
l→∞

lim
j→∞

Cov

(
l−1/2

l−1∑

k=0

Yj,k

)
= Γ . (85)
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Then we have, as j → ∞,

n
−1/2
j

nj−1∑

k=0

Yj,k
L

−→N (0,Γ) . (86)

Proof. We may suppose that d = 1 since the vector case follows by the Cramér-Wold device.

For convenience, we set Γ = σ2. Let s be a positive integer larger than m. We decompose

of
∑nj−1

k=0 Yj,k in sums of random variables spaced by m, as follows:

nj−1∑

k=0

Yj,k =

pj∑

k=0

S
(s)
j,k +

pj∑

k=0

T
(s)
j,k +R

(s)
j , (87)

where

S
(s)
j,k =

s−1∑

i=0

Yj,k(m+s)+i, T
(s)
j,k =

m−1∑

i=0

Yj,k(m+s)+s+i and R
(s)
j =

qj−1∑

i=0

Yj,pj(m+s)+i ,

and where pj and qj are the non-negative integers defined by the Euclidean division

nj = pj(m+ s) + qj with qj ∈ {0, . . . ,m+ s− 1} . (88)

The m-dependence and the strict stationarity of the sequences Yj,� ensure that for all

j ≥ 0 and all s ≥ m, S
(s)
j,� and T

(s)
j,� are sequences of centered independent and identically

distributed random variables. Hence, by (84), we have

lim
j→∞

pj∑

k=0

Var
(
p
−1/2
j S

(s)
j,k

)
= lim

j→∞
Var

(
S

(s)
j,0

)
= Var

(
S(s)

)
, (89)

where

S(s) def
=

s−1∑

i=0

Yi ,

lim
j→∞

Var

(
p
−1/2
j

pj∑

k=0

T
(s)
j,k

)
= lim

j→∞
Var

(
T

(s)
j,0

)
= Var

(
S(m)

)
(90)

and

lim sup
j→∞

Var
(
R

(s)
j

)
≤ max

{
Var

(
S(t)
)

: t = 0, 1, . . . ,m+ s− 1
}
<∞ . (91)

In addition, for any ǫ > 0,

pj∑

k=0

E

[
(p

−1/2
j S

(s)
j,k )21(p

−1/2
j |S

(s)
j,k | > ǫ)

]
= E

[
(S

(s)
j,0 )21(p

−1/2
j |S

(s)
j,k | > ǫ)

]
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and hence, since pj → ∞,

lim sup
j→∞

pj∑

k=0

E

[
(p

−1/2
j S

(s)
j,k)21(p

−1/2
j |S

(s)
j,k | > ǫ)

]

≤ inf
M>0

lim sup
j→∞

E

[
(S

(s)
j,0 )21(|S

(s)
j,k | > M)

]
. (92)

But using (83), we have

S
(s)
j,0

L
−→S(s) as j → ∞ .

Hence, denoting by φM some continuous R+ → [0, 1] function satisfying 1(x ≤ M/2) ≤

φM (x) ≤ 1(x ≤M), so that x2φM (x) is continuous and bounded, we have

E

[
(S

(s)
j,0 )21(|S

(s)
j,k | ≤M)

]
≥ E

[
(S

(s)
j,0 )2φM (S

(s)
j,0 )
]

→ E

[
(S(s))2φM (S(s))

]
as j → ∞

→ E

[
(S(s))2

]
as M → ∞ .

Using (84), we have E

[
(S

(s)
j,0 )2

]
→ E

[
(S(s))2

]
as j → ∞ and hence, for any M > 0,

lim sup
j→∞

E

[
(S

(s)
j,0 )21(|S

(s)
j,k | > M)

]
= E

[
(S(s))2

]
− lim inf

j→∞
E

[
(S

(s)
j,0 )21(|S

(s)
j,k | ≤M)

]

The two last displays and (92) imply the second Lindeberg Condition, namely,

lim sup
j→∞

pj∑

k=0

E

[
(p

−1/2
j S

(s)
j,k )21(p

−1/2
j |S

(s)
j,k | > ǫ)

]
= 0 for any ǫ > 0 .

Using this and (89), we may apply the Lindeberg-Feller CLT for arrays of independent r.v.’s

and we obtain

p
−1/2
j

pj∑

k=0

S
(s)
j,k

L
−→N

(
0,Var

(
S(s)

))
. (93)

By (85), we have

lim
s→∞

s−1Var
(
S(s)

)
= σ2 . (94)

Using (93) and (88) with j → ∞ and then (94) with s→ ∞ yields

n
−1/2
j

pj∑

k=0

S
(s)
j,k

L
−→
j→∞

N
(
0, (m+ s)−1Var

(
S(s)

))
L

−→
s→∞

N
(
0, σ2

)
.

On the other hand, by (87), (90) and (91), we have

lim sup
j→∞

E




n−1/2

j

nj−1∑

k=0

Yj,k − n
−1/2
j

pj∑

k=0

S
(s)
j,k




2
 ≤ (m+ s)−1Var

(
S(m)

)
→ 0
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as s→ ∞. Using the last two displays and [3, Theorem 3.2], we obtain (86), which concludes

the proof. �

Proof of Theorem 1. The proof is in three steps. We show in a first step the convergence of

the process [Zi,j,k, i = 1, . . . , N, k = 0, . . . , nj ] as j → ∞ towards a Gaussian limit. In the

second step we prove Theorem 1 under the additional assumption that the sequence

Yj,k
def
=




{Z2
1,j,k − E[Z2

1,j,k]}
...

{Z2
N,j,k − E[Z2

N,j,k]}


 , k = 0, . . . , nj − 1

is m-dependent. The third step exhibits an m-dependent approximation and extends the

m-dependent case to the general case. The proof uses a number of auxiliary results proved

in Section 5.

Step 1. We shall apply Proposition 2. By Relation (15) in Proposition 1, we get, for all

i, i′ = 1, . . . , N and all k, k′ ∈ Z, as j → ∞,

Cov
(
Zi,j,k, Zi′,j,k′

)
→ Ci,i′

∫ ∞

−∞
w∗

i,i′(λ) eiλ(k′−k) dλ . (95)

Moreover, by (7), one has, for all i = 1, . . . , N ,

sup
t∈Z

|vi,j(t)| ≤ 2 (2π)−1/2

∫ π

0

∣∣v∗i,j(λ)
∣∣ dλ

≤ 2 (2π)−1/2γ
−1/2
j

∫ γj(π−λi,j)

−γjλi,j

(1 + |λ|)−δ dλ ,

which, by (4), tends to 0 as j → ∞ for any δ > 1/2. Hence, by Proposition 2, for any p ≥ 1,

any i1, . . . , ip ∈ {1, . . . , N} and any k1, . . . , kp ∈ Z, we have, as j → ∞,




Zi1,j,k1

...

Zip,j,kp




L
−→N (0,Σ) (96)

where Σ is the covariance matrix with entries given for all 1 ≤ n, n′ ≤ p by

Σn,n′ = Cin,in′

∫ ∞

−∞
w∗

in,in′
(λ) eiλ(kn′−kn) dλ .

Expressing this integral as
∑

p

∫ π+2pπ
−π+2pπ, we get

Σn,n′ = Cin,in′

∫ π

−π


∑

p∈Z

w∗
in,in′

(λ+ 2pπ)


 eiλ(kn′−kn) dλ .
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The convergence (96) can be written equivalently as



Z1,j,�

...

ZN,j,�




L
−→Z

�
, (97)

as j → ∞, where {Zk = [Z1,∞,k . . . ZN,∞,k]
T , k ≥ 0} is a stationary Gaussian R

N -valued

process with spectral density matrix function D with entries

Di,i′(λ) = Ci,i′
∑

p∈Z

w∗
in,in′

(λ+ 2pπ), 1 ≤ i, i′ ≤ N .

Step 2. In this step, we prove (23), assuming that for each j ≥ 1, {Yj,k, k = 0, . . . , nj − 1}

is m-dependent. We shall apply Proposition 3 under this additional assumption. We thus

need to show that (83)–(85) hold. Relations (25), (97) and the continuous mapping theorem

imply (83) with

Yk =




Z2
1,∞,k − E[Z2

1,∞,k]
...

Z2
N,∞,k − E[Z2

N,∞,k]


 .

Since Z
�
is Gaussian, we have, for all k, k′ ≥ 0 and all i, i′ = 1, . . . , N ,

Cov
(
Yk,i,Yk′,i′

)
= 2Cov2

(
Zi,∞,k, Zi′,∞,k′

)

= 2 C2
i,i′

(∫ ∞

−∞
w∗

i,i′(λ) eiλ(k′−k) dλ

)2

.

Hence Relation (77) in Corollary 1 and the previous display yield (84). The final con-

dition (85) follows from Relation (78) of Corollary 1 with a covariance matrix Γ with

entries (24). Applying Proposition 3 then yields (23), with Γ given by (24).

Step 3. Let K(t) be a non-negative infinitely differentiable function defined on t ∈ R whose

support is included in [−1/2, 1/2] and such that K(0) = 1. We will denote by K̂ its Fourier

transform,

K̂(ξ) =

∫ ∞

−∞
K(t)e−iξt dt .

Observe that, by the assumptions on K, K̂(ξ) decreases faster than any polynomial as

|ξ| → ∞. In particular K̂(ξ) is integrable on ξ ∈ R and, for all t ∈ R,

K(t) =
1

2π

∫ ∞

−∞
K̂(ξ)eiξt dξ . (98)

The function K will be used to approximate the v
(m)
i,j sequence by a sequence whose

dependence structure can be controlled. We thus define, for any i = 1, . . . , N , j ≥ 0 and
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m ≥ 1,

v
(m)
i,j (t) = vi,j(t)K(t/(mγj)),

which vanishes for all |t| ≥ mγj/2, and we define Z
(m)
i,j,k and v∗i,j

(m)(λ) accordingly.

Let m be a fixed integer. Then, for all j ≥ 0,

{[Z
(m)
1,j,k . . . Z

(m)
N,j,k]

T , k ∈ Z}

is an m-dependent sequence of vectors. We shall now show that {v∗i,j
(m), j ≥ 0} satisfy

conditions similar to (7) and (8) and then apply Step 2. Using (98) and (2) in the equation

v∗i,j
(m)(λ) = (2π)−1/2

∑

t∈Z

vi,j(t)K(t/(mγj))e
−iλt ,

we get that

v∗i,j
(m)(λ) =

m

2π

∫ ∞

−∞
K̂(mξ)v∗i,j(λ− γ−1

j ξ) dξ . (99)

It follows from Condition (7) that there exists a constant C > 0 such that for all j ≥ 0 and

λ ∈ [0, π),
∣∣v∗i,j(λ)

∣∣ ≤ C γ
1/2
j (1 + |γjλ− γjλi,j|)

−δ . (100)

Using (10) and the (2π)-periodicity of v∗i,j , we can express (100) using the symmetric (2πγj)-

periodic function h2πγj ,γjλi,j
(ξ) defined in Lemma 2 and equal to (1 + |ξ − γjλi,j|)

−δ for

0 ≤ ξ ≤ πγj. With ξ = γjλ, one gets

∣∣v∗i,j(λ)
∣∣ ≤ C γ

1/2
j h2πγj ,γjλi,j

(γjλ) , j ≥ 0, λ ∈ R .

Let g(t) = m|K̂(mt)| and observe that ‖g‖1 = ‖K̂‖1 <∞ and

g(t) ≤ c0 m (m|t|)−δ−1 ≤ c0|t|
−δ−1 for all |t| ≥ 1 and m ≥ 1 ,

where c0 is a positive constant such that |K̂(u)| ≤ c0|u|
−δ−1 for |u| ≥ 1. Applying these

bounds to (99) gives

∣∣∣v∗i,j(m)(λ)
∣∣∣ ≤ Cγ

1/2
j

∫ ∞

−∞
g(ξ) h2πγj ,γjλi,j

(γjλ− ξ) dξ .

Applying Lemma 2 to this convolution, we get
∣∣∣v∗i,j(m)(λ)

∣∣∣ ≤ C γ
1/2
j (1 + γj|λ− λi,j|)

−δ ,

for different constants C depending neither on m ≥ 1, j ≥ 0 nor on λ ∈ [0, π). One has

therefore the following version of (7) for v∗i,j
(m), uniform in m ≥ 1:

sup
j≥0

sup
m≥1

sup
λ∈[0,π)

γ
−1/2
j |v∗i,j

(m)(λ)|(1 + γj |λ− λi,j|)
δ <∞ . (101)
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To get a version of (8) for v∗i,j
(m), observe that, by (99), we have

γ
−1/2
j v∗i,j

(m)(γ−1
j λ+ λi,j) =

m

2π

∫ ∞

−∞
K̂(mξ)

[
γ
−1/2
j v∗i,j(γ

−1
j (λ− ξ) + λi,j)

]
dξ.

Condition (7) implies that the term in brackets is bounded independently of ξ and j and

hence by (8) and dominated convergence, one has

lim
j→∞

γ
−1/2
j v∗i,j

(m)(γ−1
j λ+ λi,j) = v∗i,∞

(m)(λ) for all λ ∈ R , (102)

where

v∗i,∞
(m)(λ)

def
=

m

2π

∫ ∞

−∞
K̂(mξ)v∗i,∞(λ− ξ) dξ . (103)

Note that v∗i,∞
(m)(λ) is an approximating sequence of v∗i,∞(λ) in the sense that, since v∗i,∞ is

bounded (by (14)) and continuous (by hypothesis), and since (2π)−1
∫∞
−∞ K̂(u) du = K(0) =

1, for all λ ∈ R,

v∗i,∞
(m)(λ) =

1

2π

∫ ∞

−∞
K̂(u)v∗i,∞(λ− u/m) du → v∗i,∞(λ) as m→ ∞ . (104)

Relations (101) and (102) are the corresponding versions of Conditions (7) and (8) for

v∗i,j
(m). and since, we are in the m-dependent case, we may apply the result proved in

Step 2, and obtain, as j → ∞,

n
−1/2
j




∑nj−1
k=0 {Z

(m) 2
1,j,k − E[Z

(m) 2
1,j,k ]}

...
∑nj−1

k=0 {Z
(m) 2
N,j,k − E[Z

(m) 2
N,j,k ]}




L
−→N (0,Γ(m)) , (105)

where Γ(m) is the covariance matrix with entries

Γ
(m)
i,i′

def
= 2πCi,i′

∫ π

−π

∣∣∣∣∣∣
∑

p∈Z

w∗
i,i′

(m)(λ+ 2pπ)

∣∣∣∣∣∣

2

dλ, 1 ≤ i, i′ ≤ N , (106)

where w∗
i,i′

(m) is the equivalent of w∗
i,i′ in (16),

w∗
i,i′

(m)(λ) =
1

2

[
v∗i,∞

(m)(−λ)v∗i′,∞
(m)(−λ) + v∗i,∞

(m)(λ)v∗i′,∞
(m)(λ)

]
, λ ∈ R .

To obtain the corresponding result (23) for the {Zi,j,k} sequence, we apply [3, Theo-

rem 3.2] as follows. We show that

lim
m→∞

Γ
(m)
i,i′ = Γi,i′ 1 ≤ i, i′ ≤ N (107)

and, for all i = 1, . . . , N ,

lim
m→∞

lim
j→∞

Var


n−1/2

j

nj−1∑

k=0

Z
(m) 2
i,j,k − n

−1/2
j

nj−1∑

k=0

Z2
i,j,k


 = 0 . (108)
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Relation (107) says that the RHS of (105) converges in distribution to the RHS of (23)

and Relation (108) says that the LHS of (105) is a good approximation to the LHS (23) by

choosing m arbitrary large.

To prove (108), it is sufficient to establish the following equalities for all i = 1, . . . , N .

lim
m→∞

lim
j→∞

Cov


n−1/2

j

nj−1∑

k=0

Z
(m) 2
i,j,k , n

−1/2
j

nj−1∑

k=0

Z2
i,j,k




= lim
m→∞

lim
j→∞

Var


n−1/2

j

nj−1∑

k=0

Z
(m) 2
i,j,k


 = lim

j→∞
Var


n−1/2

j

nj−1∑

k=0

Z2
i,j,k


 .

Using Relation (78) of Corollary 1, the limits as j → ∞ (an hence nj → ∞) in the previous

display are, respectively,

Γ
(m,∞)
i,i

def
= 2πCi,i′

∫ π

−π

∣∣∣∣∣∣
∑

p∈Z

w∗
i,i′

(m,∞)(λ+ 2pπ)

∣∣∣∣∣∣

2

dλ, Γ
(m)
i,i and Γi,i ,

where Γ
(m)
i,i is defined in (106) and Γi,i in (24) and

w∗
i,i′

(m,∞)(λ) =
1

2

[
v∗i,∞

(m)(−λ)v∗i′,∞(−λ) + v∗i,∞
(m)(λ)v∗i′,∞(λ)

]
, λ ∈ R .

Hence to prove (107) and (108), it is sufficient to show that

lim
m→∞

Γ
(m,∞)
i,i′ = lim

m→∞
Γ

(m)
i,i′ = Γi,i′ , i, i′ = 1, . . . , N . (109)

Observe first that Relations (101) and (102) imply

sup
λ∈R

sup
m≥1

∣∣∣v∗i,∞(m)(λ)
∣∣∣ (1 + |λ|)δ <∞ , (110)

which is the uniform version of (14). Eq. (109) now follows bfrom (104), (101) and (110),

and dominated convergence. �

7. Proof of Theorem 2

The following proposition is the key point for proving Theorem 2 since it shows how

Condition (7) in Theorem 1 can be recovered for an approximation of the sample mean

square, when using the alternative Condition (26). Condition (27) in Theorem 2 can then

be used to control the sharpness of the approximation.

Proposition 4. Let {Z1,j,k, i = 1, 2, j ≥ 0, k ∈ Z} be an array of 1–dimensional decimated

linear processes as defined by (1). Assume that {v1,j(t), j ≥ 0, t ∈ Z} satisfies (26) for δ >

1/2, a sequence (λ1,j) taking its values in [0, π) and some ε > 0. Then there exists an array
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{v̂1,j(t), j ≥ 0, t ∈ Z} whose Fourier series coincide with those of {v1,j(t), j ≥ 0, t ∈ Z}

in ε-neighborhoods of the frequencies {λ1,j , j ≥ 0} and satisfying (7), that is, such that

v̂∗1,j(λ) = v∗1,j(λ) for all λ ∈ (−π, π) such that |λ− λ1,j | ≤ ε , (111)

sup
j≥0

sup
λ∈[0,π)

γ
−1/2
j |v̂∗1,j(λ)|(1 + γj|λ− λi,j|)

δ <∞ , (112)

and the following approximation holds.

n
−1/2
j




nj−1∑

k=0

{Z2
1,j,k − E[Z2

1,j,k]


 = n

−1/2
j

nj−1∑

k=0

{Ẑ2
1,j,k − E[Ẑ2

1,j,k]} +Rj , (113)

where

Ẑ1,j,k =
∑

t∈Z

v̂1,j(γjk − t)ξt , (114)

and, for some positive constant C not depending on j,

E [|Rj |] ≤ C
[
n

1/2
j Ij + I

1/2
j

]
, (115)

where

Ij
def
=

∫ π

0
1(|λ− λ1,∞| > ε)

∣∣v∗1,j(λ)
∣∣2 dλ . (116)

Proof. Let L0 = [−λ1,∞ − ε,−λ1,∞ + ε] ∪ [λ1,∞ − ε, λ1,∞ + ε]. We write

v∗1,j(λ) = v̂∗1,j(λ) + ṽ∗1,j(λ), λ ∈ (−π, π) ,

where v̂∗1,j(λ) = 1L0
(λ)v∗1,j(λ) so that (111) holds. We define v̂1,j, ṽ1,j accordingly, so that

v1,j(t) = v̂1,j(t) + ṽ1,j(t) and, since v̂∗1,j and ṽ∗1,j are in L2(−π, π), v̂1,j and ṽ1,j are in l2(Z).

Hence Z1,j,k = Ẑ1,j,k + Z̃1,j,k with Ẑ1,j,k defined by (114) and

Z̃1,j,k =
∑

t∈Z

ṽ1,j(γjk − t)ξt. (117)

Moreover, by (26) and the definition of v̂∗1,j, Condition (112) holds.

We now show that the remainder Rj defined by (113) satisfies (115). Observe that Ẑ1,j,k

and Z̃1,j,k are centered and, since

E[Ẑ1,j,kZ̃1,j,k] =

∫ π

−π
v̂∗1,j(λ)ṽ∗1,j(λ)dλ = 0 ,

uncorrelated. Thus we get E[Z2
1,j,k] = E[Ẑ2

1,j,k] + E[Z̃2
1,j,k] and hence the remainder Rj

defined by (113) is

Rj = Pj + 2Qj with (118)

Pj = n
−1/2
j

nj−1∑

k=0

{Z̃2
1,j,k − E[Z̃2

1,j,k]} and Qj = n
−1/2
j

nj−1∑

k=0

Z̃1,j,kẐ1,j,k . (119)
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We have

E[|Pj |] ≤ 2n
1/2
j E[Z̃2

1,j,0] = 2n
1/2
j

∑

t∈Z

ṽ2
1,j(t) = 4n

1/2
j Ij . (120)

by the Parseval Theorem and the definitions of ṽ∗1,j and Ij.

Using that Ẑ1,j,k and Z̃1,j,k′ are centered and uncorrelated, we have, using a standard

formula for cumulants of products, for all k, k′ ∈ Z,

Cov
(
Z̃1,j,kẐ1,j,k, Z̃1,j,k′Ẑ1,j,k′

)
= Cov

(
Z̃1,j,k, Z̃1,j,k′

)
Cov

(
Ẑ1,j,k, Ẑ1,j,k′

)

+cum
(
Z̃1,j,k, Ẑ1,j,k, Z̃1,j,k′, Ẑ1,j,k′

)
.

Hence, Var (Qj) = Aj +Bj where

Aj = n−1
j

nj−1∑

k=0

nj−1∑

k′=0

Cov
(
Z̃1,j,k, Z̃1,j,k′

)
Cov

(
Ẑ1,j,k, Ẑ1,j,k′

)

and

Bj = n−1
j

nj−1∑

k=0

nj−1∑

k′=0

cum
(
Z̃1,j,k, Ẑ1,j,k, Z̃1,j,k′, Ẑ1,j,k′

)
.

Denote by f̂j and f̃j the respective spectral densities of the weakly stationary processes Ẑ1,j,�

and Z̃1,j,�. Replacing the covariances in the defintion of Aj by their respective expressions as

Fourier coefficients of the spectral density, e.g. Cov
(
Z̃1,j,k, Z̃1,j,k′

)
=
∫ π
−π ei(k−k′)λf̃j(λ)dλ,

we get

Aj = n−1
j

∫ π

−π

∫ π

−π
f̂j(λ)f̃j(λ

′)

∣∣∣∣∣∣

nj−1∑

k=0

eik(λ+λ′)

∣∣∣∣∣∣

2

dλdλ′ ,

which implies that

0 ≤ Aj ≤ 2π sup
λ∈(−π,π)

f̂j(λ) ×

∫ π

−π
f̃j(λ

′)dλ′ , (121)

where, in the last inequality, we used that, for any λ′,
∫ π
−π

∣∣∣
∑nj−1

k=0 eik(λ+λ′)
∣∣∣
2
dλ = 2πnj .

Observe that, by definition of Ẑ1,j,k in (114),

Cov
(
Ẑ1,j,0, Ẑ1,j,k

)
= (2π)

∫ π

−π

∣∣∣v̂∗1,j(λ)
∣∣∣
2
eiγjkλ dλ

Using Lemma 1 with the (2π)-periodic function g(λ) =
∣∣∣v̂∗1,j(λ)

∣∣∣
2
eiγjkλ, we get

Cov
(
Ẑ1,j,0, Ẑ1,j,k

)
= (2π)γ−1

j

∫ π

−π




γj−1∑

p=0

∣∣∣v̂∗1,j(γ
−1
j (λ+ 2pπ))

∣∣∣
2


 eikλ dλ .
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Hence we have

f̂j(λ) = (2π)−1γ−1
j

γj−1∑

p=0

∣∣∣v̂∗1,j(γ
−1
j (λ+ 2pπ))

∣∣∣
2
.

Using (112), since |γ−1
j (λ+ 2pπ)| < π for p = 0, . . . , γj − 1 and λ ∈ (−γjπ,−γjπ + 2π), we

get

f̂j(λ) ≤ C

γj−1∑

p=0

(1 + ||λ+ 2pπ| − γjλ1,j|)
−2δ , λ ∈ (−γjπ,−γjπ + 2π) .

Using (42) in Lemma 3 and that f̂j is (2π)-periodic, we obtain

sup
j≥0

sup
λ∈(−π,π)

f̂j(λ) <∞ . (122)

Moreover, we have
∫ π

−π
f̃j(λ

′)dλ′ = Var
(
Z̃1,j,0

)
=
∑

t∈Z

ṽ2
1,j(t) =

∫ π

−π

∣∣∣ṽ∗1,j(λ)
∣∣∣
2

dλ , (123)

by the Parseval Theorem. Hence by (121), there is a positive constant C such that

|Aj | ≤ C

∫ π

−π

∣∣∣ṽ∗1,j(λ)
∣∣∣
2

dλ . (124)

We now considerBj. Using (A-2) and the definitions of Z̃1,j,k and Ẑ1,j,k in (114) and (117),

we have

cum
(
Z̃1,j,k, Ẑ1,j,k, Z̃1,j,k′, Ẑ1,j,k′

)
= κ4

∑

t∈Z

ṽ1,j(γjk−t)v̂1,j(γjk−t)ṽ1,j(γjk
′−t)v̂1,j(γjk

′−t) .

Hence

|Bj| ≤ κ4

∑

t,τ∈Z

|ṽ1,j(t)v̂1,j(t)ṽ1,j(t+ γjτ)v̂1,j(t+ γjτ)|

≤ κ4

(∑

t∈Z

|ṽ1,j(t)v̂1,j(t)|

)2

≤ κ4

∑

t∈Z

|ṽ1,j(t)|
2 ×

∑

t∈Z

|v̂1,j(t)|
2

= κ4

∫ π

−π

∣∣∣ṽ∗1,j(λ)
∣∣∣
2

dλ×

∫ π

−π

∣∣∣v̂∗1,j(λ)
∣∣∣
2

dλ (125)

By definition of v̂∗1,j and (122), we have
∫ π

−π

∣∣∣v̂∗1,j(λ)
∣∣∣
2

dλ = Var
(
Ẑ1,j,0

)
=

∫ π

−π
f̂j(λ) dλ ≤ C ,

and hence

Bj ≤ C

∫ π

−π

∣∣∣ṽ∗1,j(λ)
∣∣∣
2

dλ (126)
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where C denotes a positive constant not depending on j. The bounds (124) and (126) and

the definition of ṽ∗1,j yield

E
[
Q2

j

]
= Var(Qj) = Aj +Bj ≤ 2C

∫ π

−π

∣∣∣ṽ∗1,j(λ)
∣∣∣
2

dλ

≤ 4C

∫ π

0
1 (|λ− λ1,∞| > ε)

∣∣v∗1,j(λ)
∣∣2 dλ = 4C Ij

by the definitions of ṽ∗1,j and Ij . This, with (118), (120) and Jensen’s inequality yields (115),

which concludes the proof. �

Proof of Theorem 2. The general case can easily be adapted from the case N = 1, which we

assume here. We apply Proposition 4. It follows from (111) and (112) that the assumptions

of Theorem 1 are verified for Ẑ1,j,k and we obtain

n
−1/2
j




nj−1∑

k=0

{Ẑ2
1,j,k − E[Ẑ2

1,j,k]}


 L

−→N (0,Γ) .

It follows from (27), that Rj
P

−→ 0 as j → ∞,. Hence (113) yields the CLT (23), which

concludes the proof. �

8. Proof of Theorem 3

We shall use the following lemmas.

Lemma 7. Assume (H-1) and (H-2). For ε > 0 small enough, if 2β − 1 > 2, then
∣∣∣∣
∫ ε

−ε
γj

∣∣∣Ŵ (γjλ)
∣∣∣
2
f(λ) dλ− f(0)

∣∣∣∣ = O
(
γ−2

j

)
. (127)

Proof. Using (31), for ε > 0 small enough, the left-hand side of (127) is at most
∣∣∣∣f(0)

∫ ε

−ε
γj

∣∣∣Ŵ (γjλ)
∣∣∣
2

dλ− f(0)

∣∣∣∣+ C

∣∣∣∣
∫ ε

−ε
γj

∣∣∣Ŵ (γjλ)
∣∣∣
2
λ2 dλ

∣∣∣∣ , (128)

where C is a positive constant. To evaluate the first integral in (128) we write
∫ ε
−ε =∫∞

−∞−
∫ −ε
−∞−

∫∞
ε . Using (H-2), one gets

∫ ε

−ε
γj

∣∣∣Ŵ (γjλ)
∣∣∣
2

dλ = 1 +O
(
γ1−2β

j

)
.

The second integral in (128) is bounded by
∫ ∞

−∞
γj

∣∣∣Ŵ (γjλ)
∣∣∣
2
λ2 dλ ≤ C ′γ−2

j ,

where C ′ =
∫∞
−∞

∣∣∣Ŵ (λ)
∣∣∣
2
λ2 dλ <∞ by (H-2). �
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Lemma 8. Assume (H-2) and define Bj as in (138). Then there is a positive constant C,

such that, for all j ≥ 0 and λ ∈ (−π, π),
∣∣∣γ−1/2

j Bj(λ) − Ŵ (γjλ)
∣∣∣ ≤ C γ−β

j , (129)
∣∣∣∣|Bj(λ)|2 − γj

∣∣∣Ŵ (γjλ)
∣∣∣
2
∣∣∣∣ ≤ C

[
γ1−β

j

∣∣∣Ŵ (γjλ)
∣∣∣+ γ1−2β

j

]
, (130)

and, for any positive ǫ,

sup
λ∈[0,π)

1(|λ| > ǫ) |Bj(λ)| = O(γ
1/2−β
j ) . (131)

Proof. By (138), we have Bj(λ) = γ
1/2
j Ŵ (γjλ) +Rj(λ), where

Rj(λ) =
∑

p 6=0

γ
1/2
j Ŵ (γj(λ+ 2pπ)) .

Using (H-2), since β > 1, we have

sup
λ∈(−π,π)

|Rj(λ)| ≤ C γ
1/2
j

∑

p>0

(1 + (2p − 1)γjπ)−β = O(γ
1/2−β
j ) . (132)

The bound (132) gives (129), which yield (131) by using (H-2). The bound (130) follows

from (129) and ∣∣|z1|2 − |z2|
2
∣∣ ≤ 2|z2| × |z1 − z2| + |z1 − z2|

2

applied with z1 = Bj(λ) and z2 = γ
1/2
j Ŵ (γjλ). �

Lemma 9. Suppose that the assumptions of Theorem 3 hold. Then for some arbitrary small

ε > 0,

sup
j≥0

sup
|λ|≤ε

γ
−1/2
j

∣∣v∗1,j(λ)
∣∣ (1 + γj|λ|)

β <∞ , (133)

lim
j→∞

γ
−1/2
j v∗1,j(γ

−1
j λ) = v∗1,∞(λ) for all λ ∈ R , (134)

with

v∗1,∞(λ) = a∗(0)Ŵ (λ), λ ∈ R , (135)

and, as j → ∞, ∫ π

0
1(|λ| > ε) |v∗1,j(λ)|2 dλ = O

(
γ1−2β

j

)
. (136)

Proof. We have, for all u ∈ Z,

W (γ−1
j u) =

1

2π

∫ ∞

−∞
Ŵ (ξ) eiγ−1

j
uξ dξ

=
1

2π

∫ π

−π


∑

p∈Z

γjŴ (γj(λ+ 2pπ))


 eiuλ dλ ,
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hence the term in brackets is the Fourier series of {W (γ−1
j u), u ∈ Z} and thus

∑

u∈Z

W (γ−1
j u)e−iλu =

∑

p∈Z

γjŴ (γj(λ+ 2pπ)) ,

which is some times called the Poisson formula. Inserting this in (139), we obtain

v∗1,j(λ) = a∗(λ) Bj(λ), λ ∈ (−π, π) , (137)

where Bj is a (2π)–periodic function defined by

Bj(λ) =
∑

p∈Z

γ
1/2
j Ŵ (γj(λ+ 2pπ)) . (138)

Applying (137) and (129) in Lemma 8, (H-2) and that |a∗(λ)| is bounded in a neighbor-

hood of the origin by (H-1), we get, for some arbitrary small ε > 0, if |λ| ≤ ε,

γ
−1/2
j |v∗1,j(λ)| ≤ C|Ŵ (γjλ)| +O

(
γ−β

j

)
≤ C (1 + γj|λ|)

−β +O
(
γ−β

j

)
,

where C and the O-term do not depend on λ, which implies (133).

Applying (137) and (129) in Lemma 8, we have, as j → ∞,

γ
−1/2
j v∗1,j(γ

−1
j λ) = a∗(γ−1

j λ)Ŵ (λ) +O(γ−β
j ) → a∗(0)Ŵ (λ), λ ∈ R ,

where the limit holds by (H-1). This gives (134).

Applying (137), (131) in Lemma 8 and
∫ π
−π |a

∗(λ)|2dλ <∞, we obtain (136). �

Proof of Theorem 3. By (28) and (30), we have

Z1,j,k =
∑

t∈Z

γ
−1/2
j

∑

v∈Z

W (k − γ−1
j t− γ−1

j v)a(u− t) ξt =
∑

t∈Z

v1,j(γjk − t) ξt ,

where

v1,j(s) = γ
−1/2
j

∑

v∈Z

W (γ−1
j (s− v)) a(v), s ∈ Z .

Thus {Z1,j,t, j ≥ 0, t ∈ Z} is an array of one-dimensional decimated linear processes as in

Definition 1. Moreover, the Fourier series (2) of v1,j(s) is

v∗1,j(λ) = γ
−1/2
j a∗(λ)

∑

u∈Z

W (γ−1
j (u))e−iλu, λ ∈ (−π, π) . (139)

We let N = 1 and λ1,j = λ1,∞ = 0 for all j ≥ 0, which yields (3), (4), (5) and (6)

in Condition (C). In view of Lemma 9, Relation (8) in Condition (C) holds, as well as

Relations (26) and (27) in Theorem 2 (recall that in that theorem, Relation (26) replaces

Relation (7) in Condition (C)). Hence we may apply Theorem 2.

We are now in a position to show first (34) then (36). Applying (19), we have

E
[
Z2

1,j,0

]
= Var (Z1,j,0) =

∫ π

−π

∣∣v∗1,j(λ)
∣∣2 dλ . (140)
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Using (137), (136) and then (130), this gives for any ǫ > 0 small enough

E
[
Z2

1,j,0

]
=

∫ ǫ

−ǫ
|a∗(λ)Bj(λ)|2 dλ+O

(
γ1−2β

j

)

=

∫ ǫ

−ǫ
γj

∣∣∣a∗(λ)Ŵ (γjλ)
∣∣∣
2

dλ+ C

∫ ǫ

−ǫ
γ1−β

j

∣∣∣Ŵ (γjλ)
∣∣∣dλ+O

(
γ1−2β

j

)
.

In the last line, since |a∗(λ)|2 = f(λ), by Lemma 7, the first term is f(0) + O
(
γ−2

j

)
and,

by a change of variable, the second term is less than Cγ−β
j ‖Ŵ‖1. Hence (34) follows since

β > 2.

The bound (136) yields (27) under the condition γ1−2β
j = o(n

−1/2
j ). Since nj is given

by (33), the assumption (35) implies that condition. Since (A-2) holds as well, we may

apply Theorem 2 with j = n and obtain (36). �
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