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ABSTRACTA monolithic strategy based on an hybrid domain decompmositiethod for the nu-
merical simulation of multiphysic problems is presentetirelies on a "physical" choice of
primal interface unknowns. First numerical assessmergsdascribed for poroelasticity prob-
lems.

RESUME.Une stratégie monolithique associée a une nouvelle appraiehdécomposition de
domaine dite hybride pour la simulation numérique de prot#é multi-physiques est propo-
sée. Celle-ci repose sur un choix "physique" des champsapsind’interface. Une premiére
application a un probléme de compactage de sol (poroéiigstiest présentée.

KEYWORDSMultiphysic, domain decomposition, multifield problentspps media.
MOTS-CLES multiphysique, décomposition de domaine, probléemeschaltips, milieux poreux.
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1. Introduction

Multiphysic problems form a wide range of problems occigrin mechanics.
They arise when modelling complex systems involving défégphenomena with cou-
plings. A classical solution is then to associate to eacimpimenon various unknown
physical fields; for instance in poroelasticy, studyingfthil flow inside a deformable
body leads to the research of both skeleton displacemerfhadgressure. However,
after finite element discretization, the presence of séuakaown fields leads to large
and massive systems of equations.

Different approaches have been explored to solve suchgrablvith computa-
tional efficiency: partitioned methods and staggered #lyois [FEL 88, LEW 91,
FEL 01] are often preferred to monolithic approaches as thake it possible to
carry out iterative resolutions uncoupling large systeamsong others let us cite Suc-
cessive OverRelaxation (SOR) based methods (like ISPP [&]y and Large Time
INcremental method [DUR 03]. All these methods are basechamaoupling of the
various physical phenomena, with the possibility of usiifeent solvers for each
uncoupled problem. These methods may lack efficiency whapliows become too
strong because many iterations are then required so thgiwtational cost consider-
ably increases, or when huge 3D problems are consideredi$etide dimension of
the pure mechanical problem is then far greater than the laitidimension leading
to unbalanced subsystems. In such cases a monolithic apppoaa be privileged,
even if such classical method does not easily take into axt¢ba multiphysic nature
of the problem.

An interesting computational strategy, which is perfestlijted to modern com-
puting hardware, is to use non-overlapping domain decoitiposnethods. Basically
these methods consist in substructuring the referenceidpomandensing the problem
on the interface between substructures to ensure the odgtiof primal unknowns
and the equilibrium of fluxes, and then solving this integf@coblem using a Krylov
iterative solver. Best known non-overlapping domain degosition methods are the
primal approach (BDD [MAN 93]) and the dual approach (FETAR-91]). For a
classical elastic problem, the first consists in searchiegcbntinuous interface dis-
placement which ensures the action-reaction principlevéen substructures, while
the second consists in searching the equilibrated interédforts which ensure the
continuity of the displacement between substructuresottimhately the use of clas-
sical domain decomposition methods to solve a coupled pnolhay lead to poorly
conditioned systems because of the heterogeneousness pifiykical dimension of
the unknown fields, even when using an adimensionalizatieprpcessing.

Hence we propose to use the hybrid domain decompositionaddtBOS 04],
which makes it possible to have a physics-friendly appradahultifield problems.
The main idea is to enable a degree-of-freedom-specifittierat (basically primal or
dual) of the interface, so that the interface unknown is @}ty homogeneous, which
should lead to better performance results when solvingigtyacoupled problems.
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The paper is organized as follows: in section 2 a general thiogleand basic
simulation strategy of poroelastic problems is preseritedection 3 hybrid domain
decomposition approach is described in the context of peotranics. This method
is applied in section 4 to the simulation of the hardening pbeous media. Finally
section 5 provides conclusions and prospects.

2. Reference poroelasticity problem
2.1. Description

Let us consider the isotherm evolution of a struct(renade up of a saturated
porous medium, underlying small perturbations around aregefce position during
interval of time|0, ¢;] [BIO 41, COU 90]. The structure is disturbed by a boundary
loading made up of displacemeiy on 9,2, and of effortF; on complementary part
O0r(}, of pressurepy on 9,2 and of flow of fluid mass\/,; on complementary part
op ). No body force is considered in the medium.

u represents skeleton displacementhe skeleton linearised strain tenserthe
Cauchy stress tensgrthe pore pressure; the rate of fluid mass accumulation since
time of referencel is the fluid mass flow.

2.2. Linear poroelasticity constitutive equations

Two balance equations control a porous medium during isottevolution: mo-
mentum balance [1] and fluid mass balance [2]:

—

dive = 0 (1]
m = —divM 2]

The structure behavior is assumed to be linear elastic.iN\itis framework, a ther-
modynamic study leads to Hooke’s law [3] and fluid state equd4]:

= A:e—Bp [3]

Np+B:¢ (4]

|3 q

whereA is the fourth order Hooke's tensor of the drained skelefris Biot's ten-
sor andN is the inverse of Biot modulus. It is necessary to add the ¢dementary
relation which rules the fluid transport phenomenon, exqggeén Darcy’s law [5]:

= — K grac 5]

whereK is the fluid permeability tensor.
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2.3. Problem formulation

The resolution of the previous problem leads to determimiewva fieldsi, o, p, m
andM in their various respective admissible spa¢, o2, P?, om? and M*?, at
any timet € [0, ¢s] ensuring equations [1] to [5] of the model. The weak formiofat
reads:

/ oietdQ = Fpu*dS,Yu* e ug? [6]
Q O

M.gradp*dQ — [ mp*dQ = Myp*dS, Vp* € Py [7]
Q Q 19JVaY]

A finite element space discretization is adopted which |léadstime first order linear
differential equations system:

{—%T —OCKZ)*{IEI :é}(;)—(;i;) 8]

where K, K, are the rigidity and permeability matriceB, is the poromechanical
coupling matrix and’ the fluid compressibility matrixf,, is the vector of generalized
forces andf, the vector of generalized flows. An incremental implicit &utcheme
is then used to solve [8]:

Kl —B Un+1 _
—-BT —(C+ KyAt) Pni1 )

)
0 0 Up, f]}‘H
|5 e ) (sl

or using standard notation:

Kzpi1 = fat1 [10]

3. An hybrid domain decomposition method
3.1. Principle and choice of primal variables

Let us first consider a two-substructure partitioning of agps mediunt?, 2 =
QW YUO® andT = 9QM N o3 is the interface between substructures (Figure
1).
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Figure 1. Two-subdomain decomposition

It is possible to completely rewrite equations [1] to [5] drettwo substructures
QM andQ®):

dive® =0 in Q)
m(®) = —div M) in Q)
o =A:e6) - Bp»)  inQ®
m _ N 4 B e in Q)

7 B}
s=1or2 @ = —K gradp(® in Q) [11]
ORI ond, Q%) N 8,0
U(S)ﬁ(s) = Fy on BFQ(S) ﬂ 8FQ
P = pq on g, 9,02
MO = My on Ay Q) Ay Q

the two systems are linked by interface boundary conditions

) = 7@ o
PV = p@ onY unknowns continuity [12]

D 7@ @F@2 =@
{ o, o 0 onY fluxes balance [13]

MWa0 L @) —

The domain decomposition method in primal form (BDD [MAN ®8pnsists in look-
ing for the continuous interface displacement and presfelds which ensure the
action-reaction principle and flow balance [13] betweerstuistures, while the dual
approach consists in searching the equilibrated integéfoet and flow which ensure
the continuity of the displacement and pressure betweestrsidtures [12]. For both
methods, the interface problem is physically heteroges@sut mixes pressure and
displacement unknowns or effort and fluid flow unknowns.

In order to get an interface unknown homogeneous to an ef®gropose to treat
in a primal way the pressure and in a dual way the displacentermther words we
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search the interface fields of balanced intereffqrtand continuous pressure which
guarantee the continuity of displacements and the contsenaf flow:

. B Xy = cWFM = _@ 572
seeking for(\,, p) p=p1) =p® ont
. D = 7@
with respect of { MWa0 4 @52 — g on<

This step lies within the more general scope of the hybrid @iardecomposition
method as described in [GOS 04].

3.2. A dual/primal condensed hybrid system

Let us consider one linear displacement/pressure systl) (we omit subscript
n). We denote by the internal degrees of freedomandw interface pressure and
displacement degrees of freedom. Considering a two-subathodecomposition, the
system reads:

T
KO KD 00 KDY n
T i
W00 K4 AY ey
K? KO KA 20 | =
2 2) 4(2 (2)
K& KDAP i
AP Ky A ’ 14
o 0 (14]
i T
(1) A
?2) + OT Au
@) g0 0 )| AP
fu Z P fp 0
s),.(s)
CAYRY =0

MatricesA,(f) are boolean assembly operators from local interface toagjige-
ometric interface, matriceggs) are signed boolean assembly operators from local
interface to global connectivity interface so that the las of the previous system
expresses the continuity of displacement field (see figure 2)

In order to simplify writings and extend to several subdamsaive adopt the fol-
lowing notations § represents either or p andb its complementary) :
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1
ALY
N S
...... _>
Q oW ;‘)

Figure 2. Trace and assembly operators

if v= v | theno, = (Ul) Trace operatott] v, = (OZ)
Vs Up Up

System ([14]) then reads:

KW 0 K}gl)A(l) ,1()1)
K® R@ A" 22 | =
s Kipap") \ o
7 (0 40" 1ol
As + [T 4T | A,
S A g 0
YAV z) =0

Solving on each subdomain a system where pressure and ledfonidary con-

ditions are imposed on the interface we eliminate interegrees of freedom and
unknown interface displacements, and then we only keespresand intereffort in-
terface unknowns. If the subdomain lacks Dirichlet bougdamditions ("floating

substructure™) we have to introduce admissible solid bodyions; we denote by

R abasis oker(K.) anda(®) the magnitude of these motions.
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S S + (S S T rls S T S T S S
o = K (<KAo 0 0 40T ) Rl
[16]
T _ T - T T
Ry (—KéS’Aé” zp+ F7 10 AQ Au> =0

The condensed problem with unknowrysand),, then reads:

e (@) () - () o7

(-er g o)\ a —e
with

Gy = (- ADERY ) b, =T A (£ = BENTHF O 1)
Gu= (AR ) b= R AWK

T : :
AL 0 (s) AL 0 ‘s a7 (s
SWZZ<8 a0 ) S\ T0 A ) e= e e= R

s (s)T )T =(s (s)T 1,7
(- me ) (R )
St =

pu _ + T T + T
B (KZ()S)TKZ()S) () ) (t&S)K,(,S) () )

From a local point of view, we can notice that the top left ldl@d matrix S;(;Z)
is the primal schur complement related to pressure degrfefesagiom and that the
bottom right block is the dual Schur complement related spldicement degrees of
freedom, the extradiagonal blocks are skew-symmetric laogiperms.

3.3. Preconditioning/coarse problem

The condensed linear system is a constraint system. Méfgixoeing a sum of
local contributions, an efficient numerical strategy isrthe use a projected Krylov
algorithm (a GMRes solver is preferred since the linearesysis non-symmetric or
non-positive when symmetrized). The definition of a smagcpnditioner is an im-
portant issue and we propose to use the classical strategjsting in approximating
the inverse of a sum of local contributions by a scaled suroadllinverses.
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Noticing thatS,()f) is the local operator which associates resulting interfaoe

and displacement to given interface pressure and effsiipitrse issq(j)) [18] which
associates resulting interface pressure and effort tondiu& and displacement.

T
-1 T _ -1 T
<t§f)K§f) £ > - <K7§S)TK7§S) ) >

S(s) —
up _ —1 T _ -1 _
(P-’1(1,S)TP-’1(J,S) o) ) (Fl(ﬁf _ BT R F.Q(f))

(18]

Note that in such a situation, matrfiﬁs) is always inversible. Preconditioning oper-
ator S, writes

. O ORI, W (wae o\
Spg = Z 0 wq(f)év(j) Sup 0 ES)AS) [19]

whereW, and W, are diagonal scaling matrices. These can be defined acgordin
to the multiplicity of degrees of freedom or according to thifference of behavior
between substructures [RIX 99, GOS 02].

LetG = <_GG”>, constrainiG” <i”> = —e is taken into account by initializa-
d

—Uu

tion <§p> and projector’y where() is an approximation of the preconditioner.
v/ 0

(ip) =QG(GTQG) e, Po=1,-QG(GTQG) T GT [20]
v/0

3.4. On aprimal/dual approach

Previous notations make it possible to give the formulatidrere displacement
is treated as a primal unknown and pressure as a dual unkndvenresulting inter-
face unknown is displacement/flux. Such an approach is reedban any physical
consideration.

S S 5+7S
o (M) — () _ AP KSR .
b “\ by ) () (1) ONT ot (5) F(s) [21]
Ty ) S A (£ = (RO )

T
A(S) 0 . A(S) 0
(% ) (T b &
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P=1I,—H (HTSEUH) o HTS,,
(2), =) "o (2

(g
=W AP R

4. Numerical assessments

Let us consider the problem of soil compaction describedgiaré 3. The struc-
ture is made up of a portion of soil 6im length,4m of width and3m of depth. A
compaction effort (effort growing linearly till a threshthlis imposed on @m x 2m
zone. The top part is submitted to the atmospheric pressla®yhere the walls are
assumed to be impermeable and only transverse displacearerpossible.

Figure 3. Porous media compaction

Only isotropic and linear phenomena are considered ancetief soefficients for
an argilite medium, according to [GOR 99] reads: mecharubaracteristics of the
skeleton\ = 662 MPa, . = 1885 MPa, module of Biotﬁ = 6800 MPa, coefficient
of Biot B = 0.6, coefficient of permeabilityd = 10.107°m? Pa~! s!. Because
of the significant difference of magnitude between coeffiti@lues, an adimension-
alization process was performed.

The structure is meshed with hexaedral element§@.A- ()1 approximation -
for displacementy); for pressure) is used. The considered grid contégéfelements
and8300 degrees of freedom. The decomposition into 3 subdomaingdsreatically
carried out using the ZeBuLoN [FOE 96] code mesher. The tirseretization leads
to the resolution of 20 linear systems.

The performance results of the primal, dual and hybrid dontkicomposition
approaches based on the average number of iterations tergamare presented in
Tab. 1. Those results comply with a same relative GMRes eatiw, lower than
10719,
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Approach without preconditioning with preconditioning
Primal/dual 417 26
Primal 286 26
Dual 265 28
Dual/primal 214 27

Table 1. Average iteration number for linear system convergence
1 %

T T T T T T T T
Dual/Primal —+—
Dual ---%-—--
Primal ------
Primal/Dual ---&
0.01 -

0.0001 |
1le-06 i
b
5
. T X
1e-08 5 ¢
£
%
£
i3

1le-10

L L L L L
50 100 150 200 250 300 350 400 450

le-12 L L L
0

Figure 4. Convergence of residual norm for non-preconditioned peoais

These results highlight the better performance levels af/dtimal approach when

no preconditioning was used. The primal/dual approach hvtiées not have physical
sense leads to even poorer efficiency.

It is shown that the preconditioning gives the same kind afggeance results
as usual methods (FETI or BDD) with their optimal precormgigrs, what proves the
good behavior of the hybrid preconditioner.

Figure 4 presents the evolution of the residual norm for tret finear system
which is mostly linked to the spectrum of the operator. Itnsedghat being more
respectful of the physic nature of unknowns, the hybrid méthenefits from the
good behaviors of the dual and primal approaches: firsttitgra look like the dual
approach with a quick ratio-decrease, after a slowdown arsopvergent behavior
similar to the one of the primal approach is quickly achieved

5. Conclusion and prospect

A monolithic strategy based on an hybrid non-overlappingpdeposition method
was presented. First results obtained on a simple test lomkiping. Another sig-
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nificant validation process should be undergone for amistigorous problems with
mechanical and fluid non-linearities (plasticity, damaggmiation of permeability).
Since the optimal preconditioner exists, a very intergstirospect is to study "sim-
plified" preconditioners based on a partial physical or gdacale uncoupling (like
lumpedpreconditioner for FETI), benefitting from the advantagespectrum of hy-
brid operator. Work on uncoupling according to physicaletistales will also be
carried out.
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