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ABSTRACT.We study the implementation of a domain decomposition method for structures with
quasi-incompressible components. We chose a mixed formulation where the pressure field is
discontinuous on the interfaces between substructures. Wepropose an extension of classical
preconditioners to this class of problems. The numerical simulation of the mechanical be-
haviour of the flexible bearing of the nozzle of a solid propellant booster is then conducted
using various Newton-Krylov parallel approaches. We present the main mechanical results and
compare the numerical performance of the parallel approaches to a sequential approach.

RÉSUMÉ.Nous étudions la mise en oeuvre d’une méthode de décomposition de domaine pour
structures à composants quasi-incompressibles. Une formulation mixte à champ de pression
discontinu aux interfaces entre sous-structures est retenue ; nous proposons, pour cette classe
de problèmes, une extension des préconditionneurs classiques. La mise en oeuvre de la simu-
lation numérique du comportement mécanique d’une butée flexible de tuyère de propulseur à
propergol solide par diverses approches parallèles itératives de type Newton-Krylov est alors
proposée. Nous présentons les principaux résultats mécaniques ainsi que les performances nu-
mériques obtenues par les approches parallèles retenues etune approche séquentielle.

KEYWORDS:Domain decomposition method, Newton-Krylov, quasi incompressibility, mixed for-
mulation

MOTS-CLÉS :Méthode de décomposition de domaine, Newton-Krylov, quasiincompressibilité,
formulation mixte
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1. Introduction

Primal and dual domain decomposition methods [LET 94a, FAR 94] are among
the first non-overlapping domain decomposition methods that have demonstrated nu-
merical scalability with respect to both mesh and subdomainsizes. They have proved
their efficiency on many types of problems such as second and fourth order linear
(static and dynamic) elasticity, heterogeneous problems.. . and they are currently ex-
tended to other problems such as Stokes’ equation [DDM02].

In this paper we focus on the computation of quasi-incompressible elastomeric
components using a primal domain decomposition method. Numerical simulation of
the behaviour of such materials which main properties are the ability to handle large
deformations, the non-linear behaviour and the quasi incompressibility, requires to
use mixed displacement-pressure finite elements [LET 94a, BRE 91]. More precisely
we deal with the case of discontinuous pressure field on the interface of substructures
and continuous or discontinuous pressure field inside substructures. Such an approach
corresponds to any substructuration when the pressure is discontinuous between finite
elements, and to physical decomposition between differentpieces when the continuity
of pressure is ensured inside substructures (e.g. interface between steel and elastomer
or two different elastomeric pieces). However, as the incompressible/compressible
heterogeneity is not taken into account in a satisfying way by current preconditioners,
we extend them to this class of problems. Beside, because of non linearities, we
use a non-linear solver leading to the solution to a sequenceof ill-conditioned linear
systems with both non invariant matrix and right-hand side.Various strategies to
accelerate the solution to successive systems [REY 96, REY 98, RIS 00] have already
been developed, and evaluated coupled with a dual domain decomposition method.
We assess the performance of such Krylov acceleration approaches coupled with the
primal domain decomposition method.

All numerical assessments relate to a very challenging industrial problem: the nu-
merical simulation of steel-elastomer stratified structures. These structures are widely
used in aerospace industry to provide powerful elastic supports such as suspensions
for aircraft engines, filtering supports for revolving machines, blade-rotor connections
of helicopters, rocket-nozzle connections of the Ariane V launcher. They may take the
form of a flexible steel-elastomer structure located between the body and the nozzle
of a solid propellant booster, of which the engine of the powder acceleration stages of
the Ariane V launcher is a typical example.

Thus, we present in section (2) the formulation of the problem and the generic
algorithms to achieve the simulation. We give in section (3)the extension of tradi-
tional preconditioners to the quasi-incompressible case and in section (4) a Krylov
acceleration technique to solve the sequence of linear systems resulting from the lin-
earization of the non-linear problem. In section (5) we present the flexible bearing
which supports the assessments, and associated mechanicalresults; section (6) sums
up numerical performance. Section (7) concludes this article.
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2. Overview of the models and methods

2.1. Lagrangian formulation

We consider the computation of the equilibrium position of abodyΩ made up of a
quasi-incompressible hyperelastic material undergoing large deformation. We choose
a lagrangian formulation where all variables are defined in the reference configuration.
Let f denote the body force,g the surface traction imposed on∂gΩ, u0 the imposed
displacement on the complementary part of the boundary. Taking into account the in-
compressibility leads to the introduction of an unknown pressure fieldp. The research
of the equilibrium of the body (dead loading assumption) is equivalent to the research
of the saddle point of the following lagrangian:

(u, p) ∈ ({u0} + H) × P

L(u, p) =

∫

Ω

W(F )dΩ +

∫

Ω

p(h(J) −
1

2K
p)dΩ −

∫

Ω

fudΩ −

∫

∂gΩ

gudS [1]

The problem then reads:

Find (u, p) ∈ ({u0} + H) × P / ∀(v, q) ∈ H× P ,
∫

Ω

∂W

∂F
(Id + ∇u) : ∇vdΩ +

∫

Ω

ph′(J)
∂J

∂F
: ∇vdΩ =

∫

Ω

fvdΩ +

∫

∂gΩ

gvdS

∫

Ω

(h(J) −
1

K
p)qdΩ = 0

[2]
WhereH andP are the spaces of admissible displacement and pressure fields,F is the
gradient of the deformation (F = Id + ∇u, J = det(F )), K is the compressibility
modulus of the material. Free energyW(F ) can be chosen from different models
([RIV 51, LAM 99]). For isotropic materials, it is often written as a function of the
C = FT F tensor invariantsW(F ) = W̄(I1, I2, J) whereI1 = Tr(C) andI2 =
1
2 (Tr2(C) − Tr(C2)). Among others we cite the Mooney-Rivlin model:

W̄(I1, I2) =
C10

2
(I1 − 3) +

C01

2
(I2 − 3)

WhereC01 andC10 are constants that characterize the material. Functionh(J) can
also be given by various models, in the simplest case (linearmodel)h(J) = (J − 1).

The numerical solution to this variational problem is classically conducted using
the finite element method. SubspacesH andP are replaced with finite dimension
subspacesHh ⊂ H andPh ⊂ P . Let us underline that the construction of mixed
finite elements must in particular comply with compatibility conditions (Ladyzenska-
Babuska-Brezzi condition [BRE 91]) thus restricting the possible choices of approxi-
mation spaces. However common choices for3D problems are theQ2−P1 hexahedral
element (27 displacement nodes,4 pressure nodes) and theQ2 − Q1 hexahedral ele-
ment (20 displacement nodes,8 pressure nodes).
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2.2. Newton-type algorithms

The problem arising from the finite element method is nonlinear, let us write it
F(x) = 0 with x = (uh, ph). The principle of Newton’s algorithms is to build a
sequence of linear systems the solutions of which converge to the solution to the non-
linear problem. There are many versions of Newton’s algorithms, the most widely
used is Newton-Raphson’s. This last method consists in iteratively substituting the
solution to the equationF(x) = 0 for its first order limited development aroundxk:

F(xk) +
dF(xk)

dx
(xk+1 − xk) = 0 [3]

Newton-Raphson’s method is known to converge fast when properly initialized. A
very common extension is the incremental algorithm which consists in defining "steps
of loading" and finding the solution to the intermediate problems corresponding to
these steps using the solution to the previous step as an efficient initialization. The
linear system arising from Newton-Raphson’s linearization reads:

(

Kuu Kup

KT
up Kpp

)(

vk

qk

)

=

(

fu

fp

)

with

{

vk = uk+1 − uk

qk = pk+1 − pk [4]

(

Kuu(uk, pk)
)

ij
=

∫

Ω

(

∂2W

∂F 2
: ∇Φi

)

: ∇ΦjdΩ

+

∫

Ω

pkh′′(J)

(

∂J

∂F
: ∇Φi

)(

∂J

∂F
: ∇Φj

)

dΩ

+

∫

Ω

pkh′(J)

(

∂2J

∂F 2
: ∇Φi

)

: ∇ΦjdΩ

(

Kup(u
k, pk)

)

ib
=

∫

Ω

h′(J)

(

∂J

∂F
: ∇Φi

)

ΨbdΩ

(

Kpp(u
k, pk)

)

ab
= −

1

K

∫

Ω

ΨαΨβdΩ

(

fu(uk, pk)
)

i
=

∫

Ω

fΦidΩ +

∫

∂gΩ

gΦidS −

∫

Ω

∂W

∂F
: ∇ΦidΩ

−

∫

Ω

pkh′(J)
∂J

∂F
: ∇ΦidΩ

(

fp(u
k, pk)

)

a
= −

∫

Ω

Ψα

(

h(J) −
1

K
pk

)

dΩ

[5]

Where functions(Φi) and(Ψα) are the basis of the displacement and pressure fields.
For a more complete description of Newton’s type algorithm for incompressible non-
linear elasticity, readers can refer to [LET 94b].

NOTE. — When using domain decomposition methods, because of insufficient Dirich-
let’s conditions or internal mechanisms, the stiffness matrix of some substructures may
be not invertible; the computation of the kernel of the matrix is then an important point.
As far as we know, there are no general results which indicatea priori the composition
of the kernel. What can be demonstrated for substructures without mechanism is that
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the first system is the linearized elasticity system, then the vectors of the kernel are
(rigid body displacements, zero pressure), for following systems vectors composed by
(admissible translations, zero pressure) always belong tothe kernel. We have never
observed other kinds of null space modes (translations and rotations for the first sys-
tem, only translations for the following systems). So we propose to use a geometrical
computation of the rigid body motions for the first system andjust suppress the rota-
tions for the following systems.

Due to the inversibility of theKpp submatrix, pressure nodes can be eliminated
from the resolution process using a Schur condensation. Onecan solve the following
system for the displacement unknown and compute pressure aspost-process:

K̃vk = f̃ with

{

K̃ = Kuu − KupK
−1
pp KT

up

f̃ = fu − KupK
−1
pp fp

[6]

In the case where there are no nodes on the interelement boundary (discontinuous
pressure field) which is the case of theQ2−P1 hexahedral element, this condensation
is usually achieved at the element scale at a very low cost since the(Ψα) functions
can be chosen orthonormal and thenKpp = − 1

K
Id.

2.3. Primal domain decomposition method

We briefly recall the primal domain decomposition method [LET 94a] in a generic
case, the next section focuses on its extension to mixed displacement-pressure for-
mulations. We consider the discretized problem (4). Let us make a non-overlapping
conform partition of discretized domainΩ into N subdomains(Ω(s))16s6N , the in-
terface of a subdomain is defined asΥ(s) = ∂Ω(s)\∂Ω, the complete interfaceΥ is
the union of the interfaces of all substructures.

Using classical notation (i stands for internal degree of freedom,b for boundary
degree of freedom), the stiffness matrix of thesth subdomain reads:

K(s) =

(

K
(s)
ii K

(s)
ib

K
(s)
bi K

(s)
bb

)

[7]

The primal approach simply consists in eliminating internal degrees of freedom
from the complete problem which can be done independently oneach substructure
constructing the local primal Schur complementS

(s)
1 . Let u be the displacement field

of the interface degrees of freedom, the problem to solve then reads:

Su = b with



















S =
∑

s

B(s)S
(s)
1 B(s)T

b =
∑

s

B(s)b(s)

S
(s)
1 = K

(s)
bb − K

(s)
bi K

(s)
ii

−1
K

(s)
ib

b(s) = f
(s)
b − K

(s)
bi K

(s)
ii

−1
f

(s)
i

[8]
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TheB(s) matrix projects the local interfaceΥ(s) on the global interfaceΥ. For the
primal approach, opposite to the classical dual method (FETI), crosspoints (points
shared by more than2 substructures) are not repeated when describingΥ.

Due to the existence of efficient preconditioners, system (8) is solved using a
Krylov iterative solver (Conjugate gradient, GMRes. . .) which is well suited to the
parallel architecture of modern computers. The Neumann preconditioner consists in
approximating the inverse of the sum of local Schur complements by the sum of the
inverse of local Schur complements. LetM−1 be the preconditioner:

M−1 =
∑

s

D(s)B(s)S
(s)
2 B(s)T

D(s)

S
(s)
2 = S

(s)
1

+
= β(s)K(s)+β(s)T

[9]

β(s) = (0i Idb) extracts from vectors defined on the subdomainΩ(s) their trace on

their interfaceΥ(s). K(s)+ is a pseudo-inverse of matrixK(s), S
(s)
2 is the local dual

Schur complement.D(s) is a diagonal scaling matrix (
∑

D(s) = IdΥ). When dealing
with homogeneous structures,D(s) can be chosen equal to the inverse of the multiplic-
ity of each degree of freedom. For heterogeneous structures[RIX 99], scaling has to
provide information about the difference of stiffness between subdomains, most often
this item of information is extracted from the diagonal of theK

(s)
bb matrix:

D
(s)
i =

(B(s) Diag(K
(s)
bb )B(s)T

)i

(
∑

k

B(k) Diag(K
(k)
bb )B(k)T

)i

[10]

To become scalable with respect to the number of substructures, the primal ap-
proach equipped with the Neumann preconditioner has to be enriched with a coarse
problem. The idea is to ensure that vectors that are multiplied by generalized inverse
matricesK(s)+ belong to the image ofK(s). This method is reported as balanc-
ing method [MAN 93] because its mechanical interpretation is to ensure the equi-
librium of each substructure face up to rigid-body loadings. Noting r the residual
(r = b − Su), preconditioning consists in computingM−1r.

M−1r =
∑

s

D(s)B(s)β(s)K(s)+β(s)T
B(s)T

D(s)r

∀s β(s)T
B(s)T

D(s)r ∈ Im(Ks)

⇔ ∀s R(s)T
β(s)T

B(s)T
D(s)r = 0 with Span(R(s)) = Ker(K(s))

⇔ ∀s (D(s)B(s)β(s)R(s))T r = 0

⇔ GT r = 0 with G =
(

. . . D(s)B(s)β(s)R(s) . . .
)

[11]

This condition is imposed using a proper initialization (u0 = G(GT SG)GT b) and a
projectorP = Id − G(GT SG)−1GT S; the preconditioner then readsPM−1.
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3. Extension of primal domain decomposition method to quasi-incompressible
material with discontinuous pressure field

In this paper we deal with the case of discontinuous pressurefields at the interface
of substructures. The pressure field inside substructures may be either continuous (e.g.
hexahedralQ2−Q1) or not (e.g. hexahedralQ2−P1). In the case of continuous pres-
sure field inside substructure, such a model corresponds to physical decompositions
between stuck pieces (whatever their material may be, e.g. interface between steel and
elastomer or two different elastomers or two different pieces of the same elastomer).
Hence all pressure degrees of freedom are considered internal.

For the following equationsi andb stand for internal and boundary displacement
degree of freedom,p for pressure degree of freedom. Since pressure is considered
as an internal field, the condensation shown in (6) can be realized at the substructure
scale (if not yet realized at the element scale) without modifying the global problem.
The interface problem then reads:

S̃u = b̃ with















S̃ =
∑

s

B(s)S̃
(s)
1 B(s)T

b̃ =
∑

s

B(s)b̃(s)

S̃
(s)
1 = K̃

(s)
bb − K̃

(s)
bi (K̃

(s)
ii )−1K̃

(s)
ib

b̃(s) = f̃
(s)
b − K̃

(s)
bi (K̃

(s)
ii )−1f̃

(s)
i

[12]

The expression of the matrices and vectors above is the expansion of equation (6):

(

K̃
(s)
ii K̃

(s)
ib

K̃
(s)
bi K̃

(s)
bb

)

=





K
(s)
ii − K

(s)
ip K

(s)
pp

−1
K

(s)
pi K

(s)
ib − K

(s)
ip K

(s)
pp

−1
K

(s)
pb

K
(s)
bi − K

(s)
bp K

(s)
pp

−1
K

(s)
pi K

(s)
bb − K

(s)
bp K

(s)
pp

−1
K

(s)
pb





(

f̃
(s)
i

f̃
(s)
b

)

=

(

f
(s)
i − K

(s)
ip K−1

pp f
(s)
p

f
(s)
b − K

(s)
bp K−1

pp f
(s)
p

)

[13]

Note above all that the resulting stiffness scalingD̃(s) is built from the diagonal

K̃
(s)
bb , that is to say from the diagonal of the matrix(K

(s)
bb − K

(s)
bp K

(s)
pp

−1
K

(s)
pb ).

However if we do not condense the pressure, we have:

K(s) =









(

K
(s)
ii K

(s)
ip

K
(s)
pi K

(s)
pp

) (

K
(s)
ib

K
(s)
pb

)

(

K
(s)
bi K

(s)
bp

)

K
(s)
bb









[14]
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Su = b with







































S =
∑

s

B(s)S
(s)
1 B(s)T

b =
∑

s

B(s)b(s)

S
(s)
1 = K

(s)
bb −

(

K
(s)
bi K

(s)
bp

)

(

K
(s)
ii K

(s)
ip

K
(s)
pi K

(s)
pp

)

−1(

K
(s)
ib

K
(s)
pb

)

b(s) = f
(s)
b −

(

K
(s)
bi K

(s)
bp

)

(

K
(s)
ii K

(s)
ip

K
(s)
pi K

(s)
pp

)

−1(

f
(s)
i

f
(s)
p

)

[15]

Note that scaling matrixD(s) associated to the non-condensed pressure problem
is then directly built from theK(s)

bb matrix.

Both problems (whether the pressure is condensed or not) areequal: S̃ = S,
b̃ = b. It is then abnormal that scaling matrices should differD̃(s) 6= D(s). In fact the
condensation of the pressure nodes leads to an overestimation of the stiffness; we then
propose two different scalings which work fine whether the materials are compressible
or not. The first one is built from theK(s)

bb diagonal (before condensation). Since
obtaining this information may not be easy when using element-scale condensation,
we propose a second scaling, simpler but even better, which is based on the shearing

modulusµ of the different materialsD(s)
j =

µ
(s)
j

P

k

µ
(k)
j

.

Table (1) summarizes the performance of the different scalings for the industrial
structure described section (5). The element used is an hexahedraQ2 − P1 (27 dis-
placement nodes,4 internal pressure nodes). The new scalings show their efficiency,
they even manage to achieve better results than the computation of the homogeneous

structure. The effect of the perturbation (−K
(s)
bp K

(s)
pp

−1
K

(s)
pb ) introduced by the con-

densation can be observed on the usual stiffness scaling: the perturbation is bigger for
the second system then it requires much more iterations to converge.

Decomposition Type of scaling Number of iterations
First system Second system

6a-1r (6 proc.) Topological 290 > 1000

6a-1r (6 proc.) Usual stiffness(D̃) 120 726
6a-1r (6 proc.) Stiffness before condensation 48 44
6a-1r (6 proc.) Shearing modulus 43 39

6a-1r (6 proc.) Homogeneous structure 93 116

Table 1. Action of the scaling - mixed elementQ2 − P1

NOTE. — Of course, the same analysis can be conducted from the dualdomain de-
composition method (FETI algorithm). New dual scalings canbe defined on the basis
of the same principle, they proved similar efficiency.
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4. Krylov acceleration strategy: GIRKS

The context of the study is the resolution of a succession of linear systems, let us
consider the solving of the(k + 1)th systemSk+1uk+1 = bk+1, the aim of the fol-
lowing strategy is to reuse the information generated during the resolution of previous
systems to solve the current system. The resolution of a linear system with a Krylov
iterative solver leads to the construction of at least one basisW k+1 of the Krylov sub-

space for which theΓk+1 = W k+1T
Sk+1W k+1 matrix is easily invertible. In the

case of a Conjugate Gradient, note thatW k+1 is then the set of research directions
andΓk+1 a diagonal matrix.

The GIRKS algorithm is a generalization of augmented Krylovsubspace methods
for multiple right hand sides [SAA 87] to the case of non-invariant matrices (multiple
left hand sides). It has two distinct actions, first an initialization IRKS and a correction
of the preconditioner GKC.

The IRKS algorithm (Iterative reuse of Krylov subspaces [RIS 00]) is based upon
an iterative approach making it possible to evaluate at low cost a relevant initialization
of a linear system with respect to previously generated Krylov subspaces. Once the
initialization stage is complete, the algorithm is subjectto a restarting procedure which
can be considered as a Conjugate Gradient algorithm augmented with the Krylov sub-
space generated during the initialization stage. The GKC (Generalized Krylov Cor-
rection [REY 96]) algorithm corrects the preconditioner, solving approximatively an
optimal preconditioning problem.

Figure (4) gives the complete algorithm of projected preconditioned conjugate gra-
dient with GIRKS acceleration.

5. Study of the flexible bearing

5.1. Description

The orientation of the nozzle of a booster is achieved with a flexible bearing. This
bearing is a stratified structure with thin spherical steel and elastomer layers, it is
maintained by two metallic supports. The flexible bearing westudy (fig. 2) was
proposed by SNECMA Moteurs, it was designed to let the buckling of steel layers
appear. This buckling was observed when performing an experimental study of the
solid propellant booster of Ariane 5 rocket.

The structure is clamped on one external ring, a radial displacement imposed on
one point at the bottom of the nozzle models the turning loading (5 degrees), a4 MPa
pressure due to the gases is imposed at the top of the flexible bearing (fig. 3). The
resolution is conducted in two steps: first the turning problem is solved using two
nonlinear increments (10 linear systems), then the compression problem is solved
with 4 nonlinear increments (37 linear systems) or10 nonlinear increments (48 linear
systems) whether we want the buckling to appear or not.
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k linear systems(Squq = bq)q=1,...,k were solved
for the(q)th linear system, we note

W q = {wq
0, . . . , w

q

rq−1} set of research directions
rq = dim(W q)

Γq = W qT SqW q (diagonal matrix)
sq ponderation term (most often 1)

Solution to the (k + 1)th system

1. IRKS approach

1.1 Initialization

û0 = G(GT SG)−1GT b + Pχ
r̂0 = b − Sû0

1.2 Iterations i = 0, . . . , p /ẑp = 0

ẑi = P

[

k
∑

q=1
W qΓq−1W qT

]

r̂i

ŵi = ẑi +
i−1
∑

j=0

γ̂ijŵj (ŵ0 = ẑ0) γ̂ij = −
(ẑi,Sŵj)
(ŵj ,Sŵj)

x̂i+1 = x̂i + α̂iŵi

r̂i+1 = r̂i − α̂iSŵi

∣

∣

∣

∣

α̂i = (r̂i,ẑi)
(ŵi,Sŵi)

1.3 End of IRKS

V = {w0, . . . , wp−1}
Λ = V T SV (diagonal matrix)
Q = Id − V Λ−1V T S projection matrix

2. Conjugate Gradient with GKC

2.1 Initialization

x0 = x̂p+1

r0 = r̂p+1

2.2 Iterations i = 0, . . . , s
yi = M−1ri

Successive corrections q = 1, . . . , k

r̃q
i = sqW

qΓq−1W qT ri − W qΓq−1W qT Sqyq−1
i

yq
i = yq−1

i + r̃q
i

zi = QPyk
i

wi = zi +
i−1
∑

j=0

γijwj (w0 = z0)

xi+1 = xi + αiwi

ri+1 = ri − αiSwi

∣

∣

∣

∣

γij = − (zi,Swi)
(wj ,Swj)

αi = (ri,zi)
(wi,Swi)

Figure 1. Algorithm: GIRKS with Projected Preconditioned ConjugateGradient
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Figure 2. 3D view of flexible bearing Figure 3. Axial view of reference and de-
formed structure

Resulting from the identification of the materials, simple constitutive laws were
chosen. Steel is defined using a Saint-Venant–Kirchoff model (Young modulusE =
2.105 MPa, Poisson’s coefficientν = 0.3). Nearly incompressible elastomer is de-
fined using a Mooney-Rivlin elastic potential (C10 = 0.2 MPa, C01 = 0. MPa,
K = 2000 MPa).

Many difficulties arise when carrying out the numerical simulation of this flexible
bearing, first non-linearities due to the large strains, theinstabilities and the behaviour
of the elastomer, second, the high heterogeneities (5 degrees of magnitude separate
the shearing moduli) and last the large and massive aspect ofthis 3D problem. The
simulation is conducted using aQ2 hexahedral finite element (20 displacement nodes)
for steel and aQ2 − Q1 hexahedral finite element (20 displacement nodes,8 pressure
nodes) for elastomer, which leads to75900 degrees of freedom.

5.2. Mechanical results

The turning stiffness (fig. 4)
decreases when the pressure in-
side the booster increases, it can
even become negative (the flexi-
ble bearing is then driving). This
evolution, caused by the displace-
ment of pieces, is properly simu-
lated during the computation.
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Figure 4. Turning stiffness

According to experimental results, the buckling is computed under a3 MPa pres-
sure. Buckling causes bifurcations of the displacement of some points (fig. 5, 6).
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Figure 5. Buckling of one reinforcement
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Figure 6. Radial displacement of an inter-
nal boundary point of a reinforcement

5.3. Decompositions used for the parallel simulation

The geometry of the structure is axisymmetric (while the loading is not). Sub-
structures are hand-made decomposing either the axial section or the rotation. The
nomenclature of a decomposition readsNa-M r whereN stands for the number of
substructures in the axial section,M for the number of substructures in the rotation.

Figure 7. 17a decomposition Figure 8. 3a-6r decomposition

In the case of rotation-decomposed substructures, pressure is discontinuous at the
elastomer/elastomer interface and continuous inside substructures. However, mechan-
ical results are identical whatever the decomposition.

6. Numerical results

All computations presented here were realized on the SGI ORIGIN 2000 of the
Pôle de Calcul Paris Sud. We compare performance levels for the buckling and non-
buckling problems, of classical primal approach, GIRKS-primal approach and direct
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sequential approach. The direct sequential solver requires 8667s to solve one linear
system.

6.1. Non-buckling problem

As said before, this loading history leads to the computation of 48 linear systems
with different matrices and right hand sides. The direct sequential approach is com-
pleted in115h30min. Parallel performance results are given in table (2).

Problem Aver. CPU time (s) / sys It. nb Gain
Decomposition Method Factorization Total Aver/sys Seq./Par.

17a-1r (17 proc.) Primal 14.5 140.7 164 61.6
17a-1r (17 proc.) GIRKS 14.5 78 50 111.1

6a-3r (18 proc.) Primal 22.4 412.8 398 21
6a-3r (18 proc.) GIRKS 22.4 256.7 183 33.7
3a-6r (18 proc.) Primal 144 939.2 362 9.2
3a-6r (18 proc.) GIRKS 144 400.9 120 21.6

Table 2. Numerical performance Parallel/Sequential (non-buckling)

As can be seen, performance levels strongly depend on the choice of the decompo-
sition though the number of subdomains is almost constant. Two factors justify these
variations, first the heterogeneity of the interface (decompositions giving best results
contain only mono-material substructures with different materials facing, while less
efficient decompositions possess multi-materials interfaces with same materials fac-
ing), second the aspect ratio of substructures (due to the lower sparsity of matrices,
massive substructures involve longer computation time formatrix manipulation).

The Krylov acceleration strategy leads to significant speed-up. The CPU time,
thanks to the use of GIRKS, increases from38% to 58%. GIRKS enables to solve up
to 111 times faster the non-linear problem than the sequential approach using only17
processors.

Figures (9) and (10) respectively show the evolution of the average number of
conjugate gradient iterations and the associated average CPU time to solve each linear
system. Due to the very low cost of GIRKS, iterations and CPU time graphs are
quite similar. As can be seen, the action of GIRKS grows as thenonlinear system
number increases due to the increasing size of the stored Krylov subspaces. In the
course of the non-linear resolution, it may occur that the information stored in Krylov
subspaces becomes non-relevant and leads to a perturbationleading to stagnation. The
linear resolution is then restarted with deletion of the stack of Krylov subspaces. The
restarting procedure can be observed on figure (9) when two points are associated to
the same linear system.
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Figure 9. GIRKS: nb of iterations
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Figure 10. GIRKS: CPU time

6.2. Buckling problem

This loading history leads to the computation of37 linear systems with different
matrices and right hand sides. The direct sequential approach is completed in89h.
The performance results of the parallel approaches are given in table (3). For the
buckling problem, GIRKS is not as efficient as for the previous problem, but it still
has a positive impact. The best result is then a resolution67 times faster than the
sequential approach using only17 processors.

Problem Aver. CPU time (s) / sys It. nb Gain
Decomposition Method Factorization Total Aver/sys Seq./Par.

17a-1r (17 proc.) Primal 14.9 139 162 62.3
17a-1r (17 proc.) GIRKS 14.9 130 102 66.7

Table 3. Numerical performance Parallel/Sequential (buckling)

7. Conclusion

In this paper we considered the resolution of highly heterogeneous structures in-
volving quasi-incompressible materials with a primal domain decomposition method.
We extended the definition of scaling matrices to the case where pressure is condensed,
restoring the scalability of the method to this class of problems. The resolution of the
challenging assessment was successfully achieved using a Newton-Krylov approach.
We showed that the reuse of Krylov subspaces with the GIRKS algorithm always lead
to better performance, the speed-up compared to the classical primal approach can be
60%. Compared to the direct sequential approach, the resolution is conducted in the
best case111 times faster using only 17 processors. In order to avoid stagnation and
restarting associated to GIRKS, we now develop new Krylov reuse strategies based
on an exact coarse grid solver. Due to the significant computational cost of this new
approach we couple it with a selective reuse of Krylov subspaces based on a spectral
analysis of the linear systems [GOS 02].
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