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ENS Cachan / Université Pierre et Marie Curie / CNRS UMR 8535
61 Av. Président Wilson
94235 Cachan FRANCE
Email: rey@lmt.ens-cachan.fr

Summary

The modern design of industrial structures leads to very complex simulations characterized by nonlinearities,
high heterogeneities, tortuous geometries... Whatever the modelization may be, such an analysis leads to
the solution to a family of large ill-conditioned linear systems. In this paper we study strategies to efficiently
solve to linear system based on non-overlapping domain decomposition methods. We present a review of
most employed approaches and their strong connections. We outline their mechanical interpretations as
well as the practical issues when willing to implement and use them. Numerical properties are illustrated
by various assessments from academic to industrial problems. An hybrid approach, mainly designed for
multifield problems, is also introduced as it provides a general framework of such approaches.

1 INTRODUCTION

Hermann Schwarz (1843-1921) is often referred to as the father of domain decomposition
methods. In a 1869-paper he proposed an alternating method to solve a PDE equation
set on a complex domain composed the overlapping union of a disk and a square (fig. 1),
giving the mathematical basis of what is nowadays one of the most natural ways to benefit
the modern hardware architecture of scientific computers.

In fact the growing importance of domain decomposition methods in scientific compu-
tation is deeply linked to the growth of parallel processing capabilities (in terms of number
of processors, data exchange bandwidth between processors, parallel library efficiency, and
of course performance of each processor). Because of the exponential increase of compu-
tational resource requirement for numerical simulation of more and more complex physical
phenomena (non-linearities, couplings between physical mechanisms or between physical
scales, random variables...) and more and more complex problems (optimization, inverse
problems...), parallel processing appears to be an essential tool to handle the resulting
numerical models.

Parallel processing is supposed to take care of two key-points of modern computations,
the amount of operations and the required memory. Let us consider the simulation of
a physical phenomenon, classically modeled by a PDE L(x) = f, x ∈ H(Ω). To take
advantage of the parallel architecture of a calculator, a reflexion has to be carried out
on how the original problem could be decomposed into collaborating subprocesses. The
criteria for this decomposition will be: first, the ability to solve independent problems (on
independent processors); second, how often processes have to be synchronized; and last
what quantity of data has to be exchanged when synchronizing. When tracing back the
idle time of resolution processes and analyzing hardware and software solutions, it is often



2 P. Gosselet and C. Rey

Figure 1. Schwarz’ original problem

Figure 2. 16 subdomains bitraction test specimen

(courtesy of ONERA – Pascale Kanouté)

observed that inter-processor communications are the most penalizing steps.

If we now consider the three great classes of mathematical decomposition of our ref-
erence problem which are operator splitting (for instance L =

∑
i Li [47]), function-space

decomposition (for instance H(Ω) = span(vi), an example of which is modal decomposi-
tion) and domain decomposition (Ω =

⋃
Ωi), though the first two can lead to very elegant

formulations, only domain decompositions ensure (once one subdomain or more have been
associated to one processor) that independent computations are limited to small quanti-
ties and that the data to exchange is limited to the interface (or small overlap) between
subdomains which is always one-to-one exchange of small amount of data.

So domain decomposition methods perfectly fit the criteria for building efficient algo-
rithms running on parallel computers. Their use is very natural in engineering (and more
precisely design) context : domain decomposition methods offer a framework where different
design services can provide the virtual models of their own parts of a structure, each as-
sessed independently, domain decomposition can then evaluate the behavior of the complete
structure just setting specific behavior on the interface (perfect joint, unilateral contact,
friction). Of course domain decomposition methods also work with one-piece structure (for
instance fig. 2), then decomposition can be automated according to criteria which will be
discussed later.

From an implementation point of view, programming domain decomposition methods
is not an overwhelming task. Most often it can be added to existing solvers as a upper level
of current code using the existing code as a black-box. The only requirement to implement
domain decomposition is to be able to detect the interface between subdomains and use
a protocol to share data on this common part. In this paper we will mostly focus on
domain decomposition methods applied to finite element method [15, 109], anyhow they
can be applied to any discretization method (among others meshless methods [5, 9, 73] and
discrete element methods [20, 8, 22]).

Though domain decomposition methods were more than one century old, they had not
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been extensively studied. Recent interest arose as they were understood to be well-suited to
modern engineering and modern computational hardware. An important date in reinterest
in domain decomposition methods is 1987 as first international congress dedicated to these
methods occurred and DDM association was created (see http://www.ddm.org).

Yet the studies were first mathematical analysis oriented and emphasized on Schwarz
overlapping family of algorithms. As interest in engineering problems grew, non-overlapping
Schwarz and Schur methods, and coupling with discretization methods (mainly finite ele-
ment) were more and more studied. Indeed, these methods are very natural to interpret
mechanically, and moreover mechanical considerations often resulted in improvement to
the methods. Basically the notion of interface between neighboring subdomains is a strong
physical concept, to which is linked a set of conservation principles and phenomenological
laws: for instance the conservation of fluxes (action-reaction principle) imposes the point-
wise mechanical equilibrium of the interface and the equality of incoming mass (heat...)
from one subdomain to the outgoing mass (heat...) of its neighbors; the ”perfect interface”
law consists in supposing that displacement field (pressure, temperature) is continuous at
the interface, contact laws enable disjunction of subdomains but prohibit interpenetration.

In this context two methods arose in the beginning of the 90’s : so-called Finite Element
Tearing and Interconnecting (FETI) method [41] and Balanced Domain Decomposition
(BDD) [104]. From a mechanical point of view BDD consists in choosing the interface
displacement field as main unknown while FETI consists in privileging the interface effort
field. BDD is usually referred to as a primal approach while FETI is a dual approach. One
of the interests of these methods, beyond their simple mechanical interpretation, is that
they can easily be explained from a purely algebraic point of view (ie directly from the
matrix form of the problem). In order to fit parallelization criteria, it clearly appeared that
the interface problem should be solved using an iterative solver, each iteration requiring
local (ie independent on each subdomain) resolution of finite element problem, which could
be done with a direct solver. Then these methods combined direct and iterative solver
trying to mix robustness of the first and cheapness of the second. Moreover the use of an
iterative solver was made more efficient by the existence of relevant preconditioners (based
on the resolution of a local dual problem for the primal approach and a primal local problem
for the dual approach).

When first released, FETI could not handle floating substructures (ie substructures
without enough Dirichlet conditions), thus limiting the choice of decomposition, while the
primal approach could handle such substructures but with loss of scalability (convergence
decayed as the number of floating substructures increased). A key point then was the intro-
duction of rigid body motions as constraints and the use of generalized inverses. Because
of its strong connections with multigrid methods [108], the rigid body motions constraint
took the name of ”coarse problem”, it made the primal and dual methods able to handle
most decompositions without loss of scalability [43, 74, 102]. From a mechanical point of
view, the coarse problem enables non-neighboring subdomains to interact without requiring
the transmission of data through intermediate subdomains, it then enables to spread global
information on the whole structure scale.

Once equipped with their best preconditioners and coarse problems, mathematical re-
sults [39, 65, 10] provide theoretical scalability of the methods. For instance for 3D elasticity
problems, if h is the diameter of finite elements and H the diameter of subdomains, condi-
tion number κ of the interface problem reads (C is a real constant):

κ ≃ C

(
1 + log

(
H

h

))2

(1)

which proves that the condition number only depends logarithmatically on the number of
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elements per subdomain. Many numerical assessment campaigns confirmed the good prop-
erties of the methods, their robustness compared to iterative solvers applied to the complete
structure and their low cost (in terms of memory and CPU requirements) compared to di-
rect solvers. Thus because they are well-suited to modern hardware (like PC clusters) they
enable to achieve computations which could not be realized on classical computers because
of too high memory requirement or too long computational time: these methods can handle
problems with several millions of degrees of freedom.

Primal and dual methods were extended to heterogeneous problems by a cheap interven-
tion on the preconditioners [91] and on the initialization [60], and to forth order elasticity
(plates and shells) problems by the adjunction of so-called ”second level problem” in order
to regularize the displacement field around the corners of subdomains [38, 103, 40]. As
it became clear that the regularization of the displacement field was sufficient to suppress
rigid body motions, specific algorithms which regularized a priori the subdomain problems
were proposed: FETIDP [34] and its primal counterpart BDDC [19], first in the plates and
shells context, then in the second order elasticity context [63]. Now FETIDP and BDDC
are considered as efficient as original FETI and BDD.

Methods were employed in many other contexts: transient dynamics [50], multifield
problems (multiphysic problems such as porous media [56] and constrained problems such
as incompressible flows [70, 55]), Helmotz equations [21, 37, 36] and contact [27, 26]. The
use of domain decomposition methods in structural dynamic analysis is a rather old idea
though it can now be confronted to well established methods in static analysis; the Craig-
Bampton algorithm [17] is somehow the application of the primal strategy to such problems,
the dual version of which was proposed in [90], moreover ideas like the adjunction of coarse
problems enabled to improve these methods.

Because of the strong connection between primal and dual approaches, some meth-
ods try to propose frameworks which generalize the two methods. The hybrid approach
[61, 57] enables to select specific treatment (primal or dual) for each interface degree of
freedom; if all degrees of freedom have the same treatment, the hybrid approach is exactly
a classical approach. For certain multifield problems the hybrid approach enables to define
physic-friendly solvers. The hybrid approach can also be obtained from specific optimality
considerations [24]. Mixed approaches [66, 80, 99] consist in searching a linear combination
of interface displacement and effort field, depending on the artificial stiffness introduced on
the interface one can recover the classical approaches (null stiffness for the dual approach,
infinite stiffness for the primal approach). Moreover, the mixed approaches enable to pro-
vide the interface mechanical behavior and provide a more natural framework to handle
complex interfaces (contact, friction...) than classical approaches.

In this paper we aim at reviewing most of non-overlapping domain decomposition meth-
ods. To adopt a rather general point of view we introduce a set of notations strongly linked
to mechanical considerations as it gives the interface the main role of the methods. We try
to include all methods inside the same pattern so that we can easily highlight the connec-
tions and differences between them. We adopt a practical point of view as we describe the
mechanical concepts, the algebraic formulations, the algorithms and the practical imple-
mentation of the methods. At each step we try to emphasize keypoints and not to avoid
theoretical and practical difficulties.

This paper is organized as follows. In section 2 we introduce the mechanical framework
of our study, the common notations and the notion of interface assembly operators and
mechanical operators which will play a central role in the methods. Section 3 provides
a rather extensive review of the nonoverlapping domain decomposition methods in the
framework of discretized problems: basic primal and dual approaches (with their variations),
three-field method for conforming grids, mixed and hybrid approaches. A keypoint of the
previous methods is the adjunction of optional constraints to form a ”coarse problem” which
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transmits global data through the whole structure, the strategies to introduce these optional
constraints are studied in section 4, which leads to the definition of ”recondensed” strategies
FETIDP and BDDC. Section 5 deals with practical issues which are very often common
to most of the methods. Assessments are given in section 6 to illustrate the methods and
outline their main properties. Section 7 concludes the paper. As Krylov iterative solvers
are often coupled to domain decomposition methods, main concepts and algorithms to use
them are given in appendix A.

2 Formulation of an interface problem

To present as smoothly as possible non-overlapping domain decomposition methods we
first consider a reference continuous mechanics problem, decompose the domain in two
subdomains in order to introduce interface fields, then in order to describe correctly the
interface we study a N -subdomain decomposition. Since our aim is not to prove theoretical
performance results but make the reader feel some key-points of substructuring, we do not
go too far in continuous formulation and quickly introduce discretized systems.

2.1 Reference problem

Ω

g

f

u0

∂gΩ

∂uΩ

Figure 3. Reference problem

Let us consider domain Ω in R
n (n=1, 2 or 3) submitted to a classical linear elasticity

problem (see figure 3) : displacement u0 is imposed on part ∂uΩ of the boundary of the
domain, effort g is imposed on complementary part ∂gΩ, volumic effort f is imposed on Ω,
elasticity tensor is a [53, 16]. The system is governed by the following equations :





div(σ) + f = 0 in Ω
σ = a : ε(u) in Ω

ε(u) = 1
2

(
grad(u) + grad(u)T

)
in Ω

σ.n = g on ∂gΩ
u = u0 on ∂uΩ

(2)

In order to have the problem well posed, we suppose mes(∂uΩ) > 0. We also suppose
that tensor a defines a symmetric definite positive bilinear form on 2nd-order symmetric
tensors. Under these assumptions, problem (2) has a unique solution [28].
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2.2 Two-subdomain decomposition

Ω(1)
Ω(2)

Υ

Figure 4. Two-subdomain decomposition

Let us consider a partition of domain Ω into 2 substructures Ω(1) and Ω(2). We define
interface Υ between substructures (figure 4) :

Υ = ∂Ω(1)
⋂

∂Ω(2) (3)

System (2) is posed on domain Ω, we write its restrictions to Ω(1) and Ω(2) :

s = 1 or 2,





div(σ
(s)

) + f
(s)

= 0 in Ω(s)

σ
(s)

= a
(s) : ε(u(s)) in Ω(s)

ε(u(s)) = 1
2

(
grad(u(s)) + grad(u(s))T

)
in Ω(s)

σ
(s)

.n(s) = g(s) on ∂gΩ
⋂

∂Ω(s)

u(s) = u
(s)
0 on ∂uΩ

⋂
∂Ω(s)

(4)

and the interface connection conditions, continuity of displacement

u(1) = u(2) on Υ (5)

and equilibrium of efforts (action-reaction principle)

σ
(1)

n(1) + σ
(2)

n(2) = 0 on Υ (6)

Of course system (4, 5, 6) is strictly equivalent to global problem (2).

2.3 N-subdomain decomposition

Let us consider a partition of domain Ω into N subdomains denoted Ω(s). We can define
the interface between two subdomains, the complete interface of one subdomain and the
geometric interface at the complete structure scale:





Υ(i,j) = Υ(j,i) = ∂Ω(i)
⋂

∂Ω(j)

Υ(s) =
⋃

j Υ
(s,j)

Υ =
⋃

sΥ
(s)

(7)

When implementing the method, one (possibly virtual) processor is commonly assigned
to each subdomain, hence because we can tell ”local” computations (realized independently
on each processor) from ”global” computations (realized by exchanging data between pro-

cessors), we often refer to values as being global or local. Then Υ(s) is the local interface
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Ω(1)

Ω(2)

Ω(3)
Υ

(a) Primal (geometric) interface

Ω(1)

Ω(2)

Ω(3)
Υ(1,2)

Υ(1,3)

Υ(2,3)

(b) Dual interface (connectiv-
ity)

Figure 5. Definition of the interface for a N-subdomain decomposition

and Υ the global interface. Because exchanges are most often one-to-one, Υ(i,j) is the
(i− j)-communication interface.

Using more than two subdomains (except when using ”band”-decomposition) leads to
the appearance of ”multiple-points” also called ”crosspoints” (which are nodes shared by
more than two subdomains). These crosspoints lead to the existence of two descriptions of
the interface (figure 5): so-called geometric interface Υ and so-called connectivity interface

made out of the set of one-to-one interfaces (Υ(i,j))16i<j6N . Each of the two most classical
methods exclusively uses one of these descriptions so the geometric interface Υ is often
referred to as the primal interface while the connectivity interface Υ is referred to as the
dual interface.

How crosspoints are handled is a fundamental key in the differentiation of domain
decomposition methods. In the remainder of the paper we will always refer to data attached
to the dual interface using underlined notation.

Remark 2.1 Reader may have observed that the above presented connectivity description is
redundant for crosspoints: let x be a crosspoint if x belongs to Υ(1,2) and Υ(2,3), it of course
belongs to Υ(1,3). In the general case of a m-multiple crosspoint, there are

(
m
2

)
connectivity

relationships while only (m−1) would be sufficient and necessary. We will present strategies
to remove these redundancies in the algebraic analysis of the methods.

Remark 2.2 Cross-points may also introduce, at the continuous level, punctual-interfaces
in 2d or edge-interfaces in 3d, which are interface with zero measure. Most often from a
physical point of view these are not considered as interfaces. Anyhow after discretization
all relationships are written node-to-node and the problem no longer exists.

2.4 Discretization

We suppose that the reference problem has been discretized, leading to the resolution of
n× n linear system:

Ku = f (8)

Because of its key role in structural mechanics we will often refer to finite element dis-
cretization though any other technique would suit. The key points are the link between
matrix K and the domain geometry and the sparse filling of matrix K (related to the fact
that only narrow nodes have non-zero interaction).

We restrict to the case of element-oriented decompositions (each element belongs to one
and only one substructure) which are conforming to the mesh which implies three conditions
[89]:
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• there is a one-to-one correspondence between degrees of freedom by the interface ;

• approximation spaces are the same by the interface ;

• models (beam, shell, 3d...) are the same by the interface.

Under these assumptions connection conditions simply write as node equalities. For non-
conforming meshes, a classical solution is to use mortar-elements for which continuity and
equilibrium are verified in a weak sense [1, 2, 101].

2.4.1 Boolean operators

In order to write communication relation between subdomains we have to introduce several
operators.

The first one is the ”local trace” operator t(s) which is the discrete projection from
Ω(s) to Υ(s). It enables to cast data from a complete subdomain to its interface, and once
transposed to extend data set on the interface to the whole subdomain (setting internal
degrees of freedom to zero). In the remainder of the paper we will use subscript b for
interface data and subscript i for internal data.

Then data lying on one subdomain interface has to be exchanged with its neighboring
subdomains. It can be either realized on the primal interface or the dual interface, leading
to two (global) ”assembly” operators: the primal one A(s), and the dual one A(s). The
primal assembly operator is a strictly boolean operator while the dual assembly operator
is a signed boolean operator (see figure 6): if a degree of freedom is set to 1 on one side of
the interface, its corresponding degree of freedom on the other side of the interface is set to
−1. Non-boolean assembly operators can be used in order to average connection conditions
when using non-conforming domain decomposition methods [6].

Remark 2.3 Our (t(s), A(s), A(s)) set of operators is not the most commonly used in papers
related to domain decomposition. The interest of this choice is to be sufficient to explain
most of the available strategies with only three operators. Other notations use ”composed

operators” like (B(s) = A(s)t(s) or L(s)T = A(s)t(s)) which are not sufficient to describe all
methods and which, in a way, omit the fundamental role played by the interface.

Boolean operators have important classical properties. Please note the first one which
expresses the orthogonality of the two assembly operators.

∑

s

A(s)A(s)T = 0 (9a)

A(s)TA(s) = IΥ(s) (9b)

A(s)TA(s) = diag(multiplicity − 1)Υ(s) (9c)

A(s)A(s)T =

∣∣∣∣
I on Υ(s)

0 elsewhere
(9d)

Remark 2.4 An interesting choice of description would have been to use redundant local
interface (defining some kind of t(s)). This choice would stick to most classical implemen-
tations where the local interface of one subdomain is defined neighborwise. Dual assembly
operator would write easily as a simple signing operator, but handling multiple points would
be slightly more difficult for the primal assembly operator (see section 5.6).
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Remark 2.5 Redundancies can easily be removed from the dual description of the inter-
face. One has just to modify the connectivity table, so that one multiple point is connected
only once to each subdomain. This can be carried out introducing two different assembly
operators the ”non-redundant” one and the ”orthonormal” one (see figure 7) [48]. Only re-

lationship 9c is modified (then A(s)TA(s) = IΥ(s)). The interest of the use of these assembly
operators will be discussed in section 3.3.

1(1) 2(1) 3(1)

4(1)
5(1)

1(2) 2(2) 3(2)

4(2)5(2)

1(3)

2(3)

3(3)

4(3)

(a) Subdomains

1
(1)
b

2
(1)
b

3
(1)
b

1
(2)
b

2
(2)
b3

(2)
b

1
(3)
b

2
(3)
b

3
(3)
b

(b) Local interface

2
(3)
b

1Υ

2Υ

3Υ

4Υ

(c) Primal interface

1Υ

2Υ

3Υ

4Υ

5Υ

6Υ

(d) Dual interface

t(1) =

(

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)

t(2) =

(

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)

t(3) =

(

1 0 0 0
0 1 0 0
0 0 1 0

)

A(1) =







0 0 0
0 1 0
1 0 0
0 0 1






A(2) =







1 0 0
0 0 1
0 0 0
0 1 0






A(3) =







0 0 1
0 0 0
1 0 0
0 1 0







A(1) =













0 0 0
0 1 0
1 0 0
0 0 0
0 0 1
0 0 1













A(2) =













1 0 0
0 0 −1
0 0 0
0 1 0
0 −1 0
0 0 0













A(3) =













0 0 −1
0 0 0
−1 0 0
0 −1 0
0 0 0
0 −1 0













Figure 6. Local numberings, interface numberings, trace and assembly operators
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1
(1)
b

2
(1)
b

3
(1)
b

1
(2)
b

2
(2)
b3

(2)
b

1
(3)
b

2
(3)
b

3
(3)
b

(a) Local interface

1Υ

2Υ

3Υ

4Υ

5Υ

6Υ

(b) Redundant connectivity

1Υ

2Υ

3Υ

4Υ

5Υ

(c) Non-redundant connectivity

1Υ

2Υ

3Υ

4Υ

5Υ

(d) Orthonormal connectivity

A(1) =













0 0 0
0 1 0
1 0 0
0 0 0
0 0 1
0 0 1













A(2) =













1 0 0
0 0 −1
0 0 0
0 1 0
0 −1 0
0 0 0













A(3) =













0 0 −1
0 0 0
−1 0 0
0 −1 0
0 0 0
0 −1 0













A
(1)
N

=











0 0 0
0 1 0
1 0 0
0 0 0
0 0 1











A
(2)
N

=











1 0 0
0 0 −1
0 0 0
0 1 0
0 −1 0











A
(3)
N

=











0 0 −1
0 0 0
−1 0 0
0 −1 0
0 0 0











A
(1)
O

=















0 0 0
0 1

√

2
0

1
√

2
0 0

0 0 0
0 0 2

√

6















A
(2)
O

=















1
√

2
0 0

0 0 − 1
√

2
0 0 0
0 1

√

2
0

0 − 1
√

6
0















A
(3)
O

=















0 0 − 1
√

2
0 0 0

− 1
√

2
0 0

0 − 1
√

2
0

0 − 1
√

6
0















Figure 7. Suppressing redundancies of dual interface

2.4.2 Basic equations

In order to rewrite equation (8) in a domain-decomposed context, we have to introduce

the reaction unknown which is the discretization of σ
(1)

n(1) = −σ
(2)

n(2) in equation (6).

λ(s) is the reaction imposed by neighboring subdomains on subdomain (s). Commonly

λ(s) is defined on the whole subdomain (s) while it is non-zero only on its interface, so
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λ(s) = t(s)
T
λ
(s)
b .

∀s, K(s)u(s) = f (s) + λ(s) (10a)
∑

s

A(s)t(s)u(s) = 0 (10b)

∑

s

A(s)t(s)λ(s) = 0 (10c)

Equation (10a) corresponds to the (local) equilibrium of each subdomain submitted to

external conditions f (s) and reactions from neighbors λ(s). Equation (10b) corresponds
to the (global) continuity of the displacement field through the interface. Equation (10c)
corresponds to the (global) equilibrium of the interface (action-reaction principle).

This three-equation system (10) is the starting point from a rich zoology of methods,
most of which possess strong connections we will try to emphasis on. Before going further
in the exploration of these methods, we propose to introduce local condensed operators
that represent a subdomain on its interface, then a set of synthetic notations.

2.4.3 Local condensed operators

Philosophically, local condensed operators are operators that represent how neighboring
subdomains ”see” one subdomain: a subdomain can be viewed as a black-box, the only
information necessary for neighbors is how it behaves on its interface. Associated to this
idea is the classical assumption that local operations are ”exactly” performed. From an
implementation point of view, when solving problems involving local matrices, a direct
solver is employed. As we will see, the use of exact local solvers will be coupled with the
use of iterative global solvers leading to a powerful combination of speed and precision of
computations.

In this section we will always refer to the local equilibrium of subdomain (s) under
interface loading:

K(s)u(s) = λ(s) = t(s)
T
λ
(s)
b (11)

Primal Schur complement S
(s)
p : If we renumber the local degrees of freedom of subdo-

main (s) in order to separate internal and boundary degrees of freedom, system (11)
writes (

K
(s)
ii K

(s)
ib

K
(s)
bi K

(s)
bb

)(
u
(s)
i

u
(s)
b

)
=

(
0

λ
(s)
b

)
(12)

From the first line we draw

u
(s)
i = −K

(s)
ii

−1
K

(s)
ib u

(s)
b (13)

then the Gauss elimination of u
(s)
i leads to

(
K

(s)
bb −K

(s)
bi K

(s)
ii

−1
K

(s)
ib

)
u
(s)
b = S(s)

p u
(s)
b = λ

(s)
b (14)

which is the condensed form of the local equilibrium of subdomains expressed in

terms of interface fields. Operator S
(s)
p is called local primal Schur complement. Its

computation is realized by the inversion of matrix K
(s)
ii which corresponds to Dirichlet

conditions imposed on the interface of subdomain (s), so the primal Schur complement
is always well defined, and commonly called the ”local Dirichlet operator”. Note that
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the symmetry, positivity, and definition properties are inherited by matrix S
(s)
p from

matrix K(s).

An important result is that the kernel of matrices K(s) and S
(s)
p can be deduced one

from the other (I
(s)
b is the identity matrix on the interface):

K(s)R(s) = 0 =⇒ S(s)
p t(s)R(s) = S(s)

p R
(s)
b = 0 (15)

S(s)
p R

(s)
b = 0 =⇒ K(s)

(
−K

(s)
ii

−1
K

(s)
ib

I
(s)
b

)
R

(s)
b = K(s)R(s) = 0 (16)

Primal Schur complement can also be interpreted as the discretization of the Stecklov-
Poincaré operator. From a mechanical point of view, it is the linear operator that
provides the reaction associated to given interface displacement field.

If we consider that the subdomain is also loaded on internal degrees of freedom, then
the condensation of the equilibrium on the interface reads:

K(s)u(s) = f (s) ⇒ S(s)
p u

(s)
b = b(s)p (17)

b(s)p = f
(s)
b −K

(s)
bi K

(s)
ii

−1
f
(s)
i (18)

b
(s)
p is the condensed effort imposed on the substructure.

Dual Schur complement S
(s)
d : the dual Schur complement is a linear operator that

computes interface displacement field from given interface effort. From equation (11)
and (14) we have:

(
t(s)K(s)+t(s)

T
)
λ
(s)
b = S(s)

p

+
λ
(s)
b = S

(s)
d λ

(s)
b = u

(s)
b (19)

where K(s)+ is the generalized inverse of matrix K(s), and where it is assumed that
no rigid body motion is excited. If we denote by R(s) the kernel of matrix K(s) this
last condition reads:

R(s)Tλ(s) = 0 or equivalently R
(s)
b

T
λ
(s)
b = 0 (20)

Remark 2.6 A generalized inverse (or pseudo-inverse) of matrix M is a matrix, denoted
M+, which verifies the following property: ∀y ∈ range(M), MM+y = y. Note that this
definition leads to non-unique generalized inverse, however all results presented are inde-
pendent of the choice of generalized inverse.

Of course in order to take into account, inside (19), the possibility of the substructure to
have zero energy modes, an arbitrary rigid displacement can be added leading to the next
expression where vector α(s) denotes the magnitude of rigid body motions:

u
(s)
b = S

(s)
d λ

(s)
b +R

(s)
b α(s) (21)

Hybrid Schur complement: S
(s)
pd this operator corresponds to an interface where de-

grees of freedom are partitioned into two subsets. Suppose that the first subset is

submitted to given Dirichlet conditions and the second to Neumann condition, S
(s)
pd is
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the linear operator that associates resulting reaction on the first subset and resulting
displacement on the second subset to those given conditions. We denote by subscript
p data defined on the first subset and by subscript d data defined on the second subset
(schematically b = p ∪ d and p ∩ d = ∅).

S
(s)
pd

(
u
(s)
p

λ
(s)
d

)
=

(
λ
(s)
p

u
(s)
d

)
(22)

The computation of operator S
(s)
pd though no more complex than the computation of

S
(s)
p or S

(s)
d , requires more notations. A synthetic option is to denote by subscript p̄

the sets of internal (subscript i) data and second-interface-subset (subscript d) data,
schematically p̄ = i ∪ d. We introduce a modified trace operator:

t
(s)
d vp̄ = t

(s)
d

(
vi
vd

)
= vd (23)

Then internal equilibrium (11) reads:

(
K

(s)
p̄p̄ K

(s)
p̄p

K
(s)
pp̄ K

(s)
pp

)(
u
(s)
p̄

u
(s)
p

)
=

(
t
(s)
d

T
λ
(s)
d

λ
(s)
p

)
(24)

Then hybrid Schur complement is:

S
(s)
pd =

(
K

(s)
pp −K

(s)
pp̄ K

(s)
p̄p̄

+
K

(s)
p̄p K

(s)
pp̄ K

(s)
p̄p̄

+
t
(s)
d

T

−t
(s)
d K

(s)
p̄p̄

+
Kp̄p t

(s)
d K

(s)
p̄p̄

+
t
(s)
d

T

)
(25)

As can be noticed the diagonal blocks of S
(s)
pd look like fully primal and fully dual

Schur complements, while extradiagonal blocks are antisymmetric (assuming K(s) is
symmetric). Of course if all interface degrees of freedom belong to the same sub-
set, the hybrid Schur complement equals ”classical” fully primal or fully dual Schur
complement. Moreover it stands out clearly that:

S
(s)
pd

+
= S

(s)
dp =


 t

(s)
p K

(s)

d̄d̄

+
t
(s)
p

T
−t

(s)
p K

(s)

d̄d̄

+
Kd̄d

K
(s)

dd̄
K

(s)

d̄d̄

+
t
(s)
p

T
K

(s)
dd −K

(s)

dd̄
K

(s)

d̄d̄

+
K

(s)

d̄d


 (26)

S
(s)
dp is the operator which associates displacement on the first subset and reaction on

the second subset to given effort on the first subset and given displacement on the
second subset.

As both matrices K
(s)
p̄p̄ and K

(s)

d̄d̄
may not be invertible, only their pseudo-inverse has

been introduced. The invertibility is strongly dependent on the choice of interface
subsets.

2.4.4 Block notations

While condensed operators simplify the writing of local operations, the block notations
make it easer to understand the global operations of domain decomposition. We propose to
denote by superscript �⋄ the row-block repetition of local vectors and the diagonal-block
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repetition of matrices, block assembly operators are written in one row (column-block) and
denoted by special font, for instance:

u⋄ =




u(1)

...
u(N)


 f⋄ =




f (1)

...
f (N)


 λ⋄ =




λ(1)

...
λ(N)




K⋄ =




K(1) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 K(N)




t⋄ =




t(1) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 t(N)




A =
(
A(1) . . . A(N)

)
A =

(
A(1) . . . A(N)

)

Remark 2.7 The specific notation for assembly operators aims at emphasizing at their spe-
cific role in terms of parallelism for the methods. Moreover, the only operation that requires
exchange of data between subdomains is the use of non-transposed assembly operators.

Fundamental system (10) then reads:

K⋄u⋄ = f⋄ + λ⋄ (27a)

At⋄λ⋄ = 0 (27b)

At⋄u⋄ = 0 (27c)

or in condensed form:
S⋄
pu

⋄
b = b⋄p + λ⋄

b (28a)

Aλ⋄
b = 0 (28b)

Au⋄b = 0 (28c)

The orthogonal property of assembly operators (9a) simply reads:

AA
T = 0 (29)

Relation (9d) reads:

AA
T = diag(multiplicity) (30)

Remark 2.8 For improved readability, we will denote by bold font objects defined in a
unique way on the interface (ie ”assembled” quantities). Schematically, assembly operators
enable to go from block notations to bold notations and transposed assembly operators realize
the reciprocal operations.

2.4.5 Brief review of classical strategies

We can define general strategies to solve system (27) or (28):

Primal approaches [104, 105, 74, 102, 75, 106, 103] a unique interface displacement un-
known ub satisfying equation (28c) is introduced, then an iterative process enables to
satisfy (28b) while always verifying (28a).

Dual approaches [41, 31, 42, 43, 39, 76, 7] a unique interface effort unknown λb satisfying
equation (28b) is introduced, then an iterative process enables to satisfy (28c) while
always verifying (28a).
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Three fields approaches [11, 81, 92] a unique interface displacement ub is introduced,
then relation (28c) is dualized so that interface efforts λ⋄

b are introduced as Lagrange
multipliers which yet have to verify relation (28b). Then the iterative process looks
simultaneously for (λ⋄

b ,ub, u
⋄
b) verifying exactly equation (28a). As this method is

mostly designed for non-matching discretizations it will not be exposed in the re-
maining of this paper, anyhow a variant of the dual method which is equivalent to
the three-field method with conforming grids will be described.

Mixed approaches [54, 66, 100, 99] new interface unknown is introduced which is a linear
combination of interface displacement and effort, µ⋄

b = λ⋄
b + T ⋄

b u
⋄
b , then the interface

system is rewritten in terms of unknown µ⋄
b , this new system is solved iteratively and

then λ⋄
b and u⋄b are postprocessed. Of course matrix T ⋄

b is an important parameter of
these methods.

Hybrid approaches [64, 35, 77, 34, 57] interface is split into parts where primal, dual or
mixed approaches are applied, specific recondensation methods may then be applied.

Many different methods can be deduced from these large strategies, the most common will
be presented and discussed in section 3. Anyhow since iterative solvers are used to solve
interface problems, we recommend the reader to refer to appendix A where most used
solvers are presented, including important details about constrained resolutions.

3 Classical solution strategies to the interface problem

The aim of this section is to give extended review of classical domain decomposition meth-
ods, the principle of which has just been exposed. The association with Krylov iterative
solvers is an important point of these methods, appendix A provides a summary of impor-
tant results and algorithms that are used in this section.

3.1 Primal domain decomposition method

The principle of primal domain decomposition method is to write the interface problem
in terms of one unique unknown interface displacement field ub. The trace of local dis-
placement fields then writes u⋄b = A

Tub. Because of the orthogonality between assembly
operators (29), equation (28c) is automatically verified. Using equation (28b) to eliminate
unknown reaction λ⋄

b inside (28a), we get the primal formulation of the interface problem:

Spub =
(
AS⋄

pA
T
)
ub = Ab⋄p = bp (31)

Operator Sp is the global primal Schur complement of the decomposed structure, it

results as the sum of local contributions (with non-block notations Sp =
∑

sA
(s)S

(s)
p A(s)T ).

Using a direct solver to solve system (31) implies the exact computation of local contribu-
tion, the sum of these contributions (in a parallel computing context, this step correspond
to large data exchange between processors) and the inversion of the global primal Schur
complement which size is the global geometric interface (the size of which is far from being
neglectable) and which sparsity is very poor (each interface degree of freedom is connected
to degrees of freedom belonging to the same subdomains). Using an iterative solver is much
less expensive since the only required operations are matrix-vector products which can be
realized in parallel because of the assembled structure of global primal Schur complement;
moreover excellent and rather cheap preconditioner exists. Note that if global matrix K
is symmetric positive definite then so is operator Sp and then popular conjugate gradient
algorithm can be used to solve the primal interface problem, in other cases solvers like
GMRes or orthodir have to be employed.



16 P. Gosselet and C. Rey

3.1.1 Preconditioner to the primal interface problem

An efficient preconditioner S̃−1
p is an interface operator giving a good approximation of

the inverse of Sp. Various strategies are possible. For instance, a direct preconditioning
method is based on the construction of an approximate Schur complement from a simplified
structure defined by degrees of freedom ”near” the interface. Anyhow such a method does
not respect the repartition of the data through processors. A good parallel preconditioner
has to minimize data exchange.

Since operator Sp is the sum of local contributions, the most classical strategy is then

to define S̃−1
p as a scaled sum of the inverse of local contributions:

S̃−1
p = ÃS⋄

p
+
Ã
T = ÃS⋄

dÃ
T (32)

Since S⋄
p
+ = S⋄

d requires the computation of local problems with given effort on the interface,

this preconditioner is called the Neumann preconditioner. Scaled assembly operator Ã can
be defined the following way [65]:

Ã =
(
AM⋄

A
T
)−1

AM⋄ (33)

where M⋄ is a parameter which enables to take into account the heterogeneity of the
subdomains connected by the interface. It should make matrix

(
AM⋄

A
T
)
easily invertible

and give a representation of the stiffness of the interface, most commonly:

• M⋄ = I⋄ for homogeneous structures,

• M⋄ = diag(K⋄
bb) for compressible heterogeneous structures,

• M⋄ = µ⋄ for incompressible heterogeneous structures (µ⋄ is the diagonal matrix the
coefficients of which are the shearing modulus of interface degrees of freedom).

The (s) notation makes it easier to understand implementation of scaled assembly op-
erators:

S̃−1
p =

∑

s

M (s)A(s)S
(s)
d A(s)TM (s) (34)

• M (s) = diag( 1
multiplicity) for homogeneous structures,

• M (s) = diag(
diag(K

(s)
bb

)i
∑

j diag(K
(j)
bb

)i
) for compressible heterogeneous structures (assuming i rep-

resents the same degree of freedom shared by the j subdomains)

• M (s) = diag(
µ
(s)
i

∑

j µ
(j)
i

) for incompressible heterogeneous structures (assuming i repre-

sents the same degree of freedom shared by the j subdomains)

The following partition of unity result clearly holds:

ÃA
T = IΥ (35)∑

s

M (s) = IΥ (36)
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3.1.2 Coarse problem

The use of dual Schur complement is associated to an optimality condition, as said earlier
vector being multiplied by the pseudo inverse should lie inside the image of S⋄

p . Since
preconditioning is applied to residual r, the optimality condition reads:

R⋄
b
T
Ã
Tr = 0 (37)

and introducing classical notation G = ÃR⋄
b , GTr = 0. Such a condition can then be

interpreted as an augmented-Krylov algorithm (see section A.7). Once equipped with that
augmentation problem, the primal Schur complement method is referred to as the ”balanced
domain decomposition” (BDD [74, 102]). Algorithm 3.1 summarizes the classical BDD
approach, and figure 8 provides a schematic representation of the first iteration of the
preconditioned primal approach.

Algorithm 3.1 Primal Schur complement with conjugate gradient

1: Set P = I −G(GTSpG)−1GTSp

2: Compute u0 = G(GTSpG)−1GT bp
3: Compute r0 = bp − Spu0 = P T bp
4: z0 = S̃−1

p r0 set w0 = z0
5: for j = 0, . . . ,m do
6: pj = SpPwj (notice SpP = P TSp = P TSpP )
7: αj = (zj , rj)/(pj , wj)
8: uj+1 = uj + αjwj

9: rj+1 = rj − αjpj
10: zj+1 = S̃−1

p rj+1

11: For 0 6 i 6 j, βi
j = −(zj+1, pi)/(wi, pi)

12: wj+1 = zj+1 +
∑j

i=1 β
i
jwi

13: end for

3.1.3 Error estimate

The reference error estimate is the one linked to the convergence over the complete structure:
‖Ku−f‖

‖f‖ . Assuming local inversions are exact, we reach the following result:

‖Ku− f‖
‖f‖ =

‖Spub − bp‖
‖f‖ (38)

During the iterative process ‖Spub − bp‖ is the norm of residual r as computed line 9
of algorithm 3.1, so the global convergence can be controlled by the convergence of the
interface iterative process.

3.1.4 P-FETI method

The P-FETI method is a variation of BDD proposed by [49, 50] inspired by the dual ap-
proach (the reader should refer to the dual method before going further inside P-FETI). Its
principle is to provide another assembly operator which incorporate rigid body elimination
by a dual-like projector.

S̃−1
p = HS⋄

dH
T (39)

H
T = Ã

T − A
TQG

(
GTQG

)−1
GT (40)
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Figure 8. Representation of first iteration of preconditioned primal approach

The choice of matrix Q is guided by the same considerations as in the dual method. It
is worth noting that when Q is chosen equal to the Dirichlet preconditioner of the dual

method (Q = Ã
T
S⋄
pÃ) then the P-FETI method is equivalent to the classical balanced

domain decomposition.

3.2 Dual domain decomposition method

The principle of dual domain decomposition method is to write the interface problem in
terms of one unique unknown interface effort field λb. The trace of local effort fields then
writes λ⋄

b = A
Tλb. Because of the orthogonality between assembly operators (29), equation

(28b) is automatically verified. In order to eliminate unknown interface displacement field
using (28c), we first obtain it from equation (28a) (or equivalently (27a)): as seen in (21) the
inversion of local systems may require the use of generalized inverse and the introduction of
rigid body motions the magnitude of which is denoted by vector α(s), the use of generalized
inverse is then submitted to compatibility condition.

u⋄b = S⋄
d(b

⋄
p + A

Tλb) +R⋄
bα

⋄ (41)

R⋄
b
T (b⋄p + A

Tλb) = 0 (42)
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The first line is then premultiplied by A (same expressions could be obtain from non con-
densed notations).

Sd = AS⋄
dA

T

b⋄d = S⋄
db

⋄
p = t⋄K⋄+f⋄

G = AR⋄
b

e⋄ = R⋄
b
T b⋄p = R⋄T f⋄

we get the dual formulation of the interface problem:
(
Sd G

GT 0

)(
λb

α⋄

)
=

(
−bd
−e⋄

)
(43)

This is the basic dual Schur complement method, also called Finite Element Tearing and
Interconnecting method (FETI [41, 43]). For similar reasons to the primal Schur comple-
ment method, this system is most often solved using an iterative solver, then we will soon
discuss the preconditioning issue and how the GTλb + e⋄ = 0 constraint is handled. Let us
first remark that global dual Schur complement Sd is non-definite as soon as redundancies
appear in the connectivity description of the interface, anyhow it is easy to prove [41] that
local contributions λ⋄

b = A
Tλb are unique (non-definition only affect the ”artificial” split-

ting of forces on multiple points), and that because the right hand side lies in range(A)
iterative process converges; other considerations on the splitting of physical efforts between
subdomains will lead to improved initialization (see section 3.2.4 and [60]).

3.2.1 Preconditioner to the dual interface problem

Like it is done in the primal approach, the most interesting preconditioners are researched
as assembly of local contributions, and the global dual Schur complement being a sum of
local contributions, optimal preconditioner is a scaled sum of local inverses.

S̃
−1
d = ÃS⋄

d
+
Ã
T
= ÃS⋄

pÃ
T

(44)

Because this preconditioner uses local primal Schur complement, which corresponds to
the local resolution of imposed displacement problems, it is commonly called the Dirichlet
preconditioner. One interesting point is the possibility to give approximation of the local
Schur complement operator leading to the following preconditioners:

S⋄
p ≈ K⋄

bb lumped preconditioner (45)

S⋄
p ≈ diag(K⋄

bb) superlumped preconditioner (46)

These preconditioners have very low computational cost (they do not require the compu-
tation and storage of the inverse of local internal matrices K⋄

ii
−1), even if their numerical

efficiency is not as strong as the Dirichlet preconditioner, they can lead to very reduced
computational time.

Scaled assembly operator Ã can be defined the following way [65]:

Ã =
(
AM⋄−1

A
T
)+

AM⋄−1 (47)

where M⋄ is the same parameter as for the primal approach. Such a definition is not that
easy to implement, an almost equivalent strategy is then used, easily described using the
(s) notation:

S̃−1
d =

∑

s

M (s)A(s)S(s)
p A(s)TM (s) (48)
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• M (s) = diag( 1
multiplicity) for homogeneous structures,

• M (s) = diag(
diag(K

(r)
bb

)i
∑

j diag(K
(j)
bb

)i
) for compressible heterogeneous structures (assuming i rep-

resents the same degree of freedom shared by the j subdomains and (r) is the subdo-
main connected to (s) on degree of freedom i),

• M (s) = diag(
µ
(r)
i

∑

j µ
(j)
i

) for incompressible heterogeneous structures (assuming i repre-

sents the same degree of freedom shared by the j subdomains and (r) is the subdomain
connected to (s) on degree of freedom i).

We have the following partition of unity result:

ÃA
T = IΥ (49)

and the following complementarity between primal and dual scalings [60]:

Ã
T
A+ A

T
Ã = I⋄ (50)

A(s)TM (s)A(s) +A(s)TM (s)A(s) = IΥ(s) (51)

3.2.2 Coarse problem

Admissibility condition GTλb + e⋄ = 0, can be handled with an initialization / projection
algorithm (see section A.6): λb = λ0 + Pλ∗ with GTλ0 = −e⋄ and GTP = 0.

λ0 = −QG
(
GTQG

)−1
e⋄ (52)

P = I −QG
(
GTQG

)−1
GT (53)

The easiest choice for operator Q is the identity matrix, projector P is then orthogonal,
this choice is well suited to homogeneous structures. For heterogeneous structures, matrix
Q has to provide information on the stiffness of subdomains, then Q is chosen to be a

version of the preconditioner leading to ”superlumped projector” (Q = Ã diag(K⋄
bb)Ã

T
),

”lumped projector” (Q = ÃK⋄
bbÃ

T
) and ”Dirichlet projector” (Q = ÃS⋄

pÃ
T
). Superlumped

projector is often a good compromise between numerical efficiency and computational cost.
Algorithm 3.2 presents a classical implementation of FETI method, and figure 9 provides

a schematic representation of the first iteration of the preconditioned dual approach.

3.2.3 Error estimate

The convergence of the dual domain decomposition method is strongly linked to physical
considerations. After projection, the residual can be interpreted as the jump of displacement
between substructures:

r = P T (−bd − Sdλ) = Au⋄ = ∆(u) (54)

∆(u)|Υ(i,j) = u
(i)

|Υ(i,j) − u
(j)

|Υ(i,j) (55)

Anyhow, such an interpretation cannot be connected to the global convergence of the sys-
tem. In order to evaluate the global convergence, a unique interface displacement field
has to be defined (most often using a scaled average of local displacement fields) and used
to evaluate the global residual. When using the Dirichlet preconditioner, it is possible
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Algorithm 3.2 Dual Schur complement with conjugate gradient

1: Set P = I −QG(GTQG)−1GT

2: Compute λ0 = −QG(GTQG)−1e
3: Compute r0 = P T bd − Sdλ0)

4: z0 = PS̃−1
d r0 set w0 = z0

5: for j = 0, . . . ,m do
6: pj = P TSdwj

7: αj = (zj , rj)/(pj , wj)
8: λj+1 = λj + αjwj

9: rj+1 = rj − αjpj
10: zj+1 = PS̃−1

d rj+1

11: For 0 6 i 6 j, βi
j = −(zj+1, pi)/(wi, pi)

12: wj+1 = zj+1 +
∑j

i=1 β
i
jwi

13: end for
14: α⋄ = (GTQG)−1Gtrm
15: u⋄ = K⋄+λm +R⋄α⋄

to cheaply evaluate that convergence criterion. Average interface displacement ub can be
defined as follow:

ub = AÃ
T
∆ (56)

then, from equation (38), convergence criterion reads: ‖Ku − f‖ = ‖AS⋄
pÃ

T
r‖. So when

using the Dirichlet preconditioner, the evaluation of the global residual only requires the
use of a geometric assembly after the local Dirichlet resolution.

3.2.4 Interpretation and improvement on the initialization

Let us come back to the original dual system (27).
{

K⋄u⋄ = f⋄ + t⋄TATλb

At⋄u⋄ = 0
(57)

And suppose this system is being initialized with non zero effort λb0:

K⋄u⋄ = f⋄ + t⋄TATλb (58)

let λb = λ̃b + λb0

K⋄u⋄ = f⋄ + t⋄TAT λ̃b + t⋄TATλb0

= f̃⋄ + t⋄TAT λ̃b (59)

with f̃⋄ = f⋄ + t⋄TATλb0 (60)

So initialization λb0 can be interpreted as modification t⋄TATλb0 of the intereffort between
substructures: local problems are defined except for an equilibrated interface effort field;
the only field that makes mechanical sense (and that is uniquely defined) is the assembly
of interface efforts.

At⋄f̃⋄ = At⋄f⋄ = fb global interface effort (61)

because At⋄t⋄TATλb0 = AA
Tλb0 = 0 (62)

Non-zero initialization then can be interpreted as a repartition of global interface effort
fb. Two strategies can be defined in order to realize that splitting.
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Figure 9. Representation of first iteration of preconditioned dual approach

Classical effort splitting Though splitting is hardly ever interpreted as a specific initial-
ization, it is commonly realized, based on the difference of stiffness between neighbor-
ing substructures (that idea is strongly connected to the definition of scaled assembly
operators): the aim is to guide the stress flow inside the stiffer substructure, sticking
to what mechanically occurs.

Global interface effort fb is then split according to the stiffness scaling (M⋄ =

diag(K⋄
bb)), which leads to modified local effort f̃⋄

b .

f̃⋄
b = M⋄

A
(
AM⋄

A
T
)−1

fb (63)

Complete effort f̃⋄ is constituted by f⋄ inside the substructure ((I − t⋄T t⋄)f⋄) and

split effort on its interface (t⋄T f̃⋄
b ).

f̃⋄ = (I − t⋄T t⋄)f⋄ + t⋄T f̃⋄
b (64)

Because of the complementarity between scaled assembly operators (50), final effort
reads

f̃⋄ = f⋄ − t⋄TAT
(
AM⋄−1

A
T
)+

AM⋄−1t⋄f⋄ (65)
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Interface effort splitting [60] If we start from condensed dual system (28)
{

S⋄
pu

⋄
b = b⋄p + A

Tλb

Au⋄b = 0
(66)

condensed efforts can be split along the interface as long as global condensed effort
remains unique. Assembled condensed interface effort reads bp = Ab⋄p, if it is split
according to the stiffness of the substructures:

b̃⋄p = M⋄
A
(
AM⋄

A
T
)−1

bp (67)

We have, using the complementarity between scalings:

b̃⋄p = b⋄p − A
T
(
AM⋄−1

A
T
)+

AM⋄−1b⋄p (68)

Or in a non-condensed form:

f̃⋄ = f⋄ − t⋄TAT
(
AM⋄−1

A
T
)+

AM⋄−1b⋄p (69)

As will be shown in assessments, the classical splitting leads to almost no improvement of the
method while the condensed splitting can be very efficient for heterogeneous structures. In
fact the initialization associated to this splitting can be proved to be optimal in a mechanical
sense; it can also be obtained from the assumptions used for the primal approach.

Primal approach initialization is realized supposing that interface displacement field is
zero on the condensed problem; from (66) we get:

A
Tλb0 + b⋄p ≃ 0 (70)

which could only be the solution if null interface displacement was the solution. Then local
interface efforts are split into an equilibrated part and its remaining ̺⋄:

{
b⋄p = A

Tγ + ̺⋄

γ =
(
AD⋄

A
T
)+

AD⋄b⋄p
(71)

D⋄ is a symmetric definite matrix, remaining ̺⋄ is orthogonal to range(D⋄
A). If the system

is initialized by:
λb00 = −γ (72)

then initial residual ATλb00 + b⋄p = −̺⋄ is minimal in the sense of the norm associated to

D⋄. If D⋄ = diag(Kbb
⋄)−1 then initialization is equivalent to the splitting of condensed

efforts according to the stiffness of substructures ; diag(Kbb
⋄) being an approximation of

Sp
⋄ that norm can be interpreted as an energy.
The initialization by the splitting of condensed efforts has to be made compatible with

solid body motions by the computation of:

λb0 = Pλb00 −QG
(
GTQG

)−1
e⋄ (73)

Remark 3.1 If D⋄ = S⋄
d was not computationally too expensive then improved initializa-

tion with Dirichlet preconditioner would lead to immediate convergence.

Remark 3.2 The recommended choice D⋄ = diag(Kbb
⋄)−1 is computationally very cheap,

the heaviest operation is the computation of condensed efforts (one application of Dirichlet
operator). Then if the Dirichlet preconditioner is used, new initialization is just as expensive
as one preconditioning step but it can lead to significant reduction of iterations, so it should
be employed. Of course if light preconditioner is preferred classical splitting should be used.
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3.3 Three fields method / A-FETI method

The A-FETI method [82, 81] can be explained as the application of the three-field strategy
[11] to conforming grids, this method is widely studied in [92]. Back to (28), we have

S⋄
pu

⋄
b = b⋄p + λ⋄

b (74)

Aλ⋄
b = 0 (75)

Au⋄b = 0 (76)

A-FETI method is based, like in the primal approach, on the introduction of unknown
interface displacement field ub, the continuity of displacement then reads:

u⋄b = A
Tub (77)

but local displacements are not eliminated like in the primal approach, complete system
reads: 


S⋄
p −I 0

−I 0 A
T

0 A 0





u⋄b
λ⋄
b

ub


 =



b⋄p
0
0


 (78)

In order to eliminate interface displacement ub a specific symmetric projector is introduced:

B = I −A
T
(
AA

T
)−1

A (79)

B realizes the orthogonal projection on ker(A) (AB = 0). Since Aλ⋄
b = 0 then λ⋄

b can be
written as

λ⋄
b = Bµ⋄

b (80)

µ⋄
b is a new interface effort, corresponding (recall AAT = diag(multiplicity)) to an average of

original λ⋄
b . Introducing last result and using BT

A
T = 0 to eliminate interface displacement

we have (
S⋄
p −B

−BT 0

)(
u⋄b
µ⋄
b

)
=

(
b⋄p
0

)
(81)

Then using classical elimination of local displacement by the inversion of the first line of
the previous system, we get

u⋄b = S⋄
p
+ (b⋄p +Bµ⋄

b

)
+R⋄

bα
⋄ (82)

R⋄
b
T
(
b⋄p +Bµ⋄

b

)
= 0 (83)

which leads to (
BTS⋄

dB BTR⋄
b

R⋄
b
TB 0

)(
µ⋄
b

α⋄

)
=

(−BTS⋄+
p b

⋄
p

−R⋄
b
T b⋄p

)
(84)

This system is very similar to the classical dual approach system, and in consequence
is solved in the same way (using projected algorithm). Anyhow the main difference is
that Lagrange multiplier µ⋄

b is defined locally on each subdomain and not globally on the
interface.

It was proved in [92] that A-FETI is mathematically equivalent to classical FETI with
special choice of the Q matrix parameter of the rigid body motion projector. In fact if

Q = diag( 1
multiplicity) then FETI leads to the same iterates as A-FETI. Moreover operator

B is an orthonormal projector which realizes the interface equilibrium of local reactions µ⋄
b ,

it can be analyzed as an orthonormal assembly operator as described in figure 7.
To sum up, A-FETI can be viewed as the conforming grid version of the three-field

approach, a specific case of classical FETI, and a dual approach with non-redundant de-
scription of the connectivity interface with orthonormal assembly operator.
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3.4 Mixed domain decomposition method

Mixed approaches offer a rich framework for domain decomposition methods. It enables
to give a strong mechanical sense to the method, mostly by providing a behavior to the
interface. The mixed approach is one of the bases of the LaTIn method [66, 67, 80, 68], a
very interesting strategy designed for nonlinear analysis; as we have restrained our paper to
linearized problems, we do not go further inside this method which would deserve extended
survey. Several studies were realized on mixed approaches, these methods possess strong
similarities, we here mostly refer to works on so-called ”FETI-2-fields” method [100, 99].

The principle of the method is to rewrite the interface conditions:

{
Aλ⋄

b = 0
Au⋄b = 0

(85)

in terms of a new local interface unknown, which is a linear combination of interface effort
and displacement.

µ⋄
b = λ⋄

b + T ⋄
b u

⋄
b (86)

µ⋄
b is homogeneous to an effort and T ⋄

b can be interpreted as an interface stiffness. Mixed
methods thus enable to give a mechanical behavior to the interface, in our case (perfect
interfaces) it can be mechanically interpreted as the insertion of springs to connect sub-
structures. New interface condition reads:

A
T
Aλ⋄

b + T ⋄
b A

T
Au⋄b = 0⋄ (87)

or A
T
Aµ⋄

b −
(
A
T
AT ⋄

b − T ⋄
b A

T
A
)
u⋄b = 0⋄ (88)

It is of course necessary to study the condition for this system being equivalent to system
(85). It is important to note that two conditions lying on the global interfaces (geometric
and connectivity) were traced back to the local interfaces, so up to a zero-measure set
(multiple points) the conditions have the same dimension. The new condition is equivalent
to the former if facing local interfaces do not hold the same information which is the case
if matrix

(
A
T
AT ⋄

b − T ⋄
b A

T
A
)
is invertible. An easy method to construct such matrices will

be soon discussed
If unknown µ⋄

b is introduced inside local equilibrium equation, the local system reads:

(
S⋄
p + T ⋄

b

)
u⋄b = b⋄p + µ⋄

b (89)

If we assume that T ⋄
b is chosen so that

(
S⋄
p + T ⋄

b

)
is invertible then we have:

u⋄b =
(
S⋄
p + T ⋄

b

)−1 (
µ⋄
b + b⋄p

)
(90)

Then substituting this expression inside interface condition (88), interface system reads:

(
A
T
A−

(
A
T
AT ⋄

b − T ⋄
b A

T
A
) (

S⋄
p + T ⋄

b

)−1
)
µ⋄
b

=
(
A
T
AT ⋄

b − T ⋄
b A

T
A
) (

S⋄
p + T ⋄

b

)−1
b⋄p (91)

so mixed approaches have the originality to rewrite global interface conditions on the local
interfaces and to look for purely local unknown (which means that the size of the unknown
is about twice the size of the unknown in classical primal or dual methods).

This general scheme for mixed methods has, as far as we know, never been employed.
A first reason is that it leads to certain programming complexity, second the manipulation



26 P. Gosselet and C. Rey

of zero-measure interfaces is not easy for methods aiming at introducing strong mechanical
sense and hard to justify from a mathematical point of view. So most often a simplified
method is preferred, which takes only into account non-zero-measure interfaces. Such an
approach simplifies the connectivity description of the interface, every relationship on the
interface only deals with couples of subdomains. In order to have the clearer expression
possible, we present the algorithm in the two subdomains case. Interface equilibrium reads:

{
u
(1)
b − u

(2)
b = 0

λ
(1)
b + λ

(2)
b = 0

(92)

which is equivalent to




λ
(1)
b + λ

(2)
b + T (1)

(
u
(1)
b − u

(2)
b

)
= 0

λ
(1)
b + λ

(2)
b + T (2)

(
u
(2)
b − u

(1)
b

)
= 0

(93)

under the condition of invertibility of
(
T (1) + T (2)

)
. Introducing unknown µ

(s)
b = λ

(s)
b +

T (s)u(s) interface system reads:
{

µ
(1)
b + µ

(2)
b −

(
T (1) + T (2)

)
u(2) = 0

µ
(1)
b + µ

(2)
b −

(
T (1) + T (2)

)
u(1) = 0

(94)

Local equilibrium reads:




(
S
(1)
p + T (1)

)
u
(1)
b = µ

(1)
b + b

(1)
p(

S
(2)
p + T (2)

)
u
(2)
b = µ

(2)
b + b

(2)
p

(95)

Assuming T (s) is chosen so that matrix
(
S
(s)
p + T (s)

)
is invertible, we can express displace-

ment u
(s)
b from local equilibrium equation, and suppress it from global interface conditions,

which leads to:


 I I −

(
T (1) + T (2)

) (
S
(2)
p + T (2)

)−1

(
T (1) + T (2)

) (
S
(1)
p + T (1)

)−1
I



(
µ(1)

µ(2)

)
=



(
T (1) + T (2)

) (
S
(2)
p + T (2)

)−1
b
(2)
p

(
T (1) + T (2)

) (
S
(1)
p + T (1)

)−1
b
(1)
p


 (96)

This expression enables to give better interpretation of the stiffness parameters T (s). Sup-

pose T (1) = S
(2)
p and T (2) = S

(1)
p then matrix (96) is equal to identity and solution is directly

achieved. So the aim of matrix T (s) is to provide one substructure with the interface stiffness
information of the other substructures.

If we generalize to N -subdomain system (91), we can deduce that the optimal choice

for T (s) is the Schur complement of the remaining substructures on the interface of domain

(s) (some kind of S
(s̄)
p where s̄ denotes all the substructures but s). Of course such a

choice is not computationally feasible (mostly because it does not respect the localization
of data), and approximations have to be considered. In decreasing numerical efficiency and
computational cost order, we have:
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• Approximate the Schur complement of the remaining of the substructure by the Schur
complement of the neighbor;

• approximate the Schur complement of the neighbor by the Schur complement of the
nearer nodes of the neighbor (”strip”-preconditioners which idea is developed in [83]
in another context);

• approximate the Schur complement of the neighbor by the stiffness matrix of the
interface of the neighbor (strategy of dual approach lumped preconditioner).

The second strategy is quite a good compromise: it respects data localization, it is not
computationally too expensive and yet it enables the propagation of the information beyond
the interface. Of course an important parameter is the definition of elements ”near the
interface”, which can be realized giving an integer n representing the number of layers of
elements over the interface.

3.4.1 Coarse problem

Because the interface stiffness parameter T ⋄ regularizes local operators S⋄
p , local operator(

S⋄
p + T ⋄

)
is always invertible. Such a property can be viewed as an advantage because it

simplifies the implementation of the method introducing no kernel and generalized inverse;
but it also can be considered as a disadvantage because no more coarse problem enables
global transmission of data among the structure. Then the communications inducted by
this method are always neighbor-to-neighbor which means that the transmission of a lo-
calized perturbation to far substructures is always a slow process. It is then necessary to
add an optional coarse problem (see section A.7). Most often the optional coarse problem
is constituted of would-be rigid body motions (if subdomains had not been regularized).
Another possibility, which is proposed inside the LaTIn method is to use rigid body mo-
tions and extension modes of each interface as coarse problems, this leads to much larger
coarse space. The coarse matrix corresponds to the virtual works of first order of defor-
mation of substructures; so mechanically it realizes and propagates a numerical first order
homogenization of the substructures.

3.5 Hybrid approach

The hybrid approach (see [57] for a specific application) is a proposition to provide a
unifying scheme for primal and dual approaches though it could easily be extended to other
strategies. It relies on the choice for each interface degree of freedom of its own treatment
(for now primal or dual). So let us define two subsets of interface degrees of freedom: the
first is submitted to primal conditions (subscript p) and the second to Neumann conditions
(subscript d). Local equilibrium then reads (p̄ = i ∪ d, b = d ∪ p, p ∩ d = ∅):

(
K⋄

p̄p̄ K⋄
p̄p

K⋄
pp̄ K⋄

pp

)(
u⋄p̄
u⋄p

)
=

(
f⋄
p̄

f⋄
p

)
+

(
t⋄d

Tλ⋄
d

λ⋄
p

)
(97)

Preferred interface unknowns are unique displacement on the first subset up and unique
effort on the second subset λd. Local contributions then reads:

u⋄p = A
T
p up (98)

λ⋄
d = A

T
d λd (99)

which ensure the continuity of displacement on the p degrees of freedom and the action-
reaction principle on the d degrees of freedom, of course operators Ap and Ad have been
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restricted respectfully to the p and d subsets. Remaining interface conditions read:

Adu
⋄
d = Adt

⋄
du

⋄
p̄ = 0 (100)

Apλ
⋄
p = 0 (101)

To obtain the global interface system, first local unknown u⋄p̄ has to be eliminated:

u⋄p̄ = K⋄
p̄p̄

+
(
f⋄
p̄ + t⋄d

Tλ⋄
d −K⋄

p̄pu
⋄
p

)
+R⋄

p̄α
⋄ (102)

Applying continuity condition to previous result and equilibrium condition to the second
row of (97), interface system reads:


 Spd

(
Gp

Gd

)

(
−GT

p GT
d

)
0





up

λd

α⋄


 =




bp
−bd
−e⋄


 (103)

with the following notations:

Spd =

(
Ap 0
0 Ad

)
S⋄
pd

(
Ap 0
0 Ad

)T

Gp = ApKpp̄
⋄R⋄

p̄, Gd = Adt
⋄
dR

⋄
p̄

e⋄ = R⋄
p̄
T f⋄

p̄

bp = Ap

(
f⋄
p −K⋄

pp̄K
⋄
p̄p̄

+f⋄
p̄

)
, bd = Adt

⋄
dK

⋄
p̄p̄

+f⋄
p̄

This interface problem corresponds to the constrained resolution of one linear system. The
constraint is linked to the possible non-invertibility of matrix K⋄

p̄p̄ and thus to the choice
of primal subset. Notice that Gp represents the reaction of primal degrees of freedom to
zero energy modes of K⋄

p̄p̄ and then should be zero in most cases (it may be non zero
in buckling cases). Moreover this system may represent classical primal approach (if all
interface degrees of freedom are in subset p) or classical dual approach (if all interface
degrees of freedom are in subset d). Operator Spd is a primal/dual Schur complement, it is
the sum of local contributions S⋄

pd (25).

The above system is nonsymmetric semi-definite (because of redundancies on the dual
subset) positive, it has to be solved by GMRes-like algorithm.

3.5.1 Hybrid preconditioner

Inspired by primal and dual preconditioners, we propose to approximate the inverse of the
sum of local contributions by a scaled sum of local inverses.

S̃−1
pd =

(
Ãp 0

0 Ãd

)
S⋄
dp

(
Ãp 0

0 Ãd

)T

(104)

Scaled assembly operator are defined in the same way as in primal and dual approaches.

3.5.2 Coarse problems

As said earlier, depending on the choice of subset p, local operator K⋄
p̄p̄ (involved in the

computation of S⋄
pd) may not be invertible and, like in dual approach, a first coarse cor-

rection has been incorporated inside the hybrid formulation. Anyhow local operator K⋄
d̄d̄

involved in preconditioning step may also not be invertible and, like in primal approach,
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a second coarse problem has to be added to make the preconditioner optimal. Then, the
optimal version of the hybrid system incorporates two coarse problems handled by specific
initialization/projection algorithm. The admissibility condition reads:

GTx = e (105)

with G =

(
Gp

Gd

)
, x =

(
up

λd

)
and b =

(
bp
−bd

)
. If r = b − Spdx stands for the residual

before preconditioning, the optimality condition reads:

HT r =

(
Hp

Hd

)T (
rp
rd

)
= 0 (106)

with Hp = Ãpt
⋄
pR

⋄
d̄
and Hd = ÃdK

⋄
dd̄
R⋄

d̄
(as said before most often Hd = 0). To sum up

constraints: {
GTx = −e⋄

HTSpdx = HT b
(107)

Handling such constraints is described in section A.8.
Figure 10 provides a schematic representation of the first iteration of the preconditioned

hybrid approach, in the specific case of a nodal partition of the interface. Assessments will
deal with partition at the degree of freedom level.

3.5.3 Error estimate

Because GMRes-like solver is used, the euclidian norm of the residual is directly available,
such a norm is the sum of displacement gap on the d part of the interface and an effort
gap on the p part of the interface. For now, no other estimator with better physical sense
is available.

4 Adding optional constraints

The aim of optional constraints is to ensure that the research space for the iterative solver
possesses a certain regularity. The choice of constraints will be discussed in a later section.
Going back to the interface system:



S⋄
p −I⋄

A 0
0 A



(
u⋄b
λ⋄
b

)
=



b⋄p
0
0


 (108)

any constraint of the form CT
Au⋄b = 0 or CT

Aλ⋄
b = 0 is trivially verified by the solution

fields, it is just a restriction of continuity/equilibrium conditions. From an iterative process
point of view, these conditions will be reached once converged ; the principle of optional
constraints is to have every iteration verify that condition.

There are two classical solutions to ensure these optional constraints: either to realize
a splitting of research space and ensure, using a projector, that the resolution is limited
to convenient subspace, or to realize a condensation of constraints and make iterations
on a smaller space. In other words suppose there are nc independent constraints in a n-
dimension space the first strategy researches n-sized solution in a (n − nc)-ranked space,
while the second solution researches (n−nc)-sized solution in a (n−nc)-dimension space then
deduce the n-sized solution. From a numerical point of view both solutions are equivalent,
they are just two ways of handling the same constraints, anyhow from implementation and
computational points of view they have strong differences.

We will essentially focus on application to primal and dual domain decomposition meth-
ods.
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Figure 10. Representation of first iteration of preconditioned hybrid approach

4.1 Augmentation strategy

For this strategy the constraint is reinterpreted in terms of constraint on the residual.
Typically, the primal approach can be augmented by constraints on the effort field while
the dual approach can have constraints on the displacement field:

CT
Aλ⋄

b = −CT
(
Ab⋄p − AS⋄

pA
Tub

)
(109)

CT
Au⋄b = CT

(
AS⋄

dA
Tλb + b⋄d

)
(110)

The constraint is then handled as an augmentation inside the iterative solver, its is classi-
cally realized using a projector (see sections A.7 and A.8).

4.2 Recondensation strategy

This strategy was recently introduced in the framework of the dual approach, leading to the
FETIDP algorithm [34, 35, 69, 63]. Because for now only constraints on the u⋄b field have
been considered we will restrain to this kind of constraints, the application of constraints
on λ⋄

b is straightforward.
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4.2.1 Basic method

We first consider constraints which impose continuity of specific degrees of freedom, in other
terms we suppose matrix C is identity on certain degrees of freedom and zero elsewhere;
we will show how any constraint can be rewritten in such a form. Because these degrees
of freedom will be submitted to a primal treatment we will denote them with subscript p
while the remaining of the interface will be denoted with subscript d. Constraint reads:

0 = CT
Au⋄b =

(
0
Ip

)T (
Adu

⋄
d

Apu
⋄
p

)
= Apu

⋄
p (111)

Like in the hybrid approach this constraint is verified using a unique displacement field
on the primal part of the interface: u⋄p = A

T
pup. Interface system then reads like in the

hybrid approach, with the additional assumption that the constraints are so that the local
problem possesses enough Dirichlet conditions to make it invertible.

Spd

(
up

λd

)
=

(
bp
−bd

)
(112)

Introducing following notations for blocks composing S⋄
pd:

S⋄
pd =

(
s⋄pp s⋄pd
−s⋄dp s⋄dd

)
(113)

then

Spd =

(
spp spd
−sdp sdd

)
=

(
Ap 0
0 Ad

)(
s⋄pp s⋄pd
−s⋄dp s⋄dd

)(
Ap 0
0 Ad

)T

(114)

Unknown up is condensed on the remaining of the interface:

up = s−1
pp

(
bp − spdλd

)
(115)

sdλd =
(
sdd + sdps

−1
pp spd

)
λd = −bd + sdps

−1
pp bp (116)

The latest equation is solved using an iterative solver, operator sd has the same properties as
the restriction of the dual operator to the d-part of the interface (semi-definition, symmetry
and positivity). Operator sd is the assembly of local contributions

sd = Ads
⋄
dA

T
d = Ad

(
s⋄dd + s⋄dpA

T
p s

−1
pp Aps

⋄
pd

)
A
T
d (117)

Using operator sd requires the computation of the inverse of matrix spp = Aps
⋄
ppA

T
p , which

is an assembled matrix. Then this formulation includes a global coarse problem set on
primal variables.

The recommended preconditioner for such an approach is directly inspired by the dual
approach: it consists in solving local Dirichlet problems with scaled imposed displacement
on the d-part of the interface and null displacement on the p part of the interface and
extracting the average reaction of the d-part of the interface. Then the preconditioner
reads:

s̃−1
d =

(
0p Ã

)
S⋄
p

(
0p Ã

)T
(118)

Figure 11 provides schematic representation of the first iteration of preconditioned
FETID method.
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Figure 11. Representation of the first iteration of preconditioned FETIDP

4.2.2 More complex constraints

We now consider constraints which are not limited to one degree of freedom, for instance
one can consider that we want to ensure that the average jump of displacement on one edge
is equal to zero, which involves all the degrees of freedom of the edge.

The classical solution [63] is to realize a change of basis of degrees of freedom (denoted
by matrix T ⋄) so that each constraint is represented by one ”modified” degree of freedom.
The change of basis is the same local operation realized on every subdomain, then we can
define a global change T so that AT ⋄ = TA

CT
Au⋄b = CT

AT ⋄û⋄b = CTTAû⋄b = ĈT
Aû⋄b (119)

with Ĉ =

(
0
Ip̂

)
(120)

After the change of basis is realized the same algorithm can be employed. Because con-
straints most often respect a certain locality of data (for instance independent constraints
on each edge), change of basis is not a too expensive operation, and does not make too
poor the sparsity of local matrices.
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4.3 Adding ”constraints” to the preconditioner

This subsection deals with the dualization of the recondensation strategies [19, 23]. For
instance the balanced domain decomposition with constraints (BDDC) is a primal version
of FETIDP: during the preconditioning step, the continuity of displacement is ensured at
specific degrees of freedom (which can be the result of a local change of basis), so that
the local Neumann operator remains fully invertible. So solving classical primal approach
problem

Spub = AS⋄
pA

Tub = bp (121)

the preconditioner reads

S̃−1
p =

(
Ip 0

0 Ãd

)(
s−1
pp −s−1

pp Aps
⋄
pd

−s⋄dpA
T
p s

−1
pp s⋄d

)(
Ip 0

0 Ãd

)T

(122)

Figure 11 provides a schematic representation of the first iteration of preconditioned
BDDC method.

Figure 12. Representation of the first iteration of preconditioned BDDC
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5 Classical issues

In this section we try to provide answers to questions that commonly arise when using
domain decomposition methods.

5.1 Rigid body motion detection

Handling floating substructures is definitely a very accurate issue. This difficulty is one
of the reason of the success of methods which regularize the stiffness of subdomains like
FETIDP or mixed approaches, leading to fully invertible matrices. Anyhow basic primal
and dual methods remain competitive (mostly because zero-energy modes provide a very
natural coarse problem), hence providing an efficient algorithm for the computation of rigid
body motion is essential. Many strategies can be used [33, 40], and this review does not
claim to be exhaustive.

First we have to discuss the exact composition of the possible kernel of substructures.
What can be found is:

• rigid body motions of floating substructures,

• internal mechanisms of substructures,

• weird things due to nonlinearities (buckling, exotic behaviors, ...)

• numerical zero-energy modes.

An internal mechanism can for instance occur when a substructure is made out of two parts
connected by one linear edge (pivot) or one singular point (kneecap). Methods exist to
avoid such substructures either inside the decomposition algorithm or as external programs
regularizing a given decomposition [48], and then should be employed.

The last two kinds of kernel are non-standard and can only be detected using fully
algebraic methods (like Gauss pivoting). The problem with algebraic methods is their
high sensitivity to the condition number of the stiffness matrix of substructures. The
condition number can be influenced by the aspect ratio and the material composition of
the substructures, even after adimensionalization the quality of the methods is hard to
warranty.

Finally we only develop here two strategies to handle zero-energy modes. The first one
belongs to the purely algebraic methods, it is very simple to implement and can lead to
satisfying results for not-too-complex problems, it can handle more than solid body motions
but it is strongly dependent on a priori selected degrees of freedom. The second method is
purely geometric, it is very robust but only suited to detect solid body motions.

In order to simplify notations, we consider the research of the zero-energy modes of
matrix K (which should be a local stiffness matrix).

5.1.1 Simple algebraic approach

This method is based on fundamental relationship between the kernel of a matrix and the
kernel of Schur complement (15). The principle is to preselect a small set of degrees of
freedom which we will denote by subscript N (the other degrees of freedom are denoted
with subscript O). Then compute explicitly primal Schur complement associated to these
degrees of freedom: S = KNN −KNOK

−1
OOKON ). If N -degrees of freedom are selected so

that K00 is invertible (if only solid body motions have to be detected then it is sufficient to
take the degrees of freedom associated to three non-aligned nodes) then S is well defined
and its kernel is linked to the kernel of matrix K.
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Since N is a ”small” set (12 degrees of freedom is often sufficient), computing the kernel
of matrix S using ”exact” algorithm like singular value decomposition is rather cheap and
then kernel of matrix K can be computed using equation (15).

5.1.2 Geometric approach

The basic idea of this method is that kinematically admissible solid body motions can
be deduced from boundary conditions imposed on one subdomain. Let Rc be a basis of
candidate rigid body motions (would be solid body motions if no Dirichlet conditions were
applied on the subdomain, Rc is a 6-column matrix in 3D and 3-column matrix in 2D),
and let E be the matrix of Dirichlet boundary conditions: each column of E represents one
(combination of) blocked degree of freedom. Kinematically admissible rigid body motions
R are linear combinations of candidate rigid body motions (hence R = RcQ) which do
not make Dirichlet boundary conditions work (ie ETR = 0). In order to find such linear
combination, we compute singular value decomposition of matrix ETRc = UDV T and set
Q = V0 where V0 is the submatrix of V associated to negligible singular values. Because
ETRc is a matrix only made out of geometric considerations, it is well conditioned and the
criterion to detect ”zero” singular values is well defined (there is a large gap between zero
and non-zero singular values).

5.1.3 Generalized inverse

The two methods presented above led to r-ranked basis R of the kernel of matrix K. To
compute generalized inverse K+, the most classical way is to select r degrees of freedom,
so that if they were added Dirichlet conditions, rigidity matrix would be well defined. For

instance after pivoting and renumber one could get R =

(
R∗

Ir

)
and then the r last degrees

of freedom would suit. Then we have:

K =

(
Kr̄r̄ Kr̄r

Krr̄ Krr

)
and K+ =

(
K−1

r̄r̄ 0
0 0

)
(123)

This is just one instance of generalized inverse, other can be built using penalization or
other modification to matrix K. Though not theoretically prohibited, choosing ”blocked”
degrees of freedom on the interface is often a bad idea from a practical point of view.

5.2 Choice of optional constraints

As seen in section 4, constraints can be imposed either using augmentation (using one
or two projectors, sections A.7 and A.8) or using recondensation algorithms. In the case
of recondensation algorithms, constraints have to be sufficient in order to suppress rigid
body motions and then regularize the local stiffness matrix. In the case of augmentation
algorithm, constraints have to be independent from rigid body motions which are already
handled by the formulation.

Because constraints are expensive to handle, they have to be chosen with care; anyhow,
except in a few cases, there are no general results on how to choose them. Mechanical
comprehension of studied phenomena and anticipation of convergence difficulties may lead
to efficient strategies. In the case of solving several linear systems (even with different left
hand sides) interesting strategies exist [98, 30, 58, 84, 88].

The next two subsections deal with very common strategies, while the last subsection
describes another framework for constraints inspired by the LaTIn method [66, 80].
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5.2.1 Forth order elasticity

As plate and shell models are often used in structural mechanics, forth order problems
have been carefully studied [38, 32, 94, 103, 40]. Such problems are characterized by the
appearance of singularities at the corner of substructures (so-called ”corner modes”) which
are destroying the scalability of usual methods. The classical solution consists in enforcing
the continuity of the (most often only normal) displacement field at the corners in order to
regularize the problem. From a practical point of view, corners are most often defined as
multiple points (nodes shared by more than two substructures), that set can be enriched
by extremities of edges.

The implementation, just like the singularity, is strongly linked to the chosen formula-
tion.

Dual approach: since the projected residual corresponds to the displacement jump be-
tween substructures (54), one just has to use augmentation algorithm with one con-
straint for each pair of neighbor at each corner. Matrix C is then made out of columns
with one coefficient 1 on one corner degree of freedom and 0 elsewhere. Because the
dual description of a m-multiple point leads to (m − 1) relationships, such a coarse
space is rather large.

Primal approach: In order to regularize the displacement field, the constraints have to
be imposed on the preconditioned residual (assuming Neumann-Neumann precondi-
tioner is employed). The aim is then to have the local contributions of preconditioned
residual equal to zero on corner points. So if C⋄ denotes the local interface matrix
made out of columns with one coefficient 1 on one corner degree of freedom and 0
elsewhere, and C̃⋄ the same matrix scaled according to the scaling used inside the pre-
conditioner, the constraints read C = ÃS⋄

dC̃
⋄. Then a m-multiple degree of freedom

leads to m constraints.

Recondensed approaches: FETIDP or BDDC were first designed in this context, from
the consideration that (extended) corners constraints were sufficient to suppress rigid
body motions, then the first level constraints could be avoided. So the methods
directly apply since they consist in constraining the displacement field. Here whatever
the multiplicity of a corner may be, it always leads to just 1 constraint.

5.2.2 Second order elasticity

Because classical methods are already scalable in the frame of second order elasticity, op-
tional constraints are not often used in such a context. Furthermore, it is hard to predict
what constraint should be imposed. In some cases, efficient strategies have been proposed,
such as in [58] for nonlinear problems using Newton-Raphson solver where approximations
of eigen vectors are used.

The question of optional constraints arose when willing to extend recondensed algo-
rithms (FETIDP and BDDC) to such problems, mostly because the previous definition
of corners lead to significant problems in 3D (too many constraints, poor convergence...).
The first solution was proposed in [69], the idea was to select 3 non-aligned nodes on each
face (interface between 2 subdomains) which maximized the surface of the triangle they
defined. The current solution, the scalability of which is mathematically and numerically
proved, is to enforce average convergence on edges [63], which is realized by a change of
basis described in (119). In order to take into account heterogeneity on the interface, the
average may be scaled by a coefficient representing the stiffness of the subdomains. For
more difficult problems, first order moments of edges can also be added.
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5.2.3 Link with homogenization theory

This paragraph intends to present a mechanical vision of optional constraint which, though
hard to implement in the framework of the presented method, may lead to better under-
standing of what optional constraints and associated coarse problems can provide to the
methods. This analysis is inspired by the multiscale version of the LaTIn method [66].

The underlying question when choosing optional constraints (except from specific nu-
merical questions like in the forth order elasticity) is ”what global information should be
transmitted to the whole structure ?” or more precisely ”what should far substructures know
from one substructure”. A meaningful answer is provided by Saint-Venant principle and
homogenization theory: at a first order development, a substructure can be represented by
its rigid body motions and its constant strain states (simple traction and shearing states).
Such an idea adds six (3 in 2D) more constraints per subdomains; as these constraints are
somehow complex to build, they can be approximated by interface modes (but of course
the number of constraints then grows quickly).

5.3 Linear Multiple Points Constrains

Multiple points constraints are relationships defined between some degrees of freedom, they
are often used in order to connect nonconforming meshes, to represent boundary conditions
(for instance periodicity), to model contact or apply control laws. In the case of linear(ized)
constraints we can write, on the whole structure scale:

Ku = f (124)

Cu = a (125)

What seems most suited to the domain decomposition context is to dualize the constraint
and introduce Lagrange multiplier µ in order to enforce the condition. System then reads:

(
K CT

C 0

)(
u
µ

)
=

(
f
a

)
(126)

After decomposition we have



K⋄ −I⋄ C

T

At⋄ 0 0
0 At⋄ 0
C 0 0






u⋄

λ⋄

µ


 =



f⋄

0
0
a


 (127)

with C so that Cu⋄ = Cu = a which implies (since u⋄b = A
Tub):

Cu =
(
Ci Cb

)(u⋄i
ub

)
= Cu⋄ =

(
Ci Cb

)(u⋄i
u⋄b

)
(128)

then CbA
T = Cb (129)

Or in other words, if matrix C deals with interface degrees of freedom, the associated
constraints have to be correctly distributed between sharing subdomains. The constraint
can be interpreted as specific (non-boolean) assembly operator which explains the chosen
notation. Using MPCs with domain decomposition methods was studied in [93] in the dual
method context.
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In order to provide general methodology to apply MPCs, we then incorporate inside
hybrid domain decomposition method (equations (97) to (100)):




K⋄
p̄p̄ K⋄

p̄pA
T
p C

T
p̄

ApK
⋄
pp̄ ApK

⋄
ppA

T
p CT

p

Cp̄ Cp 0





u⋄p̄
up

µ


 =



f⋄
p̄ + t⋄d

T
A
T
d λd

Apf
⋄
p

a


 (130)

Adt
⋄
du

⋄
p̄ = 0 (131)

The elimination of u⋄p̄ leads to, with classical hybrid notations:



Spd
CT
p

CT
d

Gp

Gd

−Cp Cd Cµ Gα

−GT
p GT

d GT
α 0






up

λd

µ
α⋄


 =




bp
−bd
h

−e⋄


 (132)

with

Cp = Cp − Cp̄K
⋄
p̄p̄

+K⋄
p̄pA

T
p (133)

Cd = Cp̄K
⋄
p̄p̄

+t⋄TdA
T
d (134)

Cµ = Cp̄K
⋄
p̄p̄

+
C
T
p̄ (135)

Gα = Cp̄Rp̄ (136)

h = a−Cp̄K
⋄
p̄p̄

+f⋄
p̄ (137)

Various strategies can be used in order to solve system (132), which combine elimina-
tion of constraints (rigid body motions and/or MPCs) by projection methods (FETI-like
approaches) and/or by recondensation methods (FETIDP like approaches). All these meth-
ods correspond to solving rather complex coarse problems but they are suited to traditional
preconditioners. We propose, after [93], to use classical projection method to handle rigid
body motions then use iterative solver to find simultaneously (up,λd, µ) and provide effi-
cient preconditioner to this problem.

System reads with trivial notations (for simplicity reasons we suppose that the rigid
body motion constraints have been symmetrized, which is always possible and which is
naturally the case if Gp = 0 like in many applications):

(
Spdµ G
GT 0

)(
x
α⋄

)
=

(
b

−e⋄

)
(138)

with

Spdµ =



Ap 0
0 Adt

⋄
d

0 Cp̄


S⋄

pd



Ap 0
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⋄
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0 Cp̄




T

+




0 0 Cp

0 0 0
−CT
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 (139)

As can be seen, MPCs have very different actions wether they are set on primal interface
degrees of freedom or not: matrix Cp modifies the structure of the hybrid system while
dual and internal constraints lead to classical hybrid approach with modified dual trace

and assembly operator A =

(
Adt

⋄
d

Cp̄

)
. The definition of efficient preconditioner inspired

by classical methods is then much simplified if no constraints are set on primal degrees of
freedom (Cp = 0), which is what we suppose now:

Spdµ =

(
Ap 0
0 A

)
S⋄
pd

(
Ap 0
0 A

)T

(140)
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The S⋄
pd notation is due to the association of the trace operator with the assembly operator,

which in fact is equivalent to defining ”extended interface dual degrees of freedom” made
out of dual degrees of freedom and degrees of freedom involved in MPCs. Since, in this
hypothesis, system reads like classical hybrid approach, that is (modified) assembly of local
contributions, the proposed preconditioner is a scaled assembly of local inverses.

S̃−1
pdµ =

(
Ãp 0

0 Ã

)
S⋄
dp

(
Ãp 0

0 Ã

)T

(141)

The primal scaled assembly operator can be directly imported from the primal approach.
Concerning the dual approach, according to previous definitions, we have:

Ã =
(
AM⋄

p̄
−1AT

)+
A⋄M⋄

p̄
−1 (142)

Where M⋄
p̄ is a diagonal matrix chosen like in the classical methods. The matrix to inverse

reads: (
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)
=
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(143)

The idea is then to make this system easy to inverse, having the off-diagonal blocks equal
to zero. We have Cp̄ =

(
Ci Cd

)
with CdA

T
d = Cd; if we choose

Cd = Cd

(
Adt

⋄
dM

⋄
p̄ t

⋄
d
T
A
T
d

)−1
Adt

⋄
dM

⋄
p̄ t

⋄
d
T (144)

then Adt
⋄
dM

⋄
p̄
−1

C
T
p̄ = 0 and the scaled assembly operator is non expensive to compute.

In others words, one simply has to split constraints on interface degrees of freedom
between subdomains according to the scaling used inside the preconditioner.

5.4 Choice of decomposition

Decomposing a given structure in order to use the algorithms presented in this paper is
a complex problem. Algorithms and softwares were proposed [44, 12, 62], which mostly
refer to graph theory. Such approaches enable to take into account load balance between
processors (supposing each processor is assigned to one subdomain, this is equivalent to
making each local problem as easy to solve as others) and to minimize the dimension of the
interface (so that the global condensed problem is as small as possible). They also enable
to avoid internal rigid body motions (so called mechanisms).

Anyhow another important point is to have local problems as well conditioned as pos-
sible, so having subdomains with good aspect ratio (ratio between largest and smallest
characteristical dimensions of the subdomain) is considered as an important point. Any-
how one has to realize that good aspect ratio is often linked to large local bandwidth and
then to somehow expensive local problems to solve.

An even more difficult point to take into account high heterogeneities (see figure 13):
using stiffness scaling enables to correctly handle heterogeneity when interface between
subdomains matches interface between materials, anyhow when interface between subdo-
mains ”crosses” interface between materials then numerical difficulties may occur. For now
scaled-average optional constraints seem to be the best solution to handle these difficulties
but it leads to large coarse problems.

Finally finding the best decomposition is still a rather open problem and mechanical
sense is often a necessary complement to efficient automatic decomposing algorithm.
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Υ

(a) Interface avoiding
heterogeneity

Υ

(b) Interface match-
ing heterogeneity

Υ

(c) Interface crossing
heterogeneity

Figure 13. Different kinds of heterogeneity in domain decomposition context

5.5 Extensions

5.5.1 Nonsymmetric problems

Nonsymmetry occurs in many physical modeling: plasticity, nonlocal models for fracture
[52], frictional contact [3]. The use of the domain decomposition methods presented in this
paper just requires more care in the implementation because some simplifications are not
available (for instance coarse problem matrices are nonsymmetric), and of course the use
of well suited iterative solver like GMRes, OrthoDir or BiCG because Schur complements
are no longer symmetric.

Globally methods show good numerical performance results. Anyhow a real problem
is the absence of theoretical results to ensure good convergence properties (this is mainly
due to the fact that proofs for classical methods rely on the construction of an interface
inner-product related to Schur complements which is no longer possible).

5.5.2 Nonlinear problems

For now we have considered the solution to linear systems. To adapt the method to nonlin-
ear problems, a classical solution is to use Newton-Raphson linearization scheme: linearized
stiffness matrices are computed independently on each subdomain then the linearized sys-
tem is solved using domain decomposition [85, 58, 88, 40, 59]. For such approaches, domain
decomposition methods can be seen as efficient black-boxed linear solvers.

One critical point in such a method is that, depending on the formulation (for instance
fully Lagragian formulation of a large deformation elasticity problem) rigid body motions
may vary from one system to the other. In the proposed context, what has been proved
is that translations always belong to zero energy modes, what has been observed is that
rotations only appeared as zero-energy-modes in the first system (which corresponds to
linear elasticity problem). This might be penalizing because the size of the information
transmitted inside the coarse problem is decreased after the first system; moreover, rota-
tions are often converted to ”negative-energy modes” which, if they are in small number,
can be handled by fully-reorthogonalized conjugate gradient (though convergence will be
slower). One classical solution is to reinject disappeared rotations as optional constraints
(via augmentation algorithms).

In the case where nonlinearity is localized in few substructures, an interesting strategy
can be to carry out subiterations of the nonlinear solver independently in those substruc-
tures [13, 18].

5.6 Implementation issues

Implementing domain decomposition methods from existing code is not a too complex
task. We give a few details on our software architecture though practical solutions are
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Figure 14. Topological interface information

far from being unique. Our code is a plug-in to ZeBuLoN object-oriented finite element
computational software [79, 78], it takes advantage of Frederic Feyel’s previous work [45,
46]. Our implementation aims at being as generic as possible, so for now hybrid domain
decomposition method has been developed (and mixed approaches are under construction),
and separation between formulation and solver (so that any iterative solver can be used to
solve the interface problem). All classical projectors and preconditioners are implemented.

The most basic pieces of the code are:

• topological description of the interface, ie ability to realize trace operations;

• exchange library (PVM, MPI), ie ability to realize assembly operations;

• classical FE code, ie ability on any given subdomain to get any local field given
sufficient boundary conditions.

5.6.1 Organization of the topological information

In order to implement hybrid approach, we propose to define a specific class for ”interface
degrees of freedom” which wraps classical degrees of freedom and provide information on:

• the number of subdomains which share this degree of freedom

• the kind of treatment (primal, dual...) which is applied

Then degrees of freedom are set together neighborwise, defining ”interface” class made
out of a list of pointer to ”interface degrees of freedom”, and the global number of the
neighbor (that number enables to identify the subdomain and to realize exchanges).

A ”subdomain” is defined as a collection of ”interfaces” and a classical domain in the
sense of usual FE software (mainly mesh), it possesses its own global identification number.

Note that with such a description of the decomposition, the local interfaces are redun-
dant, multiple degrees of freedom appear in several interfaces. It is then necessary to take
certain care to define some operations (transposed trace for dual degrees of freedom). A
specific class can then be used to ease the management of multiple degrees of freedom.
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Figure 15. Algebraic interface objects

5.6.2 Defining algebraic interface objects (fig. 15)

In order to easily connect the domain decomposition formulation to an iterative solver,
we propose to define ”interface vectors” (displacement, intereffort...), ”interface matrices”
(trace of rigid body motions..., can be seen as a collection of interface vectors) and ”in-
terface operators” (square interface matrices), with all classical operations (basically sum,
difference, product and transposed product).

The particularity of these objects is to be defined on the interface and then data is
shared between subdomains, so all the previous operations sometimes require to assemble
data (an interesting idea is to have a boolean member indicating the assembled state of
data). Because of the choice of description of the interface, the assembly operation requires
certain care for primal multiple degrees of freedom (these degrees of freedom shall have the
same value at their different occurrences). Note that an object like ”interface matrix” can
highly be optimized (mainly in terms of memory storage).

Interface operators mainly know how to multiple vectors and matrices, they are used to
define Schur complements, scaling operators, projectors. Composite design pattern can be
used to simplify the succession of operations.

In order to let the user choose the various configurations of the domain decomposition
method, we use inheritance and object factory design pattern.

5.6.3 Articulation between formulation and solver (fig. 16)

What we propose is to have client/server relationship between solver and formulation:
basically an iterative solver needs to know how to initialize, how to multiply, how to pre-
condition, how to do inner products, how to evaluate convergence. All these operations are
implemented inside the ”interface formulation” object which is linked to one subdomain
(topology and stiffness) and creates ”interface algebraic objects” in order to define required
operations.

6 Assessments

The assessments we propose here are based on the code described in the previous section.
Basically, we have implemented the hybrid approach which lets us assess the classical primal
and dual approaches with most classical preconditioners and projectors.

We first present a sequence of academical tests in order to recover classical numerical
performance results (scalability and relative efficiency of the different approaches): two
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Figure 16. Articulation between formulation and solver

dimensional plane stress problem, plate problem, three dimensional problem with hetero-
geneity and unstructured decomposition. In these problems, H denotes the characteristic
size of the subdomains and h the characteristic size of the elements. We also present results
on non-academic problem (bitraction test specimen).

For all those tests, in order to compare all the approaches (including the hybrid ap-
proach), GMRes solver is used and convergence is monitored by the norm of the residual
as given by the solver (with ε set to 10−6). In other cases (when hybrid approach is not
assessed), the convergence is monitored through the evaluation of global primal residual
|Ku − f |/|f | < ε with ε set to 10−6. Depending on the method, a different coarse prob-
lem may be introduced, we denote by CS:a+b the size of the coarse problems (a for the
admissibility coarse problem and b for the optimal preconditioning coarse problem) or
number of iterationstotal number of constraints. Note that the hybrid approach deals with two
independent coarse problems, so their solutions is much cheaper than the solution to a
unique large coarse problem.

We test the primal approach with or without optimality coarse problem, the dual ap-
proach with lumped or Dirichlet preconditioner and identity or superlumped or Dirichlet
projector (denoted by P(I), P(W) and P(D) respectively). As for such tests no physical
consideration can guide the choice of hybrid treatment to the interface, in order to show
the potential of the hybrid approach, we present results where all degrees of freedom of
one direction (U1, U2 or U3) are treated in the same way. For instance ”D-P” stands for a
dual treatment for degrees of freedom associated to direction U1, and a primal treatment
for degrees of freedom associated to direction U2.

6.1 Two dimensional plane stress problem

We consider a simple second order two-dimensional problem, the structure is an homoge-
neous square decomposed in square substructures meshed with linear square finite element
(Q1 Lagrange). The behavior is linear elastic (Young modulus E = 200000 MPa and Pois-
son coefficient ν = 0.3), the loading consists in clamping on the left side and punctual effort
on the top right corner (figure 17).

Table 1 shows the number of iterations of available strategies for different number of
elements per subdomain (for a 16-subdomain decomposition), and table 2 for different
number of subdomains (for given ratio H/h = 16). Globally all approaches (primal, dual
and hybrid) equipped with their best preconditioner and projector behave similarly and
are scalable. Note that even in its optimal configuration the hybrid approach requires a
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Figure 17. 16 subdomains decomposed square

❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤

Method
H/h

8 16 32 64

Primal
SC:0+0 44 45 45 45
SC:0+36 11 12 14 15

Dual
SC:36+0

Lumped - P(I) 14 25 32 42
Dirichlet - P(I) 13 15 17 20
Dirichlet - P(D) 12 14 15 17

Hybrid D-P
SC:12+0 - P(D) 29 30 33 35
SC:12+12 - P(D) 12 14 16 18

Hybrid P-D
SC:12+0 - P(I) 29 32 36 38
SC:12+12 - P(I) 14 17 20 22
SC:12+0 - P(D) 26 29 31 33
SC:12+12 - P(D) 12 14 16 18

Table 1. Scalability results in 2D / 16 subdomains

smaller coarse space (for instance, table 1, two 12× 12 coarse problems against one 36× 36
coarse problem for primal or dual approaches) for equivalent efficiency. As expected if the
optimality coarse problem is suppressed, performance results decay and scalability is lost.
Finally for such simple problems, the simplified versions of the dual approach gives excellent
results.

6.2 Bending plate

We consider a forth order plate problem, the structure is an homogeneous square decom-
posed in squared substructures meshed with square Mindlin plate element. The behavior
is linear elastic (Young modulus E = 200000 MPa and Poisson coefficient ν = 0.3), the
loading consists in clamping on the left side and punctual normal effort on the top right
corner.

Table 3 presents the number of iterations for the dual and primal approaches, with or
without optional corner constraints (the subscript indicates the total size of coarse problems,
ie rigid body motions and corner modes). As predicted, corner constraints are essential in
order to make the algorithms scalable. Anyhow the dimension of the coarse space associated
to corners quickly explodes which makes the methods less interesting from a CPU time point
of view, which justifies the FETIDP philosophy which leads to much smaller coarse spaces.
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❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤

Method
nb. subdomains

4 9 16 25 36 49 64

Primal

(Neumann2)

No opt. coarse 130 290 450 630 830 1020 1260
With opt. coarse 86 1018 1236 1360 1490 14126 15168

Dual
Lumped - P(I) 186 2418 2636 2760 2990 29126 31168
Dirichlet - P(I) 96 1318 1536 1660 1790 18126 19168
Dirichlet - P(D) 96 1218 1436 1560 1690 17126 18168

Hybrid D-P
P(D)

No opt. coarse 92 216 3012 4020 5030 6042 6756
With opt. coarse 74 1212 1424 1640 1760 1884 18112

Hybrid P-D
P(D)

No opt. coarse 92 206 2912 3820 4830 5742 5756
With opt. coarse 74 1212 1424 1640 1760 1884 17112

Table 2. Performance results in 2D for given H
h

= 16

❤
❤
❤
❤
❤
❤
❤
❤
❤
❤

❤
❤
❤
❤
❤

Method
nb. subdomains

4 9 16 25 36 49

Primal

(Neumann2)

No corner 1512 2436 3272 40120 47180 55252
With corners 1316 1764 20108 23184 24280 26396

Dual
(Dirichlet)

P(I) - No corner 1712 3136 4372 59120 75180 91252
P(I) - With corners 1615 2448 2799 29168 31255 33360
P(D) - No corner 1512 2536 3472 43120 51180 59252
P(D) - With corners 1415 2148 2899 31168 31255 36360

Table 3. Bending plate: performance results for given H
h

= 8

6.3 Heterogeneous 3D problem

We consider a 3D problem, the structure is an heterogeneous cube decomposed in 3× 3× 3
cubic substructures meshed with 3 × 3 × 3 Q2-Lagrange cubic elements (27 nodes per
element). The heterogeneity pattern is described in figure 18a, behaviors are linear elastic
(Young modulus E1 = 200000 MPa, E2 = 2 MPa and Poisson coefficient ν = 0.3), the
loading consists in clamping on the bottom side and constant pressure on top side.

Method Number of iterations
Primal 19

Dual P(D)
No splitting 28
Classical splitting 28
Condensed splitting 18

Dual P(W)
No splitting 21
Classical splitting 21
Condensed splitting 20

Dual P(I)
No splitting 74
Classical splitting 74
Condensed splitting 73

Table 4. Heterogeneous cube

Table 4 presents the number of iterations for the conjugate gradient to converge. As-
sessed methods are classical primal approach and dual approach with different projectors
for all splittings (or equivalent initializations) presented in section 3.2.4, of course stiffness
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scaling is employed. What appears clearly is the good behavior of the approaches face to
heterogeneity except the identity projector of the dual approach (which is definitely not
suited to heterogeneous problems), and the efficiency of the condensed initialization. For
such a problem the superlumped projector leads to very good results, anyhow for more com-
plex cases Dirichlet projector is necessary and shall be improved at no extra computational
cost by the condensed initialization.

E1

E2

X

Y

Z

P

(a) 27 subdomains structured
decomposition of a heteroge-
neous cube

(b) 27 subdomains unstructured decompo-
sition of a cube

Figure 18. 3D assessments

6.4 Homogeneous non-structured 3D problem

We consider a 3D problem, the structure is an homogeneous cube meshed with Q1-Lagrange
cubic elements (8 nodes per element). The behavior is linear elastic (Young modulus E =
200000 MPa and Poisson coefficient ν = 0.3), the loading consists in clamping on the
bottom side and constant pressure on top side. We consider two kinds of decomposition:
either structured decompositions (3 × 3 × 3 or 4 × 4 × 4 cubic substructures) or so called
”unstructured” decompositions realized by Metis software (http://www-users.cs.umn.
edu/~karypis/metis/), see figure 18b.

❤
❤
❤
❤
❤
❤

❤
❤
❤
❤
❤
❤
❤
❤
❤
❤❤

Method
Decomposition Structured Unstructured

27 sd. 64 sd. 27 sd. 64 sd.
Primal Neumann-Neumann 11108 14288 42 67
Dual Dirichlet P(I) 12108 16288 44 69
Dual Dirichlet P(D) 12108 16288 43 70
Hybrid D-D-P P(I) 1472 17192 - -
Hybrid P-P-D P(I) 1572 19192 - -
Hybrid D-P-D P(I) 1372 17192 - -

Table 5. Homogeneous cube / influence of the decomposition

Table 5 enables to highlight the fundamental role played by the decomposition: scalabily
result only holds for structured decomposition; moreover there might by a huge performance
gap between two decompositions with the same number of subdomains (factor 3 for 27
subdomains, factor 4 for 64 subdomains).
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6.5 Bitraction test specimen

In order to assess ”real life” problems, we consider the bitraction test specimen presented
in figure 2 (this structure, courtesy of ONERA – Pascale Kanouté –, was optimized with
ZeBuLoN software in order to have stress field as homogeneous as possible in its center).
It was decomposed with Metis software into 4 or 16 subdomains.

Method 4 sd. 16 sd.
Primal Neumann-Neumann 230+12 300+69

Dual
Lumped P(I) 3212 4169
Dirichlet P(I) 2512 3269
Dirichlet P(Q) 2412 3269

Hybrid P(Q)
P-P-D 318 4446
D-D-P 258 3746

Table 6. Bitraction test specimen

As shown in table 6 all methods give excellent performance results on non-academical
problem. Note the good behavior of the hybrid approach which gives equivalent performance
with much smaller coarse problem, even if no physical consideration could guide the choice
of the treatment of interface degrees of freedom.

7 Conclusions

In this paper, we have reviewed most used non-overlapping domain decomposition methods.
These methods are perfectly suited to modern computational hardware, they are based on
very close concepts which we tried to outline. We introduced the hybrid framework to
include as many methods as possible: the principle is to assign to each interface degree of
freedom its own treatment, for now primal and dual treatments have been implemented,
and mixed and recondensed should follow. Hybriding methods also enable to define physic-
friendly approaches for multifield problems.

Because of the conceptual proximity of all methods, assessments showed very close nu-
merical performance results. Once equipped with convenient preconditioner and coarse
problem, all the methods proved their ability to handle second and forth order elasticity in
presence of strong heterogeneities. Though from a computational point of view some com-
bination may be more interesting: dual approach with lumped preconditioner or simplified
projector (if these are sufficient to ensure fine rate of convergence), hybrid approach (which
generates smaller coarse space). We also outlined the importance of the decomposition
even for very simple problems. The methods have also proved their efficiency on industrial
cases, some of them were implemented in computational softwares.

In this paper we limited to the solution to linearized systems, which anyhow enables
to solve nonlinear problems. Another strategy is to commute the nonlinear solver and the
domain decomposition method so that nonlinear problems can be solved independently on
each subdomain. Another evolution of domain decomposition philosophy is the decompo-
sition of the time interval [72] for evolution problems.
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cation aux structures composites. In Actes du 7ème colloque national en calcul des structures,
Giens, 2005.
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sixième colloque national en calcul de structures, volume 2, pages 297–304, 2003.

57 P. Gosselet, Vincent Chiaruttini, C. Rey, and F. Feyel. A monolithic strategy based on an
hybrid domain decomposition method for multiphysic problems. application to poroelasticity.
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A Krylov iterative solvers

Krylov iterative solvers for the resolution of linear systems have been widely studied. The
aim of this section is just to briefly present important results and algorithms, reader inter-
ested in wider documentation can refer to [96], and to [4] for shorter explanation.

Krylov methods belong to the projection class of iterative algorithms, which consist in
approximating solution S−1b of system Sx = b by vector p(S)b where p is a smartly built
polynomial.

In this section we consider the iterative solution to system Sx = b. S is a n× n matrix
and b a vector in range(S). The ith iteration leads to approximation xi of the solution,
associated residual is ri = b − Sxi = S(x − xi). Initialization is x0 (most often x0 = 0).
Canonical (orthonormal) basis of Rn reads (e1, . . . , en).

A.1 Principle of Krylov solvers

Krylov solvers are based on the iterative construction of so-called ”Krylov subspace”Km(S, r0)
defined by:

Km(S, r0) = span
(
r0, . . . , S

m−1r0
)

(1)

The solution to linear system consists in searching xm under the following constraints:
{

xm ∈ x0 +Km(S, r0)
rm ⊥? Km(S, r0)

(2)

where the choice of the orthogonality relationship enables to define various approaches.

A.2 Most used solvers

We herein present two of the principal Krylov solvers. First GMRes [97] which is suited to
any type of matrix, then conjugate gradient which is adapted to symmetric definite positive
matrices.

Of course, the iterative solution to a linear system assumes that a convergence criterion
is employed, and that a limit of precision is set so that the system is supposed to have
converged once the criterion is below this precision. We note ε this limit value of the
criterion.

A.3 GMRes

Algorithm GMRes (alg. A.1) consists in an oblique projection based on the construction
of Krylov subspace Km(S, v0) with v0 = r0/‖r0‖2. The research principle is:

{
xm ∈ x0 +Km(S, r0)
rm ⊥ SKm(S, r0)

(3)

which is equivalent to finding xm ∈ x0 +Km(S, r0) minimizing ‖rm‖2.
A particulary striking property of GMRes is not to compute the approximation at each

iteration, a smart implementation of GMRes enables to directly access the norm of the
residual ‖rj‖2. Only the final approximation xm is computed (by the inversion of a m×m
upper triangular matrix). From the computation complexity point of view, each iteration
consists in a full orthonormalization of vector wj with respect to Kj .

Algorithm GMRes(m) (or restarted GMRes) consists in stopping computation before
convergence at a priori fixed step m and restarting computation using previous xm as
initialization. This strategy aims at minimizing orthogonalization computations by limiting
the size of Krylov subspaces [29]. This method may lead to stagnation for non positive
definite matrices.
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Algorithm A.1 GMRes

1: Compute r0 = b− Sx0, v0 = r0/‖r0‖2
2: for j = 0, . . . ,m− 1 do
3: Compute wj = Svj
4: for i = 0, . . . , j do
5: hij = (vi, wj)
6: wj = wj − hijvi
7: end for
8: h(j+1)j = ‖wj‖2
9: if ‖rj‖2 6 ε then

10: stop
11: else
12: vj+1 = wj/h(j+1)j
13: end if
14: end for
15: Compute ym minimizing

∥∥‖r0‖2e1 − H̄my
∥∥
2
and set xm = x0 + Vmym

A.4 Conjugate gradient

Let S be a symmetric positive definite matrix, a conjugate gradient algorithm consists in
an orthogonal projection. The research principle is:

{
xm ∈ x0 +Km(S, r0)
rm ⊥ Km(S, r0)

(4)

which is equivalent to finding xm ∈ x0 +Km(S, r0) minimizing ‖xm − x‖S .
Because of the properties of S, conjugation (orthogonality) properties appear, leading

to algorithm A.2. The algorithm is based on the construction of various basis of Km(S, r0) :

Algorithm A.2 Conjugate gradient

1: Compute r0 = b− Sx0, set w0 = r0
2: for j = 0, . . . ,m do
3: αj = (rj , rj)/(Swj , wj)
4: xj+1 = xj + αjwj

5: rj+1 = rj − αjSwj

6: βj = (rj+1, rj+1)/(rj , rj)
7: wj+1 = rj+1 + βjwj

8: end for

(rm) (residual basis) is orthogonal, (wm) (research direction basis) is S-orthogonal. Step 6−
7 of algorithm A.2 is the S-orthogonalization of wj+1 with respect to wj which theoretically
implies the orthogonality of wj+1 with respect to all previous research directions. However
this orthogonality property is numerically lost as the number of iterations increases, it is
then more suited to use a full orthogonalization of research directions leading to algorithm
A.3.

Full reorthogonalization is often compulsory for complex simulations. Various imple-
mentations are available (among others Gram-Schmidt, modified Gram-Schmidt, iterative
Gram-Schmidt [71, 51]) depending on the chosen ratio between precision and computational
cost. Our experience leads us to prefer modified Gram-Schmidt algorithm (the one used in
algorithm A.1) to classical Gram-Schmidt (the one used in algorithm A.3). Note that once



56 P. Gosselet and C. Rey

Algorithm A.3 Reorthogonalized conjugate gradient

1: Compute r0 = b− Sx0, set w0 = r0
2: for j = 0, . . . ,m do
3: αj = (rj , rj)/(Swj , wj)
4: xj+1 = xj + αjwj

5: rj+1 = rj − αjSwj

6: For 0 6 i 6 j, βi
j = −(rj+1, Swi)/(wi, Swi)

7: wj+1 = rj+1 +
∑j

i=1 β
i
jwi

8: end for

fully reorthogonalized, conjugate gradient is almost as expensive as GMRes. Anyhow con-
jugate gradient provides the approximation at each iteration, which can be very useful (see
for instance section 3.2.3, where such an information enables the computation of relevant
convergence criterion).

A.5 Study of the convergence, preconditioning

Because of their error-minimization property, conjugate gradient and GMRes have conver-
gence theorems with known minimal convergence rate, for instance for conjugate gradient:

‖x− xm‖S 6 2

[√
κ− 1√
κ+ 1

]m
‖x− x0‖S (5)

where κ is the condition number of matrix S. Condition number is the ratio between the
biggest and the smallest eigenvalues.

κ =

∣∣∣∣
λn

λ1

∣∣∣∣ with |λ1| 6 |λ2| 6 . . . 6 |λn| eigenvalues of S (6)

Moreover performance results of Krylov iterative solvers are strongly linked to the spec-
trum of matrix S. More precisely only the active spectrum (set of eigenvalues which the
right hand side is not orthogonal to the associated eigenvectors) influences the convergence;
condition number κ can be replaced with active condition number κact inside relation (5)
leading to better convergence range. More precise study would lead to the introduction of
Ritz spectrum and effective condition number [107].

These simple considerations are sufficient to explain the interest of preconditioning the

system: the idea is to solve equivalent system S̃−1Sx = S̃−1b where S̃−1 is a well-chosen

matrix providing the system with better spectral properties (if S̃−1 ≈ S−1 then condition
number is optimal, which justifies the notation).

For conjugate gradient, the use of preconditioner may seem problematic since the sym-

metry is a priori lost. However if preconditioner S̃−1 is symmetric definite positive, ap-
plying conjugate gradient to nonsymmetric system is equivalent to a symmetric resolution

((L−TSL−1)(Lx) = L−T b with Cholesky factorization S̃ = LTL) and the method is still
relevant.

So preconditioning the above two algorithms is simply realized replacing S by S̃−1S and

b by S̃−1b in lines 1 and 3 of algorithm A.1, and in lines 1 and 5 of algorithm A.3 (anyhow
the research directions are still S-orthogonal). Of course the main problem remains the
definition of an efficient preconditioner.
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A.6 Constrained Krylov methods, projector implementation

We may deal (for instance in the dual approach) with constrained systems such as:
(

S G
GT 0

)(
x
α

)
=

(
b
e

)
(7)

Because constraint GTx0 = e is compulsory, it is often referred to as ”admissibility con-
straint”. A classical solution is to find an initialization x0 which satisfies constraint and
then ensure that the remainder of the solution is researched inside a supplemental space:
GT (xi − x0) = 0. A projected algorithm naturally arises:

x = x0 + Px∗ (8)

GTx0 = e (9)

GTP = 0 (10)

which leads to:

x0 = QG
(
GTQG

)−1
e (11)

P = I −QG
(
GTQG

)−1
GT (12)

where Q is a matrix so that matrix GTQG is invertible. Iterative system then reads:

P TSPx∗ = P T (b− Sx0) (13)

α can be post-computed α =
(
GTQG

)−1
GTQ (b− Sx).

A.7 Augmented-Krylov methods, projector implementation

Augmented-Krylov methods [14, 95] are employed to add optional constraints to the res-
olution of a system. The principle is to set subspace C in R

n of dimension nc repre-
sented by n × nc rectangular matrix C (range(C) = C, for more simplicity we suppose

that C is full-ranked-column), then to define augmented-Krylov subspace K̃m(S, r0, C) =
Km(S, r0) + range(C), and to use the following research principle:

{
xm ∈ x0 + K̃m(S, r0, C)

rm ⊥? K̃m(S, r0, C)
(14)

Augmented-Krylov methods can be implemented either by reorthogonalization schemes
or by projection methods which are the one we propose to present here. The research
space is separated into two subspaces: range(C) and a supplemental subspace. The part of
the solution in range(C) is detected during initialization, while the remainder is iteratively
looked for, projector P ensures the research is realized inside the correct subspace.

x = x0 + Px∗ (15)

CT r0 = CT (b− Sx0) = 0 (16)

CTSP = 0 (17)

Which leads to:

x0 = C
(
CTSC

)−1
CT b (18)

P = I − C
(
CTSC

)−1
CTS (19)
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system then reads:

SPx∗ = b− Sx0 (20)

or P TSPx∗ = P T (b− Sx0) = P T b (21)

Though it can be proved that projected system is better conditioned than original prob-
lem [25], the efficiency of the method essentially depends on the choice of matrix C, which is
most often an opened problem. Within the framework of domain decomposition methods,
this choice can be guided by several considerations. In the framework of multiresolution,
reuse of previous numerical information can lead to very interesting performance results
[85, 58, 59, 84, 86, 87]

A.8 Constrained augmented Krylov methods

We here consider solving constrained system (7) with C-augmented algorithm. The admis-
sibility constraint is often referred to as first level constraint and augmentation as second
level constraint. Two strategies are possible, the first consists in mixing levels together
while the second respects the hierarchy between constraints.

One projector strategy: set J =
(
G STH

)
and ẽ =

(
−e
HT b

)
, then system reads:

(
S J
JT 0

)(
x
α̃

)
=

(
b
ẽ

)
(22)

the following initialization/projection are employed (Q is a parameter to tune)

x0 = J
(
JTQJ

)−1
ẽ (23)

P = I −QJ
(
JTQJ

)−1
JT (24)

Because Q is not easy to interpret and choose, this method is hardly ever used.

Two-projector strategy: the two conditions are imbricated. First ensure admissibility
constraint

x = x0 + Px∗ (25)

x0 = G
(
GTQG

)−1
e (26)

P = I −QG
(
GTQG

)−1
GT (27)

then set

x∗ = x∗0 + P ∗x∗∗ (28)

x∗0 = C
(
CTP TSPC

)−1
CTP T (b− Sx0) (29)

P ∗ = I − PC
(
CTP TSPC

)−1
CTP TS (30)

so that optimality constraint is verified. As can be seen such an approach is equivalent
to classical augmentation with making second level constraints consistent with the first
(setting C∗ = PC).


