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Abstract

This work is concerned with the a priori estimations of a global ho-

motopy residue continuation method starting from a disjoint initial guess.

Explicit conditions ensuring the quadratic convergence of the underlying

Newton-Raphson algorithm are proved.

Key words: continuation methods; error estimate; global homotopy; residue.

1 Introduction

The models of nonlinear physical phenomena depend on parameters says as
µ ∈ R

p. The Dynamical Systems Theory studies the features of the transitions
in these nonlinear systems. This theory is basically comprised of the bifurcation
theory and the theory of ergodic systems. One of the important basic issues of
the bifurcation theory is the determination of the fixed points of the system
under investigation, says as

∂u

∂t
≡ A(u, µ) = 0 (1)

Here, u ∈ R
n is the vector of the unknowns and A : R

n×R
p → R

n is a nonlinear
operator.

The branches of steady states are computed versus a control parameter µ ∈
{µ1, µ2, ..., µp} using the continuation methods [7]. A vast and rich literature
exists: see [1, 2, 3, 4, 5, 9, 11] for example.

As it is well known, the Newton–Raphson and the pseudo-arclength con-
tinuation methods can be described as below. The Newton–Raphson method
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consists in computing a branch of fixed points of (1) through infinitesimal in-
crements of a control parameter µ ∈ {µ1, µ2, ..., µp}, says as

DuAk δuk = −Ak , uk ← uk + δuk (2)

where δµ is a small increment, δuk = uk+1−uk, DuAk is the Jacobian matrix
of Ak with respect to u at the kth estimate (uk, µ + δµ). At regular points, it
holds that

rank
(

DuA
k
)

= n. (3)

The pseudo–arclength continuation method consists in calculating a parame-
trized branch of fixed points through infinitesimal increments of the curvilinear
abscissa s, says as

(

DuA
k DµAk

DuN
kT

DµNk

)

(

δuk

δµk

)

= −
(

Ak

N k

)

, (4a)

(

uk

µk

)

←
(

uk + δuk

µk + δµk

)

(4b)

with the scalar normalization

N (u(s), µ(s)) ≡ DuN.δu + DµN δµ− δs = 0 (5)

where DµN and DuN are derivatives of the operator N with respect to µ

and u respectively and DµAk, DµN
k, DuN

k are the derivatives of the operators
at the current estimate

(

uk, µk
)

.
In this contribution, a priori estimations of a global homotopy continuation

of the residue are presented. Explicit conditions ensuring the quadratic conver-
gence of the Newton-Raphson and the pseudo–arclength continuation methods
are derived.

The residue continuation method is based on the global homotopy concept
which was pioneered in [8]. Let (u∗, µ∗) be an initial guess of a disjoint fixed
point (u0, µ0) of (1). The idea of the residue continuation method is to solve
the global homotopy :

H (u, µ, α) ≡ A(u, µ)− α r = 0 (6a)

K (u, µ) ≡ ku .u + kµµ = 0 (6b)

where r=A(u∗, µ∗) is the residue and α is the residue parameter.
For a given r, and assuming that

kµ 6= 0, (7)

it follows from the Implicit Function Theorem that (6) can be written as

H (u(α)) ≡ A(u(α), µ(u(α))) − α r = 0 (8a)

K (u(α)) ≡ ku .u(α) + kµ µ(u(α)) = 0 (8b)
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Let (αν)ν be a real sequence such that αν ∈ I ≡ [a, b] ⊂ R. For (uν−1, µν−1)
solution of the homotopy (6), we note

rν−1 = A(uν−1, µν−1). (9)

The Newton-Raphson method is used to solve the system of equations (8), says
as

DuHk
ν δuk

ν = −Hk
ν , uk

ν ← uk
ν + δuk

ν (10)

while for the pseudo-arclength continuation, it becomes

(

DuHk
ν DαHk

ν

DuN
kT
ν DαNk

ν

)(

δuk
ν

δαk
ν

)

= −
(

Hk
ν

N k
ν

)

, (11a)

(

uk
ν

αk
ν

)

←
(

uk
ν + δuk

ν

αk
ν + δαk

ν

)

(11b)

Here, µν is such that ku .uν + kµµν = 0 and Hk
ν ≡ Ak

ν − ανrν−1. Furthermore,

DuHk
ν and DαHk

ν are the Jacobians with respect to u and the residue parameter
respectively, at the current estimate (uk

ν , αk
ν) of the solution (uν , αν) of (6).

From (8a) and (9), it follows that

|αν | =
‖rν‖
‖rν−1‖

. (12)

Hence the residue parameter αν may be seen as the control parameter of the
norm of the residue. The residue thus increases (decreases) as long as |α| > 1
(|α| < 1). It follows that α = 1 is a critical value corresponding to an extremum
of the norm of the residue.

2 A priori estimations

2.1 Newton–Raphson

For any subdivision (αν)ν of I ⊂ R, we denote by uν the solution u(αν). Given
an initial guess (u0 ≡ uν−1, µ0

ν ≡ µν−1) solution of (6) with α ≡ αν−1 and
r ≡ rν−2, the Newton-Raphson’s scheme is written in the equivalent form:

For ν = 1, · · · , N,

For k = 0, · · · , pν − 1,

DuA
k
ν(uk+1

ν − uk
ν) = −Ak

ν + ανrν−1 , uk
ν ← uk+1

ν

(13)

with the corresponding value of the control parameter µν such that

ku . (uν − uν−1) + kµ(µν − µν−1) = 0. (14)

Assuming that DuA is nonsingular for every u ∈ R
n, the operator A : R

n 7→
R

n (and hence also H : R
n 7→ R

n) is a homeomorphism. Therefore, for every α
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in some compact range Iν ⊂ I ⊂ R, with extremities αν and αν−1, the equation
(6) admits a unique solution denoted by u(α):

u(α) = A−1 (φν(α)rν−1) , φν(α) ≡ (1− αν)α− (1− αν−1)αν

αν−1 − αν

rν−1. (15)

As A−1 is continuously differentiable it follows that α 7→ u(α) is continuous
and piecewise C1 while α 7→ DuA(u(α))−1 is continuous on each Iν . Therefore,
assuming that the sequence (‖rν‖)ν is bounded, there exists a constant c > 0
such that

‖DuA(u(α))−1‖ ≤ c, ∀α ∈ Iν ⊂ I ⊂ R (16)

and it follows that

u′(α) = DuA(u(α))−1

(

(1− αν)

αν−1 − αν

rν−1

)

, α ∈ Iν . (17)

We denote by C the limit curve of the Newton-Raphson process, defined as

C ≡ {u(α) ∈ R
n, α ∈ I ⊂ R}. (18)

As I is a compact convex set and u is piecewise C1 and continuous, there exists
a compact and convex set D ⊂ R

n such that C ⊂ D.

Proposition 2.1 For some constant c′ > 0 we get:

∀u ∈ D : ‖DuA(u)−1‖ ≤ c′. (19)

Proof. As DuuA is continuous, it is also bounded on D and we define the
constant κ > 0 as it follows:

‖DuuA‖ ≤ κ, ∀u ∈ D (20)

Because DuA is continuous on D, it is also uniformly continuous on D, and
hence

∀ε > 0, ∃η > 0, ∀u,u′ ∈ D,

‖u− u′‖ < η =⇒ ‖DuA(u)−DuA(u′)‖ ≤ ε.

(21)

Furthermore, given any u,u′ ∈ D and setting

f(t) ≡ DuA(u + t(u′ − u))

we get, as f is continuously differentiable:

DuA(u)−DuA(u′) = f(1)− f(0) =

∫ 1

0

f ′(t)dt

=

∫ 1

0

DuuA(u + t(u′ − u))dt (u′ − u).

Then, there holds

∀u,u′ ∈ D, ‖DuA(u)−DuA(u′)‖ =

4



∥

∥

∥

∥

∫ 1

0

DuuA(u + t(u′ − u))dt (u′ − u)

∥

∥

∥

∥

≤ κ‖u− u′‖

so that we may choose η =
ε

κ
.

Moreover, for every u0 ∈ D, we find

‖DuA(u)−1‖ ≤ ‖DuA(u0)−1‖
1− ‖DuA(u0)−1‖ ‖DuA(u)−DuA(u0)‖

≤ ‖DuA(u0)−1‖
1− ε‖DuA(u0)−1‖ .

As a consequence, the equation (16) holds with c′ =
c

1− εc
so that we choose

ε ∈ [0,
1

2c
]. (22)

Following [6] (see [10]), with each sequence (uk
ν)k, we associate the quantities

βk,ν , ηk,ν , γk,ν , t±k,ν according to the recurrence introduced as it follows. Let

β0,ν , η0,ν , γ0,ν , t±0,ν be defined as:

‖DuA(u0
ν)−1‖ ≤ β0,ν ≡ c

1− εc
< +∞, (23a)

|1− αν |
|αν |

‖(DuA(u0
ν))−1rν‖ ≤ η0,ν < +∞, (23b)

γ0,ν ≡ η0,ν β0,ν κ, (23c)

t±0,ν =
1

κ β0,ν

(

1±
√

1− 2γ0,ν

)

. (23d)

For each ν ≥ 1, we introduce the sequences βk,ν , ηk,ν , γk,ν and t±k,ν as

γk,ν = βk,ν ηk,ν κ, (24a)

βk+1,ν =
βk,ν

1− γk,ν

, (24b)

ηk+1,ν =
γk,ν ηk,ν

2(1− γk,ν)
, (24c)

t±k,ν =
1

κ βk,ν

(

1±
√

1− 2γk,ν

)

. (24d)

Taking the limit k → ∞ for the residue Newton-Raphson scheme (13), we
have

‖u0
ν − u(αν)‖ ≡ ‖u0

ν − uν‖ ≤ t−0,ν = t−pν−1,ν−1 (25)

and, according to the definition of u0
ν ≡ uν−1:

‖u0
ν − u(αν−1)‖ ≡ ‖upν−1

ν−1 − uν−1‖ ≤ 2ηpν−1,ν−1 ≤
2η0,ν−1

2pν−1

. (26)
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Kantorovich’s Theorem then reads:

Corollary 2.2 For each index ν, the sequence (uk
ν)k generated by the scheme

(13) converges to the unique solution uν ≡ u(αν) of the system:

A(uν)− ανrν−1 = 0 , rν−1 ≡ A(uν−1)

in the open ball B(u0
ν , t+0,ν) with

t+0,ν =
1

κβ0,ν

(

1 +
√

1− 2γ0,ν

)

and where κ, β0,ν and γ0,ν are defined as in (20), (23a) and (23c) respectively.

A sufficient condition for the convergence of (13) can now be stated as it
follows.

Proposition 2.3 A sufficient condition for the sequence (uk
ν)k≥0 to converge

towards u(αν) is that αν satisfies

0 <
|1− αν |
|αν |

‖rν‖ <
1

2c
min

(

3−
√

5

2κc
, t−0,ν

)

≡ Λν , (27)

where the constant c has been defined in (16).

Proof. We are seeking for a condition ensuring (21) with η =
ε

κ
, u = u0

ν and

u′ = u(αν) that is

||u0
ν − u(αν)|| < ε

κ
. (28)

Besides, this must be compatible with (25). In order to achieve (28), we first
notice that:

‖u0
ν − u(αν)‖ ≤ ‖u0

ν − u(αν−1)‖+ ‖u(αν−1)− u(αν)‖. (29)

Taking into account (26), we may choose pν−1 so that

2η0,ν−1

2pν−1

<
ε

2κ

that is,

2pν−1 >
4η0,ν−1κ

ε
,

which fixes pν−1 and also u0
ν = u

pν−1

ν−1 .
Recall that

∀α ∈ Iν : A(u(α)) =
(1− αν)α− (1− αν−1)αν

αν−1 − αν

rν−1, (30)

where we set
Iν ≡ [min (αν−1, αν), max (αν−1, αν)]. (31)

Then, (17) yields:
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‖u(αν−1)− u(αν)‖ =
∥

∥

∥

∥

∥

∫ αν

αν−1

du

dα
(α)dα

∥

∥

∥

∥

∥

=
|1− αν |
|αν−1 − αν |

∥

∥

∥

∥

∥

∫ αν

αν−1

DuA(u(α))−1rν−1dα

∥

∥

∥

∥

∥

≤ |1− αν |
|αν−1 − αν |

∣

∣

∣

∣

∫ αν−1

αν

∥

∥DuA(u(α))−1rν−1

∥

∥ dα

∣

∣

∣

∣

≤ c|1− αν |‖rν−1‖

= c
|1− αν |
|αν |

‖rν‖.

Due to (27), we may choose ε such that

2η0,ν−1

2pν−1

= c
|1− αν |
|αν |

‖rν‖ <
ε

2κ
<

3−
√

5

4κc
. (32)

After substitution into (29), this expression can be written as

‖u0
ν − u(αν)‖ ≤ 2c

|1− αν |
|αν |

‖rν‖ <
ε

κ
, (33)

that is (28).

As for (25), the same argument with t−0,ν instead of
ε

κ
shows that (27) leads to

||u0
ν − u(αν)|| ≤ 2c

|1− αν |
|αν |

||rν || < t−
0,ν

which yields (25). Moreover, a sufficient condition for the convergence to hold
is that

0 < η0,ν <
1− εc

2κc
. (34)

Indeed: from [10], a sufficient condition for Newton’s method to converge at the
given step ν is that γ0,ν < 1

2
. Arguing as in (19), we get:

‖DuA(u0
ν)−1‖ ≤ ‖DuA(u(αν))−1‖

1− ‖DuA(u0
ν)−DuA(u(αν))‖‖DuA(u(αν))−1‖

≤ c

1− εc
= c′ ≡ β0,ν (35)

Then, the condition γ0,ν < 1

2
becomes

0 < η0,ν <
1

2β0,νκ
=

1− εc

2cκ
, (36)

which is the equation (34). Notice that

η0,ν ≥
|1− αν |
|αν |

‖(DuA(u0
ν))−1rν‖

with
‖(DuA(u0

ν))−1rν‖ ≤ c′‖rν‖.
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Then, taking into account the equation (35), a sufficient condition reads

|1− αν |
|αν |

‖rν‖ <
1

2κ

(

1− εc

c

)2

.

Comparing with (27), we get:

0 <
|1− αν |
|αν |

‖rν‖ <
1

2
min

(

ε

κc
,
t−0,ν

c
,
1

κ

(

1− εc

c

)2
)

,

and
ε

κc
<

1

κ

(

1− εc

c

)2

⇐⇒ ε2 − 3ε

c
+

1

c2
> 0.

This is realised as soon as:

0 < ε <
3−
√

5

2c
,

thus finishing the proof.

2.2 Pseudo-arclength continuation

For any given r and assuming that rank(DuA) = n − 1, we introduce the
operator F : R

n+1 7→ R
n, as

F(u(s), α(s); s) ≡
(

H(u(s), α(s))
N (u(s), α(s); s)

)

Following the Implicit Function Theorem, for any given r, the global homotopy
(6) can be written as

F(u(s), α(s); r) = 0, (37a)

ku · u(s) + kµµ(u(s)) = 0. (37b)

For some fixed sν > 0, consider Newton’s scheme (11) written in the equiv-
alent form:

For ν = 1, · · · , N,

For k = 0, · · · , pν − 1,

DuA
k
ν(uk+1

ν − uk
ν)− (αk+1

ν − αk
ν)rν−1 = −Ak

ν + αk
νrν−1,

DuN
k
ν(uk+1

ν − uk
ν) + DαNk

ν(αk+1
ν − αk

ν) = −N k
ν ,

(uk
ν , αk

ν)← (uk+1
ν , αk+1

ν ).

(38)

For any 1 ≤ ν ≤ N , the corresponding value of the control parameter µν is such
that

ku . (uν − uν−1) + kµ(µν − µν−1) = 0 (39)
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where the initialization point (u0
ν , α0

ν) ≡ (uν−1, αν−1) is taken to be solution of
(6) with s ≡ sν−1 and r ≡ rν−2.

In the sequel, we assume that the matrix

B(u, α) ≡
(

DuA(u) −r

DuN(u, α) DαN(u, α)

)

is nonsingular for every (u, α) ∈ R
n×R and we assume that there is a constant

c > 0 such that
‖B−1(u, α)‖ ≤ c, ∀(u, α) ∈ R

n × R.

Since by construction, F(·, ·; s, r) is a homeomorphism R
n × R → R

n × R,
for every s > 0, (37) admits a unique solution denoted by (u(s), α(s)):

(

u(s)
α(s)

)

= F(·, ·; s, r)−1

(

0
0

)

As F−1 is continuously differentiable, s 7→ F(·, ·; s, r)−1 is of class C1 as well as
s 7→ (u(s), α(s)). In particular, there exists a constant c > 0 such that

‖B(u(s), α(s))−1‖ ≤ c, ∀s ∈ R, (40)

and there holds
(

u′(s)
α′(s)

)

= B(u(s), α(s))−1

(

0
−DsN (u(s), α(s))

)

(41)

Consider the sequence (yk
ν )ν,k ≡ (uk

ν , αk
ν)ν,k defined for the subdivision of

I ⊂ R:
s0 < s1 < · · · < sN , hν = sν − sν−1 > 0,

by the following scheme. For ν = 1, · · · , N ,































y0
ν = yν−1,

yk+1
ν = yk

ν − B(yk
ν)−1

(

Ak
ν − αk

νrν−1

N k
ν

)

; k = 0, 1, · · · , pν − 1

yν = ypν

ν , rν = A(uν).

(42)

Defining the set

C ≡ {(u(s), α(s)) ∈ R
n × R, s ∈ [s0, sN ]},

then there exists a compact convex set D ⊂ R
n × R such that C ⊂ D. As DyB

is continuous, it is also bounded on D and we have

‖DyB(y)‖ ≤ κ, ∀y ≡ (u, α) ∈ D,

9



for some constant κ > 0. As B is continuous on D, it is also uniformly continuous
on D that is:

∀ε > 0, ∃η > 0, ∀y,y′ ∈ D, ‖y − y′‖ < η =⇒ ‖B(y)− B(y′)‖ ≤ ε. (43)

Furthermore,
‖B(y)− B(y′)‖ =

=

∥

∥

∥

∥

∫ 1

0

DyB(y + t(y′ − y))dt (y′ − y)

∥

∥

∥

∥

≤ κ‖y− y′‖, ∀y,y′ ∈ D

so that we may choose η =
ε

κ
. Notice that

‖B(y)−1‖ ≤ ‖B(y0)−1‖
1− ‖B(y0)−1‖‖B(y)− B(y0)‖

≤ ‖B(y0)−1‖
1− ε‖B(y0)−1‖ ≤

c

1− εc
≡ c′ (44)

so that we choose ε ∈ [0,
1

2c
].

With each sequence (yk
ν )k, we may associate the quantities βk,ν , ηk,ν , γk,ν

and t−k,ν as:

‖DyB(y)‖ ≤ κ, ∀y ∈ D, (45a)

‖B(y0
ν)−1‖ ≤ c′ ≡ β0,ν < +∞, (45b)

∥

∥

∥

∥

∥

(B(y0
ν))−1

(

(1− α0
ν)

α0
ν

rν , 0

)T
∥

∥

∥

∥

∥

≤ η0,ν < +∞, (45c)

γ0,ν ≡ η0,νβ0,νκ ≤ 1

2
, (45d)

t±k,ν =
1

κβk,ν

(

1±
√

1− 2γk,ν

)

, (45e)

γk,ν = βk,νηk,νκ, (45f)

βk+1,ν =
βk,ν

1− γk,ν

, (45g)

ηk+1,ν =
γk,νηk,ν

2(1− γk,ν)
, (45h)

where we took into account that

N 0
ν = DuA0

νδu0
ν + DµA0

ν
δµ0

ν

≡ DuA
0

ν(u0
ν − u

pν−1

ν−1 ) + DαA0
ν(α0

ν − α
pν−1

ν−1 ) = 0

and where
yk+1

ν = yk
ν − B(yk

ν)−1F(yk
ν ; sν , rν−1). (46)

Now, the same arguments as in the previous section with DuA, u, α replaced
by B, y, s respectively, yield:
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Corollary 2.4 For each index ν, the sequence (yk
ν )k generated by the scheme

(42) converges to the unique solution yν ≡ y(sν ) = (u(sν), α(sν )) of the system:

A(uν)− ανrν−1 = 0, K(uν) = 0, N (yν ; sν) = 0, rν−1 ≡ A(uν−1)

in the open ball B(y0
ν , t+0,ν) with

t+
0,ν =

1

κβ0,ν

(

1 +
√

1− 2γ0,ν

)

and where κ, β0,ν and γ0,ν are defined as in (45a), (45b) and (45d) respectively.

Proposition 2.5 A sufficient condition for the sequence (yk
ν)k≥0 to converge

towards y(sν) is that

0 < hν <
1

2c‖DsN‖
min

(

1

2κ
, t−

0,ν

)

(47a)

0 <
|1− α0

ν |
|α0

ν |
‖rν‖ <

1

8κc2
≡ Λν , (47b)

where the constant c has been defined in (40).

Proof. Using the same arguments as used in the proof of the proposition 2.3,

the inequality (43) must hold with η =
ε

κ
, y = y0

ν , y′ = y(αν ), that is:

‖y0
ν − y(αν )‖ <

ε

κ
.

First, notice that:

‖y0
ν − y(sν )‖ ≤ ‖y0

ν − y(sν−1)‖+ ‖y(sν−1)− y(sν)‖. (48)

The analogue of (26) holds true, namely:

‖y0
ν − y(sν−1)‖ ≡ ‖ypν−1

ν−1 − yν−1‖ ≤ 2ηpν−1,ν−1 ≤
2η0,ν−1

2pν−1

. (49)

Therefore, we may choose pν−1 so that

2η0,ν−1

2pν−1

<
ε

2κ

that is,

2pν−1 >
4η0,ν−1κ

ε
,

which fixes pν−1 and also y0
ν = y

pν−1

ν−1 . Moreover, (41) yields:

‖y(sν−1)−y(sν )‖ =

∥

∥

∥

∥

∥

∫ sν

sν−1

y′(s)ds

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∫ sν

sν−1

B(y(s))−1 (0,−DsN (y(s)))
T

ds

∥

∥

∥

∥

∥

≤
∫ sν

sν−1

∥

∥B(y(s))−1
∥

∥ ‖DsN‖ds ≤ c‖DsN‖hν . (50)
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Then, (47a) implies that we may choose ε so that

2η0,ν−1

2pν−1

= c‖DsN‖hν <
ε

2κ
<

1

4κc
,

in accordance with (22).
After substitution in (48) and taking into account of (49) and (50) it comes:

‖y0
ν − y(sν)‖ ≤ 2c‖DsN‖hν <

ε

κ
, (51)

which is (43).
The analogue of (25) reads

‖y0
ν − y(sν)‖ ≡ ‖y0

ν − yν‖ ≤ t−0,ν = t−pν−1,ν−1. (52)

Then, the same argument with t−0,ν instead of
ε

κ
yields

0 < hν <
1

2c‖DsN‖
min

( ε

κ
, t−0,ν

)

.

Moreover, arguing as in the previous section we find that the requirement (34)
remains true, that is

0 < η0,ν <
1− εc

2κc
. (53)

Recall that

η0,ν ≥
∥

∥

∥

∥

∥

(B(y0
ν))−1

(

(1− α0
ν)

α0
ν

rν , 0

)T
∥

∥

∥

∥

∥

so that η0,ν may be chosen as:
∥

∥

∥

∥

∥

(B(y0
ν))−1

(

(1− α0
ν)

α0
ν

rν , 0

)T
∥

∥

∥

∥

∥

≤ c

(1 − εc)

( |1− α0
ν |

|α0
ν |
‖rν‖

)

≡ η0,ν .

This implies due to (47b):

η0,ν ≤
1

8κc(1− εc)

while (22) yields 1− εc > 1

2
and thus

η0,ν

1− εc
<

1

8κc(1− εc)2
<

1

2κc

which is (53).
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