I Gruais 
  
N M M Cousin-Rittemard 
email: nathalie.rittemard@univ-rennes.fr
  
H A Dijkstra 
  
A priori estimations of a global homotopy residue continuation method

Keywords: continuation methods, error estimate, global homotopy, residue

This work is concerned with the a priori estimations of a global homotopy residue continuation method starting from a disjoint initial guess. Explicit conditions ensuring the quadratic convergence of the underlying Newton-Raphson algorithm are proved.

Introduction

The models of nonlinear physical phenomena depend on parameters says as µ ∈ R p . The Dynamical Systems Theory studies the features of the transitions in these nonlinear systems. This theory is basically comprised of the bifurcation theory and the theory of ergodic systems. One of the important basic issues of the bifurcation theory is the determination of the fixed points of the system under investigation, says as ∂u ∂t ≡ A(u, µ) = 0

Here, u ∈ R n is the vector of the unknowns and A : R n ×R p → R n is a nonlinear operator.

The branches of steady states are computed versus a control parameter µ ∈ {µ 1 , µ 2 , ..., µ p } using the continuation methods [START_REF] Keller | Numerical solution of bifurcation and nonlinear eigenvalue problems[END_REF]. A vast and rich literature exists: see [START_REF] Allgower | Numerical continuation methods[END_REF][START_REF] Doedel | Numerical analysis and control of bifurcation problems. I: Bifurcation in finite dimensions[END_REF][START_REF] Doedel | Numerical analysis and control of bifurcation problems. II: Bifurcation in infinite dimensions[END_REF][START_REF] Guckenheimer | Dynamical systems: some computational problems[END_REF][START_REF] Garcia | Pathways to Solutions Fixed Points and Equilibria[END_REF][START_REF] Keller | Lectures on Numerical Methods in Bifurcation Problems[END_REF][START_REF] Rheinboldt | Numerical Analysis of Parametrized Non-Linear Equations[END_REF] for example.

As it is well known, the Newton-Raphson and the pseudo-arclength continuation methods can be described as below. The Newton-Raphson method consists in computing a branch of fixed points of (1) through infinitesimal increments of a control parameter µ ∈ {µ 1 , µ 2 , ..., µ p }, says as

D u A k δu k = -A k , u k ← u k + δu k (2)
where δµ is a small increment, δu k = u k+1u k , D u A k is the Jacobian matrix of A k with respect to u at the k th estimate (u k , µ + δµ). At regular points, it holds that rank

D u A k = n. (3) 
The pseudo-arclength continuation method consists in calculating a parametrized branch of fixed points through infinitesimal increments of the curvilinear abscissa s, says as

D u A k D µ A k D u N k T D µ N k δu k δµ k = - A k N k , ( 4a 
)
u k µ k ← u k + δu k µ k + δµ k (4b)
with the scalar normalization

N (u(s), µ(s)) ≡ D u N.δu + D µ N δµ -δs = 0 (5) 
where D µ N and D u N are derivatives of the operator N with respect to µ and u respectively and

D µ A k , D µ N k , D u N k are the derivatives of the operators at the current estimate u k , µ k .
In this contribution, a priori estimations of a global homotopy continuation of the residue are presented. Explicit conditions ensuring the quadratic convergence of the Newton-Raphson and the pseudo-arclength continuation methods are derived.

The residue continuation method is based on the global homotopy concept which was pioneered in [START_REF] Keller | Global homotopies and Newton methods[END_REF]. Let (u * , µ * ) be an initial guess of a disjoint fixed point (u 0 , µ 0 ) of [START_REF] Allgower | Numerical continuation methods[END_REF]. The idea of the residue continuation method is to solve the global homotopy :

H (u, µ, α) ≡ A(u, µ) -α r = 0 (6a) K (u, µ) ≡ k u .u + k µ µ = 0 (6b)
where r = A(u * , µ * ) is the residue and α is the residue parameter.

For a given r, and assuming that

k µ = 0, (7) 
it follows from the Implicit Function Theorem that (6) can be written as

H (u(α)) ≡ A(u(α), µ(u(α))) -α r = 0 (8a) K (u(α)) ≡ k u .u(α) + k µ µ(u(α)) = 0
(8b) From (8a) and ( 9), it follows that

|α ν | = r ν r ν-1 . ( 12 
)
Hence the residue parameter α ν may be seen as the control parameter of the norm of the residue. The residue thus increases (decreases) as long as |α| > 1 (|α| < 1). It follows that α = 1 is a critical value corresponding to an extremum of the norm of the residue.

A priori estimations 2.1 Newton-Raphson

For any subdivision (α ν ) ν of I ⊂ R, we denote by u ν the solution u(α ν ). Given an initial guess (u 0 ≡ u ν-1 , µ 0 ν ≡ µ ν-1 ) solution of ( 6) with α ≡ α ν-1 and r ≡ r ν-2 , the Newton-Raphson's scheme is written in the equivalent form:

For ν = 1, • • • , N, For k = 0, • • • , p ν -1, D u A k ν (u k+1 ν -u k ν ) = -A k ν + α ν r ν-1 , u k ν ← u k+1 ν (13)
with the corresponding value of the control parameter µ ν such that

k u . (u ν -u ν-1 ) + k µ (µ ν -µ ν-1 ) = 0. ( 14 
)
Assuming that D u A is nonsingular for every u ∈ R n , the operator A : R n → R n (and hence also H : R n → R n ) is a homeomorphism. Therefore, for every α in some compact range I ν ⊂ I ⊂ R, with extremities α ν and α ν-1 , the equation ( 6) admits a unique solution denoted by u(α):

u(α) = A -1 (φ ν (α)r ν-1 ) , φ ν (α) ≡ (1 -α ν )α -(1 -α ν-1 )α ν α ν-1 -α ν r ν-1 . (15)
As A -1 is continuously differentiable it follows that α → u(α) is continuous and piecewise C 1 while α → D u A(u(α)) -1 is continuous on each I ν . Therefore, assuming that the sequence ( r ν ) ν is bounded, there exists a constant c > 0 such that

D u A(u(α)) -1 ≤ c, ∀α ∈ I ν ⊂ I ⊂ R (16) 
and it follows that

u (α) = D u A(u(α)) -1 (1 -α ν ) α ν-1 -α ν r ν-1 , α ∈ I ν . ( 17 
)
We denote by C the limit curve of the Newton-Raphson process, defined as

C ≡ {u(α) ∈ R n , α ∈ I ⊂ R}. ( 18 
)
As I is a compact convex set and u is piecewise C 1 and continuous, there exists a compact and convex set D ⊂ R n such that C ⊂ D.

Proposition 2.1 For some constant c > 0 we get:

∀u ∈ D : D u A(u) -1 ≤ c . (19) 
Proof. As D uu A is continuous, it is also bounded on D and we define the constant κ > 0 as it follows:

D uu A ≤ κ, ∀u ∈ D (20)
Because D u A is continuous on D, it is also uniformly continuous on D, and hence ∀ε > 0, ∃η > 0, ∀u, u ∈ D,

u -u < η =⇒ D u A(u) -D u A(u ) ≤ ε. (21) 
Furthermore, given any u, u ∈ D and setting

f (t) ≡ D u A(u + t(u -u))
we get, as f is continuously differentiable:

D u A(u) -D u A(u ) = f (1) -f (0) = 1 0 f (t)dt = 1 0 D uu A(u + t(u -u))dt (u -u).
Then, there holds

∀u, u ∈ D, D u A(u) -D u A(u ) = 1 0 D uu A(u + t(u -u))dt (u -u) ≤ κ u -u
so that we may choose η = ε κ .

Moreover, for every u 0 ∈ D, we find

D u A(u) -1 ≤ D u A(u 0 ) -1 1 -D u A(u 0 ) -1 D u A(u) -D u A(u 0 ) ≤ D u A(u 0 ) -1 1 -ε D u A(u 0 ) -1 .
As a consequence, the equation ( 16) holds with c = c 1εc so that we choose

ε ∈ [0, 1 2c ]. (22) 
Following [START_REF] Kantorovich | Functional Analysis in Normed Spaces[END_REF] (see [START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF]), with each sequence (u k ν ) k , we associate the quantities

β k,ν , η k,ν , γ k,ν , t ±
k,ν according to the recurrence introduced as it follows. Let β 0,ν , η 0,ν , γ 0,ν , t ± 0,ν be defined as:

D u A(u 0 ν ) -1 ≤ β 0,ν ≡ c 1 -εc < +∞, (23a) 
|1 -α ν | |α ν | (D u A(u 0 ν )) -1 r ν ≤ η 0,ν < +∞, (23b) 
γ 0,ν ≡ η 0,ν β 0,ν κ, (23c) t 
± 0,ν = 1 κ β 0,ν 1 ± 1 -2γ 0,ν . (23d) 
For each ν ≥ 1, we introduce the sequences β k,ν , η k,ν , γ k,ν and t ± k,ν as

γ k,ν = β k,ν η k,ν κ, (24a) 
β k+1,ν = β k,ν 1 -γ k,ν , (24b) 
η k+1,ν = γ k,ν η k,ν 2(1 -γ k,ν ) , (24c) t 
± k,ν = 1 κ β k,ν 1 ± 1 -2γ k,ν . (24d) 
Taking the limit k → ∞ for the residue Newton-Raphson scheme (13), we have

u 0 ν -u(α ν ) ≡ u 0 ν -u ν ≤ t - 0,ν = t - pν-1,ν-1 (25) 
and, according to the definition of u 0 ν ≡ u ν-1 :

u 0 ν -u(α ν-1 ) ≡ u pν-1 ν-1 -u ν-1 ≤ 2η pν-1,ν-1 ≤ 2η 0,ν-1 2 pν-1 . (26) 
Kantorovich's Theorem then reads:

Corollary 2.2 For each index ν, the sequence (u k ν ) k generated by the scheme (13) converges to the unique solution u ν ≡ u(α ν ) of the system:

A(u ν ) -α ν r ν-1 = 0 , r ν-1 ≡ A(u ν-1 )
in the open ball B(u 0 ν , t + 0,ν ) with

t + 0,ν = 1 κβ 0,ν 1 + 1 -2γ 0,ν
and where κ, β 0,ν and γ 0,ν are defined as in (20), (23a) and (23c) respectively.

A sufficient condition for the convergence of ( 13) can now be stated as it follows.

Proposition 2.3 A sufficient condition for the sequence (u k ν ) k≥0 to converge towards u(α ν ) is that α ν satisfies 0 < |1 -α ν | |α ν | r ν < 1 2c min 3 - √ 5 2κc , t - 0,ν ≡ Λ ν , ( 27 
)
where the constant c has been defined in (16).

Proof. We are seeking for a condition ensuring (21

) with η = ε κ , u = u 0 ν and u = u(α ν ) that is ||u 0 ν -u(α ν )|| < ε κ . (28) 
Besides, this must be compatible with (25). In order to achieve (28), we first notice that:

u 0 ν -u(α ν ) ≤ u 0 ν -u(α ν-1 ) + u(α ν-1 ) -u(α ν ) . ( 29 
)
Taking into account (26), we may choose p ν-1 so that 2η 0,ν-1

2 pν-1 < ε 2κ that is, 2 pν-1 > 4η 0,ν-1 κ ε ,
which fixes p ν-1 and also

u 0 ν = u pν-1 ν-1 . Recall that ∀α ∈ I ν : A(u(α)) = (1 -α ν )α -(1 -α ν-1 )α ν α ν-1 -α ν r ν-1 , (30) 
where we set

I ν ≡ [min (α ν-1 , α ν ), max (α ν-1 , α ν )]. ( 31 
)
Then, (17) yields:

u(α ν-1 ) -u(α ν ) = αν αν-1 du dα (α)dα = |1 -α ν | |α ν-1 -α ν | αν αν-1 D u A(u(α)) -1 r ν-1 dα ≤ |1 -α ν | |α ν-1 -α ν | αν-1 αν D u A(u(α)) -1 r ν-1 dα ≤ c|1 -α ν | r ν-1 = c |1 -α ν | |α ν | r ν .
Due to (27), we may choose ε such that

2η 0,ν-1 2 pν-1 = c |1 -α ν | |α ν | r ν < ε 2κ < 3 - √ 5 4κc . (32) 
After substitution into (29), this expression can be written as

u 0 ν -u(α ν ) ≤ 2c |1 -α ν | |α ν | r ν < ε κ , (33) 
that is (28).

As for (25), the same argument with t - 0,ν instead of ε κ shows that (27) leads to

||u 0 ν -u(α ν )|| ≤ 2c |1 -α ν | |α ν | ||r ν || < t - 0,ν
which yields (25). Moreover, a sufficient condition for the convergence to hold is that 0

< η 0,ν < 1 -εc 2κc . (34) 
Indeed: from [START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF], a sufficient condition for Newton's method to converge at the given step ν is that γ 0,ν < 1 2 . Arguing as in (19), we get:

D u A(u 0 ν ) -1 ≤ D u A(u(α ν )) -1 1 -D u A(u 0 ν ) -D u A(u(α ν )) D u A(u(α ν )) -1 ≤ c 1 -εc = c ≡ β 0,ν (35) 
Then, the condition γ 0,ν < 1 2 becomes

0 < η 0,ν < 1 2β 0,ν κ = 1 -εc 2cκ , (36) 
which is the equation (34). Notice that

η 0,ν ≥ |1 -α ν | |α ν | (D u A(u 0 ν )) -1 r ν with (D u A(u 0 ν )) -1 r ν ≤ c r ν .
Then, taking into account the equation ( 35), a sufficient condition reads

|1 -α ν | |α ν | r ν < 1 2κ 1 -εc c 2 .
Comparing with (27), we get:

0 < |1 -α ν | |α ν | r ν < 1 2 min ε κc , t - 0,ν c , 1 κ 1 -εc c 2 , and ε κc < 1 κ 1 -εc c 2 ⇐⇒ ε 2 - 3ε c + 1 c 2 > 0.
This is realised as soon as:

0 < ε < 3 - √ 5 2c
, thus finishing the proof.

Pseudo-arclength continuation

For any given r and assuming that rank(D u A) = n -1, we introduce the operator F : R n+1 → R n , as

F(u(s), α(s); s) ≡ H(u(s), α(s)) N (u(s), α(s); s)
Following the Implicit Function Theorem, for any given r, the global homotopy (6) can be written as F(u(s), α(s); r) = 0, (37a)

k u • u(s) + k µ µ(u(s)) = 0. ( 37b 
)
For some fixed s ν > 0, consider Newton's scheme [START_REF] Rheinboldt | Numerical Analysis of Parametrized Non-Linear Equations[END_REF] written in the equivalent form:

For ν = 1, • • • , N, For k = 0, • • • , p ν -1, D u A k ν (u k+1 ν -u k ν ) -(α k+1 ν -α k ν )r ν-1 = -A k ν + α k ν r ν-1 , D u N k ν (u k+1 ν -u k ν ) + D α N k ν (α k+1 ν -α k ν ) = -N k ν , (u k ν , α k ν ) ← (u k+1 ν , α k+1 ν ). (38) 
For any 1 ≤ ν ≤ N , the corresponding value of the control parameter µ ν is such that k

u . (u ν -u ν-1 ) + k µ (µ ν -µ ν-1 ) = 0 ( 39 
)
where the initialization point (u 0 ν , α 0 ν ) ≡ (u ν-1 , α ν-1 ) is taken to be solution of ( 6) with s ≡ s ν-1 and r ≡ r ν-2 .

In the sequel, we assume that the matrix

B(u, α) ≡ D u A(u) -r D u N(u, α) D α N(u, α)
is nonsingular for every (u, α) ∈ R n × R and we assume that there is a constant c > 0 such that 

B -1 (u, α) ≤ c, ∀(u, α) ∈ R n × R. Since by construction, F(•, •; s, r) is a homeomorphism R n × R → R n × R,

  for every s > 0, (37) admits a unique solution denoted by (u(s), α(s)):u(s) α(s) = F(•, •; s, r) -1 0 0 As F -1 is continuously differentiable, s → F(•, •; s, r) -1 is of class C 1 as well as s → (u(s), α(s)).In particular, there exists a constant c > 0 such thatB(u(s), α(s)) -1 ≤ c, ∀s ∈ R,(40)and there holdsu (s) α (s) = B(u(s), α(s)) -1 0 -D s N (u(s), α(s))(41)Consider the sequence (y k ν ) ν,k ≡ (u k ν , α k ν ) ν,k defined for the subdivision of I ⊂ R: s 0 < s 1 < • • • < s N , h ν = s νs ν-1 > 0,by the following scheme. For ν = 1,• • • , N , ν -B(y k ν ) -1 A k να k ν r ν-1 N k ν ; k = 0, 1, • • • , p ν -1 y ν = y pν ν , r ν = A(u ν ).(42)Defining the setC ≡ {(u(s), α(s)) ∈ R n × R, s ∈ [s 0 , s N ]}, then there exists a compact convex set D ⊂ R n × R such that C ⊂ D. As D y Bis continuous, it is also bounded on D and we have D y B(y) ≤ κ, ∀y ≡ (u, α) ∈ D,

for some constant κ > 0. As B is continuous on D, it is also uniformly continuous on D that is: 

With each sequence (y k ν ) k , we may associate the quantities β k,ν , η k,ν , γ k,ν and t - k,ν as:

where we took into account that

Now, the same arguments as in the previous section with D u A, u, α replaced by B, y, s respectively, yield:

Corollary 2.4 For each index ν, the sequence (y k ν ) k generated by the scheme (42) converges to the unique solution y ν ≡ y(s ν ) = (u(s ν ), α(s ν )) of the system:

in the open ball B(y 0 ν , t + 0,ν ) with

and where κ, β 0,ν and γ 0,ν are defined as in (45a), (45b) and (45d) respectively.

Proposition 2.5 A sufficient condition for the sequence (y k ν ) k≥0 to converge towards y(s ν ) is that

where the constant c has been defined in (40).

Proof. Using the same arguments as used in the proof of the proposition 2.3, the inequality (43) must hold with η = ε κ , y = y 0 ν , y = y(α ν ), that is:

First, notice that:

The analogue of (26) holds true, namely:

Therefore, we may choose p ν-1 so that 2η 0,ν-1

which fixes p ν-1 and also y 0 ν = y pν-1 ν-1 . Moreover, (41) yields:

Then, (47a) implies that we may choose ε so that 2η 0,ν-1

, in accordance with (22). After substitution in (48) and taking into account of (49) and (50) it comes:

which is (43). The analogue of (25) reads

Then, the same argument with t - 0,ν instead of

Moreover, arguing as in the previous section we find that the requirement (34) remains true, that is

Recall that

T so that η 0,ν may be chosen as:

This implies due to (47b): η 0,ν ≤ 1 8κc(1εc) while (22) yields 1εc > 1 2 and thus η 0,ν 1εc < 1 8κc(1εc) 2 < 1 2κc which is (53).