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b Institut TELECOM - TELECOM ParisTech, LTCI UMR 5141 - CNRS, 46 rue Barrault, 75013 Paris, France

Abstract

We describe a new approach to fit the polyhedron describing a 3D building model to the point cloud of a Digital Elevation Model
(DEM). We introduce a new kinetic framework that hides to its user the combinatorial complexity of determining or maintaining
the polyhedron topology, allowing the design of a simple variational optimization.

This new kinetic framework allows the manipulation of a bounded polyhedron with simple faces by specifying the target plane
equations of each of its faces. It proceeds by evolving continuously from the polyhedron defined by its initial topology and its
initial plane equations to a polyhedron that is as topologically close as possible to the initial polyhedron but with the new plane
equations. This kinetic framework handles internally the necessary topological changes that may be required to keep the faces
simple and the polyhedron bounded. For each intermediate configurations where the polyhedron looses the simplicity of its faces or
its boundedness, the simplest topological modification that is able to reestablish the simplicity and the boundedness is performed.
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1. Introduction

To satisfy the growing demand for 3D city models of
increasingly better accuracy and higher level of detail, there
is a solid research effort to model the real world using lidar
data or satellite, aerial or ground imagery. To drive costs
down, the algorithm must be automatic and make use of
the coarser or inaccurate 3D city models that may already
exist.

This fitting seems compulsory for state of the art build-
ing reconstruction methods[1,2,3] that proceed by first de-
tecting a static set of geometric features like planes, points
or lines and then determine the building topology using
a combinatorial exploration. As this combinatorial explo-
ration time explodes when the number of initial geometric
features increases, the number of such detected features is
kept low. Together with the fact that the geometry of the
detected features is static, this small number of possibly in-
accurate geometric features yield approximate reconstruc-
tions. Fitting these approximate geometries to the avail-
able data as a post process will improve the geometric ac-
curacy of the reconstructed models. This paper presents a
fully automatic method to fit an existing inaccurate build-
ing model to a real world data set. Previous works[4] mainly
focus on optimizing the point coordinates of the model and
do not question the topology of the 3D model. They keep

the topology fixed and either fail or stop before conver-
gence when it occurs that the initial topology was wrong
as illustrated in Figure 2.

To achieve 3D building model fitting without having to
keep the topology fixed, this paper introduces a new generic
framework to fit a polyhedron model to data. It makes use
of an initial polyhedron and a mapping from the initial
supporting planes of its faces to a set of target support-
ing planes. It continuously interpolates the representation
from the initial polyhedron to a novel polyhedron built on
the target plane equations, with minimal topological mod-
ifications. During this continuous evolution, the algorithm
is able to handle implicitly the topological changes that are
required to keep a 3D model well formed when the geom-
etry of the 3D model is altered, as illustrated in figure 1.
This makes the design of a variational shape optimization
possible. To our knowledge, only the variational shape ap-
proximation approach[5] achieves the same goal but it only
maintains a partition of the fitted data. The resulting poly-
hedron is only exported as a post process. Furthermore, it
cannot guarantee that a partition cell is exported as a sin-
gle face or even that the exported faces will be supported
by a common plane. By contrast, our approach maintains a
polyhedron throughout the optimization, thus avoiding the
final export. Besides, the guarantee of our framework that
data that has been fitted to a plane will be represented by
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Fig. 1. a) A polyhedron with two faces that are evolving with an
increasing slope. b) The resulting polyhedron if no topological mod-
ification is performed: faces are no longer simple and an inside-out
tetrahedron is present. c) At the time in the evolution when the
problematic edge length was null, a topological flip of this edge has
been performed to keep the faces simple just after the singularity.

Fig. 2. A simple applicative instance of the problem described in
Figure 1: this figure shows the building wireframe superimposed over
the fitted DEM. The left image shows the initial building wireframe

with a topologically erroneous roof top edge. The right image is the
result of our fitting process: the roof top edge has been topologically
flipped and the other roof edges are no longer required to go through
the vertices of the roof plan, allowing a better fit.

faces supported by that plane is particularly relevant when
there is some semantics attached to the faces of the poly-
hedron: a roof plane will be modeled with a single face and
not a set of nearly coplanar faces.

The next section describes the new kinetic framework.
Then, an application of this framework to fit 3D building
models is presented and discussed.

2. Kinetic Framework

For a better understanding of the framework, let us first
introduce the key definitions about polyhedra that will be
used to represent the 3D models.

2.1. Definitions

A polyhedron is defined as an oriented piecewise-planar
2-manifold without boundary. Its description is two-fold:
its topology is given by the incidence graph linking its
combinatorial elements (vertices, edges and faces), and its
geometry can be given by the 3D coordinates of all its
vertices (its point cloud).

Note that the dual geometry may be given instead:
i.e. the equations of the planes that support the faces of
the polyhedron. Instead of the 3D point cloud of the pri-

mal geometry, this defines a 3D plane arrangement. The
topology then only states which faces of the plane arrange-
ment are part of a polyhedron face, or which 3D cell of the
arrangement are inside the polyhedron.

We define the following topological properties on poly-
hedron elements:
– A triplanar vertex is adjacent to exactly 3 faces. It thus

maps to a triangular face in the dual polyhedron. In the
general case, only triplanar vertex coordinates may be
uniquely determined from the equations of their adjacent
faces.

– A triangulated face is a face that is subdivided by
recursively splitting it with edges between 2 of its vertices
until the face made of triangles only. Those subdivision
edges are called soft edges as opposed to the initial non-
subdividing hard edges of the polyhedron. Note that this
is only the definition of a topological triangulation: there
is no geometric requirement on the triangle orientations.

– An edge of a polyhedron may be defined by its 2 vertices
or its 2 incident faces. A non-degenerate edge is an
edge for which the only faces that are adjacent to both
vertices of the edge are its incident faces. The topology
of a polyhedron can always be changed to describe the
same surface without degenerate edges, yielding a sim-
pler representation.
The following properties only involve geometric re-

quirements:
– A bounded vertex lies in the interior of a given bound-

ing convex polyhedron V ∞, like the bounding box V ∞ =
[−M, M ]3.

– A simple face is a face of a polyhedron, the geometry
of which is a simple (non auto-crossing) 3D polygon. A
face is simple if and only if it can be triangulated so that
its 3D triangles have an orientation consistent with the
orientation of the polyhedron.

A triplanar, bounded, simple, triangulated or non-

degenerate polyhedron is defined by extension when all
its qualified elements (vertex, edge or face) verify the prop-
erty.

2.2. Problem Statement

The task that we are willing to perform is the following:
given a simple bounded polyhedron P0 and a target plane
equation for each of its faces (an updated dual geometry),
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output a simple bounded polyhedron P1 which match the
target dual geometry (supporting planes are the given tar-
get planes) and the topology of which is as close as possible
to the initial topology.

This problem can be restated as a 0-1 coloring of the cells
of the plane arrangement of the target planes and the planes
of V ∞. From such a coloring, the 0.5 level set is a set of
polyhedra whose faces are supported by the target planes.
The boundedness can be translated as a 0-coloring of the
unbounded 3D cells of the arrangement. A straightforward
0-1 coloring is the volumetric thresholding: for each cell C,
the ratio of volume of the intersection P0 ∩C of the initial
polyhedron P0 to the volume of the cell C is computed.
Then a predefined threshold could assign a value of 0 or 1
to the cell.

However, it could result in overly complex shapes due
to the oversegmentation of the volume V ∞ given by the
plane arrangement. Worse, the initial topology is not di-
rectly taken into account, leading to counter intuitive re-
sults. Furthermore, the simplicity can be enforced by split-
ting the polyhedra at non-manifold vertices or edges, but
the result will be a set of polyhedra and not a single poly-
hedron.

2.3. Kinetic Data Structure

The generic kinetic framework that has been developed
in [6,7] appears to be a good solution for our problem. The
idea is to move continuously the geometry of the data from
the initial geometry at time t = 0 to the target geometry
at t = 1. In a kinetic framework, a global geometric prop-
erty is maintained by constructing and maintaining a ki-
netic data structure (KDS) throughout the time evolution.
The purpose of the KDS is to track the list of geometric
tests or predicates that are required to prove the global
property. This data structure is responsible for ensuring
that this finite set of local tests or predicates, called cer-

tificates, which together prove the global geometric proper-
ties, remain valid. These certificates are typically polyno-
mial or rational functions in terms of the interpolation time
t, that are respectively valid, degenerate or invalid when
their signs are respectively positive, null or negative. Roots
(and poles) of these certificates are called failing times, be-
cause the continuous nature of the certificates ensure that
the sign of a certificate remains constant between failing
times. During the simulation, the time does not evolve con-
tinuously: the KDS computes the failing times of each of its
certificates and orders them in a priority queue. The inter-
polation time t is then iteratively advanced to the closest
failure time in the future. At that time, a certificate fails
and the KDS has to make minimal changes to the topology
of the object and has to update its internal proof accord-
ingly. These updates reestablish a set of valid certificates,
so that time can then be advanced either to the next fail-
ing time of one of the certificates or to the evolution ending
time t = 1.

We adapted this generic framework provided by the ki-
netic data structure package of the CGAL library[8] to our
problem, the interpolation between the initial and target
dual geometry is introduced in the next subsection, using
homogeneous coordinates.

2.4. Oriented Projective Geometry

The geometry of Cartesian three-space R
3 is greatly sim-

plified by using the oriented projective space T
3. An in-

depth presentation of this space T
3 can be found in [9]. It

retains the powerful representation and unification proper-
ties of the unoriented projective space P

3 while preserving
the orientation and separability of the Cartesian space R

3.
The homogeneous coordinates P = [x, y, z, w] = [p, w]

refer, if w 6= 0, to the 3D point of Cartesian coordinates
p

w
= ( x

w
, y

w
, z

w
). The multiplication of the homogeneous

coordinates P by any non-zero factor leaves the Cartesian
3D point unchanged.

A plane equation is given by the homogeneous coordi-
nates N = [a, b, c, d] = [n, d]. It refers to the planar set
of points P that verify P · N = 0, which is equivalent, if
w 6= 0, to the Cartesian equation p

w
· n + d = 0. The nor-

mal of the plane is thus encoded in n = (a, b, c) and, if
n is normalized, d represents the signed distance between
the plane and the origin. The multiplication of the homo-
geneous coordinates N by any non-zero factor leaves also
the plane unchanged. The direction of the normal vector n

induces an orientation of the plane N : a plane N multi-
plied by a negative factor thus refers to the same plane but
with a reversed orientation.

The signed distance from a point to a plane is computed
with P

w
· N
‖n‖ . It follows that to test on which side of a plane

a point is, one has to evaluate:

side = sign

(

P

w
· N

)

(1)

A zero means that the points in on the plane, a positive or
negative sign denotes respectively a point in the halfspace
targeted by n or the other halfspace.

The orientation of triangle P 0P 1P 2 is determined by
the sign of the following 4 by 4 determinant where P n =
[n, 0] is the point at infinity along the direction n and the
P i

wi

= [ xi

wi

, yi

wi

, zi

wi

, 1] are the normalized point coordinates:

orientation = sign

(∣

∣

∣

∣

P n

P 0

w0

P 1

w1

P 2

w2

∣

∣

∣

∣

)

(2)

A positive, null or negative determinant denotes respec-
tively a direct, aligned or indirect triangle with respect to
the orientation defined by n.

The linear combination P t = (1− t).P 0 + t.P 1 with t ∈

[0, 1] spans the segment from P 0 to P 1. Likewise, the lin-
ear combination N t = (1− t).N0 + t.N1 with t ∈ [0, 1] has
a geometric interpretation too: if the planes are not paral-
lel, they intersect at a common line L and the linear com-
bination lets the plane N t rotate around the line L from
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N 0 to N1. If they are parallel (n0 and n1 are collinear),
the linear combination spans the set of planes that trans-
late from N0 to N1. A special case that will be avoided in
our framework is to compute the linear combination of 2
planes that are parallel with opposite orientations because,
this is the only case where there is a t ∈ [0, 1] for which
nt = (1 − t).n0 + t.n1 = 0 which is the plane containing
all the points at infinity.

The homogeneous coordinates P = [x, y, z, w] of a tripla-
nar vertex can be computed from the plane equations N0,
N 1, N 2 of its 3 adjacent faces. They are cofactors cof1,j

of the first column of the 4 by 4 matrix
[

0 N 0 N 1 N2

]

:

P = [x, y, z, w] = [cof1,1, cof1,2, cof1,3, cof1,4] (3)

For instance, w = cof1,4 = −
∣

∣

∣n0 n1 n2

∣

∣

∣
(4)

It follows that the Cartesian coordinates p

w
of a point

are rational functions in terms of the 12 coefficients of the
3 adjacent planes. A triplanar point is thus defined every-
where except at the poles of p

w
where it goes to infinity. A

point is however undefined if its 4 polynomial coordinates
in terms of the adjacent plane coefficients are null. This can
be avoided if either the initial or the target geometry has
no subset of 3 planes that have linearly dependant normals.

From this formulation, it appears that the conservative
restriction on the target dual geometry is to disallow orien-
tation reversals n → λn with negative or null λ and degen-
erate dual geometries where there are at least 3 planes with
linearly dependant normals. A less conservative solution is
to first evolve to an intermediate non degenerate dual geom-
etry in which planes with orientation reversals are slightly
rotated, and then evolve to the target dual geometry.

2.5. Polyhedron Triplanarization

To be able to define the point coordinates from the ad-
jacent planes uniquely, the polyhedron must be modified
to be triplanar. Because the polyhedron is closed, any ver-
tex with less than 3 different adjacent planes can safely be
removed without altering the described manifold: isolated
points (arity 0) and point in the interior of a face (arity
1) are simply removed. Points lying on the interior of an
edge (arity 2) are also removed by collapsing one of the two
adjacent edges. Vertices that are adjacent to more than 3
planes are splitted into triplanar (Fig. 3) or biplanar (Fig. 4)
vertices. This splitting introduces zero length edges if the
planes are concurrent (intersecting at a single point).

However, a point may be overdefined by planes that are
nearly but not exactly concurrent because of arithmetic er-
rors. Worse, it may be in the degenerate case where the
planes are instantaneously concurrent but at a time im-
mediately after in the evolution, planes will no longer be
concurrent and thus the point will no longer be properly
defined. In this case, the exact (e.g. with infinite precision
arithmetics) geometric predicates provided by the CGAL
library[10] allow to choose the splitting into triplanar or bi-

t→ t + ǫ

Fig. 3. Triplanarization of a 6-planar vertex.

t→ t + ǫ

Fig. 4. Biplanar vertex resulting from a triplanarization. The biplanar
vertex is removed at a post-processing step.

or

Fig. 5. This is the only case (up to symmetries) were a quadriplanar
vertex admits 2 distinct triplanarizations.

planar vertices that will yield simple faces. To be precise,
this splitting problem is a subproblem of the 0-1 coloring
of the plane arrangement of all the planes that considers
only the adjacent planes and for which the unbounded cell
coloring is given by their position relative to the adjacent
oriented planes.

This problem is solved in our algorithm by a dual ear-

cutting like approach. A triangulation can be performed by
successively and iteratively cutting ears (direct triangles
with 2 consecutive edges of the polygon) until the polygon
is a triangle. Our dual problem of triplanarizing a vertex is
performed likewise by successively and iteratively joining
together 2 consecutive edges of the overdefined vertex to
produce a new vertex. This vertex may be triplanar (Fig. 3)
or biplanar when an adjacent plane is placed between 2
faces supported by the same plane (Fig. 4). Instead of the
orientation requirement of the triangulation problem, the
triplanarization requires that the resulting adjacent faces
are simple. Like the triangulation, there are cases were mul-
tiple triplanarizations satisfy the requirement (Fig. 5). Our
algorithm does not currently take this possible multiplic-
ity into account and applies the first triplanarization found
that produces simple adjacent facets. For extremal vertices,
for which the polyhedron lies localy only on one side of a
tangent plane, the triplanarization amounts to computing
a straight skeleton[11,12] weighted in function of the dihe-
dral angles of these faces with such a tangent plane.
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2.6. Algorithm Overview

The naive and error prone approach of adding constant
or even adaptative time steps, then verifying the simplicity
and boundedness lacks the knowledge of what exactly went
wrong since the last iteration, whereas this kinetic approach
is able to handle well identified problems one at a time. The
algorithm follows this procedure:
– Vertices that are not triplanar are triplanarized to ensure

that the point coordinates can be computed from the
moving plane equations.

– Faces that are not triangular are triangulated to provide
the proof of simplicity.

– Certificates that have been invalidated by topological
changes are updated and their next failing times are com-
puted, to update the proofs of simplicity and bounded-
ness.

– Time is stepped directly to the next failing time t or the
algorithm stops if t ≥ 1 or if there is no failing time in
the future.

– Until the next failing time is not immediate, the neces-
sary topological updates are performed.
To avoid infinite loops where topological changes create

recursively immediately failing configurations, the tripla-
narization and triangulations require the triangles to be di-
rect and does not allow degenerate aligned triangles. For
this to be possible, there must be no certificate of which
the current time is a root. So all the simultaneous current
events are processed until the next failing time is not imme-
diate, before looping back to the triplanarization and the
triangulation. A side effect of this batch processing of the
simultaneous events is to avoid the formation of degenerate
edges.

2.7. Boundedness Certificates

A polyhedron is bounded if all of its vertices are bounded.
The convex bounding volume V ∞ is given by a set of ori-
ented plane equations N

∞
i that point toward the exterior

of the bounded volume. A vertex P remains inside V ∞ if
and only if the side certificate is negative for all faces of the
bounding volume: ∀i, P

w
· N

∞
i ≤ 0. Thus for each vertex

P of the polyhedron and each plane of the convex bound-
ing volume V ∞, we can define its boundedness certificate
−P

w
· N i. These certificates are not negative for each ver-

tex and each bounding plane, if and only if the polyhedron
is bounded. Since the plane equations are the result of a
linear interpolation, their coefficients are polynoms of max-
imum degree 1. If the bounding volumes is kept constant,
that means that the certificate is a rational function and
the maximum degrees of its numerator and denominator
are both 3. Computing the failing times amounts to finding
roots of the numerator with odd multiplicity, while check-
ing if they are also roots of the denominator to eventually
decrease the multiplicity by the root multiplicity at the de-
nominator. Sturm’s theorem and interval arithmetics are

used in the CGAL library[10] to provide efficiency, infinite
accuracy and lazy comparisons between the roots.

2.8. Orientation Certificates

The simplicity of the faces of the polyhedron is proven
by their triangulations with triangles that are oriented
consistently with the oriented supporting planes. The
KDS will keep such a triangulation for each of the faces
and compute for each of its triangles the orientation cer-

tificate

∣

∣

∣

∣

P n

P 0

w0

P 1

w1

P 2

w2

∣

∣

∣

∣

that tests whether the triangle

P 0P 1P 2 is direct, degenerate or indirect with respect to
the supporting oriented plane N = [n, d]. The coordinates
of P n are polynoms of degree at most 1 and the 3 other
columns are rational functions with numerators and de-
nominators of degree at most 3. The reason why the vertex
are kept bounded is to avoid the tricky situation where
the Cartesian coordinates P

w
of a point are evaluated at

one of its poles. Keeping all the vertex bounded ensures
that sign changes in the orientation certificates are only
due to its roots and not its poles. This yields a rational
function that has a numerator of degree at most 10 and a
factorization of the denominator into 3 polynoms of degree
at most 3. The sign of the certificate can be determined
by the independent inspection of the signs of the factors
of its numerator and denominator and the evaluation of
the root multiplicities if the current time is a root of the
denominator. This speeds up the evaluation compared to
computing blindly roots of the multiplication of the nu-
merator by the denominator because this polynom can be
of degree 10+3+3+3=19 ! It is even possible to factorize
the numerator, because there is a polynom λ that links the
estimated normal nP 0P 1P 2

to the plane normal n:

nP 0P 1P 2
=

(

p1

w1

−
p0

w0

)

∧

(

p2

w2

−
p0

w0

)

=
λ.n

w0.w1.w2

(5)

It follows that the numerator of the certificates can be fac-
torized to prove that sign changes of the numerator are only
due to sign changes of λ:

∣

∣

∣

∣

P n

P 0

w0

P 1

w1

P 2

w2

∣

∣

∣

∣

= n · nP 0P 1P 2
=

λ. (n · n)

w0.w1.w2

(6)

If all the 3 edges of the triangle are soft (triangulation)
edges and not hard edges of the polyhedron (Fig. 6), the λ

polynom of the numerator of the certificate cannot gener-
ally be further factorized. An efficient way to compute λ in
the general case is yet to be found. In the meantime, roots

are searched for the unfactored polynom
∣

∣

∣P n P 0 P 1 P 2

∣

∣

∣
.

When there is a mix of hard and soft edges (Fig. 7 and 8),
λ can be further factorized into 2 polynoms of degree at
most 4, improving the root finding time:

λFig. 7 =−
∣

∣

∣N N0 N1 N2

∣

∣

∣
.

∣

∣

∣N N1 N3 N4

∣

∣

∣
(7)

λFig. 8 =−
∣

∣

∣N N0 N1 N2

∣

∣

∣
.

∣

∣

∣N N1 N2 N3

∣

∣

∣
(8)
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N4N5

N1

Fig. 6. Triangle with 3 soft edges and without hard edges.

N

N1

N3

NP0

P1

P2

N2 N

N4

N0

Fig. 7. Triangle with 2 soft edges and 1 hard edge.

N

N2

N0

N1P1

P2

P0

N3 N

Fig. 8. Triangle with 1 soft edge and 2 hard edges.

N

N0
N2

P2

P0

P1

N1

Fig. 9. Triangular face without soft edges and with 3 hard edges.

Finally, if all the edges are hard (Fig. 9), then λFig. 9 =

−
∣

∣

∣N N0 N1 N2

∣

∣

∣

2

. Being the opposite of a square, λFig. 9

will not provoke any sign change, so there is no point in
computing its roots.

2.9. Boundedness Event Processing

The basic idea is to cut the failing vertex by the bound-
ing plane. However, the application that has driven our re-
search cannot produce points that go to infinity, so it has
not been implemented yet.

2.10. Orientation Event Processing

Since the polyhedron remains bounded, the 3 vertices of
the failing triangle have finite coordinates. The failing of the
triangle certificate means that those 3 points are aligned.
The topological update is simply a topological translation
of the geometric singularity.

P0

P1

P2

P0

P1 P3

P2

P0

P1

P2

P3P3

Fig. 10. Example evolution of a vertex colliding with the opposite
soft edge

Fig. 11. Example evolution of a collapsing hard edge

Fig. 12. Example evolution of a vertex colliding with the opposite
hard edge

In general, the 3 points are distinct, meaning that a ver-
tex is colliding with the opposite edge. The polyhedron is
updated by affecting the failing triangle to the plane sup-
ported by the facet that is opposite to the colliding ver-
tex and by flipping the colliding edge. Example results at
t + ǫ is sketched with a hard edge (Fig. 12) and a soft edge
(Fig. 10).

In the particular case where 2 or 3 points are equal, either
an edge or the entire face is collapsing. The polyhedron is
updated by topologically collapsing one of the failing edges.
An example result at t + ǫ is sketched in Fig. 11.

2.11. Complexity

Guibas and Bash introduced in [6,7] a terminology to
qualify the complexity of a kinetic data structure:
– Our data structure is compact (linear in size), since a

triangulation is linear in the size of its polygon. The max-
imum number of events in the queue is one orientation
event per triangle and one above event per vertex and
per bounding plane.

– An external event is an event that is required to update
the topology to maintain the desired property, whereas
an internal event is only needed by the KDS to update
its proof (the triangulation in our case) but does not
require any modification of the maintained object (the
polyhedron here). The efficiency measures the ratio of
external events to total events (internal and external).
The only internal event is the soft edge collision.

– The responsiveness qualify the time complexity of pro-
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cessing a certificate failure. Processing the orientation
events takes constant time, and processing the bounded-
ness event takes time proportional to the degree of the
vertex in the triangulated polyhedron. However, the tri-
planarization and triangulation steps may also take lin-
ear time.

– The KDS is as local as it could be: a number of events
that depend on a single plane is linear relative to the
complexity (the number of edges and vertices) of the faces
of the polyhedron supported by this plane.
There are prospective alternatives to tackle this problem

that can also detect general self intersections rather than
only intersection of edges of a face, which is not possible in
the current framework:
– A kinetic 3D plane arrangement could keep track of the

0-1 coloring directly. However the number of its internal
events may slow down drastically the algorithm.

– A kinetic tetrahedralization constrained by the polyhe-
dron would be compact and relatively efficient but there
is no guarantee that a polyhedron can be partitionned
into tetrahedra without introducing utility vertices[13].
Dealing with this vertices may be tricky.

– An extension of our KDS to deal with self intersections
between vertices that share at least 1 supporting adja-
cent plane seems possible. Instead of maintaining sepa-
rate triangulations for each face, there would be for each
plane a constrained triangulation of the convex hull of the
faces supported by this plane. The triangulation would
be constrained so that edges of the faces are also edges
of the triangulation.

– Finally, a promising possibility is to schedule all the pos-
sible events (vertex-vertex, vertex-edge, vertex-face and
edge-edge collisions) between all possible pairs without
the help of a triangulation or a tetrahedralization. This
would lead to an efficient framework without internal
events, but it would no longer be compact (linear in size)
: the number of events would be quadratic.

3. Application: 3D Building Fitting

To our knowledge, previous methods[4] to fit a 3D build-
ing model to some data like calibrated images, or a laser
point cloud were not questioning the topology of the initial
model. They assumed that the ideally fitted model had the
same topology as the given model. Therefore, our research
efforts have been driven toward a framework that is able
to infer implicitly the minimal topological changes from a
geometric evolution.

3.1. Optimization

The proposed optimization is a local optimization. The
algorithm is iterating optimization steps until either a max-
imum number of iterations are performed, or the compu-
tation time has been too long, or the quality of the fitting
is not increasing sufficiently, meaning that the optimiza-

tion has converged. Thus, there is no guarantee to obtain a
global minimum, but a local minimum close to the approx-
imate model appears to be a good guess in practice.

During an optimization step, the data is partitionned by
the current 3D model: the DEM is partitionned by a verti-
cal projection of the 3D model into regions that correspond
to points of faces belonging to a common supporting plane.
The plane equations [a, b, c, d] are then estimated indepen-
dently using a robust L1 estimator over the corresponding
region of the DEM. A known limitation of this geomet-
ric optimization step is hence the impossibility to recon-
struct vertical or bottom-facing roof planes. Although ver-
tical faces of the polyhedron are not a special case of the
new kinetic framework, it should be noted that the pro-
posed geometric optimization is not able to move the ver-
tical faces. A possible extension could be to no longer par-
tition the data by a vertical projection but using a Vorono
decomposition the three-space, affecting the data to the
closest polyhedron face in R

3. A simplifying by-product of
the fixed vertical planes delimiting the floor plan and the
top-facing orientation of the roof planes is that no vertex
can go to infinity during the interpolation. The polyhedron
will always remain bounded by any sufficiently large vol-
ume, so there is no point in scheduling and processing the
boundedness events in a interpolation driven by this opti-
mization. They are exposed in this paper for completeness.

The second step is obviously to use the kinetic polyhe-
dron data structure described in this paper to drive the
polyhedron from its current geometry and topology to the
newly estimated geometry while minimizing the topologi-
cal changes.

This algorithm is easily adaptable to lidar data, with a
careful dealing of the possible planar inhomogeneity of the
lidar points to prevent some estimation bias.

3.2. Results

The typical computing time for the results of the figures
13,2,14,15 is 2 seconds.

Since our algorithm performs minimal topological
changes, it never creates any face, so a case like in fig-
ure 14, the missing face at the right is not reconstructed.
Another possible extension is to check if the faces with
high residual errors can be advantageously splitted into
some small number of faces, with robustly estimated target
plane coordinates.

In figure 15, the top, bottom and left faces are competing
to fit the same data: the points of the DEM of the left roof
plane. At an iteration one of the 3 planes estimated to be
under the 2 other planes, which resulted in the discarding
of the 2 other facets. Another possible outcome could have
been that they settle to be distinct but nearly coplanar.
Some possible extension could be to detect those nearly
coplanar facets to merge them together.
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Fig. 13. Left background: the DEM. Right background: an orthopho-
tography. First row: the initial building wireframe. Second row: the
building at convergence.

Fig. 14. The right part of the roof plane that faces down is missing
and cannot be created by our algorithm.

3.3. Other Applications

We believe that this framework can have multiple alter-
native applications. It can be used to perform variational
shape approximation[5], but it can also lead to intuitive ge-
ometry editing by letting a user move freely planes instead
of points or simple face extrusions.

A special case of its application can compute the
weighted straight skeleton of a polygon defined in[11,12],
when the initial polyhedron faces are the polygon in the
plane z = 0, facing down, another copy, facing up, at z = 1,
and one vertical quadrangular face linking corresponding
edges of the 2 horizontal polygons. By decreasing simulta-
neously the slopes of the vertical faces at a rate given by
their weight, until the z = 1 plane does no longer support
any face of the polyhedron, the vertical projection of the
resulting polyhedron finally outputs the straight skeleton.
As exposed in [11], the straight skeleton can readily be
used in 3D building modelization: the straight skeleton of
a floor plan gives the roof topology when there is one roof
plane per facade and the slopes are all equal. The weighted
straight skeleton possibly computed with our framework

Fig. 15. A more complex example were 2 faces are pushed out of the
polyhedron.

even allows the slopes to be different and even negative.
Likewise, a special application of this new framework

is to compute straight skeletons of non-convex polyhedra.
The plane equation mapping involved is only a translation
of the planes at equal velocity without rotations. This is
simply the shrinking mapping : [n, d] → [n, d + t] if n is
normalized. When the evolution has reached the time where
the polyhedron is reduced to a single vertex, the loci of
the edges spanned during the evolution describe the faces
of a straight skeleton of the polyhedron. Recent work[14]
has developed a similar kinetic approach specialized to this
particular application.

4. Conclusion

Our contribution is two-fold: we have introduced a new
kinetic framework to allow the direct manipulation of the
plane equations of a 3D polyhedron. This framework makes
implicitly the minimal changes to the topology of the poly-
hedron for it to remain bounded and simple. Then we
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have successfully applied this framework to the 3D building
model fitting problem.

Further applicative development will be to use this
framework with image based and constraint enforcing
fitting[4] to relax the previous constraint on the fixed
topology, in order to achieve a higher accuracy 3D model.
This research is a building block of a 3D building model en-
hancement system that simultaneously fit the main planes
of a building model and reconstruct its superstructures
with parametric objects[15].
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