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WEAK FINSLER STRUTURES AND THE FUNK METRIC

ATHANASE PAPADOPOULOS AND MARC TROYANOV

Abstract. We discuss general notions of metrics and of Finsler structures
which we call weak metrics and weak Finsler structures. Any convex domain
carries a canonical weak Finsler structure, which we call its tautological weak
Finsler structure. We compute distances in the tautological weak Finsler struc-
ture of a domain and we show that these are given by the so-called Funk weak
metric. We conclude the paper with a discussion of geodesics, of metric balls
and of convexity properties of the Funk weak metric.

AMS Mathematics Subject Classification: 52A, 53C60, 58B20 Keywords: Finsler
structure, weak metric, Funk weak metric.
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1. Introduction

A weak metric on a set is a function defined on pairs of points in that set which is
nonnegative, which can take the value ∞, which vanishes when the two points co-
incide and which satisfies the triangle inequality. Compared to an ordinary metric,
a weak metric can thus degenerate and take infinite values. Besides, it need not be
symmetric. This is a very general notion which turns out to be useful in various
situations. The terminology “weak metric” is due to Ribeiro [20], but the notion
can be at least traced back to the work of Hausdorff (see [14]). In the paper [18], a
number of natural weak metrics are discussed. In the present paper, we are mostly
interested in a class of weak metrics that is related to convex geometry and to a
general notion of Finsler structures on manifolds.

A basic construction in convex geometry is the notion of Minkowski norm, which
associates to any convex set containing the origin in a vector space V a translation-
invariant homogenous weak metric on V . Finsler geometry is an extension of this
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construction to an arbitrary manifold. We define a weak Finsler strucure on a
differentiable manifold to be a field of convex sets on that manifold. More precisely,
a weak Finsler strucure is a subset of the tangent space of the manifold whose
intersection with each fiber is an convex set containing the origin. The Minkowski
norm in each tangent space of a manifold endowed with a weak Finsler structure
gives rise to a function defined on the total space of the tangent bundle. We call this
function the Lagrangian of the weak Finsler structure. Integrating this Lagrangian
on piecewise smooth curves in the manifold defines a length structure and thus a
notion of distance on the manifold. This distance is generally a weak metric.

A case of special interest is when the manifold is a convex domain Ω in Rn and when
the weak Finsler structure is obtained by replicating at each point of Ω the domain
Ω itself. We call this the tautological weak Finsler structure, and we study some of
its basic properties in the present paper. More precisely, we first give a formula for
the distance between two points. It turns out that this distance coincides with the
metric introduced by P. Funk in [13]. We then study the geometry of balls and the
geodesics in the Funk weak metric.
Modern references on Finsler geometry include [9], [2], [3], and [1]. One of Herbert
Busemann’s major ideas, expressed in [5], [6], [7] and [8] is that Finsler geometry
should be developed without local coordinates and without the use of differential
calculus. This paper brings some results in that direction.

2. Preliminaries on convex geometry

In this section, we recall a few notions in convex geometry that will be used in the
sequel.
Given a convex subset Ω of Rn, we shall denote Ω its closure,

o
Ω its interior, and

∂Ω = Ω\
o
Ω its boundary.

Let Ω ⊂ Rn be a (not necessarily open) convex set and let x be a point in Ω.

Definition 2.1. The radial function of Ω with respect to x is the function rΩ,x :
Rn → R+ ∪ {∞} defined by

rΩ,x(ξ) = sup{t ∈ R | (x + tξ) ∈ Ω}.

Definition 2.2. The Minkowski function of Ω with respect to x is the function
pΩ,x : Rn → R+ ∪ {∞} defined by

pΩ,x(ξ) =
1

rΩ,x(ξ)
.

Classically, the Minkowski function is associated to an open convex subset Ω of Rn

containing the origin 0, and taking x = 0. This function is sometimes called the
Minkowski weak norm of the convex (see e.g. [10], [17], [21] and [22]).
We also recall that for any convex set Ω in Rn, there exists a well-defined smallest
affine subspace L of Rn containing Ω, and that the intersection of Ω with L has
nonempty interior in L. We denote by RelInt(Ω) this interior, called the relative
interior of the convex set Ω.
The following proposition collects a few basic properties of the Minkowski function.
In particular, Property (8) tells us that we can reconstruct the relative interior of
Ω from the Minkowski function of Ω at any point. The proofs are easy.
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Proposition 2.3. Let Ω be a convex subset of Rn. For every x in Ω and for every
ξ and η in Rn, we have

(1) pΩ,x(ξ) = inf{t ≥ 0 | ξ ∈ t(Ω − x)}. (Here, Ω − x denotes the Minkowski
sum of Ω and −x.)

(2) If the ray {x + tξ | t ≥ 0} is contained in Ω, then pΩ,x(ξ) = 0.
(3) pΩ,x(λξ) = λpΩ,x(ξ) for λ ≥ 0.
(4) pΩ,x(ξ + η) ≤ pΩ,x(ξ) + pΩ,x(η).
(5) The Minkowski function pΩ,x is convex.
(6) If x is in

o
Ω, then pΩ,x is continuous.

(7) If Ω is closed, then Ω = {y ∈ Rn | y = x + ξ, pΩ,x(ξ) ≤ 1}.
(8) RelInt(Ω) = {y = x + ξ| pΩ,x(ξ) < 1}.
(9) If Ω1 = RelInt(Ω), then pΩ1,x = pΩ,x.

In some cases, we can give explicit formulas for the Minkowski function pΩ,x. For
instance, the Minkowski function of the closed ball B = B(0, R) in Rn of radius R
and center 0 with respect to any point x in B is given by

pB,x(ξ) =
√
〈ξ, x〉2 + (R2 − |x|2)|ξ|2 + 〈ξ, x〉

(R2 − |x|2) .

The Minkowski function of a half-space H = {x ∈ Rn
∣∣ 〈ν, x〉 ≤ s}, where ν is a

vector in Rn (which is orthogonal to the hyperplane bounding H) and where s is a
real number, with respect to a point x in H , is given by

pH,x(ξ) = max
(

〈ν, ξ〉
s − 〈ν, x〉 , 0

)
.

We shall use this formula later on in this paper. We also recall the following:

Definition 2.4 (Support hyperplane). Let Ω be a nonempty subset of Rn. An affine
hyperplane A in Rn is called a support hyperplane for Ω if the relative interior of Ω
is contained in one of the two closed half-spaces bounded by A and if Ω ∩ A ,= ∅.
If A is a support hyperplane for Ω and if x is a point in Ω ∩ A, then A is called a
support hyperplane for Ω at x. When Ω ⊂ R2, then A is called a support line.

Suppose now that Ω a convex subset of Rn. It is known that any point on the
boundary of Ω is contained in at least one of its support hyperplanes (see e.g. [10]
p. 20). The intersection of Ω with any of its support hyperplanes is a convex set
which is nonempty if Ω is closed. This intersection is not always reduced to a point.
We recall the notion of a strictly convex subset in Rn, and before that we note the
following classical proposition:

Proposition 2.5. Let Ω be an open convex subset of Rn. Then, the following are
equivalent:

(1) ∂Ω does not contain any nonempty open affine segment;
(2) each support hyperplane of Ω intersects ∂Ω in exactly one point;
(3) support hyperplanes at distinct points of ∂Ω are distinct;
(4) any linear function on Rn has exactly one maximum on ∂Ω.

Definition 2.6 (Strictly convex subset). Let Ω be an open convex subset of Rn.
Then, Ω is said to be strictly convex if one (or, equivalently, all) the properties of
Proposition 2.5 are satisfied.
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3. The notion of weak metric

Definition 3.1. A weak metric on a set X is a function δ : X × X → R+ ∪ {∞}
satisfying

(1) δ(x, x) = 0 for all x in X ;
(2) δ(x, z) ≤ δ(x, y) + δ(y, z) for all x, y and z in X .

We say that such a weak metric δ is symmetric if δ(x, y) = δ(y, x) for all x and
y in X ; that it is finite if δ(x, y) < ∞ for every x and y in X ; that δ is strongly
separating if we have the equivalence

min(δ(x, y), δ(y, x)) = 0 ⇐⇒ x = y;

and that δ is weakly separating if we have the equivalence

max(δ(x, y), δ(y, x)) = 0 ⇐⇒ x = y.

We recall that the notion of weak metric already appears in the work of Hausdorff
(cf. [14], in which Hausdorff defines asymmetric distances on various sets of subsets
of a metric space).

Definition 3.2 (Geodesic). Let (X, δ) be a weak metric space and let I ⊂ R be
an interval. We say that a map γ : I → X is geodesic if for every t1, t2 and t3 in I
satisfying t1 ≤ t2 ≤ t3 we have

δ(γ(t1), γ(t2)) + δ(γ(t2), γ(t3)) = δ(γ(t1), γ(t3)).

Weak metrics were extensively studied by Busemann, cf. [5], [6], [7] & [8]. A basic
example of a weak metric defined on a convex set in Rn is the following:

Example 3.3. Let Ω ⊂ Rn be a convex set such that 0 ∈ Ω and let p(ξ) =
pΩ,0(ξ) = inf{t > 0 | ξ ∈ tΩ} be the Minkowski weak norm centered at 0 of Ω.
Then, the function δ : Rn × Rn → R+ ∪ {∞} defined by

δ(x, y) = p(y − x)

is a weak metric on Rn. For this weak metric, we have the following equivalences:

(1) δ is finite ⇐⇒ 0 ∈
o
Ω;

(2) δ is symmetric ⇐⇒ Ω = −Ω;
(3) δ is strongly separating ⇐⇒ Ω is bounded;
(4) δ is weakly separating ⇐⇒ Ω does not contain any Euclidean line.

The weak metric on Rn defined in Example 3.3 is called the Minkowski weak met-
ric associated to Ω. The associated weak metric space (Rn, δ) is called a weak
Minkowski space.

4. Weak length spaces

Let X be a set and let Γ be a groupoid of paths in X . Concatenation of paths is de-
noted by the symbol ∗. The inverse γ−1 of a path γ : [a, b] → X is the path obtained
by pre-composing γ with the unique affine sense-reversing self-homeomorphism of
[a, b].

Definition 4.1. A weak length structure on (X,Γ) is a function ( : Γ→ R+ ∪{∞}
which satisfies the following properties:
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(1) Invariance under reparametrization: if [a, b] and [c, d] are intervals of R, if
γ : [a, b] → X is a path in X that belongs to Γ and if f : [c, d] → [a, b] is an
increasing homeomorphism such that γ ◦ f ∈ Γ, then ((γ) = ((γ ◦ f).

(2) Additivity: for every γ1 and γ2 in Γ, we have ((γ1 ∗ γ2) = ((γ1) + ((γ2).

A weak length structure Γ is said to be reversible if for every γ in Γ, γ−1 is also in
Γ and we have ((γ−1) = ((γ).
A weak length structure Γ is said to be separating if we have the equivalence:
((γ) = 0 ⇐⇒ γ is a unit in Γ (i.e. γ is a constant path).
Let (X,Γ, () be a set equipped with a groupoid of paths and with a weak length
structure. We set

(4.1) δ!(x, y) = inf
γ∈Γx,y

((γ),

where
Γx,y = {γ ∈ Γ | γ joins x to y }.

It is easy to see that the function δ! is a weak metric on X .

Definition 4.2. Let (X,Γ, () be a set equipped with a groupoid of paths and with
a weak length structure. The weak metric δ! defined in (4.1) is called the weak
metric associated to the weak length structure (. A weak length metric space is a
weak metric space X obtained from such a triple (X,Γ, () by equipping X with the
associated weak metric δ!.

5. Weak Finsler structures

We introduce a general notion of Finsler structure, which we call weak Finsler
structure, and which can be considered as an infinitesimal notion of weak length
structure.

Definition 5.1. Let M be a C1 manifold and let TM be its tangent bundle. A
weak Finsler structure on M is a subset Ω̃ ⊂ TM such that for each x in M , the
subset Ωx = Ω̃ ∩ TxM of the tangent space TxM of M at x is convex and contains
the origin.

We provide the set of all weak Finsler structures on M with the order relation 3
defined as follows:

Ω̃1 3 Ω̃2 ⇔ Ω̃1 ⊃ Ω̃2.

Examples 5.2. In the following examples, M is a C1 manifold.
(1) Ω̃ = TM is a weak Finsler structure, which we call the minimal weak

Finsler structure.
(2) Ω̃ = M ⊂ TM , embedded as the zero section, is a weak Finsler structure

which we call the maximal weak Finsler structure.
(3) If Ω̃ and Ω̃′ are two Finlser structures on M , then Ω̃ ∩ Ω̃′ ⊂ TM is also a

Finsler structure.
(4) If Ω̃ and Ω̃′ are two Finlser structures on M , then, taking the union of the

Minkowski sums Ωx + Ω′
x of the convex sets in each tangent space TxM ,

we obtain the Minkowski sum Finsler structure Ω̃ + Ω̃′ ⊂ TM .
(5) If ω is a differential 1-form on M , then

Ω̃ω = {(x, ξ) ∈ TM | ωx(ξ) ≤ 1}



6 ATHANASE PAPADOPOULOS AND MARC TROYANOV

and
Ω̃|ω| = {(x, ξ) ∈ TM | |ωx|(ξ) ≤ 1}

are weak Finsler structures on M .
(6) If ω and ω′ are two 1-froms on M , then max(ω, ω′) defines a weak Finlser

structure on M .
(7) If Ω̃ is a weak Finlser structure on M and if N ⊂ M is a C1 submanifold,

then Ω̃N = Ω̃∩TN is a weak Finlser structure on N , called the weak Finsler
structure induced by the embedding N ⊂ M .

(8) If Ω̃ is a weak Finlser structures on M , if N is a C1 manifold and if f :
N → M is a C1 map, then (Tf)−1(Ω̃) ⊂ TN is a Finsler structure on N .
We denote it by f∗(Ω̃) and call it the pull back of Ω̃ by the map f .

Definition 5.3 (Lagrangian). The Lagrangian of a weak Finlser structure Ω̃ on
a C1 manifold M is the function on the tangent bundle TM whose restriction to
each tangent space Tx is the Minkowski function of Ωx. It is thus defined by

p(x, ξ) = peΩ(x, ξ) = inf{t | t−1ξ ∈ Ωx}.

The quantity p(x, ξ) is also called the Finsler norm of the vector (x, ξ) relative to
the given weak Finlser structure.

Example 5.4. Let g be a Riemannian metric on M , let ω is a differential 1-form
and let µ be a smooth function on M satisfying |µωx| < 1 at every point x in
M . Then, p = √

g + µω is the Lagrangian of a Finsler structure on M . Such a
Finlser structure is usually called a Randers metric on M , and it has applications
on physics (cf. e.g. [3] §11.3, and see also [4] for the relation of this metric with
the Zermelo navigation problem.)

Lemma 5.5. Let Ω̃ be a weak Finlser structure on M . Assume that M (considered
as a subset of TM - the zero section) is contained in the interior of Ω̃ ⊂ TM . Then
the associated Lagrangian p : TM → R is upper semi-continuous.

Proof. The hypothesis implies that for every x in M , the interior of each convex
set Ωx = Ω̃ ∩ TxM ⊂ TxM is nonempty. Therefore, the usual interior and the
relative interior of Ωx coincide. Property (9) of Proposition 2.3 implies then that
the Lagrangian of Ω̃ coincides with the Lagrangian of its interior Int

(
Ω̃

)
.

One may therefore assume without loss of generality that Ω̃ ⊂ TM is an open set,
and in particular

Ω̃ = {(x, ξ) ∈ TM
∣∣ p(x, ξ) < 1}

(see Proposition 2.3 (8)). Now for any t ∈ R, the sublevel set {p(x, ξ) < t} is either
empty (when t ≤ 0) or it is homothetic to the open set Ω̃ ⊂ TM (when t > 0).
In any case, it is an open subset of TM , and p : TM → R is therefore upper
semi-continuous.

!

Proposition 5.6. Let Ω̃ be a Finsler structure on a C1 manifold M and let peΩ :
TM → R be the associated Lagrangian. Then,

(1) for every x in M , the function ξ 7→ p(x, ·) is a weak norm on TxM ;
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(2) if Ω̃′ ⊂ TM is another Finsler structure on M , with associated Lagrangian
pfΩ′ , then we have the equivalence

Ω̃ 3 Ω̃′ ⇐⇒ peΩ ≤ pfΩ′ ,

(3) peΩ : TM → R is Borel-measurable.

Proof. The first two assertions are easy to check and we only prove the last one.
If M is contained in the interior of Ω̃ ⊂ TM , then, by Lemma 5.5, the Lagrangian
p is upper semi-continuous and therefore Borel measurable. In the general case,
M is contained in Ω̃ but not necessarily in its interior. We consider a decreasing
sequence

TM 3 Ω̃1 3 Ω̃2 3 · · · 3 Ω̃
of weak Finsler structures such that M is contained in the interior of Ω̃j ⊂ TM for
every j ∈ N and

Ω̃ =
∞⋂

j=1

Ω̃j

We then have peΩ1
≤ peΩ2

≤ · · · ≤ peΩ and

peΩ = sup
j

peΩj
= lim

j→∞
peΩj

Therefore peΩ is the limit of a sequence of Borel measurable functions and is thus
Borel measurable.

!

We shall say that the Finlser structure Ω̃ is smooth if p is smooth.

Definition 5.7 (The weak length structure associated to a weak Finsler structure).
Let M be a C1 manifold equipped with a weak Finlser structure Ω̃ with Lagrangian
p. There is an associated weak length structure on M , defined by taking Γ to be
the groupoid of piecewise C1 paths, and defining, for each γ : [a, b] → M in Γ,

(5.1) ((γ) =
∫ b

a
p(γ(t), γ̇(t))dt.

Remark 5.8. In Equation (5.1), γ and γ̇ are continuous, and since p is Borel-
measurable, the map t 7→ p(γ(t), γ̇(t)) is nonnegative and measurable. Therefore,
the Lebesgue integral is well defined.

6. The tautological weak Finsler structure

In this section, Ω is an open convex subset of Rn. We shall use the natural identi-
fication TΩ 8 Ω× Rn.

Definition 6.1 (The tautological weak Finsler structure). The tautological weak
Finsler structure on Ω is the weak Finsler structure Ω̃ ⊂ TΩ defined by

Ω̃ = {(x, ξ) ∈ Ω× Rn | x ∈ Ω and x + ξ ∈ Ω}.

This structure is called “tautological” because the fibre over each point x of Ω is
the set Ω itself (with the origin at x).
The proof of next proposition follows easily from the definitions.
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Proposition 6.2. Let Ω be an open convex subset of Rn equipped with its tauto-
logical weak Finsler structure Ω̃. Then, for every x in Ω, the Finsler norm of any
tangent vector ξ at x is given by pΩ,x(ξ), where pΩ,x is the Minkowski function of
Ω with respect to x.

Given an open convex subset Ω of Rn, we denote by dΩ the weak length metric
associated to the tautological weak Finsler structure on Ω. This weak metric is
thus defined by

(6.1) dΩ(x, y) = inf
γ∈Γx,y

∫

γ
p(γ(t), γ̇(t))dt.

where Γx,y is the set of piecewise C1 paths joining x to y.

Lemma 6.3. Let Ω and Ω′ be two convex open subsets of Rn satisfying Ω ⊂ Ω′,
then dΩ′ ≤ dΩ.

In the rest of this paper, we shall use the following notations: For x and y in Rn,
we denote by |x − y| their Euclidean distance. Given two distinct points x and y
in Ω, R(x, y) denote the Euclidean ray starting at x and passing through y. In the
case where R(x, y) ,⊂ Ω we set a+ = a+(x, y) = R(x, y) ∩ ∂Ω.

Theorem 6.1. Let Ω be an open convex subset of Rn equipped with its tautological
weak Finsler structure. Then, for every x and y in Ω, the Euclidean segment
connecting x and y is of minimal length, and the associated weak metric on Ω is
given by

dΩ(x, y) =





log

|x − a+|
|y − a+| if x ,= y and R(x, y) ,⊂ Ω

0 otherwise.

Proof. As before, we let dΩ denote the weak metric defined by the tautological
weak Finsler structure on Ω. We also denote by ((γ) the length of a path γ for the
tautological weak Finsler weak length structure.
The proof of the theorem is done in four steps.

Step 1.— Suppose that R(x, y) ⊂ Ω. Consider the linear path γ : [0, |x − y|] → Ω
defined by

(6.2) γ(t) = x + t
y − x

|y − x| .

The derivative of the path γ is the constant vector

γ̇(t) =
y − x

|y − x| .

Therefore, peΩ(γ(t), γ̇(t)) =
1

|y − x|peΩ(γ(t), y−x), which is equal to 0 since R(x, y) ⊂
Ω.
Now the path γ has length zero and satisfies γ(0) = x and γ(|y−x|) = y. Therefore
dΩ(x, y) = 0.

In the rest of this proof, we suppose that R(x, y) ,⊂ Ω.
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Step 2.— We show that for every distinct points x and y in Ω and for every Eu-
clidean segment γ joining x to y, we have

(6.3) dΩ(x, y) ≤ ((γ) = log
|x − a+|
|y − a+| .

Using the radial function rΩ,x introduced in §2, we can write

a+ = a(x, y − x) = x + rΩ,x(y − x) · (y − x).

To compute the Finsler length of the Euclidean segment [x, y], we parametrize it
as the path γ defined in (6.2).
For 0 ≤ t ≤ |x − y|, let r(t) = |x − γ(t)|. Then, r(t) = rΩ,x(γ(t), γ̇(t)), and it is
easy to see that

r(t) = |x − a+| − t.

Then, we have r′(t) = −1 and therefore

((γ) =
∫ |y−x|

0

dt

r(t)
= −

∫ |y−x|

0

r′(t)dt

r(t)
= − log

(
r(t)

)∣∣∣
t=|y−x|

t=0
= log

|x − a+|
|y − a+| .

This gives the desired inequality (6.3).

Step 3.— We complete the proof of the theorem in the particular case where Ω is a
half-space. By the invariance of the tautological Finsler structure under the group
of affine transformations, it suffices to consider the case where Ω is the half-space
H ⊂ Rn defined by the equation

H = {x ∈ Rn
∣∣ 〈ν, x〉 ≤ s},

for some vector ν in Rn (which is orthogonal to the hyperplane bounding H) and
for some s in R. Recall that the Minkowski function associated to H is given by
the formula

pH(x, ξ) = max
{

〈ν, ξ〉
s − 〈ν, x〉 , 0

}
.

Consider now an arbitrary piecewise C1 path α : [0, 1] → H such that x = α(0)
and y = α(1). Then,

((α) =
∫ 1

0
max

{
〈ν, α̇(t)〉

s − 〈ν, α(t)〉 , 0
}

dt ≥
∫ 1

0

〈ν, α̇(t)〉
s − 〈ν, α(t)〉dt.

We have
〈ν, α̇(t)〉

s − 〈ν, α(t)〉 = − d

dt

(
log

(
s − 〈ν, α(t)〉

))
.

Therefore,

((α) ≥ − log
(
s − 〈ν, α(1)〉

)
+ log

(
s − 〈ν, α(0)〉

)
= log

s − 〈ν, x〉
s − 〈ν, y〉 .

Now we note that

s − 〈ν, x〉 = s − 〈ν, x − a+〉 − 〈ν, a+〉 = 〈x − a+,−ν〉 = 〈ν, a+ − x〉.
Likewise,

s − 〈ν, y〉 = 〈ν, a − y〉.
Thus, we obtain

((α) ≥ log
〈ν, a+ − x〉
〈ν, a+ − y〉 .
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Now using the fact that the three points x, y, a+ are aligned in that order and that
ν is not parallel to the vector x − y, we easily see that

〈ν, a − x〉
〈ν, a − y〉 =

|x − a+|
|y − a+| ,

which gives

((α) ≥ log
|x − a+|
|y − a+| .

Since α was arbitrary, we have

dH(x, y) ≥ log
|x − a+|
|y − a+| .

Combining this inequality and the inequality (6.3), we obtain, in the case where
Ω = H is a half-space,

dH(x, y) = log
|x − a+|
|y − a+| .

In particular any Euclidean segment is length minimizing.

Step 4.— Now we prove the proposition for a general open convex set Ω.
Let x and y be two elements in Ω and consider the Euclidean ray R(x, y).
By hypothesis, we have L ,⊂ Ω, and as before, we set a+ = R(x, y) ∩ ∂Ω. We let A
denote a support hyperplane to Ω through a+, and we let H be the open half-space
containing Ω and whose boundary is equal to A. Using Lemma 6.3 and Step 3, we
have

dΩ(x, y) ≥ dH(x, y) = log
|x − a+|
|y − a+| .

Combining this with the inequality (6.3) we obtain dΩ(x, y) = log |x−a+|
|y−a+| . The

argument also proves that any Euclidean segment γ is length minimizing. This
completes the proof of Theorem 6.1.

!

7. The Funk weak metric

In this and the following section, we give a quick overview of the Funk weak metric,
of its geodesics, of its balls and of its topology.
The Funk weak metric is a nice example of a weak metric, and a geometric study
of this weak metric is something which seems missing in the literature. We study
this weak metric in more detail in [19].
In this section, Ω is a nonempty open convex subset of Rn. We use the notations
a+, R(x, y), etc. established in the preceding section.

Definition 7.1 (The Funk weak metric). The Funk weak metric of Ω, denoted by
FΩ, is defined, for x and y in Ω, by the formula

FΩ(x, y) =





log

|x − a+|
|y − a+| if x ,= y and R(x, y) ,⊂ Ω

0 otherwise.
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Observe that Theorem 6.1 says that the Funk weak metric is the weak metric
associated to the tautological Finsler structure in Ω. In particular the triangle
inequality is verified. Another proof of the triangle inequality is given in [23] p. 85.
This proof is not trivial and uses arguments similar to those of the classical proof
of the triangle inequality for the Hilbert metric, as given by D. Hilbert in [16].
If Ω = Rn, then F ≡ 0. We shall henceforth assume that Ω ,= Rn whenever we
shall deal with the Funk weak metric of an nonempty open convex subset Ω of Rn.
The Funk weak metric is always unbounded. Indeed, if x is any point in Ω and if
xn is any sequence of points in that space converging to a point on ∂Ω (convergence
here is with respect to the Euclidean metric), then FΩ(x, xn) → ∞. Notice that on
the other hand FΩ(xn, x) is bounded.

Example 7.2 (The upper half-plane). Let Ω = H ⊂ R2 be the upper half-plane,
that is,

H = {(x1, x2) ∈ R2 | x2 > 0}.
Then, for x = (x1, x2) and y = (y1, y2) in H , we have

FH(x, y) = max
{

log
x2

y2
, 0

}
.

The following three propositions are easy consequences of the definitions and they
will be used below. We take Ω to be again a nonempty open subset of Rn.

Proposition 7.3. Let Ω′ ⊂ Ω be the intersection of Ω with an affine subspace of
Rn, and suppose that Ω′ ,= ∅. Then, FΩ′ is the weak metric induced by FΩ on Ω′.

Proposition 7.4. In the case where Ω is bounded, the Funk weak metric FΩ is
strongly separating, and we have the following equivalences:

(7.1) FΩ(x, xn) → 0 ⇐⇒ FΩ(xn, x) → 0 ⇐⇒ |x − xn| → 0.

Proposition 7.5. Let Ω1 and Ω2 be two open convex subsets of Rn. Then,

FΩ1∩Ω2 = max {FΩ1 , FΩ1} .

8. On the geometry of the Funk weak metric

In this section, we study the geodesics, and then, the geometric balls of the Funk
weak metric.

Proposition 8.1. Let x, y and z be three points in Ω lying in that order on a
Euclidean line. Then, we have F (x, y) + F (y, z) = F (x, z).

This results follows from Theorem 6.1, but it is also quite simple to prove it directly.

Proof. We can assume that the three points are distinct, otherwise the proof is
trivial. We have R(x, y) ⊂ Ω ⇐⇒ R(x, z) ⊂ Ω ⇐⇒ R(y, z) ⊂ Ω, and this
holds if and only if the three quantities F (x, y), F (y, z) and F (x, z) are equal to
0. Thus, the conclusion also holds trivially in this case. Therefore, we can assume
that R(x, y) ,⊂ Ω. In this case, we have a+(x, y) = a+(x, z) = a+(y, z). Denoting
this common point by a+, we have

|x − a+|
|y − a+|

|y − a+|
|z − a+| =

|x − a+|
|z − a+| ,
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which implies

log
|x − a+|
|y − a+| + log

|y − a+|
|z − a+| = log

|x − a+|
|z − a+| ,

which completes the proof. !
Corollary 8.2. The Euclidean segments in Ω are geodesic segments for the Funk
weak metric on Ω.

Since the open set Ω is convex, Corollary 8.2 implies that (Ω, FΩ) is a geodesic weak
metric space (any two points can be joined by a geodesic segment). It also says
that (Ω, FΩ) is a Desarguesian space in the sense of H. Busemann (see [7]).
Notice that in general, the Euclidean segments are not the only geodesic segments
for a Funk weak metric. In fact, the following proposition implies that there exist
other types of geodesic segments in Ω, provided there exists a Euclidean segment
of nonempty interior contained in the boundary of Ω.

Proposition 8.3. Let Ω be an open convex subset of Rn such that ∂Ω contains
a Euclidean segment [p, q] and let x and z be two points in Ω such that R(x, z) ∩
[p, q] ,= ∅. Let Ω′ be the intersection of Ω with the affine subspace of Rn spanned
by {x} ∪ [p, q]. Then, for any point y in Ω′ satisfying R(x, y) ∩ [p, q] ,= ∅ and
R(y, z) ∩ [p, q] ,= ∅, we have F (x, y) + F (y, z) = F (x, z).

p

q

x

y

z

x′

y′

z′

Figure 1.

Proof. It suffices to work in the space Ω′. Let x′, y′ and z′ denote the feet of the
perpendiculars from x and z respectively on the Euclidean line joining the points p
and q (see Figure 1). Let b = R(x, z) ∩ [p, q]. Since the triangles bxx′ and bzz′ are
similar, we have

F (x, z) = log
|x − b|
|z − b| = log

|x − x′|
|z − z′| .



WEAK FINSLER STRUTURES AND THE FUNK METRIC 13

Similar formulas hold for F (x, y) and F (y, z). Therefore,

F (x, z) = log
|x − x′|
|z − z′|

= log
(
|x − x′|
|y − y′|

|y − y′|
|z − z′|

)

= log
(
|x − x′|
|y − y′|

)
+ log

(
|y − y′|
|z − z′|

)

= F (x, y) + F (y, z).

!

Remark 8.4. By taking limits of polygonal paths, we can easily construct, from
Proposition 8.3, smooth paths which are not Euclidean paths and which are geodesic
for the Funk weak metric.

Proposition 8.5. Let Ω be an open convex subset of Rn. Let x and z be two distinct
points in Ω such that R(x, z)∩ ∂Ω ,= ∅ and such that at the point b = R(x, z)∩ ∂Ω,
there is a support hyperplane whose intersection with ∂Ω is reduced to b. Let y be a
point in Ω such that the three points x, y, z in Ω do not lie on the same affine line.
Then, F (x, z) < F (x, y) + F (y, z).

Proof. To prove the proposition, we work in the affine plane spanned by x, y and
z and therefore we can assume without loss of generality that n = 2.
We assume that the intersection points of R(x, y) and R(y, z) with ∂Ω are not
empty, and we let a and c be respectively these points. From the hypothesis, there
is a support line of Ω (which we call D) at b whose intersection with ∂Ω is reduced
to the point b.
For the proof, we distinguish three cases.

D

a′

a

x

y

z

c

b

c′

Figure 2.
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Case 1.— The two rays R(x, y) and R(y, z) intersect the line D (see Figure 2).
Let a′ and c′ be respectively these intersection points. Note that the three points
a′, b and c′ are in that order on D. By reasoning with projections on the line D
and arguing as we did in the proof of Proposition 8.3, we have

|x − b|
|z − b| =

|x − a′|
|y − a′|

|y − c′|
|z − c′| .

Since we have
|x − a′|
|y − a′| <

|x − a|
|y − a|

and
|y − c′|
|z − c′| <

|y − c|
|z − c| ,

we obtain
|x − b|
|z − b| <

|x − a|
|y − a|

|y − c|
|z − c|

which gives, by taking logarithms, F (x, z) < F (x, y) + F (y, z).

Case 2.— The ray R(x, y) intersects D and the ray R(y, z) does not intersect D
(Figure 3). We let as before a′ denote the point R(x, y) ∩ D.
Let D′ be the Euclidean line passing through z and parallel to D. The hypotheses
in the case considered imply that the line D′ intersects the segment [x, y]. Let y′

be this intersection point. The point y′ is contained in Ω.
We have, as in Case 1,

F (x, z) = log
|x − b|
|z − b|

and

F (x, y) = log
|x − a|
|y − a| > log

|x − a′|
|y − a′| .

Now we have
|x − b|
|z − b| =

|x − a′|
|y′ − a′| <

|x − a′|
|y − a′| ,

that is, F (x, z) < F (x, y), which implies the desired result.

Case 3.— The ray R(x, y) does not intersect the line D. This case can be treated
as Case 2, and we have in this case F (x, y) < F (y, z), which implies the desired
result.

!

The following is a direct consequence of Proposition 8.5.

Corollary 8.6. Let Ω be an open bounded strictly convex subset of Rn and let x,
y and z be three points in Ω that are not contained in an affine segment. Then,
F (x, z) < F (x, y) + F (y, z).

Corollary 8.7. Let Ω be an open bounded strictly convex subset of Rn. Then, the
affine segments in Ω are the only geodesic segments for the Funk weak metric of Ω.

Proof. This follows from the previous Corollary and Corollary 8.2, which says that
the affine segments are geodesic segments for the Funk weak metric.

!
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DD′

a′

x

y

z

by′

Figure 3.

We recall that a subset Y in a (weak) metric space X is said to be geodesically
convex if for any two points x and y in Y , any geodesic segment in X joining x and
y is contained in Y .

Corollary 8.8. Let Ω be an open bounded strictly convex subset of Rn and let Ω′

be a subset of Ω. Then, Ω′ is convex with respect to the affine structure of Rn if
and only if Ω′ is a geodesically convex subset of Ω with respect to the Funk metric
FΩ.

Remark 8.9. Note the formal analogy between Corollary 8.7 and the following
well known result on the geodesic segments of a Minkowski metric on Rn: if the
unit ball of a Minkowski metric is strictly convex, then the only geodesic segments
of this metric are the affine segments.

We now consider spheres and balls in a Funk weak metric space (Ω, F ). As this
weak metric is non-symmetric, we have to distinguish between right and left spheres,
and we use the following notations. For any point x in Ω and any nonnegative real
number δ, we set

◦ B(x, δ) = {y ∈ Ω | FΩ(x, y) < δ} (the right open ball of center x and radius δ);

◦ B′(x, δ) = {y ∈ Ω | FΩ(y, x) < δ} (the left open ball of center x and radius δ);

◦ S(x, δ) = {y ∈ Ω | FΩ(x, y) = δ} (the right sphere of center x and radius δ);

◦ S′(x, δ) = {y ∈ Ω | FΩ(y, x) = δ} (the left sphere of center x and radius δ).
In [6] p. 20, H. Busemann discusses topologies for general weak metric spaces. In
the case of a genuine metric space, the open balls are used to define the topology
of that space. In general, the collections of left and of right open balls in a weak
metric space generate two different topologies. For the Funk weak metric, we have
the following
If Ω is a bounded convex open set of Rn equipped with its Funk weak metric; then,
the collections of left and of right open balls are sub-bases of the same topology on
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Ω, and this topology coincides with the topology induced from the inclusion of Ω
in Rn.
In the case where the convex open set Ω is unbounded, the left and the right open
balls of the Funk weak metric are always noncompact. In the next proposition, we
study these balls in the case where Ω is bounded. We recall that a convex subset
of Rn is unbounded if and only if it contains a Euclidean ray.

Proposition 8.10. Let Ω be a bounded convex open subset of Rn, let x be a point
in Ω and let δ be a nonnegative real number. Then,

(1) The right sphere S(x, δ) is convex as a subset of Rn, and it is compact.
Furthermore, this sphere is the image of ∂Ω by the Euclidean homothety σ
of center x and factor (1 − e−δ).

(2) The left sphere S′(x, δ) is convex as a subset of Rn, and it is equal to
the intersection with Ω of the image of ∂Ω by the Euclidean homothety of
center x and of factor (eδ − 1), followed by the Euclidean central symmetry
of center x. The sphere S′(x, δ) is not necessarily compact.

Proof. Let y be a point in Ω and let us set, as before, a+ = R(x, y) ∩ ∂Ω. We have
the following equivalences:

y ∈ S(x, δ) ⇐⇒ log
|x − a+|
|y − a+| = δ ⇐⇒ |x − a+|

|y − a+| = eδ,

which is easily seen to be equivalent to |y − x| = |x − a+|(1 − e−δ). From this fact
Property (1) follows easily.
To prove Property (2), let a− = R(y, x) ∩ ∂Ω. We have the following equivalences:

log
|y − a−|
|x − a−| = δ ⇐⇒ |y − a−| = eδ|x − a−|,

which is also equivalent to

|y − x| = (eδ − 1)|x − a−|.

Thus, y ∈ S′(x, δ) if and only if y is in the intersection of Ω with the image σ(∂Ω)
of ∂Ω by the Euclidean homothety with center x and of factor (eδ − 1), followed
by the Euclidean central symmetry of center x. This intersection is convex as a
subset of Rn but it is not necessarily a compact subset of (Ω, F ). Thus, S′(x, δ) is
compact if and only if σ(∂Ω) is contained in Ω. !

We note the following “local-implies-global” property of Funk weak metrics. The
meaning of the statement is clear, and it follows directly from Proposition 8.10 (1).

Corollary 8.11. We can reconstruct the boundary ∂Ω of Ω from the local geometry
at any point of Ω.

Corollary 8.12. Let Ω be a bounded open strictly convex subset of Rn. Then, the
left and right open balls of Ω are geodesically convex with respect to the Funk weak
metric FΩ.

Proof. This follows from Proposition 8.10 and from Corollary 8.8. !

We also deduce from Proposition 8.10 that for any x and x′ in Ω and for any two
positive real numbers δ and δ′, the right spheres S(x, δ) and S(x′, δ′) are homothetic.
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Thus, for instance, if Ω is the interior of a Euclidean sphere (respectively, of a
Euclidean ellipsoid) in Rn, then any right sphere S(x, δ) is a Euclidean sphere
(respectively, an ellipsoid).
Note that the proof of Proposition 8.10 shows that for a fixed x, any two right
spheres S(x, δ) and S(x, δ′) are homothetic by a Euclidean homothety of center x,
but that in general, a homothety which sends a sphere S(x, δ) to a sphere S(x′, δ′)
does not necessarily send the center x of S(x, δ) to the center x′ of S(x′, δ′). One
can see this fact on the following example: Let Ω be an open Euclidean disk in Rn,
and let us take x to be the Euclidean center of that disk. Then, by symmetry, for
any δ > 0, the right sphere S(x, δ) is a Euclidean sphere whose Euclidean and whose
metric centers are both at x. Now let x′ be a point which is close to the boundary
of Ω. Obviously, the Euclidean homothety that sends ∂Ω to S(x′, δ) does not send
the center of ∂Ω to the (Funk-)geometric center of the sphere S(x′, δ) (recall that
the center of this homothety is the point x). Now taking a composition of two
homotheties, we obtain a Euclidean homothety that sends the geometric sphere
S(x, δ) to the geometric sphere S(x′, δ), and that does not preserve the geometric
centers of these spheres.

Remark 8.13. The property for a weak metric on a subset Ω of Rn that all the
right spheres are homothetic is also shared by the metrics induced by Minkowski
weak metrics on Rn.
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