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Abstract

The use of the transitive methods for assessing the precision of systematic sampling
is discussed. A key point of the transitive methods is the choice of a local model for the
covariogram near the origin. The relationship between the regularity of the measurements
and the regularity of their covariogram is given. This result is useful for choosing the
appropriate covariogram model. A method for estimating the measurement regularity
from discrete data is proposed for cases where it cannot be assessed a priori. Stereological
applications where sampling is based on geometric probes such as serial sections, point or
line grids are also discussed.
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1 Introduction

Systematic sampling is widely used when investigating spatial structures. In this paper
we consider the sampling of the structure by means of some probes, e.g. points, transects,
quadrats. The parameter of interest can be expressed as an integral of some function, called
the measurement function, over the probe space (or sampling space). The sampling design is
systematic such that the probes form a regular pattern, e.g. a point lattice. Standard empir-

ical estimators based on systematic samples are unbiased under uniform sampling conditions.



However precision assessment is usually not an obvious task because of correlations between
data. A common approach is to model the correlation structure of the data. The so-called
transitive methods due to Matheron (1965) are alternative non-parametric and asymptotic
methods. They are based on mean squared error (MSE) approximations, involving the be-
haviour of the covariogram of the measurement function near the origin. In his founding
work, Matheron considered mainly applications to mining problems such as the estimation of
the total ore quantity from density measurements at a regular grid of points.

More recently the use of transitive methods in stereology has been discussed in a series
of papers, see e.g. Thioulouse et al. (1985), Gundersen and Jensen (1987), Cruz-Orive (1989)
or Cruz-Orive (1993). Stereology is concerned with statistical inference about quantitative
parameters of spatial structures, based on geometric samples such as plane or line sections
through the structure. In stereology, systematic sampling is often preferred to simple random
sampling (uniformly distributed and independent probes) both for practical and statistical
reasons. A simple example is when the parameter @) to be estimated is the volume of a

bounded region B of R3. The volume of B can be expressed as

Q= /Rarea(B NA(z))dz,

where A(z) is a plane with fixed orientation and position z, e.g. a horizontal plane with height
z. Using a systematic set of parallel planes with constant distance T between consecutive
planes, see Figure 1, the volume can be estimated by 7" times the sum of areas measured on
the planar sections. This estimator is unbiased if the “first” section to hit the structure B is
uniformly distributed in a slice of height T, without any assumption concerning the shape or
the orientation of the structure. The volume estimator is known in stereology as the Cavalieri

estimator, see e.g. Sterio (1984) or Cruz-Orive (1987).



Figure 1: Cavalieri volume estimation. Areas of the structure profile on sections are to be
measured. The sum of areas on the series of sections times the distance between 2 consecutive
sections is the Cavalieri estimate of the volume of the structure.

In Gundersen and Jensen (1987), Cruz-Orive (1989) and Cruz-Orive (1993), it is empha-
sized that systematic sampling is rather efficient in stereology compared to simple random
sampling. In particular, a number of cases is discussed where the MSE rate of convergence
is of the order of N=2 where N is the sample size. This rate is to be compared to the rate
usually obtained under simple random sampling which is N~

The standard method of assessing the precision now used in stereology is based on the
assumption that the covariogram has non null slope at the origin. In Cruz-Orive (1993), an
example is given where the standard assumption does not hold and an alternative method is
discussed. In the present paper the relationship between the smoothness of the measurement
function and the behaviour of its covariogram at the origin is further investigated. A new
method for MSE estimation is presented. In a first step a smoothness parameter of the
measurement function is estimated from the data. In a second step a local model for the

covariogram near the origin is chosen according to the estimated smoothness parameter. The



final MSE estimator is constructed by fitting the model to the data.

As an illustration we use numerical examples of the Cavalieri procedure.

2 Unbiased estimator of integral characteristics

We consider the general case where the parameter of interest () can be written as the integral

of some measurement function f over a one-dimensional Euclidean space, i.e.

Q= /R f (z) de. (1)

The observation is supposed to be of the form {(z, f (z)) : z € S}, S being a random countable
subset! of R. We shall concentrate on the case where the sample S is systematic and uniform
random, i.e.

S={(U+kT:keZ}, T>0,

where U is uniformly distributed in [0,1[. Below, T is referred to as the sampling period,
F =T~ as the sampling frequency. If the measurement function f has a bounded support,
then the support length times F' is equal to the mean sample size (mean number of non-null
measurements) which will be denoted by N.

The standard unbiased estimator for @ is

Qr=T) f(a). (2)

€S

Note that QT can be seen as the standard integral approximation from discrete data. The
unbiasedness results from the fact that S samples R uniformly.

Examples of measurement functions associated with the Cavalieri method are shown in
Figure 2. The structures behind the shown measurement functions are the unions of 8 tetra-

hedra with a face parallel to the section planes (Figure 2a), 8 ellipsoids (Figure 2b), and 8

We use bold symbols for random variables.
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Figure 2: Examples of measurement functions of the Cavalieri method. Curves in solid lines
are measurement (area measured on a section) functions. Dots are areas measured on a series

of sections. Curves in dashed lines are estimated measurement functions based on the serial
sections.

tetrahedra with neither face nor edge parallel to the section planes (Figure 2¢), respectively.
The sizes and locations of the 8 primary objects are the same through the 3 structures. The
jumps observed in Figure 2a occur for sections containing a face of the structure.

The standard Euler-MacLaurin formula, see e.g. Abramowitz and Stegun (1964), provides
expansions of the error involved in integral discrete approximations. However the formula
cannot be applied when the measurement function is not ”"smooth” between the sampling
points. Such a case may happen for the measurement function shown in Figure 2a which
is not continuous. As a matter of fact, the randomness of S implies that almost surely the
discontinuities occur between the sampling points. In Kiu (1997) and Souchet (1995), an
alternative version of the Euler-MacLaurin formula has been derived. This latter formula
can be applied when the measurement function is not ”smooth” between the sampling points.
The functions considered by the authors are called piecewise smooth functions and are defined

as follows. Let m and p be non-negative integers. A function h : R —R is said to be (m,p)-



piecewise smooth if the support of h is bounded and h is (m + p)-times piecewise differentiable

such that

e all h derivatives of order less than m are continuous on R

e the h derivatives of order from m to m + p may not be continuous on a finite set, but

their jumps are required to be finite.

Below the set of points where a function A is not continuous is denoted by D} and the
jump of h at a point x € Dy, is denoted by sj (z). Following the terminology used in Kiu
(1997), a jump of a [-th derivative is called a transition of order I. The primary transitions
are the jumps of the first non-continuous derivative. Therefore the smoothness parameter m
is called the primary transition order.

Observe that the class of piecewise smooth functions as defined above does not encompass
unbounded functions or functions with unbounded derivatives. Such measurement functions
appear in connection with the Cavalieri method e.g. if the structure is a cylinder with a
revolution axis parallel to the section planes. Also very irregular functions such as Brownian
motion are not piecewise smooth. Measurement functions of this type will be the object of
future research.

Note that the measurement function shown in

e Figure 2a is (0, 00)-piecewise smooth with transitions of order 0, 1 and 2

e Figure 2b is (1, 00)-piecewise smooth with transitions of order 1 and 2

e Figure 2c is (2, 00)-piecewise smooth with transitions of order 2,

see Figure 3. The transitions of the measurement function involved in the Cavalieri method

are related to geometrical features of the structure under study. In the examples considered
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Figure 3: Derivatives of order 1 and 2 for the measurement functions shown in Figure 2.
Derivatives of order larger than 2 are identically equal to 0.

in the figures, transitions of order 0 occur for section planes containing a planar face of the
structure. Transitions of order 1 occur for section planes tangent to the structure. Transitions
of order 2 occur for sections containing a vertex of the structure.

The alternative Euler-MacLaurin formula for piecewise smooth functions provides ex-
pansions for the error involved in integral approximations. These expansions are based on
transitions as defined above. They involve the so-called Bernoulli polynomials. The Bernoulli
polynomials form a sequence of polynomials indexed by non-negative integers. The polyno-
mial with index [ will be denoted by P, and is of degree [. Explicit expressions and formal
definitions can be found in e.g. Abramowitz and Stegun (1964). For any integer [ =0,1,2,...

and T > 0, define the periodic function

X X
pirse o B (7 - 7))
(A R g o T T

where [-] denotes the integer part. The alternative Euler-MacLaurin formula can now be

stated as follows. Let h be a (m, 1)-piecewise smooth function with m > 1. Then for any



T >0,

TZh(k:T)—/Rh(x)dx

keZ

= (=)™ S sy (@) P (a) + 0 (T, (3)

aEDh(m)

This result holds also for m = 0 under the extra condition that D, N ZT = (. Detailed
proofs are given in Souchet (1995) and Kiu (1997). The derivation of the alternative Euler-
MacLaurin formula is based on the same arguments as the standard Euler-MacLaurin formula.

The integral expression of the remainder is

(—1)m / WD) (2) P () da.
R

Now suppose that the measurement function f is (m, 1)-piecewise smooth. The alternative
Euler-MacLaurin formula then provides an expansion of (AQT — . Note that if m = 0, the
extra condition holds almost surely because of the randomness of S. One gets the following
expansion which holds almost surely

Qr—Q=1"T™" 3" 546 (a) Pusry (a—UT) +o (T™H). (4)
a€D

£m)
Note that the remainder is stochastic.

Hence the worst rate of convergence is of the order of T' and is reached when the measure-
ment function f is not continuous on R. If f is continuous on R but its first derivative is not
then the estimation error converges as T etc... The convergence rate can also be expressed
in terms of the mean sample size N. The worst rate of convergence is of the order of N~!
and is reached when the measurement function f is not continuous on R. If f is continuous

on R but its first derivative is not then the estimation error converges as N~2 etc... Compare

with simple random sampling where the convergence rate does not depend on the regularity



of the measurement function and is always of the order of N—1/2

. The efficiency of system-
atic sampling compared to simple random sampling was already noticed in Gundersen and

Jensen (1987) and Cruz-Orive (1989). These authors have considered mean squared error

convergence rather that estimation error convergence.

3 Mean squared error expansion

The formula (4) can be used for approximating the MSE of QT. Repeated integration by

part yields
E[Ppy1r (@ —UT) Py (b —UT)] = (=1)™ Poamyo,r (b—a).

Hence we get the following mean squared error expansion for an (m, 1)-piecewise smooth

function
MSE [QT] (5)

= (=D)™T N s (@) $pem () Pamear (b —a) + o (T77F2).

a,bEDf(m)

This expansion has been computed for the examples of measurement functions described in
the previous section, see Figure 4 (dashed curves). Note that the convergence rate of the
mean squared error is of the order of 72712 x N—2m~2,

In Matheron (1965), Gundersen and Jensen (1987) and Cruz-Orive (1989), expansions of

the mean squared error involve the so-called covariogram of the measurement function. The

covariogram is defined by Matheron (1965)

g(y)z/Rf(:Hy)f(w) dr, yeR (6)

The covariogram describes the spatial variation of f. Note that the covariogram is an even
function. Covariograms of the measurement functions shown in Figure 2 are presented in

Figure 5.
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Figure 4: Coefficients of error for Cavalieri volume estimators. Exact coefficients of error (CE)
calculated from simulations are represented by dots. Approximated CE based on primary
transitions are represented by dashed line curves, cf. (5). Approximated CE based on primary
transition amplitudes (extension term) are represented by solid line curves, cf. (9). Underlying
structures are described in Section 2.

It is easy to see that

MSE[Qr] = 7Y 0 07) - [ 9. ©

keZ

In order to calculate expansions for (7), Matheron assumed that the measurement function f
has a bounded support [a,b] and that its covariogram is non-smooth only at 0, ¢ = b — a and
—c (c and —c are the endpoints of the covariogram’s support). Expansions of (7) are obtained
by applying the standard Euler-MacLaurin formula inside the covariogram’s support and by
modelling the covariogram at the neighbourhood of 0, ¢ and —c¢ by polynomials. A more direct
approach consists in applying the alternative Euler-MacLaurin formula. The latter method
provides expansions even if the covariogram is non-smooth inside its support. In view of (3)

if the covariogram is (g, 1)-piecewise smooth, (7) can be expanded as

MSE [QT] = (-7t EDZ sy (€) Pyyryr (¢) +o0 (T7H) (8)
R )

10



Compare the result above with (5). It is tempting to search for a relationship between the
smoothness properties of a measurement function and the smoothness properties of its covari-
ogram. In his paper, Matheron (1965) stated that if the measurement function is differentiable
then its covariogram is twice differentiable. Furthermore, Matheron gives an expression of
the covariogram second derivative in terms of the first derivative of the measurement func-
tion. In Souchet (1995) and Kiu (1997), it is shown that if f is a (m, p)-piecewise smooth
function then its covariogram g is (2m + 1, 2p — 1)-piecewise smooth, see examples in Figure
5. The authors also derived general expressions of the covariogram derivative in terms of the

derivatives of f. In particular it is shown that
D jomi1y = D pom) — D pim)

and that

8 g(2m+1) (c)=— (—1)m Z S pim) (a) S fim) (b)-
a,beD

f(m)
b—a=c
In Matheron (1965), the quantity
E (T) = _T2m+2P2m_|_2 (0) Sg(2m+1) (0)
- AR 0) g (0) o

is called the ezxtension term. Note that the extension term depends only on the amplitudes
of the transitions of the measurement function. The sum of the other terms involved in the
mean squared error expansions is equal to

Z(T)==T""" 3" Paniar (¢) syems ()

€D (2m+1)

c£0

11
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Figure 5: Covariograms (thick line curves) and their last continuous derivatives (thin line
curves in (b) and (c)). The corresponding measurement functions are shown in Figure 2.

and is called the Zitterbewegung. The extension term represents the central tendency of the
mean squared error while the Zitterbewegung is an oscillating function of 7. A detailed
discussion can be found in Kiu (1997), see also the coefficient of error approximations based
only on the extension term in Figure 4 (solid line curves). In Matheron (1965), Gundersen

and Jensen (1987) and Cruz-Orive (1989), the extension term is expressed as

B
E(T) = —Tmt? —mQ?_Jrf Bom+1

where Boyi2 = (2m + 2)! Py 40 (0) is the (2m + 2)-th Bernoulli number and

ﬂ B g(Qm—I—l) (O—I—)
2T T om + 1)

In particular

~T?31/6  ifm=0
T4 33 /60 ifm=1
—T%B5/126 if m =2
T867/120  if m =3.

Usually the mean squared error estimation focus on the extension term, see Matheron

E(T) =

(1965), Gundersen and Jensen (1987) or Cruz-Orive (1989). These authors argue that when

12



the measurement function is stochastic, the Zitterbewegung is expected to be small in the
mean compared to the extension term. In Kiu (1997) the particular case where the measure-
ment function is the indicator function of an interval with random length is considered in
details. It is shown that if the interval length density function is Riemann integrable then

the mean Zitterbewegung can be neglected when T is sufficiently small.

4 Discrete approximations of the extension term

The extension term as expressed in (9) depends on the covariogram derivatives at the ori-
gin. However in general estimates of the covariogram are available only on a discrete set of
values. By approximating the covariogram by a polynomial near the origin, the covariogram
derivatives at the origin can be interpolated from discrete covariogram data. This yields
approximations of the MSE extension term based on discrete covariogram data.

Below we review some of the methods discussed in Matheron (1965), Gundersen and
Jensen (1987), Cruz-Orive (1989) and Cruz-Orive (1993). A more general presentation can
be found in Kiu (1997). An important feature of these methods is that the primary transition
order of the measurement function (or equivalently of its covariogram) is assessed a priori.

Let us start with the case where the covariogram g of the measurement function f is
assessed to be (1,2)-piecewise smooth. We have seen above that such a covariogram can be
obtained from a (0, 2)-piecewise smooth measurement function?. Then by a Taylor expansion

in a right-hand side neighbourhood of 0, we get

g9y =Bo+yb +y*B+0 (%), (10)

where 3; = ¢’ (07). This expansion holds for y "small enough”. Now if T is "small enough”,

2 As stated in the previous section, if a function is (0,2)-piecewise smooth then its covariogram is (1,3)-
piecewise smooth. Observe that (1,3)-piecewise smoothness is stronger than (1, 2)-piecewise smoothness.

13



we can apply the above expansion for y = 0,7,2T in order to get an approximation of (;

based on ¢ (0),¢ (T) and g (27). Finally one finds

B(T) ~ By (T) = == (39/(0) ~ 4 (T) + 9 27)). (1)

This approximation is suggested in Gundersen and Jensen (1987) and Cruz-Orive (1989)
for use in geometric sampling including precision assessment of the Cavalieri method. The
approximation error is of order T* for T' ”small enough”. As a matter of fact this order holds
if T is so small that ¢ is 3 times continuously differentiable in |0, 27°[. In particular, this latter
condition does not hold if

Dy N10,2T[ # 0,

i.e. there are any transitions of the measurement function with order 0 (jumps) separated by
a distance less than 27. In Kiu (1997) an alternative Taylor formula is derived for piecewise
smooth functions. In this case it can be written as
c
gW) =B +ylbi+ >, (- ;)Sg’ (O] +y°B2+ 0 (v°) - (12)

CEDg/
0<ce<y

Using the latter formula rather than (10) when evaluating the error approximation involved

in (11), one finds

Ey(T) - E(T)
2 c c
- IS 0=y @- X (- S e+o ().
c€Dy ceDy
0<ce<T T<e2T

According to this result, the approximation error in (11) is of the order of T2 if there are any
transitions of the measurement function with order 0 separated by a distance less than 2T

Note that then the approximation error is of the same order as the extension term.

14



The discrete approximation of the extension term (11) can be extended to piecewise
smooth functions with arbitrary primary transition order. For instance if the measurement
function is (1, 1)-piecewise smooth, then for positive y ”small enough”, the following expansion
of its covariogram holds

9(y) = Fo+ 9B+ + 0 (y),
where 3 = ¢ (07) /6. There is no linear term in the expansion above because the continuity
of the first derivative of the covariogram implies that ¢’ (0) = 0. If T' is ”small enough”, we

can apply the above expansion for y = 0,7, 2T in order to get an approximation of 33 based

on g (0),g(T) and ¢ (27). Finally one finds

B(T) = By (T) = 5 (39 0) ~ 49 (T) + g (2T). (13)

This approximation was first proposed by Cruz-Orive (1993) when assessing the precision of
the Cavalieri method for ”very regular, quasi-ellipsoidal” structures. As a matter of fact it
may be used for any (1,1)-piecewise smooth measurement function. For a (2,1)-piecewise

smooth measurement function, one gets the approximation

E(T) ~ B (T) 10g (0) — 15¢ () + 6g (2T) — g (37)).

= 3316 "

For a (3, 1)-piecewise smooth measurement function, one gets the approximation

E(T)~E

3 (T) = 5eaa50 (399 (0) = 569 (T) + 289 (2T) — 89 (3T) + 9 (4T))

A general formula for the discrete approximation of E (T') for a (m,p)-piecewise smooth

function is given in Kiu (1997) together with a general discussion of the approximation error.

5 Extension term estimation

When the primary transition order of the measurement function is assessed a priori, the

methods for estimating the extension term are straightforward. They consist in replacing the

15



covariogram values involved in the discrete approximations of the extension term by estimates.

The empirical covariogram is the sequence indexed by Z defined by

§=T> [(U+KT)f(U+k+1)T), leZ
keZ

The extension term estimators are as follows

. = T .. ~ =
iftm = 0, Eo(T)= 2 (380 — 481 + 82) (14)
. = T r~ o e
ifm = 1, E;(T)=-—=(380 —481 + 82) (15)
240
ifm = 2, E> (T) = w (10g0 - 15g1 + 6g2 - g3) (16)
~ T

ifm = 3, (3580 — 5681 + 2882 — 883 + 84) (17)

E;(T) =
+(T) = 350020
These estimators are asymptotically unbiased. For instance consider the estimator f)g (T).

Since the empirical covariogram is unbiased, we have
B [Bo (7)] = Bo (7).

We have seen in the previous sections that Ey (T') differs from E (T') only by an order of T*

for T small enough and that E (T') is of the order of T2. Accordingly we have

E [ﬁo (T)-E (T)]
) E(T)

=0.
This result extends to the other estimators above. Figure 6 shows biases for the examples
of measurement functions presented in Section 2. The estimator Eo (T') has been used for
Figure 6a, estimator E; (T) for Figure 6b, estimator By (T') for Figure 6¢. Note that the bias
is rather important for small mean sample sizes.

The critical point of the methods above concerns the assessment of the primary transition

order m. As noticed by Cruz-Orive (1993) when using the estimator Eo (T') while m = 1, one

gets in the mean an extension term estimator 20 times greater than the true extension term!

16
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Figure 6: Bias of the extension term estimators. For consistency with Figure 4 showing

— 1 1 —
coefficients of errors, the bias is measured by E (T")2 /E (T')2 (solid line curve) where E (T)
is the average extension term estimator computed from simulations. The departures (due to
the Zitterbewegung) of the exact coefficient of error from the extension term are measured

by CE [QT] /E(T )% (dots). Corresponding measurement functions are shown in Figure 2.

Conversely if m = 0 and estimator f)l (T) is used, one gets in the mean an extension term
estimator 20 times less than the true extension term. Assessing the primary transition order
of a measurement function is subject to uncertainty when measurements are ”complicated”.
Even for the Cavalieri method, there are no general results relating the smoothness properties

of the measurement function to geometrical characteristics of the underlying structure.

6 Robust extension term estimation

In many stereological contexts, a priori assessment of the measurement function smoothness
is not possible. Either because very little is known a priori about the geometry of the struc-
tures under study or because the measurement function is so complicated that predicting its
smoothness is out of reach. In Istas and Lang (1995) a method for estimating the smoothness

of a function from discrete data is presented. The functions considered by the authors are

17



Gaussian processes. However the method described in Istas and Lang (1995) can be used
without modification to piecewise smooth functions. The estimation of the extension term
is a two-step procedure: first the primary transition order of the measurement function is
estimated from the data, then the extension term is estimated as described in the previous
section assuming that the estimated primary transition order is correct.

Let us start with the case where m is not known exactly but can be assumed to be either

0 or 1. Let us consider the estimator E; (). We have

= _ E(T)/20=-T?6,/120 ifm =0
E [B: (7)) ~ { E(T) = T, /60 it =1.

Now suppose that 2 measurement series are available. The sampling period for the first series

is T', for the second series o1, @ # 1. In view of the formula given just above, we have
E [fh (aT)] ~ Q22 [E (T)}

in both cases m = 0 or m = 1. This relation suggests the following procedure for estimating
m from 2 measurement series. Consider the extension term estimators By (T) and E; (aT)
associated with the 2 measurement series and estimate the primary transition order m by m
such that

E (oT) ~ o™ 2B, (T). (18)

In case where only one measurement series is available, measures with another sampling period
can be obtained by subsampling. In particular for a = 2, 2 series with sampling period 2T

can be extracted from the initial series:
So={(U+k)T:kodd}, Se={(U+k)T:Fkeven}.

Let El,o (2T), I/E\)l,e (2T') be the extension term estimators based on the series S,, S, respec-

tively. The mean of By (2T)) can be estimated by the average of ELO (2T) and El’e (2T"). Then

18



the estimation equation (18) writes

Ei, (2T) + Ei. (27)
2

~ 22M2E, (T).
It is easy to see that this latter equation can be rewritten as
380 — 482 + 81 > 27 (38 — 481 + 82,

i.e.

38y —4gs + ¢

log —3,g\0 452 i §4 1

m = round Bo—“81 T8
2log?2 2

This principle can be extended to the general case where the primary transition order m
is not known exactly but can be assumed to be less than or equal to some value M assessed
a priori. The key point is that the extension term estimator obtained when assuming that

m = M has a mean equal to
~ 2m—+-2
cmE (T) ~ cpT ﬂ2m+1a

where m is the true primary transition order and ¢, is a constant depending only on m. The
relation above holds only if . < M. The calculation of the constants c¢,, is straightforward.
For instance let us consider the extension term estimator f)g (T') obtained by assuming that

m = 3. If the true value of m is 2, the expansion of the covariogram writes
g (iT) =~ Bo + i*T By + i*T* By + °T° B5 + i°T%Bs +i" T 37,
for ¢ =0,...,4. Calculations yield

E [E:J, (T)] = F;3 (T) ~ —ﬁT6ﬂ5

91100

—E(T

19



ie. cg =91100/723 ~ 126.0. Extending the approach described above for the case m = 0 or
1, one constructs general estimators of m when it is assumed that m < M, M being fixed a

priori. In particular, if m is assumed to be less than or equal to 3, then m is estimated by

log 3580 — 5682 + 2884 — 886 + 83
3580 — 5681 + 2882 — 883 + 84

_ q 1
m = roun - =
2log?2 2

(19)

Once the transition primary order m is estimated, the extension term is estimated as
described in the previous section assuming that m = m. Note that this two-step method is
quite unstable. For instance if m = 1, one finds an extension term estimate 20 times less than
if m = 0. Therefore a sensible way of measuring the accuracy of the estimator m is to consider
the probability that m is equal to the true primary transition order. Simulations have been
carried out with the measurement functions shown in Figure 2. The estimator (19) has been
used: we have assumed that m < 3 while the true primary transition order is 0 (Figure 2a), 1
(Figure 2b), 2 (Figure 2c). For mean sample sizes larger than 32.6 (measurement function of
Figure 2a), 19.6 (measurement function of Figure 2b), 47.0 (measurement function of Figure

2¢), the probability that m = m is close to 1.

7 Discussion

In this paper the use of the transitive mehods for evaluating the precision of estimators based
on systematic sampling designs is considered. The problem of choosing a local model of the
covariogram at the origin is discussed in details. The described relationship between the
smoothness of the measurement function and the smoothness of its covariogram seems to be
a useful tool for choosing the appropriate model. For applications in stereology, an important
open problem is now to relate geometrical features of the structure of interest to smoothness

characteristics of the considered measurement function.
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A method for estimating the smoothness of the measurement function from discrete data
is proposed. The numerical studies of this method show that it requires rather large samples
compared to the usual size of samples in practical stereology. Note that in Kiu (1997), an
alternative method is proposed which is expected to be less demanding in terms of sample
size. The main idea is to use grids of points with 2 sampling periods, a large one and a small
one. Pairs of points close to each other are used to estimate the primary transition order.
Numerical investigations of this alternative methods are planned.

In this paper, we have not considered errors either on measurements or on the location
of the sampling points. In Kiu (1997), measurement errors are also considered. The error
scheme is as follows. It is assumed that the errors are centered, that their variance only
depends on the measurement location and that they are uncorrelated given the location of
the sampling points. Such a model is appropriate when the measurement at a given location
involve some local subsampling. A common example related to the Cavalieri method is when
areas on sections are estimated by countings at point grids superimposed on the sections.

Finally note that although we have concentrated in this paper on the case where the
sampling space is one-dimensional, the transitive methods can also be used for sampling
spaces with higher dimensions, see e.g. Matheron (1965), Gundersen and Jensen (1987),
Cruz-Orive (1989) or Chadceuf et al. (1997). Extending the approach described in this paper
to higher-dimensional sampling spaces will be the object of future research. As a matter of
fact, in stereology sampling spaces may also be special kinds of manifolds. For instance some
stereological methods, see e.g. Weibel (1979) or Weibel (1980), involve sampling by lines
with various locations and orientations. The space of lines can be seen as a cylinder, see e.g.
Stoyan et al. (1987). Therefore using a grid of lines with systematically distributed locations

and orientations may be seen as systematic sampling on a cylinder.
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