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 [7], we propose sharper bounds for the moments of randomly weighted sums which also may appear as a ratio of two random variables. Suitable applications are given in more detail here in the fields of functional estimation, in finance and for censored data analysis. Several weak dependence dependence situations are considered.

Introduction

We consider statistics with the form of a ratio. This situation arises naturally in the following simple and generic example. Let (V i , W i ) i≥0 be a stationary sequence with values in a finite space V × W, with V ⊂ R. A conditional expectation writes E(V 0 |W 0 = w) = v∈V vP({v, w})

v∈V P({v, w})

In order to recover several examples,

• we first go on with discrete random variables; the previous expression is empirically estimated from a sample (V i , W i ) 1≤i≤n by the random quantity

E(V 0 |W 0 = w) = 1 n n i=1 V i • I 1{W i = w} 1 n n i=1 I 1{W i = w} ,
• the case of real valued data is more involved, here P({v, w}) has no rigorous meaning but standard smoothing techniques authorize to consider extensions; we replace I 1{W i = w} by an approximate Dirac measure δ n (w, W i ), then the previous expression takes the form of the Nadaraya-Watson kernel estimator considered below.

Many statistics take the form of a ratio R n = N n / D n , where N n and D n are empirical quantities with known distributions and moments, we set:

R n = N n D n , D n = 1 n n i=1 U i,n , N n = 1 n n i=1 U i,n V i,n . (1) 
Examples of this situation are:

• Functional estimation of a conditional expectation: U i,n = K((X i -x)/h n )/h d n and V i,n = Y i for a stationary process (X i , Y i ) ∈ R d × R; here R n = r(x) is an estimator for r(x) = E(Y i |X i = x) and usual assumptions are h n → 0 and nh d n → ∞ as n → ∞. See [START_REF] Tsybakov | Introduction a l'estimation non-paramétrique[END_REF] [START_REF] Tsybakov | Introduction a l'estimation non-paramétrique[END_REF] for a general setting and Ango Nze and [START_REF] Ango Nze | Weak dependence: models and applications to econometrics[END_REF] [START_REF] Ango Nze | Weak dependence: models and applications to econometrics[END_REF] for dependent data cases.

• Computation of empirical means for censored data: let the censoring U i = C i ∈ {0, 1} be independent of a process (V i ), then V i is observed if C i = 1 and not observed else.

R n = 1 #{i ∈ {1, n}|C i = 1} 1≤i≤n.Ci=1 V i ,
A special case for this situation is the estimation of covariances under censoring where V i = X i X i+ . Under stationarity, covariance functions write γ X ( ) = γ Y ( )/(γ C ( ) + EC 2 0 ) where Y i = C i X i is observed [START_REF] Bahamonde | Spectral estimation of censored data[END_REF] [START_REF] Bahamonde | Spectral estimation of censored data[END_REF]). Furthermore, moments of the empirical covariances are used to reconstruct the periodogram from the censored data.

• General weighted sums

R n = 1≤i≤n U i V i 1≤i≤n U i ,
may be used to model various quantities like prices with prices per unit V i and volumes U i , as in [START_REF] Jaber | Optimal lot sizing under learning considerations: shortages allowed and backordered[END_REF] [START_REF] Jaber | Optimal lot sizing under learning considerations: shortages allowed and backordered[END_REF].

imsart-generic ver. 2007/12/10 file: ratio.tex date: May 2, 2008 Various alternative questions also involve a division:

• Functional estimation of point processes. A compound Poisson processes (cpp) writes ξ = N j=1 α j δ Xj for some random triple (N, (α j ) j≥1 , (X j ) j≥1 ) with N ∈ {1, 2, . . .}, X j ∈ R d . For a sequences of mixing couples of cpp (ξ i , η i ) i≥1 with µ = Eη 1 ν = Eξ 1 , Bensaïd and Fabre (2007) [START_REF] Bensaïd | Optimal asymptotic quadratic errors of kernel estimators of Radon-Nikodym derivative for strong mixing data[END_REF] estimate the Radon Nykodym density ϕ = dµ/dν with kernel estimates ϕ n = g n /f n with f n (x) = n i=1 η i K n (x), g n (x) = n i=1 ξ i K n (x), where e.g. ξ K n (x) = N j=1 α j K n (X j -x) with K n (x) = K(x/h)/h d , the procedure is thus analogue to Nadaraya Watson estimator. In order to bound quadratic errors of this ratio it is assumed in [START_REF] Bensaïd | Optimal asymptotic quadratic errors of kernel estimators of Radon-Nikodym derivative for strong mixing data[END_REF] that |ϕ n (x)| ≤ C which is a heavy assumption easily relaxed by using our result.

• Self-normalized sums see e.g. de la Peña et al. (2007) [START_REF] De La Peña | Pseudo-maximization and self-normalized processes[END_REF],

• Simulation of Markov chains, and Monte-Carlo MC technique widely developped in Robert et al.'s monograph (1999) [START_REF] Robert | Monte Carlo Statistical Methods[END_REF]; a more precise reference is [START_REF] Li | Ratio Control Variate Method for Efficiently Determining High-Dimensional Model Representations[END_REF] [START_REF] Li | Ratio Control Variate Method for Efficiently Determining High-Dimensional Model Representations[END_REF], see the relations (45), ( 46) and (47) which explicitely involve ratios for reducting the dimensionality in a nonparametric problem, • Particle filtering is considered from the theoretical viewpoint in Del Moral and Miclo (2000) [START_REF] Del Moral | Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to nonlinear filtering[END_REF] and for applications to change-point problems in [START_REF] Fearnhead | On-line inference for multiple changepoint problems[END_REF] [START_REF] Fearnhead | On-line inference for multiple changepoint problems[END_REF].

Deducing the convergence in probability of the ratio from the convergence of the denominator and numerator is straightforward, however in some statistical problem, L p -convergence needs to be checked. But evaluating the moments of R n is a much more difficult problem, even if one knows sharp bounds of moments for both the numerator and the denominator. Curiously, we were not able to find much references for this subject; a first method is to compute the exact distribution of the ratio; a nice example of this situation is obtained by Spiegelmann and Sachs (1980) [START_REF] Spiegelmann | Consistent window estimation in nonparametric regression[END_REF], who compute the moments of a Nadaraya-Watson regression estimator with {0, 1}-valued kernels; in this case, independence allows to use binomial based distributions: computations are thus exact. But this computation is usually difficult to handle. An alternative is the expansion in [START_REF] Collomb | Quelques propriétés de la méthode du noyau pour l'estimation non paramétrique de la régression en un point fixé[END_REF] [START_REF] Collomb | Quelques propriétés de la méthode du noyau pour l'estimation non paramétrique de la régression en un point fixé[END_REF]. We adressed this problem for dependent data frame, in the paper [START_REF] Collomb | Estimation non paramétrique de la fonction d'autorégression d'un processus stationnaire et φ-mélangeant[END_REF] [START_REF] Collomb | Estimation non paramétrique de la fonction d'autorégression d'un processus stationnaire et φ-mélangeant[END_REF], published after Gérard Collomb's death. In [START_REF] Collomb | Quelques propriétés de la méthode du noyau pour l'estimation non paramétrique de la régression en un point fixé[END_REF] and [START_REF] Collomb | Estimation non paramétrique de la fonction d'autorégression d'un processus stationnaire et φ-mélangeant[END_REF], Collomb assumed that convergence rates in L q for q > 2p are known for the denominator. This limitation is avoided here by using an interpolation technique, and we shall only assume such rates for some q > p. With notation (1) we set

N n = E N n , D n = E D n , and R n = N n D n . (2) 
We aim at providing L p -rates of convergence to 0 of the expression

∆ n = R n -R n . (3) 
In some cases, the expectations N n and D n are constant. In the other cases that we present, we only have convergence to some constants, N n → N and D n → D as n → ∞, thus moments of ratio may be proved to converge with the bound

R n - N D p ≤ ∆ n p + N D -R n .
Convergence in probability or a.s. is immediate but to obtain moment bounds, one needs to divide at least by a nonzero expression; for simplicity, we definitely assume it to be nonnegative and fix U i,n ≥ 0. In this case, an alternative viewpoint is to represent the previous expression as a weighted sum

R n = n i=1 w i,n V i,N , w i,n = U i,n n j=1 U j,n ≥ 0, n i=1 w i,n = 1,
it is thus clear that the previous representation of R n belongs to the convex hull of (U i,n ) 1≤i≤n .

The paper is organized as follows. Section 2 is devoted to the main lemma and comments. The two following sections are dedicated to applications of it. Section 3 is concerned with simple weighted sums while Section 4 considers the behavior of the Nadaraya-Watson kernel regression estimation r n (x) of a regression function r(x) = E(Y |X = x); it is divided into two subsections. A first subsection directly applies the lemma to provide the minimax bound

r n (x) - r(x) p = O n -ρ 2ρ+d
in an estimation problem with dimension d and regularity ρ less than 2). A second subsection makes use of the same ideas with slight modification to derive the (also minimax) bound [START_REF] Stone | Optimal rates of convergence for non parametric estimators[END_REF] [30] and (1982) [START_REF] Stone | Optimal global rates of convergence for non parametric regression[END_REF]. We derive our result under various dependence assumptions namely we consider independent, strongly mixing, absolutely regular or weakly dependent (either causal or noncausal) sequences in all those questions. The last section includes the proofs; it is organized in four subsections where we develop the proofs for the main lemma, for weighted sums, for moments of Nadaraya-Watson estimation and for sup bounds of this estimator, respectively.

sup x∈B | r n (x) -r(x)| p = O n/ log n -ρ 2ρ+d over a suitable compact subset B ⊂ R d , see

Main Lemma

We are now in position to formulate our main result.

Lemma 1 Assume that N n -N n p ≤ v n and D n -D n q ≤ v n for some q > p. If moreover U i,n V i,n r ≤ C n and V i,n s ≤ c n where q/p -q/r ≥ 1, 1/p > 1/q + 1/s, then D n ∆ n p ≤ 1 + |N n | D n + |N n | β v 1-β n D n + C β n v 1-β n D n + v α n c n n 1 s D α n v n .
Here α, β are chosen from the data p, q, r, s by setting The message of this lemma is the following. We essentially need to know the rate for the moments with order slightly greater that p for the denominator, and for p-th order moments of the numerator to derive a bound of the rate for ratio moments.

α = q 1 p - 1 s - 1 q ≤ 1 ≤ β -1 = q 1 p - 1 r imsart-
Remarks. In all our examples, c n ≡ c will be a constant.

• If C n ≡ C is also a constant, then we assume that r = pq q-p , so that β = 1. In this case, large values of q give r close (and larger) that p; if now q > p is very close to p then r need to be very large and s is even larger. This is the situation for weighted sums or censored data questions.

Here V i,n = V i and 0 ≤ U i,n = U i , and the sequence (U i , V i ) is stationary. Moreover v n = c/ √ n and thus ∆ n = O n -1/2 if α = 2/s. This condition writes s = p(q + 2)/(q -p) as proved in the forthcoming Theorem 1.

• If now the sequence C n is not bounded, in order to control the corresponding term, we shall need β < 1 or 1/p > 1/q + 1/r. The order q of the moment of the denominator should be larger as well as the order of the moments of the variables V i,n , e.g. in the case of functional estimation.

Here

v n = c/ nh d n 1/ √ n as h n → n→∞ 0 and nh d n → n→∞ ∞.
• Orlicz spaces. Instead of L q norms we may consider Orlicz norms and ask only for x p log q x-order moments of the denominator. Exponential moments of the variables V i,n will thus be needed because of the relations (4), [START_REF] Doukhan | Mixing: Properties and Examples[END_REF] and of the Pisier technique inequalities ( 16). • Suprema. The same equations ( 4), ( 15) and ( 16) will be also use to derive bounds of suprema for moments for expressions involving an additional parameter; an emblematic example of this situation is regression estimation given in details below.

We consider two distinct classes of applications in Sections 3 and 4 devoted respectively to weighted sums and nonparametric regression. The following inequality is essential to bound the uniform rates of convergence of a Nadaraya-Watson regression estimator and it is thus set as a specific Lemma:

Lemma 2 Let 0 < α < 1, D n |∆ n | ≤ | N n -N n | + | N n | D n | D n -D n | + max 1≤i≤n |V i,n | | D n -D n | 1+α |D n | α (4) 
Inequality (4) also implies tails bounds for ∆ n 's distribution.

Weighted sums

We consider here the simplest situation for which Lemma 1 applies. Let (U i , V i ) i∈Z be a stationary sequence and set Theorem 1 Let (U i , V i ) i∈Z be a stationary sequence with U i ≥ 0 (as.). Let 0 < p < q and assume that for r = pq q -p and s = p(q + 2) q -p :

D n = 1/n n i=1 U i , N n = 1/n n i=1 U i V i then N n = N = EU 1 V 1 , D n = D = EU 1 and R n = N n / D n , R n = R = N/D.
U i V i r ≤ c, V i s ≤ c.
Assume that the dependence structure of the sequence (U i , V i ) i∈Z is such that

D n -D q ≤ C √ n , N n -N p ≤ C √ n (5) then R n -R p = O 1/ √ n .
In the following cases, we assume that V i s ≤ c and U i V i r ≤ c and prove that (5) holds. Denote

Z i = U i V i -EU i V i .
For simplicity we will often assume

U i ∞ < ∞, V i r < ∞.

Independent case

Assume that (U i , V i ) is i.i.d. Assume that U 0 q ≤ c and U 0 V 0 p ≤ c. From the Marcinkiewikz-Zygmund inequality for independent variables, for 2 ≤ q ≤ r, we get

E D n -D q ≤ C q E|U 1 | q n -q 2 ≤ Cn -q 2 , E N n -N p ≤ C p E|U 1 V 1 | p n -p 2 ≤ Cn -p 2 ,
and (5) holds. Now Hölder inequality implies those relations if U 0 q , and V 0 qp q-p < ∞.

Strong mixing case

Denote (α i ) i∈N the strong mixing coefficient sequence of the stationary sequence (U i , V i ) i∈N .

Proposition 1 Assume that for r > q, U 0 r ≤ c. Relation (5) holds if 

α i = O(i -α ) with α > p 2 • r r -p ∨ q 2 • r r -p , 3 
(W i ) i∈N = (U i , V i ) i∈N is such that γ i = O(i -γ ) with γ > p 2 • r -1 r -p ∨ q 2 .

Non causal weak dependence

Here we consider non causal weakly dependent stationary sequences of bounded variables and assume that q and p are integers. A sequence (W i ) i∈N is said to be λ-weakly dependent if there exists a sequence (λ(i)) i∈N decreasing to zero at infinity such that:

Cov g 1 (W i1 , . . . , W iu ), g 2 (W j1 , . . . , W jv ) ≤ (uLip g 1 + vLip g 2 + uvLip g 1 Lip g 2 ) λ(k),
for any u-tuple (i 1 , . . . , i u ) and any v-tuple (j 1 , . . . , j v ) with

i 1 ≤ • • • ≤ i u < i u + k ≤ j 1 ≤ • • • ≤ j v where g 1 , g 2 are two real functions of Λ (1) = {g 1 ∈ Λ| g 1 ∞ ≤ 1} respectively defined on R Du and R Dv (u, v ∈ N * ). Recall here that Λ is the set of functions with Lip g 1 < ∞ for some u ≥ 1, with Lip g 1 = sup (x1,...,xu) =(y1,...,yu) |g 1 (y 1 , . . . , y u ) -g 1 (x 1 , . . . , x u )| |y 1 -x 1 | + • • • + |y u -x u | .
The monograph Dedecker et al. (2007) [START_REF] Dedecker | Weak dependence: models, theory and applications[END_REF] details weak dependence concepts, as well as extensive models and results.

Proposition 3 Assume that p and q ≥ 2 are even integers. Assume that the stationary sequence

(U i , V i ) i∈N is λ-weakly dependent. Assume that Z 0 = U 0 V 0 - EU 0 V 0 is bounded by M . Relation (5) holds if λ(i) = O(i -λ ) with λ > q 2 .

Remarks

• Unbounded random variables may also be considered under an additional concentration inequality (P(Z i ∈ (x, x + y)) ≤ Cy a for some a > 0) and Theorem 3 and Lemma 1 from Doukhan and Louhichi(1999) [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF], imply that the same relation holds if

E|Z i | q+δ < ∞, sup x,i P(Z i ∈ (x, x + y)) ≤
Cy a , (∀y > 0), and

∞ n=1 n q q+δ 2δ -1 λ a 2+a (n) < ∞.
• Non-integer moments q ∈ (2, 3) are considered in Doukhan and Wintenberger (2007) (see [START_REF] Doukhan | Invariance principle for new weakly dependent stationary models under sharp moment assumptions[END_REF], Lemma 4), and the same inequality holds if E|Z i | q < ∞ with q = q + δ, and λ(i) = O(i -λ ) with λ > 4 + 2/q for q small enough:

q ≤ 2 + 1 2 (q + 4 -2λ) 2 + 4(λ -4)(q -2) -2 + q + 4 -2λ ≤ q .
imsart-generic ver. 2007/12/10 file: ratio.tex date: May 2, 2008

Regression estimation

We now use a measurable bounded function

K : R d → R. Consider a stationary process (X i , Y i ) ∈ R d × R.
We now set for some h = h n :

U i,n = U i,n (x) = 1 h d K X i -x h , and 
V i,n = Y i ,
where h tends to zero as n tends to infinity. Then

R n = r(x) is the Nadaraya- Watson estimator of r(x) = E(Y i |X i = x).
Independently from the dependence structure of the process (X i , Y i ), we first introduce regularity conditions:

(A1) For the point x of interest: the functions f, g are k-times continuously differentiable around x and (ρ -k)-Hölderian, where k < ρ is the largest possible integer.

(A2) The function K is Lipschitz, admits a compact support, and satisfies K(u) ≥ 0 (∀u ∈ R d ), and

R d K(u) du = 1, R d u 1 1 • • • u d d K(u) du = 0, if 0 < 1 + • • • + d < k.
Moment and conditional moment conditions are also needed:

(A3) For the point x of interest, there exist r and s, with r ≤ s such that: 

1. Y 0 s = c < ∞, 2. g 1 (x) = yf (x,

G(x , x

) is bounded around the point (x, x), where G(x , x ) = sup i f i (x , x ) and f i (x , x ) denotes the joint density of (X 0 , X i ).

Remarks

• First notice that the last condition holds immediately for independent sequences (X i ) with a locally bounded marginal density. • An alternative condition involving local uniform boundedness of (x , x ) → H(x , x ) = sup i |yy |f i (x , y ; x , y )dy dy where now f i (x , y ; x , y ) denotes the joint density of (X 0 , Y 0 ; X i , Y i ), yields sharper results but such conditions are much more complicated to check so that we avoided this assumption. This condition holds for independent sequences if g 1 is locally bounded.

We quote here that the assumption K ≥ 0 implies that we are not able to control biases if ρ > 2. In order to make (A2) possible we thus need ρ ≤ 2 hence k = 1 or 2, and the previous vanishing moment condition holds with k = 2 in case of a symmetric kernel. Without this nonnegativity condition the moments of numerator and denominator are still controlled but we definitely cannot handle the moments of our ratio.

Moment estimation

We now consider the quantity

δ n (x) = r(x) -r(x) p , ∀x ∈ R d .
We recall below the usual assumptions for L p -consistency of such estimators are h = h n → 0 and nh d n → ∞ as n → ∞ and the rate is v n = c/ nh d n . (A4) For the point x of interest and for some q > p, there exists a constant c > 0 with:

1. f (x) -E f (x) q ≤ c/ nh d n , 2. g(x) -E g(x) p ≤ c/ nh d n .
which implies that the usual rate r(x) -r(x

) p = O(n -ρ 2ρ+d ) is obtained if h n is well chosen.
Proposition 4 (Bias) Assume that f is bounded below around the point x and (A1) and (A2), then

r(x) - E g(x) E f (x) = O(h ρ n ), ∀x ∈ R d .
Proposition 5 Assume that f is bounded below around the point x and that assumptions (A2), (A3) and (A4) hold, then

r(x) - E g(x) E f (x) p ≤ C 1 + h dβ( 1 r -1) (nh d ) β-1 2 + (nh d ) -α 2 n 1 s v n . with α = q 1 p - 1 s - 1 q and β = pr q(r -p) .
Those two propositions easily imply the following result. The optimal window width h ∼ n -1 2ρ+d equilibrates both expressions to get the minimax rate

v n ∼ n -ρ 2ρ+d .
Theorem 2 Choose the window width h n = Cn -1 d+2ρ for a constant C > 0. Assume that f is bounded below around the point x and that assumptions (A1), (A3) and (A4) hold for

pd(r -1) qr -pq -pr ∨ pd qs -pq -ps -2p ≤ ρ. ( 6 
)
Then there exists a constant C > 0 with: r(x) -r(x) p ≤ Cv n . Now we consider specific dependence structures to get moments inequality for f and g, in order to check (A4). From now on, fix x and write:

g(x) -E g(x) = 1 nh d i Z i , Z i = K i Y i -EK i Y i , K i = K X i -x h . 4.1.1. Independence Proposition 6 Assume that (X i , Y i ) is i.i.d
. and (A2), (A3) with r = q hold then (A4) moment inequalities hold.

Noncausal weak dependence

We now work as in Doukhan and Louhichi (1999) [START_REF] Doukhan | Functional density estimation under a new weak dependence condition[END_REF], excepted for the necessary truncation used in Ango-Nze and Doukhan (1998) [START_REF] Ango Nze | Non parametric Minimax estimation in a weakly dependent framework II: Uniform properties[END_REF].

Proposition 7 Assume that (X i , Y i ) is λ-weakly dependent and (A2), (A3) hold. Assume that Y 0 s < ∞ for some s > 2p. If λ(i) = O(i -λ ), with λ > r(2r(s-p)+2p-s) (r-p)(s-2p)(r-1) (p -1) ∨ 2(d-1)
d (q -1) then (A4) moment inequalities hold.

Strong mixing

Proposition 8 Assume that (A2), (A3) with r > q hold and (X i , Y i ) is αmixing with α i = O(i -α ), we also suppose, either

• α > (q -1) r r -q ∨ 4sr -2s -4r (r -2)(s -4) and h ∼ n -a with ad ≤ 1 -2/p 3 -2/r , or
• p, q are even integers and α > r 2

s -2p s -p 1 - 1 p , then ( 
A4) moment inequalities hold.

Remarks

• In the first item, the previous limitation on h writes p ≥ d/ρ + 2 if one makes use of the window width h ∼ n -1 2ρ+d , optimal with respect to power loss functions; this loss does not appear for integral order moments of the second item.

• Note that for the case of absolute regularity a nice argument in Viennet (1997) [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF] provides sharp bounds for specific integrals of the second order moments of such expressions. We do not derive them here even if integrated square errors have specific interpretations: indeed higher order moments are also needed in our case.

Uniform mean estimates

We now investigate uniform bounds:

δ n (K) = sup x∈B | r(x) -r(x)| p (7) 
In this setting, Ango Nze and Doukhan (1996) [START_REF] Ango Nze | Non parametric Minimax estimation in a weakly dependent framework I: Quadratic properties[END_REF] prove the needed results under mixing assumptions, Ango Nze et al. (2002) [START_REF] Ango Nze | Weak Dependence beyond Mixing and Asymptotics for Nonparametric Regression[END_REF] and Ango Nze and Doukhan (2004) [START_REF] Ango Nze | Weak dependence: models and applications to econometrics[END_REF] both propose the bounds to conclude under weak dependence. For this the lemma needs to be rephrased by replacing N n -N n and D n -D n by suprema of those expressions over x ∈ B for some compact subset B ⊂ R d . We now introduce the necessary conditions for this.

(A5) The condition (A1) holds for each x ∈ B.

(A6) The condition (A3) holds for each x ∈ B.

(A7) For some q > p and

w n = √ log n √ nh d = v n √ log n, there exists a constant c > 0 with: 1. sup x∈B | f (x) -E f (x)| q ≤ cw n , 2. sup x∈B | g(x) -E g(x)| p ≤ cw n .
Here again we begin with two preliminary propositions before stating our main result.

Proposition 9 (Uniform bias) Assume that f is bounded below over an open neighborhood of B and (A2) and (A5), then

sup x∈B r(x) - E g(x) E f (x) = O(h ρ n ).
Proposition 10 Assume that f is bounded below over an open neighborhood of B and that assumptions (A2), (A6) and (A7) hold, then

sup x∈B r(x) - E g(x) E f (x) p ≤ C 1 + h dβ( 1 r -1) (nh d ) β-1 2 
+ (nh d ) -α 2 n 1 s w n . with α = q 1 p - 1 s - 1 q and β = pr q(r -p) .
The following theorem results from the two previous propositions.

Theorem 3 Let (X t , Y t ) be a stationary sequence. Assume that conditions (A2), (A5), (A6) and (A7) hold for some s > 2p. Then,

sup x∈B r(x) -r(x) p ≤ C log n n ρ 2ρ+d . ( 8 
)
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The end of the section is devoted to check sufficient conditions for (A7) to hold. The proofs do not use the positivity of K so that arbitrary values for ρ and k are possible. We thus derive conditions for the following relations:

sup x∈B | g(x) -E g(x)| p ≤ C √ log n √ nh d , (9) 
sup x∈B |E g(x) -g(x)| p ≤ Ch ρ . ( 10 
)
If those conditions hold then the following relation equilibrates the bias and the fluctuations of the estimators

h ∼ log n n 1 2ρ+d
.

(11)

Independence

First, we evaluate the uniform bound for the moments under independence.

Proposition 11 Let (X t , Y t ) t∈N be an i.i.d. sequence. Assume that conditions (A2), (A5), (A6) and (A7) hold for some s > 2p, ρ > dp/(s -2p) then (9-10) hold hence [START_REF] Dedecker | Weak dependence: models, theory and applications[END_REF] yields the bounds

sup x∈B | f (x) -f (x)| p ≤ C log n n ρ 2ρ+d , (12) 
sup x∈B | g(x) -g(x)| p ≤ C log n n ρ 2ρ+d . (13) 

Absolute regularity

Proposition 12 Let (X i , Y i ) i∈N be an absolute regular (also called β-mixing) sequence. Assume that conditions (A2), (A5), (A6) and (A7) hold for some s > 2p, ρ > dp/(s-2p). Assume that the mixing coefficients satisfy

β i = O i -β with β > sρ + (2s -p)d ρ(s -2p) -pd ∨ 1 + 2d ρ
, then relations (9-10) both hold, hence a choice [START_REF] Dedecker | Weak dependence: models, theory and applications[END_REF] yields the bounds (12-13).

Strong mixing

Using Fuk-Nagaev inequality in [START_REF] Rio | Théorie asymptotique pour des processus aléatoires faiblement dépendants[END_REF] [28] also yields an analogous result.

Proposition 13 Assume that the process (X i , Y i ) i∈N is stationary and strongly mixing with

α i = O i -α for α > 3ρs + 2ds + dρs -4ρp -3dp -dρp dp -ρ(s -2p) ∨ 2 s -1 s -2 .
Assume that conditions (A2), (A5), (A6) and (A7) hold for some s > 2p, ρ > dp/(s -2p) then (9-10) hold hence [START_REF] Dedecker | Weak dependence: models, theory and applications[END_REF] yields the bounds [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF][START_REF] De La Peña | Pseudo-maximization and self-normalized processes[END_REF].
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Non causal weak dependence

Proposition 14 Assume that the process (X i , Y i ) i∈Z is stationary and λ-weakly dependent with λ(i) = O e -λi b with b > 0. Assume that conditions (A2), (A5), (A6) and (A7) hold for some s > 2p, ρ > dp/(s -2p) then (9-10) hold hence [START_REF] Dedecker | Weak dependence: models, theory and applications[END_REF] yields the bounds [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF][START_REF] De La Peña | Pseudo-maximization and self-normalized processes[END_REF].

Remark Other dependence settings may also be addressed, for example the φmixing case considered in Dedecker (2001) [START_REF] Dedecker | Exponential inequalities and functional central limit theorems for random fields[END_REF] and the use of coupling in weakly dependent sequences by Dedecker and Prieur (2005) [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF] both yield suitable exponential inequalities to complete analogous results.

Proofs

In the proofs, C > 0 will denote a constant which may change from one line to another.

Proof of the main Lemma 1

Setting z = (D n -D n )/D n , we rewrite: Proof of Lemma 2 Together with Hölder inequality with exponents 1/a+1/b = 1 we derive,

∆ n = N n D n • 1 1 -z - N n D n = N n D n 1 1 -z -1 + N n -N n D n (14) then 1 1 -z -1 = z 1 -z = z + z 2 1 -z hence for each α ∈ [0, 1], 1 1 -z -1 ≤ |z| 1 |1 -z| ∧ 1 + |z| |1 -z| ≤ |z| + |z| |1 -z| (1 ∧ |z|) ≤ |z| + |z| 1+α |1 -z| which implies D n |∆ n | ≤ | N n -N n | + | N n ||z| + | N n | |z| 1+α |1 -z| ≤ | N n -N n | + | N n | D n • | D n -D n | + N n D n 1 1 -z • | | D n -D n | 1+α |D n | α ≤ | N n -N n | + | N n | D n • | D n -D n | + N n D n • | D n -D n | 1+α |D n | α ≤ | N n -N n | + | N n | D n • | D n -D n | + max 1≤i≤n |V i,n | • | D n -D n | 1+α |D n | α imsart-
D n ∆ n p ≤ N n -N n p + | N n | D n • | D n -D n | p + max 1≤i≤n |V i,n | • | D n -D n | 1+α |D n | α p ≤ v n + 1 D n N n pa • D n -D n pb + max 1≤i≤n |V i,n | • | D n -D n | 1+α |D n | α p (15) 
Now, the assumption

U i,n V i,n r ≤ C n implies N n r ≤ C n .
The second term in the RHS of inequality ( 15) is bounded using the property N n pa ≤ |N n |+ N n -N n pa . Consider now some β ∈ [0, 1] and u, v ≥ 0 such that 1/u + 1/v = 1 to be determined later then

| N n -N n | = | N n -N n | β | N n -N n | 1-β ; Hölder inequality implies if we choose upa(1 -β) = p and vpaβ = r N n -N n pa ≤ N n -N n 1-β upa(1-β) N n -N n β vpaβ ≤ N n -N n 1-β p N n -N β r ≤ N n -N n 1-β p N n -N n β r ≤ v 1-β n |N n | β + C β n , thus N n pa ≤ |N n | + v 1-β n |N n | β + C β n ,
by setting b = q/p we derive a = (q -p)/q hence upq q -p (1 -β) = p, and vpq q -p β = r, which may be rewritten as 1 u = q q -p (1 -β), and

1 v = pq r(q -p) β.
With the relation 1/u + 1/v = 1 we find β = pr/q(r -p). The second term in the RHS of inequation ( 15) is thus bounded as follows,

1 D n N n pa D n -D n pb ≤ 1 D n |N n | + v 1-β n |N n | β + C β n v n .
The last term in relation ( 15) is more difficult to handle; it may be bounded using Hölder inequality with exponents 1/a + 1/b = 1 and

max 1≤i≤n |V i,n | • | D n -D n | 1+α |D n | α p ≤ 1 |D n | α max 1≤i≤n |V i,n | pa | D n -D n | 1+α pb ≤ 1 |D n | α E max 1≤i≤n |V i,n | pa 1 pa v 1+α n if q ≥ pb(1 + α) or equivalently if q -p(1 + α) ≥ q/a.
We need an argument of [START_REF] Pisier | Some results on Banach spaces without local unconditional structure[END_REF] [START_REF] Pisier | Some results on Banach spaces without local unconditional structure[END_REF] written as follows: assume that ϕ : R + → R + is convex and imsart-generic ver. 2007/12/10 file: ratio.tex date: May 2, 2008 non decreasing then

ϕ E max i |V i,n | pa ≤ Eϕ max i |V i,n | pa ≤ E i ϕ (|V i,n | pa ) ≤ i Eϕ (|V i,n | pa ) (16) 
Hence E max i |V i,n | pa ≤ (nc) pa/s with ϕ(x) = x s/pa . Now the bound in the RHS of ( 15) can be precised as v 1+α n (nc)

1 s /|D n | α if s ≥ pa; we use for this 1 - p q (1 + α) ≥ 1 a ≥ p s if α > 0 is small enough with 1 p ≥ 1 + α q + 1 s .

Proofs for the subsection 3

Proof of Theorem 1. Set ∆ n = R n -R. Refer to Lemma 1: here r and s are such that that β = 1, and α = 2/s. Because v n = cn -1/2 , we get

D ∆ n p ≤ 1 + 2 N D + 2c D + cn -α 2 + 1 s D α v n ,
where the last term in the parenthesis is bounded with respect to n implying

R n -R p = O 1/ √ n .
Proof of Proposition 1. Denote α -1 (u) = i≥0 I 1{u < α i }, and Q Z the generalized inverse of the tail function x → P(|Z 0 | > x). First recall that the mixing coefficient of (Z i ) i∈N are bounded by the sequence α i . Theorem 2.5 in Rio (2000) [START_REF] Rio | Théorie asymptotique pour des processus aléatoires faiblement dépendants[END_REF] shows that 

n i=1 Z i p ≤ 2pn 1 0 (α -1 (u) ∧ n) p 2 Q p Z (u)du 1 p . But as Z 0 r ≤ c, E|Z 0 | r = ∞ 0 Q r Z (u)du ≤ c
Z i p ≤ 2pn ∞ 0 (α -1 (u) ∧ n) pb 2 du 1 bp ∞ 0 Q r Z (u)du 1 ap .
From α > pb/2 the first integral is finite and,

N n -N p ≤ C √ n . For Y n = U n -EU n and b = r /(r -q), we get similarly that D n -D q ≤ C √ n .
imsart-generic ver. 2007/12/10 file: ratio.tex date: May 2, 2008 

Proof of Proposition 2 If U i ∞ ≤ c then to the 1-dimensional sequences (Y i ) = (U i -EU i ) and (Z i ) = (U i V i -EU i V i )
Z i p ≤ 2pn Z 1 0 (γ -1 (u) ∧ n) p 2 Q p-1 Z • G Z (u)du 1 p . Quote that E|Z| r = ∞ 0 Q r-1 Z • G Z (u)du ≤ c
Z i p ≤ 2pn ∞ 0 (γ -1 (u) ∧ n) pb 2 du 1 bp ∞ 0 Q r-1 Z • G Z (u)du 1 ap .
Because γ > pb 2 , the first integral is finite and

N n -N p ≤ C √ n . Similarly n i=1 Y i q ≤ 2qn Y 1 0 (γ -1 (u) ∧ n) q 2 Q q-1 Y • G Y (u)du 1 q ≤ 2qn(2c) q-1 2c 0 (γ -1 (u) ∧ n) q 2 du 1 q .
Because γ > q 2 , the first integral is finite and

D n -D q ≤ C √ n .
Proof of Proposition 3. Recall that if (U i , V i ) is λ-weakly dependent with λ(k) ≤ Ck -λ , and uniformly bounded then (Z i ) is also λ-weakly dependent with λ Z (k) ≤ Ck -λ . Doukhan and Louhichi [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] show that there exists a constant C > 0 such that if the random variables Z i are bounded by some M ≥ 1:

n i=1 Z i q q ≤ C(2q -2)! (q -1)! n n-1 k=0 λ Z (k) q 2 ∨ M q-2 n n-1 k=0 (k + 1) q-2 λ Z (k) .
Because λ Z (k) ≤ Ck -λ with λ > q 2 , then the second term is negligible as n tends to infinity and the first sum over k is bounded so that

n i=1 Z i q ≤ Cn 1 2 ,
and thus Ango-Nze and Doukhan (2004) [START_REF] Ango Nze | Weak dependence: models and applications to econometrics[END_REF]). Write

N n -N q ≤ C √ n . 5 
r(x) - E g(x) E f (x) ≤ |g(x) -E g(x)| f (x) + |E g(x)| |E f (x) -f (x)| f (x)E f (x) .
Since f is bounded below by 0 around x, E f (x) is also bounded below by 0, and we get the result.

Proof of Proposition 5. The condition ((A3)-1) gives

V i,n s < ∞ and U i,n V i,n r = O h d 1 r -1 for r < s whenever ((A3)-3) holds. Indeed V i,n s = Y 0 s = c < ∞, we get for r ≤ s E|U i,n V i,n | r ≤ h -rd K r ((X i -x)/h)|y| r f (x, y)dxdy ≤ h -rd K r ((X i -x)/h)g r (x)dx ≤ g r ∞ h -rd K r ((X i -x)/h)dx ≤ Ch (1-r)d . Set K hn (•) = h -d n K(•/h n )
and denote by the convolution. The expressions write with

D n = E f (x) = EU i,n = f K hn (x) → f (x)
, the marginal density of X 0 , and

N n = E g(x) = EU i,n V i,n = (rf ) K hn (t) → r(x)f (x). From Lemma 1, we get D n r(x) - E g(x) E f (x) p ≤ 1 + |N n | D n + |N n | β v 1-β n D n + C β n v 1-β n D n + v α n c n n 1 s D α n v n ,
where D n , N n and c n are equivalent to constants, C n ≡ Ch d(1/r-1) and v n ≡ C(nh d ) -1/2 . Substituting the orders in the different terms, we get the result.

Proof of Theorem 2. From the preceeding propositions, we get

r(x) -r(x) p ≤ Ch ρ n + C 1 + h dβ( 1 r -1) (nh d ) β-1 2 + (nh d ) -α 2 n 1 s v n . ( 17 
)
Note that h ρ n = Cv n . The expression in parenthesis is bounded if

0 ≤ βd(1 -r) r + (1 -β)ρ, 0 ≤ αρ d + 2ρ - 1 s .

These conditions correspond to (6).

A bound of interest which does not need dependence. The proofs of the propositions under different kinds of dependence make use of a common bound that imsart-generic ver. 2007/12/10 file: ratio.tex date: May 2, 2008 holds in all cases. For a positive integer k, we define the coefficient of weak dependence as non-decreasing sequences (C k,q ) q≥2 such that

C k,q = sup |Cov (Z i1 • • • Z im , Z im+1 • • • Z iq )|, ( 18 
)
where the supremum is taken over all {i 1 , . . . , i q } such that 1 ≤ i 1 ≤ • • • ≤ i q and m, k satisfy i m+1 -i m = k. Independently of the dependence structure, we get a bound for C k,q .

Lemma 3 Assume (A3), (A4), then C k,p ≤ Ch 2d(s-p) s .

Proof. Define {i 1 , . . . , i p } as a sequence that attains the sup defining C k,p .

C k,p = |EZ i1 • • • Z ip | ≤ 2 p E|Y i1 K i1 • • • Y ip K ip | ≤ 2 p E|Y i1 • • • Y ip | s p p s max i1,i2 E(K i1 K i2 ) s s-p 1-p s ≤ 2 p Y 0 p s K s s-p x -u h K s s-p x -t h G(u, t)dudt 1-p s ≤ 2 p Y 0 p s h 2d(1-p s )
The claim in the remark following (A3) is based on the point there is no need to use Hölder inequality if H is bounded around (x, x) and thus C k,p ≤ Ch 2d . Now C k,q ≤ Ch 2d also hold for the denominator (we also may set Y i ≡ 1).

Proof of Proposition 6. From the Rosenthal inequality for independent variables there exist constants C q ≥ 0 only depending on q (see e.g Figiel et al. (1997) [START_REF] Figiel | Extremal properties of Rademacher functions with applications to the Khinchine and Rosenthal inequalities[END_REF] for more details concerning the constants),

E n i=1 Z i q ≤ C q   n i=1 EZ 2 i q 2 + n i=1 E|Z i | q   .
Here EZ q i ≤ 2 q E|K i Y i | q . In the beginning of the proof of Proposition 5, we get E|K i Y i | q ≤ g q ∞ K q q h d , and we deduce

E Z i q ≤ C nh d q 2 + nh d ,
and:

g(x) -E g(x) q ≤ C √ nh d .
The case of the denominator is obtained by setting Y i ≡ 1.

Proof of Proposition 7

We first establish a Rosenthal inequality for weakly dependent variables. For any integer p ≥ 2,

E n i=0 Z i p ≤ p!A p where A p = 1≤i1≤•••≤ip≤n |E Z i1 • • • Z ip |. (19) 
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Then

A p ≤ n n k=0 (k + 1) p-2 C k,p + p-2 l=2 A l A p-l . (20) 
To bound the sum with coefficients C k,p , we shall use the following Lemma.

Lemma 4 (Doukhan & Neumann [START_REF] Doukhan | A Bernstein type inequality for times series[END_REF], Lemma 10-( 11)) Assume that the stationary sequence (Z n ) n∈Z is λ-weakly dependent and satisfies µ = Z 0 r ≤ 1 for some r > p then

C k,p ≤ 2 p+3 p 4 µ r(p-1) r-1 λ(k) r-p r-2 . Recall that if (X i , Y i ) is λ-weakly dependent with λ(k) ≤ Ck -λ , then Z i is λ-weakly dependent with λ(k) ≤ Ck -λ(r-2)
r (see Proposition 2.1 p. 12 in our (2007)'s monograph [START_REF] Dedecker | Weak dependence: models, theory and applications[END_REF]). From Lemma 4 we get

C k,p ≤ Ch d p-1 r-1 k -λ(1 (p) r )
. We define conditions on the dependence coefficients that ensure that the sum to control is of the same order of magnitude than its first term, that is O(h d ). From Lemma 3, for any 0 < b < 1:

C k,p ≤ Ch d h -d r-p r-1 k -λ(r-p) r ∧ h d(1-2p s ) ≤ Ch d × k -λb(r-p) r h d(-b r-p r-1 +(1-b)(1-2p s )) Choosing b < (s-2p)(r-1) 2r(s-p)+2p-s , the exponent of h in the parenthesis is positive. Because λ > 1 b • r(p-1)
r-p , the sum over k (in inequality ( 20)) converges and is less than a constant, say a p . We get

A p ≤ a p nh d + p-2 l=2
A l A p-l , and from A 2 ≤ a 2 nh d , we deduce by induction on p that A p ≤ c p (nh d ) p/2 for a sequence c p which may also depend on x, hence: g(x) -E g(x) p ≤ c p (x)(nh d ) -p 2 . The case of the denominator is obtained by setting Y i ≡ 1. In this case we also quote that the bound in Lemma 3 writes C k,q ≤ Ch 2d since no Hölder inequality is needed anymore.

C k,q ≤ Ch d h -2+d k -λ ∧ h d ≤ Ch d × k -λb h (-b(d-2)+(1-b)d)
Choosing b < d/(2d -2), the exponent of h in the parenthesis is positive. Because λ > q -1/b, the sum over k (in inequality (20)) converges.

Proof of Proposition 8. • Under the first set of conditions, Rio [START_REF] Rio | Théorie asymptotique pour des processus aléatoires faiblement dépendants[END_REF], Theorem 6.3 states the following Rosenthal inequality: We use Lemma 3 to prove that the first term is O (nh d ) p 2 . From Davydov inequality we get a second bound for the covariance

E Z i p ≤ a p i j |Cov (Z i , Z j )| p 2 + nb p 1 0 (α -1 (u) ∧ n) p-1 Q p Z (u)
|Cov (Z 0 , Z i )| ≤ 6α r-2 r i Y 0 K 0 2 r ≤ Cα r-2 r i h 2d( 1 r -1) Var (Z 0 ) ∼ h d g 2 (x) K 2 (u) du hence i j Cov (Z i , Z j ) - i Var (Z i ) ≤ nh d i α r-2 r i h d( 2 r -3) ∧ h d(1-4 s )
Thus considering some 0 < b < 1,

i α 1-2 r i h d( 2 r -3) ∧ h d(1-4 s ) ≤ h d(2b( 1 r + 2 s -2)+1-4 s ) i α b(1-2 r ) i .
This last term tends to 0 if b > sr-4r 4sr-2s-4r and α > r b(r-2) . This is possible if α > r(4sr-2s-4r) (r-2)(sr-4r) . Consider the second term, apply Hölder inequality with exponents r/(r -p) and r/p: n

1 0 (α -1 (u) ∧ n) p-1 Q p Z (u)du ≤ n 1 0 (α -1 (u)) r(p-1) r-p du r-p r Z p r . 
The first integral is convergent as soon as α > r(p-1) r-p , and from assumption

(A3)-3, Z r r ≤ Ch d(1-r) so that this second term is negligible if nh dp(1-r)/r ≤ C(nh d ) p/2 hence if the sequence n r(2-p) h dp(2-3r
) is bounded we obtain the desired bound. Consider now the denominator.

i j Cov (K i , K j ) - i Var (K i ) ≤ nh d i α i h -d ∧ h d Thus i α i h -d ∧ h d ≤ h d(1-2b) i α b i for 0 < b < 1. This last term tends to 0 if b > 1/2, which implies α > 2.
Consider the second term,

n 1 0 (α -1 (u) ∧ n) q-1 Q q K0 (u)du ≤ n 1 0 (α -1 (u)) r(q-1) r-q du r-q r K 0 q r
The first integral is finite if α > r(q-1) r-q . Analogously the second term is negligible as soon as n r(2-q) h dq(2-r) is a bounded sequence. Hence if h ∼ n -a a monotonicity argument shows that the previous bounds need ad ≤ 1 -2/p 3 -2/r .

• Under the second set of conditions, we use the idea in the proof of Proposition 7 (this idea was initiated in Doukhan & Portal, 1983, [20]). Here we use again Doukhan, 1994, [15]) and Hölder inequality together entail

C k,p ≤ 6α p r k Z i1 • • • Z iu r u Z iu+1 • • • Z ip r p-u ≤ 6α p r k Z 0 p r and C k,p ≤ Ch d (α p r k h -d ) ∧ h d(1-2p s ) ≤ Ch d α b p r k h d(1-2p s -2b(1-p 2s )) from Lemma 3 if 0 ≤ b ≤ 1. Then setting b = (s -2p)/(2(s -p)), n n k=0 (k + 1) p-2 C k,p = O(nh d ), if α > r 2 s -2p s -p 1 - 1 p .
The case of the denominator is exactly analogous and we replace here p by q, s by ∞ and in order to let the previous condition unchanged we replace r by r with r 2 1 -

1 q = r 2 s -2p s -p 1 - 1 p .
5.1.3. Proofs for the subsection 4.2

Proof of Proposition 9. The previous convergences E f (x) → f (x) and E g(x) → r(x)f (x) are uniformly controlled by O(h ρ n ) under ρ-regularity conditions (A5) from the continuity of derivatives over the considered sets and from a standard compactness argument, see Ango-Nze and [START_REF] Ango Nze | Weak dependence: models and applications to econometrics[END_REF] [START_REF] Ango Nze | Weak dependence: models and applications to econometrics[END_REF]. Note, indeed, that if V

x denotes an open set over which the previous assumptions (A1) hold and such that inf B f > 0, then for each open set W with W ⊂ V the previous relation holds uniformly over W . Hence under (A5), if V denotes an open set with B ⊂ V such that the assumptions (A1) still hold the the bounds for biases hold uniformly over B. We thus proceed as in Proposition 4 to conclude.

Proof of Proposition 10. From Lemma 2, we get inf

B D n • sup x∈B r(x) - E g(x) E f (x) ≤ sup B | N n -N n | + sup B | N n | D n sup B | D n -D n | + max 1≤i≤n |Y i | sup B | D n -D n | 1+α |D n | α .
Along the same line of the proof of Lemma 1, substituting the supremum to the variables we get

inf x∈B D n (x) • sup x∈B r(x) - E g(x) E f (x) p ≤ C 1 + sup B |N n | inf B D n + sup B |N n | β w 1-β n inf B D n + C β n w 1-β n inf B D n + w α n c n n 1 s inf B D α n w n
where D n , N n and c n are equivalent to constants, and C n ≡ Ch d(1/r-1) . Substituting the orders to the expressions, we get the result. Proof of the inequalities following Theorem 3 For ( 9), let M > 0 and consider the truncated modification of Y i :

Y i = Y i I 1{|Y i | ≤ M } -M I 1{Y i < -M } + M I 1{Y i > M }. Define g(x) = 1 nh d n i=1 Y i K i then, from the Markov inequality, sup x∈R d | g(x) -g(x)| p p ≤ 1 h dp E|Y | p I 1{|Y | > M } ≤ M p-s h dp E|Y | s .
With the choice [START_REF] Dedecker | Weak dependence: models, theory and applications[END_REF], in order to bound conveniently this term we assume

M ≥ Ch -p s-p (ρ+d) . (21) 
Denote

Z(x) = √ nh d | g(x) -E g(x)|. Below we shall need (uniform) bounds of Var Z(x) = 1 nh d |i|<n (n -|i|)Cov ( Y 0 K 0 , Y i K i ) ≤ 2 h d n-1 i=0 |Cov ( Y 0 K 0 , Y i K i )| ≤ 2 h d n-1 i=0 Γ i (x)
A first bound of the covariance Γ i (x) for i = 0 has nothing to do with weak dependence conditions and from Lemma 3: there exists a constant C which may change from line to line such that

Γ i (x) ≤ Ch 2d(1-2 s ) Γ 0 (x) ∼ h d g 2 (x) K 2 (u) du, around the point x. (22) 
For independent random sequences, Γ 0 (x) is the only nonzero term. The second bound of Γ i (x) for i > 0 is based on dependence conditions.

Proof of Proposition 11. Proposition 9 proves [START_REF] Dedecker | A new covariance inequality and applications[END_REF]. In order to prove [START_REF] Dedecker | Exponential inequalities and functional central limit theorems for random fields[END_REF], rom the Bernstein inequality for independent bounded variables, we get

P(Z(x) > u) ≤ 2 exp   - u 2 2 Var (Z(x)) + 2M u K ∞ 3 √ nh d   . (23) 
From [START_REF] Fearnhead | On-line inference for multiple changepoint problems[END_REF], Var (Z(x)) is bounded by a constant Because K is Lipschitz kernel, x → Z(x) is a Lipschitz function and:

|Z(x) -Z(y)| ≤ 2 √ nh d M h -(d+1) Lip K x -y 1
Define a regular partition (B i ) i=1,...,ν of diameter δ over B, let x i be the center of B i . 

sup x∈Bj |K i (x) -K i (x j )| ≤ cδ h I 1{|x j -X i | ≤ 2hR} imsart-
(x) = 1 nh d | Y i | I 1{|x -X i | ≤ 2hR)} and Z(x) = √ nh d |ḡ(x) -Eḡ(x)|. Write g(x) -E g(x) = g(x) -g(x j ) + E( g(x j ) -g(x)) + g(x j ) -E g(x j ). For x ∈ B j , | g(x) -g(x j )| ≤ cδ h ḡ(x j ) so that | g(x) -E g(x)| ≤ cδ h ḡ(x j ) + Eḡ(x j ) + | g(x j ) -E g(x j )|.
Denote Z j = sup x∈Bj Z(x):

|Z j | ≤ cδ h | Z(x j )| + 2cδ √ nh d h Eḡ(x j ) + |Z(x j )|.
Note that since Eḡ(x) tends to ḡ1 (x) as h tends to 0, so that 2cδEḡ(x)/h ≤ t/(3

√ nh d ) holds if δ ≤ c th/
√ nh d for a suitable constant c > 0; this condition holds for the following choice (considered only for large values of t > 0),

δ = Ch √ nh d , and t ≥ t 0 > 0. (24) 
Denote Z = sup x∈B Z(x). For t > t 0 :

P(Z > t) = P( max 1≤j≤ν Z j > t) ≤ ν max 1≤j≤ν P(Z j > t) ≤ ν max 1≤j≤ν P Z(x j ) > t 3 + P Z(x j ) > th 3cδ ≤ ν max 1≤j≤ν P Z(x j ) > t 3 + P Z(x j ) > t 3 (25) ≤ 4ν exp - at 2 1 + tM (nh d ) -1/2 , (26) 
from the relation h/δ → ∞, we indeed assume that h/δ ≥ 1 in order to derive relation [START_REF] Li | Ratio Control Variate Method for Efficiently Determining High-Dimensional Model Representations[END_REF], for some a > 0 Now That is, refering to the choice for h:

EZ p ≤ T p + p ∞ T P(Z > t) t p-1 dt Choose T = √ A log n, quote that the function u → exp -at 2 1+tu is nonincreas- ing, then assuming that M √ nh d ≤ 1 T = 1 √ A log n ( 
M ≤ h -ρ √ A (28) 
we derive

EZ p ≤ T p + 4pν ∞ T t p-1 exp - at 2 1 + t/T dt (29) 
≤ T p + 4pν ∞ T t p-1 exp - atT 2 dt, (30) 
and using the incomplete gamma function expansion for x > 2p:

∞ x u p-1 e -u du ≤ 2x p-1 e -x
then setting u = atT /2 in the previous inequality we obtain

EZ p ≤ T p + 4pν 2 aT p ∞ aT 2 /2 u p-1 e -u du ≤ T p + 8p a νT p-1 n -aA/2
With ν ∼ δ -d and relation [START_REF] Jaber | Optimal lot sizing under learning considerations: shortages allowed and backordered[END_REF] we see that the second term is negligible with respect to the first one if A is chosen large enough. Then EZ p = O((log n) p/2 ), and

Z p = √ nh d sup x∈B | g(x) -E g(x)| p = O((log n) 1/2
). Now we check that the conditions ( 21) and (28) on M are compatible. This possibly holds if ρ > dp/(s -2p).

Proof of Proposition 12. First we define a truncation level M satisfying (21) and consider the truncated variable g(x). A strong coupling argument by Berbee (1979) yields a Bernstein type inequality. With Theorem 4 of Doukhan (1994) [START_REF] Doukhan | Mixing: Properties and Examples[END_REF], we recall analogously to [START_REF] Figiel | Extremal properties of Rademacher functions with applications to the Khinchine and Rosenthal inequalities[END_REF] that there exists some θ, λ, µ > 0 and there exists an event A n (which does not depend neither on x nor on u) with:

P ((Z(x) > u) ∩ A n ) ≤ 4 exp   - λu 2 2 Var (Z(x)) + 2M qu K ∞ 3 √ nh d   , (31) 
with P(A c n ) ≤ µβ qθ . We first check that Var (Z(x)) is bounded by a constant independent of x.

|Var (Z(x)) -h -d Γ 0 (x)| ≤ 2 h d n-1 i=1 Γ i (x) (32) 
In fact using β-mixing does do improve on the results so this variance will be bounded under strong mixing and the relation α i ≤ β i will allow to conclude here and in the forthcoming section dedicated to strong mixing.

Recall, with α 0 = 1, that Γ i (x) ≤ αi 0 Q 2 (x)dx. Now inequality (31) is exactly [START_REF] Figiel | Extremal properties of Rademacher functions with applications to the Khinchine and Rosenthal inequalities[END_REF] substituting qM to M . Following the line of the proof in the independent case we get P ((

Z > t) ∩ A n ) ≤ 4ν exp - at 2 1 + tqM (nh d ) -1/2 . The condition (21) on M now writes qM ≤ h -ρ √ A (33) 
and the end of the proof remains unchanged. We get

√ nh d sup x∈B | g(x) -E g(x)| p ≤ C log n nh d + EZ p I 1 A c n .
Then, using the trivial bound

EZ p I 1 A c n ≤ Z p ∞ P(A c n ), √ nh d sup x∈B | g(x) -E g(x)| p ≤ C log n nh d + 2M K ∞ √ n h d/2 µβ qθ . (34) 
Define q = n γ , with 0 < γ < 1 the compatibility of the inequalities concerning It is negligible with respect to the second term as soon as β > sρ + (2s -p)d ρ(s -2p) -pd .

M demands n -γ h -ρ > h -p(
Proof of Proposition 13 As in the independent case, we chose a truncation level M = n log n (ρ+d)p (2ρ+d)(s-p) satisfying relation [START_REF] Doukhan | Invariance principle for new weakly dependent stationary models under sharp moment assumptions[END_REF] and define Z(x) with respect to the truncated process g. Fuk-Nagaev inequality leads to:

P(Z(x) > u) ≤ 4 1 + u 2 16rVar (Z(x)) -r/2 + 16nM K ∞ u √ nh d α u √ nh d 4M K ∞ r .
Adapting the proof of Proposition 8, we check that Var (Z(x)) is bounded by a constant independent of x. Following the proof in the independent case, we get: Thus, if dp > ρ(s -2p) and 1 + α > (2ρ+2d+dρ)(s-p) dp-ρ(s-2p)

P(Z > t) ≤ c 0 ν 1 + t 2 c 1 r -r
, the third term is negligible. The end of the proof follows the lines of the independent case. and define Z(x) as in the preceding sections. Proposition 8 and Theorem 1 in [START_REF] Doukhan | A Bernstein type inequality for times series[END_REF] [START_REF] Doukhan | A Bernstein type inequality for times series[END_REF] prove that:

P(Z(x) > u) ≤ c 0 exp   - c 1 u 2 Var (Z(x)) + M u K ∞ √ nh d b b+2    ,
for suitable constants c 0 and c 1 . We first check that Var (Z(x)) is bounded by a constant independent of x. The generic term in [START_REF] Tsybakov | Introduction a l'estimation non-paramétrique[END_REF] is bounded by using weak imsart-generic ver. 2007/12/10 file: ratio.tex date: May 2, 2008 dependence and the fact that the function u → K((x -u)/h) is C/h-Lipschitz:

Γ i (x) ≤ C M h + 1 h 2 λ(i) ≤ C h -1-(ρ+d)p s-p + h -2 λ(i),
Thus considering some 0 < α < 1, up to a constant, the RHS of (32) is bounded above by: With ν ∼ δ -d and relation [START_REF] Jaber | Optimal lot sizing under learning considerations: shortages allowed and backordered[END_REF] we see that the second term is negligible with respect to the first one if A is chosen large enough. The end of the proof is exactly the same as above.
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