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Mesoscopics of ultrasound and seismic
waves: application to passive imaging

É. Larose1

Abstract

This manuscript deals with different aspects of the propagation of acoustic and
seismic waves in heterogeneous media, both simply and multiply scattering
ones. After a short introduction on conventional imaging techniques, we de-
scribe two observations that demonstrate the presence of multiple scattering in
seismic records: the equipartition principle, and the coherent backscattering ef-
fect (Chap. 2). Multiple scattering is related to the mesoscopic nature of seismic
and acoustic waves, and is a strong limitation for conventional techniques like
medical or seismic imaging. In the following part of the manuscript (Chaps. 3–5),
we present an application of mesoscopic physics to acoustic and seismic waves:
the principle of passive imaging. By correlating records of ambient noise or diffuse
waves obtained at two passive sensors, it is possible to reconstruct the impulse
response of the medium as if a source was placed at one sensor. This provides the
opportunity of doing acoustics and seismology without a source. Several aspects
of this technique are presented here, starting with theoretical considerations and
numerical simulations (Chaps. 3, 4). Then we present experimental applications
(Chap. 5) to ultrasound (passive tomography of a layered medium) and to seismic
waves (passive imaging of California, and the Moon, with micro-seismic noise).
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2 Mesoscopics of ultrasound and seismic waves: application to passive imaging

Résumé

Physique mésoscopique des ultrasons et des ondes
sismiques : application à l’imagerie passive

Cet article de revue rassemble plusieurs aspects fondamentaux et appliqués de
la propagation des ondes acoustiques et élastiques dans les milieux hétérogènes,
en régime de diffusion simple ou multiple. Après une introduction sur les tech-
niques conventionelles d’imagerie sismique et ultrasonore, nous présentons deux
expériences qui mettent en évidence la présence de diffusion multiple dans les
enregistrements sismologiques : l’équipartition des ondes, et la rétrodiffusion
cohérente (Chap. 2). La diffusion multiple des ondes, qui démontre l’aspect mé-
soscopique de leur propagation, est une limitation majeure pour les techniques
d’imagerie conventionelles (imagerie médicale, sismique réflexion ou réfraction,
tomographie...). La deuxième partie du document (Chaps. 3–5) est consacrée à une
application de cette physique mésoscopique : le principe de l’imagerie passive. En
effectuant la corrélation temporelle d’enregistrement de bruit ambiant ou d’ondes
diffuses, il est possible de reconstruire la réponse impulsionnelle du milieu entre
deux capteurs passifs comme si l’on avait placé une source en lieu et place d’un
des capteurs. Cela offre la possibilité de faire de l’acoustique ou de la sismologie
sans source. Plusieurs aspects sont présentés dans ce manuscrit : des aspects théo-
riques et numériques (Chaps. 3, 4), ensuite des aspects expérimentaux avec des
applications (Chap. 5) à l’échelle des ultrasons (tomographie passive d’un milieu
stratifié), et des applications à l’échelle de la sismologie (imagerie du sous-sol de
la Californie, et même de la Lune).
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1
Limitations of conventional imaging

During its propagation, an acoustic or seismic wave interacts with the medium: it
can be slowed, accelerated, reflected or refracted. From these interactions, one has
the possibility to image the medium. In this chapter, we recall the very basics of
medical and seismic imaging, and point out several limitations. These limitations
will be addressed in the following chapters of the present manuscript, and several
solutions will be proposed.

1. Imaging techniques: the basics

1.1. Ultrasounds in medical imaging

Piezoelectric transducers are commonly used as both sources and receivers of
acoustic waves at ultrasonic frequencies (MHz). Corresponding wavelengths are
small enough (mm) to provide images at a resolution compatible with medical
diagnosis. Therefore, from the late 1970’s, ultrasound has been widely used in
medical imaging and sometimes as an alternative to less benign techniques like
X-ray imaging. An ultrasound image is based on a three step operation:

• a short pulse (typically one or two oscillations at central frequency of a few
MHz) is emitted by one or several sources. The emitted wave might be
focused on a given point to be investigated;

• each time the wave encounters a scatterer (an impedance contrast origi-
nating from a change in velocity or density), it is partially reflected. This
is particularly valid for interfaces between two different tissues, but also
within a given tissue (isolated scatterers like kidney stones, disease like
artery calcification, etc.);

• backscattered waves (echos) are sensed by the array of transducers. By
summing time-delayed records (beam-forming), one can choose to focus
the waves on a given target. The intensity of each pixel forming the final
image depends on the intensity of the wave backscattered by the focused
point (see Fig. 1.1).
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4 Mesoscopics of ultrasound and seismic waves: application to passive imaging

Figure 1.1. Left: the simple scattering regime. There is a perfect matching between time
of flight and the source-scatterer distance. Right: multiple scattering regime. The wave
trajectory is analogous to a random walk. The equivalence between time and distances is
no longer valid, rendering impossible any imaging technique.

Ideally, an ultrasonic image is a reflectivity map of the medium. This technique
is efficient as long as the backscattered wave field interacts only once with the
medium before being sensed by the sounding device. In other words, an ultrasonic
image is based on the simple scattering assumption (or Born approximation). This
approximation is valid for many soft tissues.

When the simple scattering assumption is not valid, interpreting ultrasonic
images is very difficult, and sometime impossible. For instance, Derode et al. [1]
demonstrated the presence of multiple scattering of ultrasounds in a human
trabecular bone. The validity of the simple scattering assumption appears as an
essential point that needs to be checked more regularly. This multiple scattering
phenomena concerns not only medical imaging but also non destructive testing,
for instance in polycrystaline media [2], or in granular materials where several
observations have confirmed the diffuse nature of wave propagation [3].

1.2. Active seismic experiments

In prospecting seismology where active sources are employed, two kinds of ex-
perimental setup can be distinguished. In a reflection seismic setup, like the one
at sea displayed in Figure 1.2, the aim is to image the reflectivity of the medium
from the backscattered waves. This setup is analogous to the one in ultrasonic
medical imaging. The source is typically an explosion (from an airgun at sea,
or from chemical explosive inland), and the wavefield is sensed by an array of
geophones placed a few hundreds of meters around the source. From the arrival
time of reflections, one can distinguish strong reflectors, especially when the soil
is stratified. But to spatially localize the reflectors, we also need to know the
celerity of the waves in the subsurface. A reflection image is sometime called
the “high frequency” image of the subsurface because it enhances the interfaces
between different soils, but does not tell anything about the geological layer itself.

In most locations, the Earth is heterogeneous and the wave velocities evolve
very quickly from the surface (a few 100 m/s) to deeper layers (several km/s),
typically over one order of magnitude. To evaluate the average velocity in a given
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1 Limitations of conventional imaging 5

Figure 1.2. Schematic view of an at sea seismic experiment. The source is emitting a
short impulse that propagates in the water before penetrating into the ground. Reflected
waves are sensed along the streamer made of several hydrophones. The setup is translated
horizontally by the boat to probe different areas along the seismic section.

layer, a refraction setup is needed. It is composed of a controlled source and an
array of sensors placed far from the source. From the direct P and S refracted
arrival, it is possible to estimate the wave velocity in each layer or geological unit.
The obtained image is referred to as the “low frequency” image because it does
not reveals the details of the interfaces but only the smoothed vertical dependence
of the velocity.

The two images are eventually mixed, or migrated, to localize the reflector
and remove artifacts due to reflection hyperbola and wave diffraction. The final
image is obtained after an iterative inversion where the reflectivity and velocity
parameters of each geological unit are adjusted.
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Figure 1.3. The seismic intensity (logarithmic scale) backscattered by the crust in the
Marmara sea plotted versus time (vertical axis) and versus the source-receiver distance.
The end of the seismic record (on the left, after 5 s) shows a very short spatial coherence
that reminds the optical speckle. This seismic speckle might originate from a random
distribution of scatterers in the crust in the simple or multiple scattering regime. This part
of the seismic record, referred to as the coda, is often neglected and not processed. At
higher frequencies (right), the coda is shortened by the absorption. Such a seismic speckle
is a clear evidence for the very heterogeneous nature of the Earth’s crust.
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6 Mesoscopics of ultrasound and seismic waves: application to passive imaging

As in medical ultrasonic imaging, the seismic image is obtained assuming
simple scattering. In some cases, waves are multiply reflected within a given layer
(seismic multiples). It is possible to subtract these multiples from the raw data
because they are easily identified. But in most cases, the possibility of observing
waves multiply scattered by bulk heterogeneities is neglected. Nevertheless, in
very heterogeneous media like volcanoes, complex margin or orogenic zones,
multiple scattering is probable, and will degrade the seismic images. In these
cases, new imaging techniques are to be developed.

1.3. Global seismology

When we try to characterize and image the features of deeper layers in the Earth
(from the bottom of the crust to the inner core), active experiments are inappropri-
ate. Propagating waves across the Earth (12 000 km) requires to employ energetic
low frequencies sources (from mHz to ≈10 Hz). The energy required to illuminate
the deep Earth is incredibly high, roughly comparable to the one delivered by an
Mw > 5 Earthquake (several kilo-tons of TNT). Only atomic explosions may ar-
tificially deliver comparable energy at those frequencies. Therefore, imaging the
deep earth relies on the occurrence of natural sources like earthquakes.

The natural vibrations of the Earth are sensed worldwide by different sets of
permanent stations like the Global Seismic Network (GSN). The deployment of
such broad band seismic network started about 30 years ago. Detection of the
main features of the Earth’s interior (mantle, core, inner core) and production of
tomographic maps of the Earth lithosphere [4] was made possible by computation
of arrival times of seismic waves originating from localized earthquakes. In
Figure 1.4 is presented the 1D preliminary reference Earth model (PREM) resulting
from such global observations. It was proposed in 1981 by Dziewonski et al. [5].
This model must be thought of as an average model of the Earth. Sometime,
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1 Limitations of conventional imaging 7

especially in the crust, the mechanical properties fluctuate largely around their
average, generating diffraction and scattering of seismic waves.

The aim of ambitious new deployments of seismic arrays, such as the Program
for the Array Seismic Studies of the Continental Lithosphere (PASSCAL) and
USArray programs, is to improve the resolution of images of Earth’s interior by
adding more instruments to regional- and continental-scale seismic networks.
Nevertheless, traditional observational methods cannot fully exploit emerging
array data because they are based on seismic waves emitted from earthquakes,
which emanate from select source regions predominantly near plate boundaries
(see Fig. 1.5). The imperfect locations of earthquakes is a clear limitation of
traditional seismic imaging techniques. Improving the images of the earth will
require compensation for the lack of sources in certain aseismic regions.

2. 99% of seismic records are unexploited

2.1. The notion of information grain

Important notions from information theory can be fruitfully applied to acoustic
or seismic wave processing. The idea is to evaluate quantitatively the amount
of independent information retained in a seismic record of finite duration and
frequency band. Very roughly, the elastic impulse response of an heterogeneous
medium like the Earth can be approximated by a series of wave packets arriving
with random phase and amplitude [6, 7]. Each arrival corresponds to a given
path, and each impulse represents one information grain. The duration of the
initial impulse t is the inverse of the frequency bandwidth, t = 1/Δ f . Therefore,
a record of duration T contains N = TΔ f independent and uncorrelated pieces of
information. This means that any acoustic or seismic waveform, including diffuse
waves and ambient noise, contains deterministic information on the propagation
medium. Except for direct or simply reflected waves, this information is hard to
extract. Yet, it is there.

2.2. Seismic noise

The last twenty years has undergone a wide development of seismic networks.
Large on-line databases gather waveforms from hundreds of worldwide seismic
stations. Processing the enormous amount of data is a main challenge and,
actually, only a small part of the records are eventually used to image the earth
or localize the seismicity. The seismic ambient noise that predominantly fills the
databases is very often discarded, as the seismic coda (see Fig. 1.6). Only the
direct waves are processed, even though they represent at most 1% of the total
amount of data.

Ambient noise is made of continuous vibrations initiated by undetectable
tremors (or microtremors) and other low amplitude sources occurring at random.
Very roughly, high frequency noise (above 1 Hz) is mainly due to human activity
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8 Mesoscopics of ultrasound and seismic waves: application to passive imaging

Figure 1.5. (a) Distribution of M > 5 seismic events (circles and triangles) around the
globe. Earthquakes are localized along main active faults and at the border of tectonic
plates, leaving large aseismic areas. (b) Distribution of seismic stations (black symbols)
[maps are from www.iris.edu].

like transportation and industry. Below 1 Hz, the sources include wind, storms,
and ocean waves. This noise is due to the coupling between the ocean, the
atmosphere, and the ground. At very low frequencies where fundamental modes
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1 Limitations of conventional imaging 9

Figure 1.6. Example on a one day seismic record (velocity versus time in second) that
includes a large earthquake. About 95% of seismic data are made of seismic noise, 4% of
coda waves, and only 1% is used in traditional seismic imaging.

of the Earth are observed, this ambient noise is referred to as “hum”. It should
be noted that in all frequencies, the exact location of the noise sources and their
generation mechanism remain unknown.

In the high frequency band (above 1 Hz), ambient noise is sometimes used
to evaluate the subsoil characteristics, which is the first step to seismic hazard
assessment studies [8–11]. At lower frequency, an important effort is made to
locate the noise sources and understand their generation mechanism [12,13]. But
most of the time, the noise is not processed. In some cases, it is not even recorded
or just deleted from the database.

2.3. The diffuse seismic coda

The seismic coda is named after the Latin word for tail. It is composed of long
lasting residual vibrations that follow direct waves (cf. Fig. 1.6). In the short period
range (0.1–20 s), this coda lasts sometime several tens of minutes, one order of
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10 Mesoscopics of ultrasound and seismic waves: application to passive imaging

magnitude longer than the direct travel time from the source to the receiver. It
contains most of the seismic energy delivered by an earthquake, but has long been
neglected and not processed. In his pioneering works, Aki [14, 15] showed that
the decay of the coda average intensity is well fit in the 1–10 Hz range by

Eω(t) ∼ 1
tγ

exp
(
− ωt

Qc(ω)

)
, (1.1)

where 1/tγ is due to geometrical spreading (1 < γ < 2) and ω is the pulsation. Qc

is the coda quality factor. It is a dimensionless parameter that characterizes the
coda duration, and was found to have a regional variability.

To explain the coda decay, two models were proposed [14, 15]. In the first
one, coda waves originate from simple scattering in the lithosphere where the
exponential coda decay is due to absorption. In the second one, waves are multiply
scattered and guided in the crust and the coda decay is due to diffusion. In this
last regime, the coda Q factor decomposes into

1
Qc
=

1
Qa
+

1
Qs

with Qa = ωτa and Qs =
ωH2

D
(1.2)

where τa is the absorption time of the energy, D the diffusion (scattering) constant
and H the crust thickness. Only recently, numerical works based on the Radiative
Transfer Equation (RTE) demonstrated the validity of the second model [16, 17].
In Mexico for instance, Margerin et al. [17] found that, around 1 Hz,

Qa � 1100, Qs � 320,

which means that scattering is a stronger effect than absorption. Nevertheless,
a direct demonstration of the multiple scattering regime is still needed, and the
separation of the effect of absorption Qa and scattering Qs is very tricky to achieve.

Again, most of the time, coda waves are not processed. Nevertheless, both
seismic ambient noise and diffuse coda waves do contain deterministic informa-
tion on the medium, and should be used to improve the images of the Earth. To
that end, we need to develop new imaging and data processing techniques.

3. Strategy: from ultrasound to seismology

Seismology is based on the observation and processing of natural vibrations. In a
passive field experiment where seismic waves originate from earthquakes, scien-
tists are facing two simultaneous problems. They neither know the source location
and mechanism nor the medium of propagation. It is therefore very complex to
image the source and the medium at the same time. By reproducing in the lab
the main features of the seismic propagation and employing controlled sources
and sensors, we can focus our efforts on the physics of the wave propagation and
develop more comfortably new methods. In small-scale seismology, we control
for instance the size of the medium, the scattering properties, and the absorption.
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1 Limitations of conventional imaging 11

We are then able to adjust one parameter at a time and test the physical models
and imaging techniques we develop.

Another reason for carrying out analogous ultrasonic experiments is more tac-
tical: it is related to the order of magnitude of the physical parameters as recalled
in Table 1.1. Ultrasonic wavelengths are on the order of a millimeter, meaning that
experiments are physically easy to handle. Additionally, the duration of a single
ultrasonic experiment is very short (one minute) compared to seismology where
we have to wait for earthquakes (year). This characteristic allows us to achieve
many more experiments in the lab. and test many parameters over a wide range
of magnitude.

Table 1.1. Comparison of the physical parameters between seismology and ultrasound.

Wavelength Frequency Size Duration of an experiment

Seismology km mHz - Hz 6 000 km month-year

Ultrasound mm MHz m min

Several earth sciences laboratories have already decided to develop analogous
experiments for methodological developments, as in San Diego-California [18],
Colorado [19–21], Tsukuba-Japan [22], Paris-France [23, 24] and more recently
in Grenoble-France [25] to cite only a few. Our article presents some analogous
ultrasonic experiments not only devoted to the study of the physics of wave prop-
agation in heterogeneous media, but also to the development of new techniques
applicable to seismic waves in geosciences.

4. Organization of the present book

The first question addressed in the manuscript is the validity of the multiple
scattering approach to seismology.

– Are seismic waves in the multiple scattering regime?

– How does one quantify the degree of heterogeneity of the medium?

These points are addressed in Chapter 2 with two experiments: equipartition of
seismic waves and weak localization.

The following chapters are devoted to a very rapidly spreading idea: the
correlation of ambient noise yields the impulse response between two passive
receivers as if a source was placed at one sensor. This gives the opportunity of
doing ultrasound or seismology without a source. Chapter 3 proposes different
theoretical and experimental approaches to show why the Green’s function is
retained in the time correlation of diffuse fields. The time-reversal interpretation
is presented, followed by a statistical work dealing with the speed of convergence
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12 Mesoscopics of ultrasound and seismic waves: application to passive imaging

of correlations to the impulse response. Chapter 4 studies the time-symmetry
of the correlations and the role of multiple scattering. Applications to passive
imaging (imaging with ambient noise) are presented in Chapter 5. Experiments
include:

– ultrasound passive tomography;

– passive imaging of California with seismic noise;

– passive imaging of the Moon’s subsurface with seismic noise collected dur-
ing the Appolo 17 mission.

Ann. Phys. Fr. 31 •No 3 • 2006



2
Multiple scattering and weak localization

When a wave propagates through a scattering medium, it progressively loses its
coherence. The energy of the coherent part of the wave is converted to scattered
waves that follow longer scattering paths. In seismology, these long-lasting waves
constitute the coda [15] that can be observed in the late part of seismograms.
Coda waves are not random noise: they are the deterministic signatures of the
heterogeneities of the Earth’s crust. Particularly, between 1 and 10 Hz, the coda
waveforms show clear evidence of strong scattering [26]. Mesoscopic physicists
have introduced one parameter to characterize the importance of scattering: the
transport mean free path �∗. Very roughly, �∗ is the distance after which the wave
forgets its initial direction. When the distance of propagation is significantly larger
than �∗, the attenuation due to scattering strongly reduces the direct coherent wave
while the order of multiple scattering increases, which complicates the Green’s
function (GF) and makes conventional imaging very difficult. The cancellation of
the direct waves due to scattering has long been considered as a dramatic loss of
information.

This chapter is devoted to the study of the scattering parameters of the Earth.
Knowing whether seismic waves in the Earth are in the multiple scattering regime
or not is crucial for application like imaging or monitoring. Additionally, quanti-
fying the scattering (or transport) parameters of a natural medium is an original
way to evaluate its degree of heterogeneity and, therefore, to characterize the
geologic medium. This section starts with a brief theory on wave scattering,
including the definition of the scattering cross-section and the scattering mean-
free path. Then we will present different observations (field experiments) where
multiple scattering of seismic waves is observed, and a measure of �∗ deduced.

1. Waves in homogeneous media

1.1. Elastic wave equation

Let u(r, t) be the displacement vector from which the strain tensor ε is derived:

εi j(r) =
1
2

(∂iuj + ∂ jui). (2.1)
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14 Mesoscopics of ultrasound and seismic waves: application to passive imaging

In the present manuscript, we will use the Einstein’s notation convention. We
also assume that elasticity is linear: strain and stress are linked by a linear law.
This is true for most seismic waves over several order of magnitude. We also
assume that elasticity is isotropic, which is not always valid in the Earth but yet
will simplify all our equations. The stress tensor follows the Hooke’s law (see for
instance [27]):

σi j(u) = λεkk(u)δi j + 2μεi j(u) (2.2)

where δi j is the Kronecker symbol. λ andμ are usualy called the Lamé parameters,
they characterize the rigidity of the medium. We also note ρ the mass density. In
a homogeneous medium, λ, μ and ρ are constant. The Newton’s law applied to
the ith component of the displacement u writes:

∂ttu − λ + μρ ∇(div u) − μ
ρ
Δ u = 0. (2.3)

It is noteworthy to define two velocities v2
p = (λ + 2μ)/ρ and v2

s = μ/ρ. If we
note u = ∇φ + Curlψ = up + us, then vp and vs are the velocities associated to the
compressional up and shear us waves, solutions of the wave equation defined by:

∂2φ

∂t2 − v2
P∇2φ = 0;

∂2ψ

∂t2 − v2
S∇2ψ = 0. (2.4)

These two types of waves are crucial in seismology. Compressional P-waves have
a polarization (displacement axis) in the direction of propagation, and shear S-
waves have a polarization perpendicular to the direction of propagation. In the
Earth, we often observe that λ ≈ μ, therefore vp/vs ≈

√
3.

The decomposition of the wavefield into P and S waves is relevant in infinite
media. The Earth has a finite size and a free surface, this feature is at the origin of
two other types of waves: Rayleigh and Love waves. These waves are also called
surface waves, since they propagate ≈one wavelength beneath the free surface.
As the P- and S-wave velocities are different, direct P and S wave reach the seismic
stations at different times. The difference in travel time is conventionally used to
localize the earthquake.

1.2. Green’s function in homogeneous medium

The Green function (GF) of a given medium between two points A and B is the
waveform sensed at B after an impulse force at A. In a homogeneous medium,
and in the frequency domain, the acoustic GF obeys the following equation:

−ω2

v2 G0 − ΔG0 = δ(x).
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2 Multiple scattering and weak localization 15

The form of the solution varies with the dimension:

G0(ω, r) = − eikr

4πr
[3-D],

G0(ω, r) =
−i
4

H0(kr) [2-D], (2.5)

where H0 is the Hankel function of first order (and first kind). In the far field, it
asymptotically tends to −eikr+π/4/2

√
2πkr. In the time domain, these GF read

G0(t, r) =
−1
4πr
δ
(
t − r

v

)
[3-D],

G0(t, r) =
θ(t − r/v)

−2π
√

t2 − r2

v2

[2-D], (2.6)

where v is the wave velocity. θ stands for the Heaviside function. These solutions
correspond to a cylindrical (resp. spherical) wavefront diverging from the source
point.

2. Waves in disordered media

2.1. Classical and quantum waves: one single equation

In a heterogeneous medium, the elastic parameters (λ, μ, ρ) are spatially fluctuat-
ing. It is possible to separate mean quantities from fluctuations. In the case of an
acoustic wave for instance, the celerity is rewritten as v(r) = v0(1 + ξ(r)) and the
wave equation becomes

∇2G(r, ω) + k2
0G(r, ω) =

ω2

v2
0

(
ξ

1 + ξ

)
G(r, ω), (2.7)

where k0 = ω/v0 and v0 =
√
λ0/ρ0. When fluctuations are weak enough (com-

pared to the average), the left hand side of the equation describes the free propaga-
tion of the wave in a homogeneous medium, and the right hand side describes the
coupling with heterogeneities (the Born approximation). This last term generates
scattering.

For quantum waves, the density probability of the wave Ψ is a solution of the
Schrödinger’s equation:

i�∂tΨ (r, t) = − �
2

2m
∇2Ψ (r, t) + V(r)Ψ (r, t). (2.8)

Classical and quantum waves are similar since we can replace 2mω/� by k2
0, and

2mV(r)/�2 (where m is the particle mass and V the scattering potential) by ω2/v2
0
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16 Mesoscopics of ultrasound and seismic waves: application to passive imaging

(ξ/(1 + ξ)). Therefore, theoretical and experimental results obtained in quantum
physics or optics should fruitfully transpose to acoustic and seismic waves. This
is especially true for waves in heterogeneous media, where several concepts
have been transfered from one community to the other. Several examples as the
radiative transfer equation, equipartition, and weak localization, will be given in
the following.

2.2. The physical parameters for the wave propagation

Here follows the definition of several parameters. For the sake of simplicity, these
parameters are defined for acoustic (scalar) waves. They are generalized to elastic
waves later in the manuscript (see Sect. 2.3, Chap. 4).

Elastic and transport scattering cross-sections

When a plane wave impinges a scatterer, i.e. an area where elastic or acoustic
parameters differs from the rest of the medium, its trajectory and shape are mod-
ified. The scatterer redistributes the wavefield in several directions with different
amplitudes and phases. The strength of the scatterer, i.e. its ability to modify
the incident wave, is quantified by its elastic scattering cross-section σ. In 2-D,
this cross-section is a distance, in 3-D it’s a surface. The greater the section, the
stronger the scatterer. There exist different definitions for the cross-section, but
all compare the intensity of the incident wave per unit of angle to the intensity of
the scattered wave per unit of angle.

If the scatterer is localized in the medium, we can define the scattered wave
ϕ(ω) as the superposition of the incident wave ϕ0(ω) (the wave without the
scatterer at pulsation ω) and the (fictive) wave re-emitted by the scatterer ϕs(ω).
The differential scattering cross-section ∂σ/∂θ is the angular intensity of the re-
emitted wave in the directionθnormalized by the incident intensity. The direction
θ = 0◦ is usually the incident direction

∂σ
∂θ

(ω) =

∣∣∣ϕ2
s (ω, θ)

∣∣∣∣∣∣ϕ2
0(ω, θ)

∣∣∣ · (2.9)

It is relatively easy to numerically estimate the scattering cross-section of a scat-
terer of any shape and size: we simulate a plane wave impinging the scatterer
and sense the wave along a circular array (radius R) of receivers placed in the
far-field of the scatterer (R
 λ). The calculation requires two steps:

1. simulation of the reference waveϕ0(t, θ) received on the array (for all angles
θ) without the heterogeneity;

2. simulation of the wave field with the scatterer: ϕ(t, θ).
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2 Multiple scattering and weak localization 17

The difference between both records is straightforward and yields the exact scat-
tered field ϕs(t, θ). In 2-D, the differential cross-section reads

∂σ
∂θ

(θ) = R

∫ [
ϕ(t, θ) − ϕ0(t, θ)

]2 dt∫
ϕ2

0(t, θ)dt
· (2.10)

If the simulation is performed in a finite frequency band, the obtained differential
cross-section is the averaged differential cross-section in the frequency band of the
incident wave. This simulation has been performed in an acoustic 2-D medium
for three cylindrical cavities of radius a (Fig. 2.1). The numerical scheme is from
Tanter [28]. The background velocity is v = 1.5 mm/μs, the central frequency is f0 =
1 MHz and the bandwidth is 100%. 200 receivers are placed several wavelengths
from the scatterer. The incident wave is generated by a finite-aperture linear
array of omnidirectional sources (the effects of the array aperture are visible in
the figure). In front of the scatterer, the wave is partially attenuated: the incident
wave and scattered wave (in opposite phase) cancel each other.

(a) t = 1 μs (b) t = 10 μs
Figure 2.1. Snapshot of the wave simulated with a finite difference scheme. (a) Early time:
the plane wave is generated. (b) After 10 periods of propagation, the scattered wave is
clearly visible.

The total elastic cross-section characterizes the total strength of the scatterer,
it is defined as

σ =

∫
∂σ

∂θ
dθ. (2.11)

Another cross-section is of major interest in this manuscript: the transport cross-
section defined as

σ∗ =
∫ 2π

0

∂σ
∂θ

(1 − cos (θ)) dθ. (2.12)

The transport cross-section quantify the ability of the scatterer to diffuse the wave
in all directions. It is evaluated in a way comparable to the elastic cross-section,
except we now cancel the contributions in the forward direction (θ = 0◦).

The numerical simulation presented in Figure 2.1 has been repeated for three
different cylindrical scatterers of various radii: a = 0.025; 0.25; 2.5mm. Differential
cross-sections are presented in Figure 2.2, and resulting total cross-sections are
summarized in Table 2.1. These three simulations were performed in order to
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18 Mesoscopics of ultrasound and seismic waves: application to passive imaging

(a) ka � 1 (b) ka ≈ 1 (c) ka 
 1
Figure 2.2. Differential cross-section∂σ/∂θof an empty cylinder of radius (a) a = 0.025 mm,
(b) a = 0.25 mm et (c) a = 2.5 mm (λ = 1.5 mm). θ = 0◦ marks the incident direction.

Table 2.1. Parameters for the numerical simulations and evaluation of the scattering and
transport cross-section of an empty cylinder.

λ (mm) Radius a (mm) σ (mm) σ∗ (mm)
1.5 0.025 0.18 0.18
1.5 0.25 1.6 1.1
1.5 2.5 11 7.9

verify the asymptotic behavior of the cross-sections:

• ka � 1: the scatterer is small compared to the wavelength. The differential
scattering cross-section is isotropic (Fig. 2.2a), which implies σ = σ∗. In
general, when the size tends to zero (a → 0), the wave does not “see”
the heterogeneity anymore, and the scattering cross-section tends to zero,
too. Nevertheless, this is not exactly true for an empty cavity where the
normalized scattering cross-section diverges at low frequency;

• ka 
 1: the scatterer is bigger than a wavelength. Scattering is mainly
forward, and the elastic cross-section tends to the double of the geometric
cross-section (σ → 4a) and remains much bigger than the transport cross-
section (σ
 σ∗).

Scattering and transport mean-free paths

The scattering mean-free path � is the distance that characterizes the intensity de-
cay of the coherent wave. The coherent wave is obtained after ensemble averaging
〈.〉, which means averaging over the positions of the scatterers for instance. If we
note I the intensity transmitted through a scattering medium of thickness L, then
〈I〉 = I0 e−L/� where I0 is the transmitted intensity in the homogeneous medium.
In optics, this relation is named after Lambert-Beer:

〈I(L)〉 = I0 e−LnA0 (2.13)
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where n is the concentration of scatterers, and A0 is the normalized attenuation
of the scattering solution. The elastic mean-free path � is, therefore, the distance
that the wave must travel to be significantly attenuated. The density of scatterers
n, �, and σ are related by

� =
1

nσ
· (2.14)

When the heterogeneity of the medium is not a discrete but a continuous dis-
tribution it is not possible to locate a single scatterer. The concept of scattering
cross-section of a given scatterer is no longer relevant. Yet it is still possible to sta-
tistically define the transport parameters � of the medium, since these quantities
have a statistical meaning. In that case the scattering cross-section is analogous
to the medium’s ability to scatter the wave per unit of volume. For a scalar wave,
the local celerity is written as v(r) = (1 + ξ(r))v0. The medium is characterized by
the statistics of the fluctuations ξ(r). These fluctuations have two principal char-
acteristics: their correlation length, and their average (rms) intensity. LetΦ(κ) be
the spectrum of the heterogeneities (the spatial Fourier transform of ξ(r)):

Φ(κ) =
∫

eiκ(r−r’) 〈ξ(r)ξ(r’)〉d(r − r’). (2.15)

We can use this quantity to define the scattering mean-free path �:

1
2�
=
π2k2

0

2

∫ 2k0

0
Φ(κ)κdκ =

πk4
0

4

∫
4π
Φ(Ω)dΩ (2.16)

whereΩ is a solid angle. The shorter the correlation length, the stronger the scat-
tering and the shorter the mean-free path. Respectively, the greater the fluctuation
intensity, the shorter the mean-free path.

Another quantity can be defined from the transport cross-section: the transport
mean-free path �∗:

�∗ =
1

nσ∗
, (2.17)

where �∗ is the distance that the wave must travel to forget its incident direction.
This length characterizes the ability of the medium to scatter the wave in different
directions. As we will see, �∗ is the characteristic length in the diffusion equation.
Therefore, �∗ is also named the diffusion mean free path.

2.3. Thouless time

Rigorously speaking, the Thouless time τD is defined as the inverse of the mean
distance between two uncorrelated frequencies of an open scattering medium.
In the time-domain, the Thouless time is the average duration of the intensity
I(L, t) [7, 29]. Because I is solution of the diffusion equation, the duration of the
coda is also the time of its maximum: ∂tI(L, τD) = 0. Then it comes

τD =
L2

4D
[2-D]; τD =

L2

6D
[3-D] (2.18)
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where D is the diffusion constant. The number of information grains contained
in a diffusive waveform of bandwidth Δ f is:

N = τDΔ f . (2.19)

2.4. Three possible equations and approximations

The wave equation: coherent and ballistic waves

The wave equation has the advantage of requiring few assumptions: the linear-
ity of elasticity, reciprocity, and causality. For a given displacement u(r, t), this
equation reads:

ρ(r) ∂ttui = ∂i(λ(r) ∂kuk) + ∂ j(μ(r)( ∂iuj + ∂ jui)). (2.20)

The ballistic wave propagates directly from the source to the receiver; its time of
flight is the crucial information used in tomography, or other imaging applications.
The ballistic wave is often considered as the first arrival, it is the only solution
of the wave equation in homogeneous media, and is of natural use in weakly
heterogeneous media. However, it is more difficult to detect in multiply scattering
media since it has a much weaker amplitude than the following scattered arrivals.

The wave equation has the advantage of being rigorous and perfectly deter-
ministic. Nevertheless, solving the wave equation requires perfectly knowing
the medium of propagation in addition to the limit conditions (knowing the field
everywhere at a given time for instance); this is very hard to achieve in complex
media. In addition, numerically solving the wave equation in a heterogeneous
medium is computionaly expensive, and formal solutions are tedious. Therefore,
another possible approach is to deal with statistical quantities that directly de-
rive from the wave equation: the ensemble averaged wave named the coherent
wave for instance. We emphasize the difference between coherent and ballistic
waves. The coherent wave has already been introduced in Section 2.2; it suffers
an attenuation that depends on the scattering mean free path and on medium
thickness:

〈ϕ(L, t)〉 = ϕ0(L, t)e−
L
2�+iδϕ, (2.21)

where ϕ0 is the field obtained through the equivalent homogeneous medium,
and δϕ is a possible phase shift coming from the average velocity of the medium.
〈ϕ(L, t)〉 is then the wave that has propagated in an homogeneous effective medium.

The radiative transfer equation (RTE)

The RTE was empirically established by Chandrasekhar in the early 20th cen-
tury [30]. It describes the specific intensity of the wave I(x,k) at position x and
propagating in direction k. Margerin [31] proposes a detailed review on the
RTE. The propagation of the specific intensity is assumed to be analogous to the
propagation of particles thrown in a scattering medium, the phase information
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Figure 2.3. Three possible approaches to describe a scalar wave through a heterogeneous
medium: (a) the exact wave equation: the field is a sum of several arrivals interfering
with each other. (b) Radiative transfer equation: wave packets propagate as energy quanta
with an incident velocity. The phase information (the oscillation of the wave) is lost, but
the packets retain the memory of their trajectory. (c) The diffusion equation: the intensity
isotropically diffuses as a Brownian motion.

is lost. Each particle at x and propagating in direction k is possibly scattered in
the direction k′. The RTE describes the mean specific intensity after ensemble
averaging:

k · ∇I(x,k) = − I(x,k)
�
+

1
4π�

∫
4π

I(x,k′)p(k′,k)dk′ + e(x,k) (2.22)

where k is a unit vector. The link between the mean specific intensity and the sta-
tionary wave equation has been explored in references [32,33], but the derivation
is tricky and fastidious. Historically, the RTE was introduced empirically, and
equation (2.22) derives from the conservation of energy:

• the left hand side is the particle advection;

• −I(x,k)/� is the loss due to scattering into another direction. It is related to
the probability of the particle propagating in direction k to be scattered in
any other direction k′. This scattering probability is eventually related to
the elastic mean free path �;

• (1/4π)
∫

4π
I(x,k′)p(k′,k)dk′ is a term of gain. p(k′,k) is the density of prob-

ability that a particle k′ be scattered in direction k;

• e(x,k) is the source term: the probability to create a particle at x propagating
in direction k.
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In order to establish the dynamic RTE (the response of the medium after an
impulse), one need to empirically add the following term:

1
c
∂I(x,k, t)
∂t

+ k · ∇I(x,k, t) = − I(x,k, t)
�

+
1

4π�

∫
4π

I(x,k′, t)p(k′,k)dk′ + e(x,k, t).

(2.23)
By noting

1
c
∂
∂t
+ k · ∇ = 1

c
d
dt
,

the RTE is simply a dynamic balance between gain and loss of specific intensity
in an elementary volume [33–35].

The diffusion equation

The diffusion equation derives from the RTE. It no longer deals with the specific
intensity in a given direction, but on the energy density ρ:

ρ(x, t) =
1
c

∫
4π

I(x,k, t)dk. (2.24)

On one hand we have lost the information about the preferential direction of
propagation of the particles, but on the other hand, as we will see, the equation for
ρ is much simpler. Let’s denote the local current density as J(x, t) =

∫
4π

I(x,k, t)kdk.
Multiple scattering processes tend to uniformize the angular dependence of

intensity because each scattering event distributes energy over the whole solid
angle. Hence, after a sufficiently large number of scattering events, we may expect
the intensity to differ only slightly from isotropy. The local direction of maximum
energy is directed along the current vector. The physical idea of the diffusion
approximation is to write the intensity as a sum of two terms: first the angular
average, and second a term which takes into account the slight deviation from
isotropy expressed in terms of the current vector. In terms of J and ρ the intensity
is thus expanded as:

I(x,k, t) =
v

4π
ρ(x, t) +

3
4π

k · J + ...

Let’s now apply to the RTE the two following operations. The first one is an
integration over all direction of propagation

∫
4π

(.)kdk. The RTE becomes:

1
c
∂tJ + v∇ρ = −J/� +

1
�

∫
4π

Jp(θ) cos(θ)dk. (2.25)

The transport mean free path �∗ naturally appears from the last two terms:

�∗ =
�

1
4π

∫
4π p(θ)(1− cos(θ))dk

· (2.26)
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In a quasi-static regime, the temporal derivative can be neglected and we obtain
the Fick’s law:

J = −v�∗

3
∇ρ. (2.27)

We now apply to equation (2.23) the operation
∫

4π
(.)dk and obtain:

∂tρ + ∇ · J = δ(x)δ(t). (2.28)

By combining equations (2.27) and (2.28), we obtain the well-known diffusion
equation:

∂tρ −D∇2ρ = δ(x)δ(t); D =
v�∗

3
· (2.29)

2.5. Mesoscopics of seismic waves

To deal with waves in heterogeneous media, we have so far introduced four
characteristic lengths: the absorption length la, the size of the medium L, the
transport mean free path �∗, and the wavelengthλ. The comparison of these length
allow to define several regimes. Two regimes are probably the most interesting.
In the ballistic regime, the wave propagates with little absorption and scattering:

λ < L < la and �∗. (2.30)

In this regime, direct waves are well resolved and the simple scattering approx-
imation applies. It is therefore the ideal regime for applications like imaging,
monitoring, or communication. Another regime is of high interest: the mesoscopic
regime [29, 36, 37], that obeys the following relations:

λ < �∗ � L� la. (2.31)

In this regime, waves may be multiply scattered before reaching the receiver or
being absorbed. Wave trajectories are very complex and well described by random
walks. Nevertheless, as long as the medium does not move, the wave equation
is still fully deterministic and phase effects like wave interferences can occur. In
this regime, both wave (microscopic) and Boltzmann (macroscopic) equations
are valid. This regime has undergone intensive investigations during the last
thirty years, especially in optics and quantum mechanics (electronic conductance).
New applications were found in acoustics, and, as we will see in this section,
mesoscopics also applies to seismic waves.

3. Equipartition of seismic waves

3.1. Theory

The multiple scattering assumption has an important consequence: at each scat-
tering event, waves are converted. Therefore, after several scattering, a stationary
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regime is set and mode conversion equilibrates: the initial energy spreads with
equal probability over all modes. This equipartitioned regime was fully investi-
gated by Weaver in the 1980’s [38–40]: he calculated the energy partitioning of
ultrasonic waves in an elastic body with and without a free surface. In an infinite
3-D medium, the energy density of bulk P and S waves is ρp,s = ω2/v3

p,s (this for-
mula is simply derived from modal density). The equipartition ratio is the ratio
between potential energy:

Es

Ep
=

2v3
p

v3
s
· (2.32)

In the Earth crust (where vP ≈ 6 km and vS ≈ 3.5 km) the expected ratio is
10.4 [41, 42]. It is important to emphasize that this ratio is reached only in the
multiple scattering regime. In the simple scattering regime, this ratio mainly
depends on the source mechanism. For instance, an isotropic explosion (divergent
excitation) emits mainly P waves, and the ratio tends to 0. On the contrary, just
after an earthquake (a double couple force), this ratio tends to∞.

3.2. Observation of equipartition

An important effort was made by Shapiro and co-workers to experimentally
measure this ratio. Their aim was to measure the energy of compressional and
shear potential energy:

EP =
(
λ
2
+ μ

)
(div u)2; ES =

μ

2
(Curl u)2 . (2.33)

To that end, in 1998, they dispatched in Mexico an array of seismic stations in a
geometry that allows the measurement of the spatial derivatives of the seismic
wavefield u (see Fig. 2.4). Spatial derivatives are well-evaluated if the distance
between the three-components stations d is shorter than the wavelength λ
 d:

∂ui

∂x
=

u3
i − u1

i

d
,
∂ui

∂y
=

u2
i − u1

i

d
, i = x, y, z. (2.34)

Figure 2.4. Experimental setup
for measuring the intensity of the
shear and compressional part of
the seismic wavefield.
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The vertical spatial derivative is easily evaluated by means of the traction free
condition at the surface: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uy

∂z
= −∂uz

∂y

∂ux

∂z
= −∂uz

∂x

∂uz

∂z
= −v2

S

v2
p

(
∂ux

∂x
+
∂uy

∂y

)
·

(2.35)

They observed that, in the coda, the energy between P and S wave equilibrates,
and the ratio fluctuations are weak, as predicted by theory. Nevertheless, they
found an average ratio of 7.30 ± 0.72, which is not in agreement with the 3-D
elastic theory. Actually, theory was initially developed for elastic waves without
the free surface. The surface waves drastically modify the partition ratio, and
their omission was not justified. Therefore, at the free surface, all modes (bulk
and surface waves) have to be taken into account in the equipartition ratio. The
modified theoretical equipartition ratio at the Earth surface was later found to
be 7.19 [26]. Theory and experiment then (almost) matched. The observation
of the stabilization of the energy partition ratio, and the absolute value of the
equipartition, are two strong indications that coda waves, at least in Mexico
(Fig. 2.5), are made of multiply scattered waves.

Figure 2.5. (a) Example of
seismogram recorded in
Mexico. (b) Energy partition
ratio ES/EP versus time.

3.3. A new model for the Earth crust

From these equipartition consideration, along with the work of Margerin on the
radiative transfer equation, a new model of the Earth crust was proposed [17,
26, 34, 43]. The continental crust, whose thickness varies from 30 to 70 km, is a
very heterogeneous slab overlying a rather homogeneous mantle. The impedance
contrast at the Moho (the crust-mantle discontinuity) induces waveguiding for
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Figure 2.6. Schematic
view of the earth crust as
a possible model for seis-
mic waves propagation
as proposed by Margerin
et al. [44], and confirmed
by the observation of
equipartition.

large angles of incidence and partially traps the seismic energy in the crust. For
other incidences, the waves leak into the mantle and are lost. Scattering properties
of the crust around 1 Hz vary over several orders of magnitude from one place to
another. Nevertheless, in average, one can assume that the mean-free path �∗ is
about the crust thickness. This picture is presented in Figure 2.6.

4. Weak localization of seismic waves

The seismic coda is not always processed because it is believed not to contain
any structural information that is easily extractable using standard imaging tech-
niques. During the past two decades, radiative transfer was successfully intro-
duced to model the energy decay of coda waves [45]. It describes the transport
of the wave energy in space and time, but does not take into account phase in-
formation. Is the phase information preserved in the multiple scattering regime?
And, moreover, can we demonstrate the presence of multiple scattering in the
seismic coda? These points are addressed in this section where we observe the
Weak localization (WL) effect.

4.1. Weak localization: an interference effect

Weak localization is a manifestation of interference of multiply scattered waves
in disordered media and was first discovered 20 years ago in quantum physics. It
was recognized to be the origin of novel features in the electronic magnetoresis-
tance at low temperatures [46–48], and a genuine explosion of mesoscopic physics
followed. The discovery of WL constituted the desired counterexample of the in-
tuition that multiple scattering of waves destroys wave phenomena, reducing it
conveniently to classical radiative transfer, where waves are treated similarly to
hard spheres colliding with obstacles.

Weak localization finds its origin in the constructive interference between long
reciprocal paths in wave scattering [49–51]. This enhances the probability to return
to the source by a factor of exactly 2, which results in the local energy density
enhancement by the same factor. In optics [52–54] and in acoustics [55,56] the effect
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is better known as coherent backscattering, and it was shown to be an accurate way
to measure transport mean-free paths �∗ or diffusion constants. However, the WL
effect has never been observed in seismology. Such an observation is presented
in the following. The aim of this work is to show the relevance of mesoscopic
physics to seismology and its necessity to interpret seismic observations.

In seismic experiments, we expect WL to appear as an enhancement of seismic
energy in the vicinity of a source [57, 58]. The main features are:

1. the energy enhancement factor around the source is two,

2. the spatial extension of this enhancement is the Rayleigh wavelength,

3. and the characteristic time for its onset is the scattering mean-free time.

Figure 2.7 proposes an empirical interpretation of WL, or coherent backscattering
effect. In the simple scattering regime, waves randomly interfere with each other.
For two waves of unity amplitude, the intensity of their interference is 2 in average,
which results in a constant energy background backscattered around the source.
In the multiple scattering regime, this picture is still valid for distant source
and receiver. But if source and receiver are close together, we have to take into
account coherent interference of reciprocal paths. Each trajectory SR made of
unit amplitude wave adds up constructively with its counterpart. The resulting
intensity is 4; twice as much energy as for other backscattered waves. This
constructive interference occurs over one wavelength. The detailed calculation of
the spatial enhancement is given in next section.

Figure 2.7. Illustration of the enhanced backscattering effect. (a) Single scattering regime.
(b) Multiple scattering far from the source. (c) Coherent interference of reciprocal paths at
the source.

4.2. Theory for the spatial enhancement

Since seismic waves sensed at the surface are mostly made of 2-D surface waves,
we propose here a 2-D scalar formulation for the spatial energy enhancement. In
addition, the 2-D scalar calculation is much simpler than the full 3-D elastic case.
Of course, we have to keep in mind that this assumption is not rigorous: at least
part of the scattering occurs in the bulk.
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Figure 2.8. Schematic view of
the propagation of waves from the
source S to the receiver R. Dashed
line is for reciprocal paths. If
the source-sensor distance Δr is
smaller than the wavelength, re-
ciprocal paths interfere construc-
tively. Crawling arrows are for
the intensity diffusion between
the first and the last scatterer.

2-D scattering open medium

Let an acoustic wave of pulsation ω propagate in a 2-D scattering medium of
average velocity v. It is emitted by S and recorded at R. Let D1 denote the first
scatterer. Statistically, the wave propagates over a distance � (the scattering mean
free path) before the first scattering event. Similarly, Dn denotes the last scattering
event, and is at a distance � from the sensor R.

The propagation from S to D1 is equivalent to the free propagation in the
effective medium where the wavefront suffers from an attenuation equivalent
to e−|S−D1 |/2�. The wave re-emitted by the last scatterer undergoes an equivalent
attenuation. The corresponding GF reads:

G(S,D1) =
−i
4

H(1)
0 (k · (S −D1)) e−|S−D1 |/2�, (2.36)

where k = ω/v is the wavenumber.
The field sensed at R is the sum of all ray paths in the 2-D scattering medium.

This sum can be expanded into a double sum
∑

D1,Dn
G(S,D1,Dn,R) where D1 and

Dn are the first and last scattering event. One has to keep in mind to take into
account reciprocal paths

∑
D1,Dn

G(S,Dn,D1,R).
It is not possible of course to describe in details all the ray trajectories between

the first and last scatterer. Fortunately, we do not need to know the exact GF
between D1 and Dn. Indeed, a description in terms of mean intensity is enough:
the phase information of the exact waveform of that part of propagation is lost
when processing the intensity at R. This propagator, noted P(D1,Dn, t), is the
probability density for the wave at D1 to get at Dn after a lapse time t. The square
of this propagator is for example the solution of the RTE, or more simply solution
of the diffusion equation ∇2P2 −D∂tP2 = δ(t)δ(r):

P2(D1,D2, t) =
1

4πDt
e−

|Dn−D1 |
4Dt2 . (2.37)
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The field at R writes:

G(S,R, t) =
� {

G(S,D1)P(D1,Dn, t)G(Dn,R)

+ G(S,Dn)P(Dn,D1, t)G(D1,R)
}
dD1dDn. (2.38)

Coherent and incoherent intensity

The total intensity I(t) received at R at time t is:

I(t) =
�

G(S,D1,Dn,R) + G(S,D1,Dn,R)dD1dDn

×
�

G∗(S,D1,Dn,R) + G∗(S,D1,Dn,R)dD1dDn (2.39)

where ∗ stands for complex conjugate. After an expansion and a simplification of
equal terms, this formula splits into two contributions: one is called the coherent
intensity Icoh, the other is the incoherent intensity Iinc:

Iinc =

�
G(S,D1)G∗(S,D1)P2(D1,Dn, t)G(Dn,R)G∗(Dn,R)dD1dDn,

Icoh =

�
G(S,D1)G∗(S,Dn)P2(D1,Dn, t)G(Dn,R)G∗(D1,R)dD1dDn.

Though Icoh and Iinc have similar form, they have totally different physical inter-
pretation. In the incoherent part, there is no interference between two different
paths, the incoherent part is spatially constant. In the coherent part interference
between reciprocal paths occurs: D1 → R interferes with Dn → R. In average, this
interference cancels the coherent intensity. But when the receiver is close to the
source Δr = |S − R| < λ, then the two couples D1R −DnR and D1S −DnS exactly
match, which results in the doubling of the intensity. The spatial extension of the
enhancement around the source S(Δr) is given by:

S(Δr) = 1 +
Icoh

Iinc
= 1 + |J|2 (2.40)

where

J =
∫

G(D1,S)G∗(D1,R)dD1. (2.41)

To evaluate Icoh and Iinc, we substitute G and P by equations (2.36) and (2.37),
then we carry out the double integration over D1 and Dn. Note that the two GF
G(D1,S) and G(D1,R) can be expressed in terms of their Fourier transform:

G(D1,R) =
1

4π2

∫
eiκ·(D1−R)

k2 − κ2 + ik/�
d2κ, (2.42)

G(D1,S) =
1

4π2

∫
e−iκ′·(D1−S)

k2 − κ′2 + ik/�
d2κ′. (2.43)
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The integration over D1 leaves:

J =
�

δ(κ − κ′)e−iκ′·(S−R)

(k2 − κ2 + ik/�)(k2 − κ′2 + ik/�)
d2κd2κ′. (2.44)

The integration over κ yields:

J =
1

4π2

∫
J0(κΔr)κdκ

(k2 − κ2) + k2/�2
· (2.45)

By using the equality J0(κΔr) = H(1)
0 (κΔr)+H(2)

0 (κΔr), and noticing that H(2)
0 (κΔr) =

H(1)
0 (−κΔr + iε) with ε→ 0, and applying the Cauchy theorem we find:

J =
π�
2k

[
H(1)

0

(
kΔr +

iΔr
2�

)
−H(1)

0

(
−kΔr +

iΔr
2�

)]
· (2.46)

To summarize, the spatial extension for weak localization, in a 2-D scalar case and
in the asymptotic (� 
 Δr) regime, takes the form

S(kΔr) = 1 + J2
0(kΔr), (2.47)

which confirms that the backscattered energy is doubled around the source with
a spatial extension characterized by the wavelength. Note that because some 3-D
shear and compressional waves are also in the seismic record, and because their
respective wavelength are slightly larger (λP, λS > λR), we expect the WL width
to be slightly larger than the one calculated in the Rayleigh 2-D approximation.

4.3. Experimental setup

The observation of WL requires four conditions to be fulfilled:

1. some receivers must be placed less than one wavelength from the source
(interference condition);

2. given the vertical force as a source, we must study the energy E(t) associated
with the vertical seismic motion as a function of source-receiver distance
(reciprocity condition) [58, 59];

3. next, waves must have the time to scatter at least twice (multiple scattering
condition);

4. finally, enhancement is expected to occur only for the ensemble-averaged
energy because speckles, i.e., random interference patterns, dominate in a
single profile.

The seismic experiments were undertaken at the Puy des Goules volcano (central
France). Volcanoes are known to be very heterogeneous and might guarantee mul-
tiple scattering [60]. A sketch of the experimental setup is displayed in Figure 2.9.
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(a) Experimental setup (b) Geographical position
Figure 2.9. (a) Seismic source in the middle of an array of geophones. Solid and dashed
arrows illustrate reciprocal scattered wave paths. (b) Map and picture of the volcano. The
line AB marks the position of the array. Map from IGN.

We measured the vertical ground motion using a linear array of 23 geophones
separated by 2.5 m. The ground motion is the result of a sledgehammer strike at
time t = 0 on a 20 cm × 20 cm aluminum plate which was repeated 50 times for
each location.

The individual strikes produce forces that may fluctuate slightly in direction
around the ideal vertical direction, and may have slightly different frequency
contents. By stacking the records of 50 repeated strikes, we simulate a vertical
point force which can be considered as a narrow impulse in the 15–30 Hz frequency
range. Because the receivers are placed at the free surface, the detected waves
are both bulk waves (with either compressional or transverse polarization) and
surface waves (Rayleigh waves with elliptical polarization), each propagating at
its own velocity. The wavelengths λ roughly range from 9 m (30 Hz Rayleigh
waves) to 40 m (15 Hz compressional waves). A typical record is presented in
Figure 2.10.

The first 0.5 s of the 3 s signal is composed of direct and simply reflected
waves, which are traditionally used in seismic prospecting. In this work we will
process the average energy of the subsequent seismic coda. For a given source,
the intensity in the coda shows spatial and temporal fluctuations that are similar
to the optical speckle. Because of its random nature, the speckle is suppressed by
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Figure 2.10. (a) Example of vertical
ground motion signal si(t) at the source
location. (b) Zoom into the coda. (c) The
cumulative ratio R as a function of time,
calculated from equation (2.48), indi-
cates whether or not the noise generated
around the source by the operator is neg-
ligible. Figure reprinted with permission
from [É. Larose et al., Phys. Rev. Lett.
93, 48501 (2004)]. Copyright 2007 by the
American Physical Society.

a configurational average while the deterministic WL effect survives. The only
average conceivable in seismology is one over source and receiver positions for
a fixed source-receiver distance Δr. To this end, we kept the receiver array fixed
and we placed the source next to a receiver every 5 m along the array, which
provides a total of 12 different configurations. For a diffuse field, the correlation
length is λ/2 [61], which implies that each of these measurements corresponds
to an independent source-receiver configuration for wavelengths of 10 m or less.
For larger wavelengths, statistical correlations still persist, which may degrade
the ensemble-averaging process.

4.4. Experimental concerns

Studying actively generated coda waves is an experimental challenge. Because of
the very fast coda decay, seismic signals must be recorded over a huge dynamic
range without reaching the ambient seismic noise level, or even the electronic
noise. For this reason, recent 24 bit seismic acquisition devices are crucial. Yet,
it’s not enough. To increase the signal-to-noise ratio in the coda, three additional
steps are required:

1. the seismic signal must be high in the frequency range of interest (here: 10–
100 Hz). We increased the earth-geophone coupling by burying the sensors
at a depth of 20 cm in the ground. In addition, we repeated the source
50 times for each position of the source. Of course, an explosive source
would have been more convenient, but it does not meet the reciprocity
condition for WL (condition number 2);
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2. the ambient noise must be weak. We carried out experiments during quiet
times: by night and under anticyclonic conditions, and in a quiet place:
away from roads, towns, and industrial areas. We noted that even a weak
wind in the nearby trees might be a noticeable source of seismic noise.
Additionally, burying the geophones reduces the effect of aerial ambient
noise;

3. the coda must be long lasting (high Q factor). To that end, we chose a highly
heterogeneous geological site: a volcano. We also tested several other places,
like limestone sediments or moraines. In the first case, scattering was not
very high, in the latter absorption was more important. Nevertheless, we
stress that larger experiments followed by meticulous analysis could also
reveal WL at these sites.

The identification of WL must be accompanied by a close study of different kinds
of noise that contaminate the seismic record. In the following discussion, we
separate the ambient noise from that generated by the operator of the hammer,
and identify the mesoscopic regime where noise is negligible. The operator noise
comes from the person manipulating the hammer who is subject to residual
movements just before and after the hammer strike. This noise is difficult to
separate unambiguously from the signal, because it is local and non-stationary
and could be misinterpreted as WL. Ambient background noise is stationary and
random, but the operator noise might not be...

Fortunately, biophysical studies have revealed that the reproducibility of hu-
man motion is limited to frequencies lower than 10 Hz [62]. This suggests that
the noise produced by the operator can be considered as random in our frequency
band. In order to verify this property and to test quantitatively how efficient the
stacking is in increasing the signal-to-noise ratio, we study the sum of M signals
si(t) produced by repeated strikes at the same location. Each signal results from
N = 10 strikes that were automatically stacked in the field. We expect both the
ambient and the human noise to add up incoherently (∝ √M) while the seis-
mic signal deterministically generated by the impacts should add up coherently
(∝ M). Figure 2.11 confirms these assumptions. For a more quantitative study,
we analyze the time evolution of the signal-to-noise ratio using the cumulative
index R:

R(t) =

√√√√√√
1
M

〈[∑M
i=1 si(t)

]2
〉

〈∑M
i=1 s2

i (t)
〉 · (2.48)

The brackets 〈.〉 denote an average over one oscillation period T = 40 ms. The
ratio R(t) takes its maximum value 1 for a perfectly deterministic signal and equals
1/
√

M for pure random noise. Figure 2.10c shows an example of R(t), computed
for M = 5 signals recorded at the source position. R ≈ 1/

√
5 indicates that the

record is dominated by random noise, whereas R = 1 indicates that the record is
strongly dominated by deterministic waves produced by the impact. This plot
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Figure 2.11. Top: incoherent summation of human noise. Middle: coherent summation of
the seismic response. Bottom: incoherent summation of ambient background noise. Each
record is made of N = 10 strikes.

confirms the randomness of the operator noise (t < 0) and the deterministic nature
of the seismic signal. Between 0 and 2 s, R(t) always exceeds 90% which enables
the processing of the coda with an excellent signal-to-noise ratio.

4.5. Results

To evaluate the spatial enhancement of energy S(Δr), we normalize the average
energy 〈EC〉 around the source by its measured average value 〈ED〉 sufficiently
far away (15 m) from the source where the energy density is independent of
the source-receiver distance Δr. The theoretical prediction for S(Δr) at the free
surface of an elastic body was obtained in [59] and Section 4.2. The vertical
force generates both bulk and Rayleigh waves, which undergo mode conversions
resulting in equipartition in phase space [26,38]. While both waves play a part in
the dynamics of scattering, the Rayleigh waves dominate the local energy at the
free surface once equipartition is established. As a result, the rigorous expression
obtained in reference [59] can be approximated by the profile predicted for 2-D
random media [63, 64]:

S(Δr) ≡ 〈EC〉
〈ED〉 ≈ 1 + J2

0(2πΔr/λ) (2.49)
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where λ is the wavelength of the predominant Rayleigh waves and J0 is the
Bessel function. Note that for the near-field regime the size of the WL spot is
independent of elapsed time t, contrary to the far field regime [55,56]. The energy
distribution E(t) at each sensor is integrated over one sliding window of one cycle
duration. The dynamics are studied by analyzing the signals in non-overlapping
time windows of 0.4 s duration. In each window, E(t) is normalized at each time t
by the maximum over the array, and then averaged over the 12 configurations
with equal Δr. This procedure compensates for the exponential decay of the total
energy, and provides an unbiased average over the different strikes. Finally, we
integrate the normalized, averaged energy 〈E(t, Δr)〉 over the entire time window.
S is then computed from equation (2.49).

In Figure 2.12, we plot the seismic energy around 20 Hz measured in the
coda as a function of source-sensor distance, and for three specific 0.4 s windows.
Around 0.3 s only simply reflected waves are recorded and no energy enhance-
ment is visible around the source. The remaining fluctuations are ascribed to the
incomplete suppression of speckle. As from 0.7 s, WL is observed with a gradu-
ally increasing enhancement factor at the source. After 1.7 s, the profile including
the enhancement factor 2 has stabilized, as predicted by the theory for WL in the
near field. Therefore, we attribute this enhancement to WL. According to equa-
tion (2.49), the spot has a spatial extent equal to the wavelength λ. This gives the
estimate v = 260 m/s for the phase velocity of the Rayleigh waves around 20 Hz.
Since at least two scattering events are necessary to generate the enhancement
effect, the rise of the enhancement factor corresponds to the transition from the
simple to the multiple scattering regime. It was verified in numerical studies [57]
that the characteristic time governing the rise of the enhancement factor is the
scattering mean-free time t∗. We thus conclude that this important time scale
is of the order of 0.7 s around 20 Hz. For a velocity v = 300 m/s, this implies
a scattering mean-free path �∗ ≈ 200 m. We emphasize that this parameter is
very difficult to measure with traditional techniques based on attenuation studies
because absorption is hard to separate from scattering effects.
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Figure 2.12. Energy ra-
tio S(Δr) around 20 Hz as
a function of source-receiver
distance Δr for three different
lapse times. The WL effect sets
in at a time of roughly 0.7 s,
and is fully stabilized at 1.7 s.
Figure reprinted with permis-
sion from [É. Larose et al.,
Phys. Rev. Lett. 93, 48501
(2004)]. Copyright 2007 by the
American Physical Society.
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Phys. Rev. Lett. 93, 48501 (2004)]. Copyright 2007
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Finally, we have studied the frequency dependence of WL. To this end, the
seismograms were filtered in three consecutive frequency bands, and the energy
profiles were computed as above, though now averaged over the entire coda that
exhibits the stabilization of the enhancement S(Δr) (Fig. 2.13). Three different WL
widths are observed. The values for the wavelengths estimated from a fit to equa-
tion (2.49) have been indicated. We have separately measured the wavelength
of Rayleigh waves from a dispersion analysis of direct arrivals in the original
records. Both estimates of the wavelength are consistent and indicate a signifi-
cant dispersion due to the depth dependence of elastic properties. As a result, the
spatial width of WL depends nontrivially upon frequency. Future studies might
even reveal the frequency dependence of the scattering mean free path �∗, which
would provide precious information on the nature of the heterogeneity.

5. Conclusions and implications for imaging
We have here presented two observations that demonstrate the presence of mul-
tiple scattering in the seismic coda. One is the seismic equipartition, which result
in an equilibration between the shear and compressional potential energy in the
coda. The other is weak localization of seismic waves in a shallow volcanic struc-
ture. WL was observed both in space and time, and was found to be in good
agreement with the near-field theory which predicts a size of one wavelength for
the enhancement spot.
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The study of the WL dynamics turns out to offer a unique opportunity to
measure the scattering mean-free time without the bias of absorption. We found
an estimate of t∗ ≈ 0.7 s for the mean-free time for seismic waves around 20 Hz.
This time characterizes the transition from the single scattering regime to the mul-
tiple scattering regime, which has an important implication for standard seismic
imaging.

• In a reflection seismic survey, t∗ is the maximum time to be processed. Since
waves arriving later than t∗ contain more multiply than simply scattered
waves, their processing will not enhance the quality of the seismic images,
and may even degrade them.

• In a refraction seismic survey, we suggest that direct waves are not taken
into account if they arrive later then 10t∗. Indeed, scattering along the ray
path results not only in attenuation, but also in fluctuations in arrival time.
Again, the seismic image could be degraded.

All the geological media are potentially multiple scattering. The question of
whether or not they are multiply scattering now appears irrelevant. Their degree
of heterogeneity is connected to their ability to scatter seismic waves, which can be
quantified with the scattering mean free time t∗. Only the comparison of t∗ to the
intrinsic absorption of the medium ta, and to the record length T, allow conclusions
to be made on the validity of the simple scattering approximation. Observing
multiply scattered seismic waves does not only depend on the heterogeneity of
the medium, but also on our ability of recording low-amplitude late arrivals.

The scattering mean free time can vary over several orders of magnitude from
one site to another (see Tab. 2.2). This clearly opens up new routes for evaluating
and characterizing natural media like the Earth.

Table 2.2. Example of scattering mean free times.

Site t∗ frequency reference
Volcano (Merapi) 0.1 s 10 Hz [65]

Volcano (Auvergne) 0.7 s 20 Hz [66]
Crust (Mexico) 10 s 1 Hz [17]
Crust (France) 60 s 2 Hz [67]

Mantle 2000 s 1 Hz [68]

To conclude more generally, our experiments reveal the mesoscopic nature of
seismic waves that have traveled many kilometers in the earth crust. As has been
the case in nanophysics and in colloid physics, mesoscopic physics may open up
new fields of investigation and application in seismology. Precisely, one potential
application of mesoscopics of seismic waves is presented in next three chapters.
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3
Correlation of diffuse waves and noise

The physics of wave propagation in complex media covers various areas of re-
search, ranging from quantum mechanics to classical waves like optics [36,53,54,
69–72], ultrasound [56,73], acoustics and room reverberation, seismology [15,26],
astrophysics, or ocean acoustics [74, 75]. This diversity gave rise to fruitful trans-
disciplinary approaches. From the 1980’s on, huge improvements have been
achieved in understanding and modeling wave propagation in inhomogeneous,
random, or reverberant media. Many domains of applications are concerned,
e.g., imaging [76], detection, or communication [77] in a complex environment.
Usually, the first, essential step is to know the Green’s function of the medium
under investigation. When possible, the Green’s function (or impulse response)
hAB between two points A and B is determined by a direct transmit/receive mea-
surement.

The purpose of this chapter is to develop another way to recover the GF of
a medium. We will take advantage of the phase information contained in the
seismic coda or in the seismic noise. We propose a passive technique that thor-
oughly exploits the seismic records to produce an image of the medium. This will
be done by correlating records obtained at two different points. Within the last
2 decades, strong attention was paid to correlation of scattered waves. In optics,
short and long range intensity correlations of speckle patterns were thoroughly
investigated [36, 69, 70]. Time-varying correlation of scattered fields [73, 78] (dif-
fusive wave spectroscopy) have given new insight for monitoring changes in
complex media. What we propose here is different. When averaged over time
and/or sources, this correlation yields the impulse response between the two re-
ceivers, as if a source was placed at one of them. This is the basis of the very
rapidly spreading Passive Imaging technique. Different theoretical approaches
are presented in the following. Because a real seismic experiment is time con-
suming and never easy to setup, we will illustrate this principle with numerical
simulations and ultrasonic experiments.

1. The pioneers

In his pioneering works in 1957, Aki [8] noticed that the seismic wavefield orig-
inating from different noise sources is spatially coherent over one wavelength.
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More precisely, if the seismic surface waves are incoming from all directions,
meaning that the noise is diffuse enough, the spatial correlation takes the form of
the Bessel function

〈
ϕ(x, ω)ϕ(x+ r, ω)∗

〉
= |F(ω)|2 J0(kr). He suggested that the ob-

servation of such a spatial correlation could provide an accurate way of measuring
the wavelength of surface waves at several frequencies, and, therefore, through an
inversion of the dispersion curve, could give the structure of the subsurface at the
given site x. This Spectral Auto-Correlation method (SPAC) assumes a perfectly
diffuse seismic noise made of 2-D surface waves. It is now widely used to con-
strain the elastic properties of the first km beneath the Earth’s surface, especially
for seismic hazard assessment [11].

Later on, Claerbout stressed that this observation could be extended for dis-
tances r much larger than the wavelength. He conjectured that the spatial cor-
relation of seismic waves, averaged over time, should yield the actual impulse
response of the medium. This property was demonstrated theoretically in a 1-D
layered medium [79], but was not at that time generalized to 3-D media and was
found to have only feeble experimental confirmations.

During the early 1990’s, Duvall and co-workers developed a similar tech-
nique to image the sun’s interior [74]. From the correlation of surface velocity
records obtained by Doppler measurements, they computed the acoustic impulse
response of the sun between two points at the surface and, from the arrival time
and the ray theory, imaged the sun’s interior. More recently, Weaver and Lobkis
demonstrated that the time-averaged correlation of diffuse ultrasounds or ultra-
sonic noise yields the elastic Green’s function of the medium. Their approach
was quite original: it took advantage of the full waveforms and, more precisely,
of the mesoscopic nature of diffuse fields. If the wave is sensed by two passive
receivers at A an B, they showed both theoretically and experimentally that the
time derivative of the correlation is the exact Green’s function of the medium, as
if a source was place at A or B:

∂τCAB(τ) = ∂τ

∫
ϕA(t)ϕB(t + τ)dt

= G+(A,B, τ) − G−(A,B,−τ) (3.1)

where G+ and G− are the causal and anti-causal Green’s function. This result
provided the opportunity of doing ultrasonics without a source [80], and now finds
considerable application in seismology.

2. Theoretical approach

2.1. The fluctuation-dissipation theorem

The idea of retrieving some deterministic information on the medium from the
correlation of a fluctuating variable is not recent; it is actually the underlying
idea of the Fluctuation-Dissipation Theorem (FDT), developed by Einstein for the
Brownian motion of particles in a viscous fluid [81]. The FDT was generalized
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by Kubo [82], who formally linked the fluctuations of any given field ξ(r, t) to the
linear response G of the system (dissipation for instance), provided ergodicity.
The system is ergodic as long as time and ensemble averaging are equivalent.
This last assumption sometime deserves attention.

More recently, Rytov et al. [83] proposed to extent the FDT to elastic and elec-
tromagnetic waves under thermal equilibrium. Their demonstration is essentially
based on the assumption that sources are continuously distributed in the whole
scrutined volume (thermal equipartition). The central part of the FDT is the aver-
aging, which can be realized over time, over space, over disorder, or over sources.
Each averaging might yield a different result. In the following, we will perform
source and/or time averaging. This averaging is probably adapted to practical
applications like imaging, but it is not always the easiest way to perform ana-
lytical calculation. As we will see, we will sometimes need to invoke ensemble
averaging, especially to understand the role of scattering and the dynamics of
correlations in the next chapter [20, 84].

2.2. Correlation in a reverberant elastic body

We propose in the following a theoretical approach based on a modal expansion
valid in closed reverberant bodies, which perfectly applies to the aluminum cav-
ities employed by Weaver and Lobkis in their experiments [80, 85, 86]. We will
point out the role and importance of the Heisenberg time (break time) and ad-
dress the question of the possible time-derivative of the correlations. Note that
the dimension of each quantity is presented in square brackets.

First, we recall the link between the elastic wave equation and the local dis-
placement u due to a volumic force f0:

−ρ(x)∂ttui + ∂i(λ(x) ∂kuk) + ∂ j(μ(x)( ∂iuj + ∂ jui)) = f i(x, t) (3.2)

where λ and μ are the Lamé coefficients, G [m s−1 N−1] is the Green function of
the system: the impulse response of the medium, which allows the evaluation of
any displacement u(x, t) [m] resulting from any force f(y, t′) [N m−3]:

ui(x, t) =
∫

V

∫ t

−∞
Gij(x, y, t− t′) f j(y, t′)d3ydt′ = G ⊗ f (3.3)

where⊗ represents convolution, and V is the volume of the body. We introduce the
spatial derivative operatorLx defined as: Lxui = ∂i(λ(x) ∂kuk)+∂ j(μ(x)(∂iuj+∂ jui)).
In the frequency domain, the wave equation reads:[
Lx + ρ(x)ω2

]
Gω(x, y) = f0δ(x − y) + Traction free condition at the surface. (3.4)

Let φn(x) [kg−1/2] be the eigenmodes of the cavity, associated with the eigenvalues
−ρ(x)ω2

n:
Lxφn(x) = −ρ(x)ω2

nφn(x).
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The φn form a complete set of orthogonal normalized functions:∫
ϑ
ρ(r)φn(r)φm(r)d3r = δnm.

This relation is derived from the energy conservation. The GF then reads:

Gij+
ω (x, y) =

∑
n

φi
n(x) φ j

n(y)

ω2 − ω2
n + iε

[s2 kg−1] ε→ 0+. (3.5)

Applying the inverse Fourier transform gives the causal (exponent +) GF:

Gij+(x, y, t) = θ(t)
∑

n

φi
n(x)φ j

n(y)
sin(ωnt)
ωn

[m N−1 s−1], (3.6)

where θ(t) is the Heaviside function. The correlation of the wave sensed at A
and B, averaged over a time window ΔT (the record length for instance), and for
components j and k, reads:

CΔT
AB, jk(τ) =

1
ΔT

∫ ΔT

0
Gij(S,A, t)Gik(S,B, t + τ)dt. (3.7)

Using the modal expansion, and after integration over time, the correlation reads:

CΔT
AB, jk(τ) =

∑
n,m

Gij(S,A, ωn)Gik∗(S,B, ωm)2sinc[(ωn − ωm)ΔT]e−iωmτei ωn−ωm
2 ΔT. (3.8)

The sinc function is the central point of the correlation. A characteristic time now
shows up: the Heisenberg time TH, defined as the inverse of the average distance
between two eigenfrequencies:

TH =
2π

〈ωn − ωm〉 · (3.9)

The statistical distribution of eigenfrequencies in a chaotic reverberant body is a
Wigner distribution that follows from the random matrix theory. It results in mode
repulsion and a characteristic distance between two consecutive eigenfrequencies.
In a large elastic body, the Heisenberg time depends on the compressional and
shear wave velocities vP and vS, the size L of the body, and the central pulsationω:

TH = 3π3L3ω2

⎛⎜⎜⎜⎜⎝ 1
v3

P

+
2
v3

S

⎞⎟⎟⎟⎟⎠ ·
For instance, in an aluminum body of dimension 10 × 10 × 10 mm, and around
1 MHz, TH = 100 μs, representing about one hundred oscillations. TH increases
linearly with the volume: for bigger cavities it is therefore rapidly reaching sev-
eral ms, rendering its observation very hard due to absorption and energy loss.
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Comparing TH to the integration time ΔT gives the asymptotic behavior of the
correlations. If the integration (or record) time ΔT is much greater than the
Heisenberg time ΔT 
 TH, then the sinc function resembles a Dirac function, and
the correlation simplifies into:

Cyz, jk(τ) =
∑

n

φi
n(S)φi

n(S)φ j
n(A)φk

n(B)
eiωnτ

ω2
n
,

where one should recognize GAB(τ):

∂τCAB(τ) = G(A,B, τ) × G(S, S, τ). (3.10)

This equation was named the cavity equation by several authors [23, 87, 88]. As
G(S, S, τ) is essentially a peak at time τ = 0, the correlation is very close to the
GF between the two receivers. If we need to obtain the GF more rigorously and
with one single source S, then a tricky deconvolution is required. Another idea
is to average the correlations over a few sources to cancel late time fluctuations
of G(S, S, τ) and only retain the peak at zero. This later operation is probably the
most efficient, and yet elegant.

We would like to address now the following question: do we always need to
take the time derivatives of the correlations to estimate the GF? The time derivation
was emphasized by several authors [89–91], while neglected by others without
affecting the quality of the GF reconstruction [23, 92–94]. Actually, a dimensional
analysis is enlightening: one just has to refer to the dimensions of the modal
decomposition presented earlier in this section. If the receivers are recording the
displacement, and if we want to reconstruct the response of the medium to an
impulsive force, then the time derivation is required. Nevertheless, if we measure
other quantities, like the velocity or the acceleration, but still want to reconstruct
the force impulse response, then no derivation is required. An integration is even
needed in the latter case. To conclude, the issue of the derivation of the correlations
depends of the dimensions of the correlated fields and of the expected GF. In some
cases, where the phase of the wave field is studied, the derivation step will be
needed.

2.3. Thermal equipartition

In most experiments, it is very hard to obtain records whose lengths are com-
parable to or greater than the Heisenberg time (except in isolated low-absorbing
bodies). Weaver and Lobkis proposed another idea: average simultaneously
over time and noise sources. They showed that the thermal fluctuations of the
displacement, though very weak, are recordable by conventional piezoelectric
transducers and, when correlated, yield the GF of the medium. The idea is that a
thermal phonon has a very long life time (coherence time). It can therefore rever-
berate several times and hit both receivers before disappearing. In other words,
they proposed to take advantage of the mesoscopic nature of thermal ultrasonic
phonons.
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The responses recorded in A and B are:

u(A, t) =
∑

n

Anφn(A) cos(ωnt) (3.11)

u(B, t) =
∑

m

Amφm(B) cos(ωmt). (3.12)

The time-averaged correlation then reads:

CAB(τ) =
〈
�

∑
n,m

Anφn(A)A∗mφm(B)ei(ωn−ωm)t−iωmτ

〉
thermal

.

The thermal excitation is random in phase and amplitude, so that the An’s [m kg
1
2 ]

are random Gaussian variables. In addition, we assume that the thermal noise is
ergodic: averaging over time and noise realization are equivalent here:

〈AnAm〉thermal =
2kT
ω2

n
δnm [J s2],

where 2kT/ω2
n is the thermal noise power spectrum. Therefore, the time deriva-

tive of the correlations averaged over thermal noise, which mainly consists in a
succession of sources random in time and position, does contain the reference GF:

∂τCAB(τ) =
〈∑

n

2kT
ωn
φn(A)φn(B)e−iωnτ

〉
thermal

= 2kTG(A,B, τ). (3.13)

2.4. Correlation of acoustic and elastic waves
in homogeneous media

We now focus on open media, where modes are now continuously distributed
in the frequency domain. Since the Heisenberg time is now infinite, the modal
expansion of the wavefield will be of little help. Nevertheless, we propose dif-
ferent derivations that connect to the now well established result that averaged
correlations yield the GF of the medium.

Sources in the far-field

Let a series of sources be placed in the farfield of two receivers A,B. As-
suming the incoming plane wave is a very broadband, and θ the incident di-
rection (see Fig. 3.1), the wavesfield sensed at A is GA(t) = δ(t), and at B is
GB(t) = δ (t − (D/v) cos(θ)).

The correlation for a given angle theta reads:

CAB(τ, θ) = δ
(
τ − D

v
cos(θ)

)
=

1
2π

∫
∞

eiω(τ− D
v cos(θ))dω. (3.14)
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Figure 3.1. Plane wave incoming two receivers.

An averaging over the sources position is equivalent to an averaging over the
angle θ. In the 3-D case, this integration yields:

CAB(τ) =
1

2π

∫
∞

eiω(τ−D
v ) − eiω(τ+ D

v )

Dω/v
dω. (3.15)

After the inverse Fourier transform, we find again that the time-derivative of the
averaged correlation gives the causal and the anti-causal GF:

∂τCAB(τ) =
v
D

(δ(τ −D/v)− δ(τ +D/v)) . (3.16)

In the case of an elastic medium, one additional condition is needed. Not only the
waves have to come from all directions to ensure a perfect angle averaging, but
also do they have to be fully equipartitioned [95]. Equipartition has been discussed
in Section 2, it results in an equilibrium between the energy of longitudinal and
transverse waves (noted EP and ES): 〈ES/EP〉 = 2v3

P/v
3
S. The derivation proposed

by Sanchez-Sesma and Campillo [95] establishes clearly this result.

Continuous distribution of sources: the stationary phase
approximation

Snieder [96] proposed to extend this result to a homogeneous source distribution,
without invoking any far-field approximation but the stationary phase theorem.
This means that one additional averaging of the correlation is made, so that the
sources might be in the near-field of the receivers. Let the sensor’s position be
x = ±D/2, y = 0, z = 0. The source S position (x, y, z) is random, the source-
receivers distances are rA =

√
(x +D/2)2 + y2 + z2, rB =

√
(x −D/2)2 + y2 + z2.

The 3-D acoustic GFs are:

GS,A or B(t) =
v

4πrA or B
δ(rA or B − vt).

The correlation for a given source S in the frequency domain reads:

CS
AB(ω) =

v2

43π4rArB
eiω

rA−rB
v .

As previously, we average this correlation over any position of S with a density
of probability n:

∫
∞ nCS

AB(ω)dxdydz. This integration can be performed invoking
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the stationary phase approximation, which is recalled in the following. Let f (r) be
a C∞ function; if there exists a unique point r0 at which f

′
(r0) = 0 and f

′′
(r0) � 0,

then for ω→∞: ∫
g(r)eiω f (r)dr = g(r0)ei f (r0)

√
2π

ω
∣∣∣ f ′′ (r0)

∣∣∣ ·
This theorem is applied twice to the averaged correlation with f (r) = (rA − rB)/v
and g(r) = 1/rArB for r = y and then r = z at y = 0 and z = 0. The average
correlation the reads:

CAB(ω)→
∫
∞

nv2

43π4
2π

v
ω

1
|xA − xB|e

i ωv (xA−xB)dx

with xA = |x +D/2| and xB = |x −D/2|. The correlation simplifies into:

CAB(ω) =
v3

32π3ω

eikD + e−ikD

D
(3.17)

which leads again, in the time domain, to ∂τCAB(τ) ∝ G+AB(τ) − G−AB(τ). Note
that Roux et al. [89] proposed an elegant change of variables that allows a rapid
evaluations of the 3-D space integrals and leads to comparable results.

2.5. The Helmholtz-Kirchhoff’s theorem

In the two previous derivations, we assumed either a perfect azimuthal distri-
bution of distant sources or a homogeneous distribution over the whole space.
This means that in a 3-D experiment, correlations need to be average over a 3-D
distribution of sources to converge to the GF. As noticed by several authors, for
time-reversal purposes [97] (see next section) and later for correlations [98, 99],
this condition is not absolutely necessary, especially if we take advantage of all
the properties of the wave equation. If A and B are included in a domainD with
boundary ∂D (a surface in 3-D, a closed line in 2-D), then the GF between A and
B can be estimated by the correlation averaged over the surface∫

∂D

∫
∞
ϕi(S,A, t)ϕ j(S,B, t + τ)dtd2S = Gij(A,B, τ) + Gij(A,B,−τ). (3.18)

The equality is valid provided reciprocity is ensured: G(S,A, τ) = G(A, S,−τ).
We have here defined new a condition for the correlations to yield the GF: they
must be averaged over a continuous distribution of sources forming a surface that
encloses the medium being imaged and the two passive receivers. This condition
is less restrictive than a distribution of sources in the whole volume.

3. The time-reversal interpretation: numerical
simulation

In the previous theoretical derivations, correlations are found to converge to the
Green’s function under important assumptions. They rely on a perfect source
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distribution resulting in a perfect diffuse and equipartitioned wavefield. What
happens when there is only a finite number of sources in the medium and when
the field is not completely equipartitioned? And most of all, what is the phys-
ical meaning of correlations? In the following we propose an interpretation of
correlations based on an interpretation with Time-Reversal [23]. To illustrate this
interpretation, we present 2-D numerical experiments of acoustic scattering on
rigid inclusions randomly located either in a closed cavity or in a open medium.

3.1. The cavity equation

To begin, let us consider two receiving points A and B and a source S placed
amongst a random collection of scatterers, as represented in Figure 3.2. The
scatterers are in water; only lossless acoustic waves are considered here. The
wave equation is solved by a finite differences simulation (centered scheme);
the boundary conditions are implemented following Collino’s work [100]. Nat-
urally, a finite-difference scheme shows numerical dispersion. However, the es-
sential point is that the fundamental symmetries of reciprocity and time-reversal
still hold in the numerical experiments. At the edges of the grid, the boundary
conditions may be either perfectly reflecting (Dirichlet) as in a closed cavity or
absorbing (open medium). The signal transmitted by S is a pulse with a center
frequency 1 MHz and a Gaussian envelope (σ = 0.7 μs).

Figure 3.2. Two hundred per-
fectly rigid scatterers (diameter
2.1 mm) are randomly distributed
over a 7.5 × 7.5 cm2 area. A
point source is placed at S; A
and B are receiving points. The
boundary conditions may be per-
fectly reflecting (Dirichlet) as in a
closed cavity or absorbing (open
medium). Figure reprinted with
permission from [A. Derode et al.,
J. Acoust. Soc. Am. 113, 2973
(2003)]. Copyright 2007, Acousti-
cal Society of America.

We will note GIJ(t) as the impulse response between I and J, i.e., the wave field
sensed at I when a Dirac δ(t) is sent by J. If e(t) is the excitation function at S, then
the wave field ϕA and ϕB received at A and B will be respectively e(t) ⊗ GAS(t)
and e(t) ⊗ GBS(t), ⊗ representing convolution. The cross-correlation of the fields
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received at A and B is then

CAB(t) =
∫
ΦA(t)ΦB(t + θ)dθ = GAS(t) ⊗ GBS(−t)⊗ f (t) (3.19)

with f (t) = e(t)⊗ e(−t). f (t) depends only on the excitation imposed at the source,
whereas the information regarding the impulse response between A and B is
hidden in GAS(t) ⊗ GBS(−t). Indeed, the impulse responses of a closed cavity
satisfy a remarkable property, as shown by [87], which he termed the “cavity
equation”:

GAS(t) ⊗ GBS(−t) = GAB(t) ⊗ GSS(−t). (3.20)

For this relation to hold, the cavity must be lossless, and its eigenmodes must not
be degenerate. Note that, in practice, the correlations cannot be performed over an
infinite time interval (the ring time of a cavity is infinite if it is lossless); therefore,
the cavity equation can be compared to experimental results if the integration
timeΔT is sufficiently large compared to 1/Δω, withΔω the characteristic distance
between modes, so that the modes are resolved. 1/Δω is sometimes referred to as
the Heisenberg time, or break time. Figure 3.3 illustrates the validity of the cavity
equation; here the impulse responses have been recorded during an integration
time of 80 ms (2 × 106 time steps), and the Heisenberg time is ≈5 ms. From
Draeger’s cavity equation, the correlation between the fields received at A and
B is:

CAB(t) = GAB(t) ⊗ GSS(−t) ⊗ f (t). (3.21)

Therefore, similarly to Weaver’s results [80, 85, 86] the direct Green’s function
GAB is present in the correlations of the field within a closed cavity and can be
recovered from CAB provided that the GSS term can be properly deconvolved, at
least in the frequency domain limited by the spectrum of f (t). The estimation of
GSS is possible after averaging CAB over all A and B positions.

Figure 3.3. Comparison between
CAB(t) (thick continuous line) and
GAB(t) ⊗ GSS(−t) ⊗ f (t) (dotted line).
The overall correlation coefficient be-
tween the two waveforms is 98.7%.
Figure reprinted with permission
from [A. Derode et al., J. Acoust. Soc.
Am. 113, 2973 (2003)]. Copyright
2007, Acoustical Society of America.

3.2. Simulation of perfect time reversal

Is this valid in an open medium? We have conducted the same numerical ex-
periment, with the same distribution of scatterers, but with absorbing instead
of reflecting boundary conditions. As a result, the cavity equation is no longer
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Figure 3.4. Comparison between CAB(t)
(thick continuous line) and GAB(t)⊗GSS(−t)⊗
f (t) (dotted line) in the open scattering
medium for one single source S. The impulse
responses were recorded during 800 μs until
they became negligible. The overall correla-
tion coefficient between the two waveforms
is 0.48%. Figure reprinted with permission
from [A. Derode et al., J. Acoust. Soc. Am.
113, 2973 (2003)]. Copyright 2007, Acoustical
Society of America.

valid, and the correlation of the scattered field CAB shows no resemblance whatso-
ever with the Green’s function (the correlation coefficient function between wave
forms represented in Figure 3.4 is less than 0.5%).

However, a physical argument indicates that the Green’s function can still be
recovered from the correlations CAB, even in an open medium, if several judi-
ciously distributed sources are used instead of a single point S. To that end, we
propose to analyze the experiment in terms of time-reversal symmetry. Indeed,
there is a strong link between correlations of a diffuse field and time reversal [101].

Because the scatterers do not move and there is no flow within the medium,
the propagation is reciprocal, i.e. GIJ(t) = GJI(t). When we cross-correlate the
impulse responses received at A and B, the result GAS(t) ⊗ GBS(−t) is equal to
GSB(−t)⊗GAS(t). Now, imagine that we do the following time-reversal experiment:
B sends a pulse, S records the impulse response GSB(t), time-reverses it and sends
it back. The resulting wave field observed at A would then be GSB(−t) ⊗ GAS(t),
which, because of reciprocity, is exactly the cross-correlation GAS(t) ⊗ GBS(−t) of
the impulse responses received at A and B when S sends a pulse. We would like
the direct Green’s function GAB to appear in the cross-correlation. But in the most
general case, GSB(−t) ⊗ GAS(t) has no reason to be equal to GAB, as was shown in
Figure 3.4. Yet we can go further: imagine now that we use several points C to
perform the time-reversal operation, and that we place them in such a way that
they form a perfect time-reversal-device, with no loss of information. Following
from the Helmholtz-Kirchoff theorem, such would be the case if the sources S were
continuously distributed on a surface surrounding the scattering medium. Then
the time-reversal operation should be perfect. During the “forward” propagation,
B sends a pulse that propagates everywhere in the medium (including at A where
the field received is GBA(t)). This pulse may be scattered many times and is
eventually recorded on every point of the time-reversal device, with no loss.
When the field is time-reversed, since nothing of it has been lost, it should exactly
go backwards in time (and refocus on B at time t = 0) everywhere in the medium,
which implies that the field received at A after the time-reversal is exactly GBA(−t),
the time-reversed version of the direct Green’s function. Then, once the wave has
refocused on B (at time t = 0), it does not stop since there is no “acoustic sink” at
B [102]: the wave diverges again from B and gives rise, at times t > 0, to GBA(t)
at A.
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Thus, if we use a collection of sources C arranged in such a way that they form
a perfect time-reversal device, we should have∑

S

GAS(t) ⊗ GSB(−t) = GBA(t) + GBA(−t). (3.22)

A more detailed analysis, taking into account the monopolar or dipolar nature
of the source/receivers, is given by [97]. Equation (3.20) implies that the impulse
response GBA(t) can still be recovered from the correlation of a diffuse field, even
in an open medium, provided that the sources S are distributed judiciously, and
all the correlation functions are summed over the source positions. Unlike the
case of a closed medium, no additional deconvolution by GSS is needed. From
this time-reversal interpretation, we deduce a condition for the Green’s function
to emerge from cross correlations in open media: the sources S must be placed so
that they form a perfect time-reversal device.

We have checked this in the numerical experiments depicted in Figure 3.5. The
results are in excellent agreement with equation (3.22), as is shown in Figure 3.6:
the degree of correlation between waveforms is 97.4%. Of course, when the
sources are not placed as a perfect mirror, as presented in Figure 3.5b, the results
are less good (the degree of correlation between waveforms is 81.9%) because one
part of the waves are not recorded by the time-reversal device due to the presence
of scatterers outside the sources. Yet the main features of the Green’s function can

(a) (b)
Figure 3.5. A and B are receiving points. Two hundred fifty source points are placed
regularly on the perimeter a circle with radius 18.7 mm, 100 scatterers being inside the
circle, which (a) completely surrounds the medium, (b) or only partially. The boundary
conditions on the edges of the grid are absorbing (open medium), in both cases. Figure
reprinted with permission from [A. Derode et al., J. Acoust. Soc. Am. 113, 2973 (2003)].
Copyright 2007, Acoustical Society of America.
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Figure 3.6. Comparison be-
tween

∑
C hAS(t) ⊗ hBS(−t) ⊗ f (t)

(dotted line) and GAB(t) ⊗ f (t) in
the open scattering medium sur-
rounded by 250 sources S as de-
picted in Figure 3.5a, at early
times (a) and in the late coda,
360 μs later (b). The overall
correlation coefficient between
waveforms is 97.4%. Figure
reprinted with permission from
[A. Derode et al., J. Acoust. Soc.
Am. 113, 2973 (2003)]. Copy-
right 2007, Acoustical Society of
America.

Figure 3.7. Correlation co-
efficient between

∑
S GAS(t) ⊗

GBS(−t) ⊗ f (t) (dotted line) and
GAB(−t) ⊗ f (t) versus the num-
ber of sources employed. Figure
reprinted with permission from
[A. Derode et al., J. Acoust. Soc.
Am. 113, 2973 (2003)]. Copy-
right 2007, Acoustical Society of
America.

still be recognized, even at late times. If the number of sources is decreased, the
reconstruction of the Green’s function is less satisfactory, as shown in Figure 3.7.
With only 50 sources (instead of 250 previously) regularly spaced every ≈ 5λ/3
on the perimeter of a circle as in Figure 3.5a, the correlation coefficients between
waveforms is 70%. However if the 50 sources are gathered together in a 72◦
angular sector (pitch λ/3), it drops to 53%. Indeed, since the coherence length of
a diffuse wave field is λ/2, it is useless to place the sources closer.
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3.3. Application to noise

So far, we have considered that the origin of the field measured at A and B was
an active and coherent source transmitting a short pulse (or a collection of such
sources). What if there are no such sources in the medium, but diffuse continu-
ous noise? The physical origin of this noise may be thermal vibrations [80]. In
seismology, noise in the seismograms comes from a variety of different sources
(traffic, sea waves, weather, human activity, etc.) continuously and (allegedly)
randomly pumping energy into the earth and essentially exciting surface waves.
In ocean acoustics, noise may originate from boats, surf, wind, animals, etc. By
definition, the noise sources cannot be controlled. In the light of the discussion
above, in order to recover the Green’s function from the cross-correlation of the
noise received at A and B, the most favorable situation would be that in which
noise can be considered as coming from virtual point sources S randomly dis-
tributed everywhere in the medium and continuously generating uncorrelated
white noises nS(t). In that case, the cross-correlation between waveforms sensed
at A and B would be∑

S

∑
S′

GAS(−t) ⊗ nS(−t) ⊗ hS′B(t) ⊗ nS′ (t). (3.23)

If the observation time ΔT is long enough compared to the correlation time of
the noise, then nS(t) ⊗ nS′ (−t) will converge to δ(t)δ(SS′). Moreover, if the virtual
noise sources S are distributed everywhere in the medium (in other words, if
each degree of freedom is excited randomly and independently) then the S-points
would necessarily constitute a perfect time-reversal device, so equation (3.21)
should be verified again.

We have carried out a numerical experiment based on this idea. Two hundred
forty sources where distributed at random inside the open scattering medium
shown in Figure 3.2, and 240 uncorrelated white noises, convolved by e(t), were
transmitted by these sources during 40 ms. The resulting wave forms are received
at A and B. Their cross-correlations CAB(t) is compared to the direct Green’s func-
tion GAB(t) ⊗ f (−t): the agreement is still very good (61% correlation coefficient)
even at late times.

In this section, we have argued that recovering the Green’s function was pos-
sible in closed and open multiple scattering medium and we have proposed a cri-
terion based on reciprocity, time-reversal symmetry, and the Helmholtz-Kirchoff
theorem: if sources are placed as if they were to form a perfect time-reversal
device, then the Green’s function can be recovered by summing the cross corre-
lations. This has been validated by numerical experiments. The reduction of the
number of sources was also discussed, and the possibility of using noise sources
was illustrated. There is still much food for thought, particularly regarding the
role of scatterers in the reconstruction of the Green’s function. The argument
we developed here is valid for any medium (homogeneous, high-order multiple
scattering, reverberant, etc.) where reciprocity and invariance under time-reversal
hold. The field does not need to be thermally diffuse for the Green’s function to
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emerge from the correlations, as long as there are enough well-positioned sources.
Another approach is to consider the scatterers as secondary sources which are nec-
essary to truly randomize the wave field emanating from a single original source.
Correlating the late part of the coda would then permit us to reconstruct at least
the early arrivals of the Green’s function. This will be discussed in the next section.

4. Correlation and the time-reversal interpretation:
ultrasonic experiment

4.1. Perfect source distribution
In the following, we report an ultrasonic experiment designed to retrieve the
Green’s function of an open medium beyond the ballistic front. We aim at re-
trieving the signature of two localized and well-separated scatterers. A perfect
average over sources is realized, following the Helmholtz-Kirchoff theorem and
similarly to a perfect time-reversal experiment.

The experiment [129] is carried out in clear water (sound speed c =
1.480 mm/μs, average wavelength λ ≈ 1.5 mm). Two reflectors A and B are
placed in the vicinity of a single ultrasonic piezoelectric transducer R (Fig. 3.8).
This sensor is nearly omni-directional. Its (reciprocal) response r(t) has a flat spec-
trum between 0.5 and 1.5 MHz. Its width is 0.5 mm, and its height ∼10 mm. The
reflectors are two empty aluminum cylinders of radius 4 mm. The experimental
setup is quasi-2D (Fig. 3.8).

Figure 3.8. Sketch of the first experiment. A
source S sends a broadband pulse s(t) in an
open medium. It is sensed by a fixed omni
directional receiver R. Two 8 mm-diameter
empty cylinders are placed nearby (approxi-
mative distances displayed). The source is
rotated all over the setup for 2 000 differ-
ent positions, along a perfect circle of radius
80 mm. Figure reprinted with permission
from [É. Larose et al., Appl. Phys. Lett. 88,
104103 (2006)]. Copyright 2007, American
Institute of Physics.

The source S sends a broad-band pulse (typically two oscillations at 1 MHz).
The resulting wave R(t) is recorded at the receiver R and contains the direct wave
S→ R and scattered contributions (S→ A→ R, S→ B→ R, S→ A→ B→ R and
so on...). The impulse response between S and R is noted hSR(t) so the recorded
signal is R(t) = r(t)⊗ hSR(t)⊗ s(t),⊗meaning convolution. For a given source S the
auto-correlation function reads:

CS(τ) =
∫

R(t)R(t + τ)dt (3.24)

= r(t) ⊗ r(−t) ⊗ hSR(t) ⊗ hSR(−t) ⊗ s(t) ⊗ s(−t). (3.25)

Ann. Phys. Fr. 31 • No 3 • 2006



54 Mesoscopics of ultrasound and seismic waves: application to passive imaging

Figure 3.9. Photo of a pin-transducer developed by Montaldo in the LOA-Paris. The
black part is the active area composed of a reciprocal rectangular shaped piezoelectric. The
transducer has a noticeable response in the 0.5–2 MHz frequency range. The transducer
lateral directivity is displayed, and show a nearly omnidirectional (actually quadrupolar)
pattern.

Figure 3.10. Picture of the ex-
periment. The central trans-
ducer is the fixed receiver. The
second transducer is a mov-
ing source that is rotated over
2 000 different positions. The
medium to image is composed
of two aluminum cylinders
immersed in clear water.

In general, this correlation has no reason to equal the Green’s function hRR(t).
Yet different approaches showed that if the correlation is averaged over a large
number of sources perfectly surrounding the medium, the exact impulse response
hRR(t) can be fully retrieved [23, 89, 96, 97, 99]. Here such a source distribution
is obtained by rotating the source with a step-motor (Fig. 3.8). An inter-source
distance ofλ/6 provides 2 000 different positions, yielding to 2 000 correlations C(τ)
(Fig. 3.11). The averaged correlation C(τ) = 〈CS(τ)〉 is displayed in Figure 3.12.
The enclosed box (a) shows the expected strong dominating peak of the auto-
correlation at τ = 0. The overall plot is a zoom into the subsequent fluctuations
(dotted line, fromτ = 40μs toτ = 85μs), superimposed with the reference impulse
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Figure 3.11. Individual contribution of each of the 2 000 sources to the total Correlation
C(τ), on a log scale. As noticed by Snieder (2004) based on a stationary phase approach,
and Roux et al. [104], sources efficiently contributing to the Green’s function are in the
receiver-reflector direction. The wavefronts labelled (a-b-c-d) correspond to the direct (a)
and secondary (b-c-d) arrivals in the retrieved Green’s function (Fig. 3.12). Figure reprinted
with permission from [É. Larose et al., Appl. Phys. Lett. 88, 104103 (2006)]. Copyright
2007, American Institute of Physics.
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Figure 3.12. (a) Auto-correlation C(τ) averaged over 2 000 sources, showing a strong peak
at time τ = 0. (b-c-d) Zoom into the late times. Thin dotted line: averaged autocorrelation
C(τ); thick line: reference impulse response F(τ). Figure reprinted with permission from
[É. Larose et al., Appl. Phys. Lett. 88, 104103 (2006)]. Copyright 2007, American Institute
of Physics.

response F(t) (continuous line). This reference is the convolution of r(t)⊗hRR(t)⊗r(t)
(pulse-echo measurement) with s(t)⊗ s(−t) (the source auto-correlation). The two
waveforms show a degree of resemblance of 95.4%.
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This is an experimental proof that the averaged correlation C(τ) reveals the
detailed structure of this open medium. The wavefront labeled (b) in Figure 3.12
corresponds to the reflection on the first cylinder. It is followed by a weak pulse:
the first cylinder’s creeping wave. The second strong peak (c) is the reflection
on the second cylinder, and the latest identified contribution (d) corresponds to a
more complex ray path: R→ A→ B→ R, i.e. a multiply scattered wave. This ex-
periment is a direct illustration of the Helmholtz-Kirchhoff’s theorem, that states
that the exact GF of the medium between two passive sensors is reconstructed by
averaging correlations obtained for a continuous set of sources perfectly surround-
ing the medium to image and the two receivers. By reciprocity, this experiment
is also equivalent to a perfect time-reversal experiment as presented earlier.

4.2. Imperfect source distribution

This section is now devoted to a more realistic configuration, where a perfect
source distribution is not achieved. We address the issue of causality and show
the role of multiple scattering for the reconstruction of the Green’s function.
Ultrasonic experimental results are presented to illustrate the argument. We
particularly address two issues:

1. physically, the GF GAB is causal, but the correlation between the wave fields
received at A and B may be non-causal; therefore, should one keep the causal
part, the anti-causal part of the correlation, or both to estimate GAB?

2. in an inhomogeneous medium, what is the role of scattering in the recon-
struction of the GF from field-field correlations?

We also present experimental results to support the argument.
As developed in the previous section, correlations are analogous to a two step

time-reversal operation. During the time reversal experiment, (1) the wave is
emitted at A and sensed in several points S perfectly surrounding the medium.
Then (2) the field is time-reversed in the medium and (3) is finally sensed at B.
The wavefield sensed at B is the actual GF G(A,B, t) provided that S are indeed
perfectly distributed, i.e. placed so that they would form a perfect TR device.
This is therefore valid in the correlation experiment where A and B are passive
receivers, and S are independent sources: the impulse response GAB(τ) can be
retrieved from either the causal (τ > 0) or the anti-causal part (τ < 0) of the sum
of field-field correlations CAB(τ).

In real experiments, whatever the type of waves involved, this condition is
hard to meet. In seismology, for instance, the displacement field at the earth sur-
face is recorded by seismic stations (A, B) but the sources (S) of the earthquakes
are far from being arranged as a perfect TR device: they are mostly aligned along
faults. Yet, the elastic GF can be partially retrieved using correlations of the
late seismic codas produced by distant earthquakes [92]. Why is this possible
when the TR criterion is not fulfilled? A laboratory experiment can help us find
an answer and shed light on the role played by multiple scattering (Fig. 3.13).
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Figure 3.13. (a) Experimental setup. The
receiver A is fixed at the origin, the ex-
periment is done for various position of B
ranging from xB = −50 mm, yB = −15 mm
to xB = 50 mm, yB = 15 mm. 21 sources S
are used (size: 0.39 mm, pitch: 0.42 mm,
frequency 3.1 MHz). The distance be-
tween A and S is 35 cm. (b) Waveform
received by A when a 1 μs pulse is sent
by one of the sources. Figure reprinted
with permission from [A. Derode et al.,
Appl. Phys. Lett. 83, 3054 (2003)]. Copy-
right 2007, American Institute of Physics.

Piezoelectric transducers (A, B) record the wavefields generated by 21 ultrasonic
sources S successively firing a broad-band pulse (1μs, central frequency 3.1 MHz).
The experiment takes place in water tank (v = 1.5 mm/μs), and a scattering slab
is placed between the sources and the receivers. The slab is made of randomly
distributed steel rods (29.5 rods/cm2); the transport mean-free path [105] �∗ was
measured to be 3 mm, while the thickness of the slab is L = 30 mm. The medium
is therefore highly scattering as can be seen from the waveform plotted in Fig-
ure 3.13b. Frequency-dependent dissipation is negligible. The experiment is re-
peated for various positions of the second receiver B; each time we cross-correlate
the 21 pairs of fields received at A and at B. CAB(t) is calculated by summing the
21 cross-correlations.

The coherent field is totally extinct in the received waveforms GAB and GAS.
Since L 
 �∗, the correlation length of the field emerging from the slab is ∼ λ/2,
and, from the Van Cittert-Zernike theorem the fields sensed at A and B are spatially
incoherent since the transverse size of the slab is 25 cm while the distance between
B and the slab varies between 15 and 25 cm.

Here, the GF between A and B is a well-defined pulse arriving at time |AB|/v,
followed later by lower amplitude reflections from the rods. The experimental
results show that the emergence of the GF from CAB(t) highly depends on the
position of B and on the number of sources employed. With only one source
(Fig. 3.14a) CAB(t) is too noisy to see the emergence of the GF. But at the same
point B, with 21 sources (Fig. 3.14b) instead of one, CAB(t) shows a strong peak
at time t = 33.5 μs, which is exactly the travel time |AB|/v. Yet for a different
position of B (Fig. 3.14c), CAB(t) shows a peak at time t = −33.35 μs, the negative
of the expected travel time. And for a third position of B (Fig. 3.14d), even with
21 sources, the GF does not emerge at CAB(t). So it appears that the GF (at least its
first arrival) can indeed be recognized in the correlation CAB(t), but only at certain
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Figure 3.14. Cross-correlation CAB(t) for:
(a) 1 source, xB = −50 mm, yB = −5 mm;
(b) 21 sources, xB = −50 mm, yB = −5 mm;
(c) 21 sources, xB = 50 mm, yB = −5 mm;
(d) 21 sources, xB = 25 mm, yB = 15 mm.
Figure reprinted with permission from
[A. Derode et al., Appl. Phys. Lett. 83,
3054 (2003)]. Copyright 2007, American
Institute of Physics.

times (causal or anti-causal), and for certain positions of B relative to A. Why is
that?

4.3. Role of sources and scatterers positions

The TR interpretation gives the answer: for this particular setup, in a fictitious
TR experiment where A would be the source and the 21 S-points a finite-size TR
device, the time-reversed pulse would hit B at times t < 0 only if B is between A
and S (i.e. xB > 0), and at times t > 0 only if it is behind A (xB < 0). Consequently,
when one cross-correlates two wavefields in order to reconstruct the GF of an
unknown medium, one has to know the location of the receivers relative to the
sources and to the scatterers in order to keep only the relevant part of CAB(t).

It also appears that GAB cannot be properly reconstructed for any position
of B, as was shown in Figure 3.14a. Figure 3.15 compares CAB(t) to the theoretical
travel times for 61 positions of B (xB = −50 mm, yB = −15 to 15 mm), with and
without the rods: the curvature of the GF emerges only in the former case. This
emphasizes the role of multiple scattering: the region for which the arrival time is
well retrieved is much smaller in a homogeneous medium (water) than through
the forest of rods. This too can be interpreted via the TR interpretation: a TR
experiment works better (meaning that it better reconstructs the “initial scene”)
through a multiple scattering medium [6] than in a homogeneous medium (here
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Figure 3.15. Cross-correlation CAB(t) for 21 sources, the position of B is xB = −50 mm, yB

ranging from −15 mm to 15 mm, (a) with and (b) without the multiple scattering slab. The
thick line shows the theoretical arrival time of the GF. It is properly reconstructed (within
0.05 μs, which is the sampling time) in an angular sector of 28◦ with the multiple scattering
slab, versus only 6◦ in water. Figure reprinted with permission from [A. Derode et al., Appl.
Phys. Lett. 83, 3054 (2003)]. Copyright 2007, American Institute of Physics.

Figure 3.16. Schematic view of the area where the GF is reconstructed by correlation
between B and A. If no scattering, the GF is reconstructed only in the red (B1) area. With
the scattering device, the area is enlarged and represented in green (B2). In both cases,
because of the finite aperture of the array of sources or scattering device, the GF is not
recovered in the other area (B0). The + and − signs denotes the areas where the causal or
the anti-causal GF is reconstructed.

the “initial scene” would be the propagation of a spherical pulse emitted by A,
Fig. 3.16).

In our experiment, we do not satisfy the equipartition condition nor the “per-
fect TR device” condition, but we approach it using several sources instead of one.
Our experimental results show that with a limited number of sources it is possible
to estimate at least the first arrival of the GF, not everywhere at every time but in
a limited area whose size is larger in the presence of multiple scattering.
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5. Statistical approach and convergence rate

In the following, we propose a third possible approach for the correlations, which
differs from the time-reversal interpretation or the analytical derivations pre-
sented previously. For practical application like imaging, one need to know
precisely how much data is required to obtain a “good” image. In other words,
how long do we need to record the diffuse field or the noise, and how many
sensors do we need? We already noticed that:

• CAB converges to GAB with increasing source number (source averaging);

• CAB converges to GAB with increasing time record (time averaging);

• CAB converges to GAB with increasing bandwidth;

• the rate of convergence is greater if sensors are closer together;

• the rate of convergence is greater at low frequency.

What is the physical interpretation of these observations? Can we propose a
model for the rate of convergence? We address in these issues in the following
section.

5.1. Numerical simulations in a 2-D homogeneous medium

Let’s start with two receivers A and B placed in a 2-D homogeneous medium
(Fig. 3.17), D is the distance between A and B. S is a source randomly placed
in the medium, sending a broadband pulse (Δω ≈ ω) whose autocorrelation
is f (t). The acoustic wave sensed at A and B are correlated for each source
position S. The correlation is numerically estimated using the Fourier transform
of the acoustic GF:

CS
AB(τ) =

1
2π

∫
G0(ω, SA)G∗0(ω, SB)eiωτdτ ⊗ f (τ), (3.26)

where G0(ω, r) = (−i/4)H0(kr) is the 2D acoustic GF, and H0 is the first-order
Hankel function of the first kind. k is the wave vector, corresponding to the
wavelength λ and the celerity v. This calculation is repeated for different source

Figure 3.17. Sketch of the numerical simulation of 2-D
acoustic waves in a homogeneous medium. Two re-
ceivers A and B, distant by D, record the wave emitted
by S. Correlations are then averaged over N different
sources position.
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Figure 3.18. Correlations 〈CAB(τ)〉N averaged over N = 1, 10, 100 and 5 000 sources (blue
line) for D = 3λ. The reference symmetrized GF is in red dotted line. For one single source,
the arrival time of the wave in the correlation is randomly ranging from −T to T where T
is the time of flight between A and B. When we increase the source averaging, the passive
reconstruction of the GF is improved. For very high N, fluctuations between −T and T are
negligible compared to the waveforms at −T and T, which correspond to the reference GF.

positions, and correlations are eventually averaged. Note that no other process-
ing, like normalization or 1-bit digitization, is applied. This is very important to
recover the exact phase and amplitude of the actual GF. Correlations are compared
to a reference time-symmetrized GF, RGAB(τ), defined as [GAB(τ) + GAB(−τ)]⊗ f (τ).
Note that no time derivation is needed here.

Correlations 〈CAB(τ)〉N are averaged over different source numbers N. Results
are plotted in Figures 3.18 and 3.19 for, respectively, D = 1λ, 3λ, and 10λ. In
each figure, correlations are averaged over N = 1, 10, 100, and 5 000 sources. The
correlations are compared to the reference GF GAB(τ) (red dotted line). For a few
sources only, correlations have no reason to equal the GF. But for a number of
sources as large as N = 5 000, correlations were found to have well converged to
the GF.

The common way to estimate the quality of a given signal is to evaluate the
“Signal to Noise Ratio” (SNR). In the present manuscript, this denomination is
slightly hazardous for at least three reasons:

1. seismic or acoustic noise might be used as the actual signal to correlate;

2. CS
AB is the correlation of deterministic waveforms originating from S and

verifying the wave equation. Those waveforms are well above the ambient
ultrasonic or electronic noise level. In the correlation, what is the noise and
what is the signal?
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Figure 3.19. Same as Figure 3.18 except D = 10λ.

3. practically, when correlations have not converged to the GF yet, they show
uniform fluctuations (SNR�1). In that case, how does one evaluate the level
of the signal?

In this manuscript, the “signal” is the reference GF RGAB and the “noise” is made
of the remnant fluctuations of CAB. We choose to quantify the rate of conver-
gence with the normalized correlation coefficient CC between the correlations
CAB and GAB:

CC =

∫
∞ RGAB(τ)CAB(τ)dτ√∫

∞ RG2
AB(τ)dτ

√∫
∞ C2

AB(τ)dτ
· (3.27)

If the convergence estimator CC = 1, the averaged correlation perfectly matches
the reference symmetrized GF, and remnant fluctuations are canceled. If fluctua-
tions are not negligible, CC < 1. If correlation shows a purely random waveform,
than CC ∼ 0. By increasing the averaging, we expect CC to rise from 0 to a value
as close to 1 as possible. Studying the rate of convergence of the correlations will
consist of formulating CC as a function of the frequency f , the distance D between
A and B, and the number of sources N.

5.2. The concept of coherent zones

The concept of coherent zones is based on a geometrical interpretation of correla-
tions. If a source S is near the axis A−B but outside this segment, it will contribute
to the reconstruction of the GF (or at least the direct wave) in the correlation. If
this first assertion is not valid, the source will not contribute to the GF but noise in
the correlation. The ensemble of points contributing to the GF in the correlation
is named the “coherent zone” (Fig. 3.20). The idea was suggested by Snieder [96],
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Figure 3.20. Schematic view of coherent and
incoherent zones. If a source S is inside the co-
herent zones, it will contribute to the GF. If not,
it will contribute to noise.

and derived by Roux et al. [75] and Sabra et al. [91] who named the coherence
zones “end-fire lobe”.

Here follows a geometrical definition of the coherent zones. To start with, let’s
consider the GF GAB of an homogeneous medium and the correlation CAB, both
restricted to a frequency bandwidth Δω and approximated by:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

GAB(t) =
∫ ω+ Δω2

ω− Δω2
cos

(
ωD
v
− ωt

)
dω

CS
AB(t) =

∫ ω+ Δω2

ω− Δω2
cos

(
ω
v
|SA − SB| − ωt

)
dω.

(3.28)

Note that only the phase of the GF and of the correlation is studied, not the
amplitude. We stress that the coherent zones are defined by phase interferences
in the correlations, and that amplitudes do not play any role in their definition. If
the source S is on the AB axis, then |SA − SB| = D and correlations are equivalent
to the direct GF. If S is moved slightly from this axis, it will partially contribute
to the GF, and partially to noise. To quantitatively evaluate how much a source S
might contribute to the GF depending on its location, we introduce the correlation
coefficient CC(S) between CAB and GAB:

CC(S) =
∫ ω+ Δω2

ω− Δω2
cos

(
ω
v
|SA − SB|

)
cos

(
ωD

v

)
dω. (3.29)

This formula expands:

CC(S) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
2Δω cos

(
ω
v

(|SA − SB| +D)
)

sinc
(
Δω
2v

(|SA − SB| +D)
)

[a]

+2Δω cos
(
ω

v
(|SA − SB| −D)

)
sinc

(
Δω

2v
(|SA − SB| −D)

)
. [b]

(3.30)
The degree of resemblance CC(S) depends on the arguments of the sinc functions
(Fig. 3.21): |SA − SB| + D for [a] and |SA − SB| − D for [b]. Given that |SA − SB|
varies from 0 to D, |SA − SB| + D is always greater than D. If we assume that
the bandwidth is large enough Δω ≈ ω, and that A and B are not too close
together AB > λ, then the argument of [a] is greater then 1 implying the sinc to
be negligible. This is not valid for the argument of [b] which might be infinitely
small, rendering [b] the leading term. Additionally, the fluctuations of the cos term
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Figure 3.21. The (normalized) correlation coefficient CC(S) is plotted for D = 5λ versus the
location of S: [a]+[b] (thick line). Each term [a] and [b] of CC(S) are evaluated separately to
compare their importance. The broken line [a] is clearly always close to zero, confirming
that CC(S) is well approximated by [b].

are more rapid then the fluctuations of the sinc term. The correlation coefficient
CC(s) is therefore not negligible until the cos term drops the first time to zero
(i.e. from 0 to π/2). In average, the contribution of the cos term is noticeable for
0 < ω(|SA − SB| −D)/v < π/3. To conclude, S contributes to the GF if:

|SA − SB| < D − λ
6
· (3.31)

This last equation defines the coherent zones: the ensemble of points S that
meet this inequality. These zones are delimited by two hyperbola defined by
SA − SA = D − λ/6 with focal points at A and B (Fig. 3.22). These coherent areas
might be thought of as an anti-Fresnel zone, in reference to the seismic Fresnel
zones between a source and a receiver.

Figure 3.22. Coherent hyperbola and their
focal points A and B. Dotted lines: asymp-
totes of these hyperbola, defining the far field
coherent angle θ0.

The two coherent hyperbolas, in a 2D medium, are defined as:

x2 − y2

(( D
D − λ/6

)2

− 1
)
=

D2

4

(
1 −

(D − λ/6
D

)2)
, (3.32)

which can be rewritten in polar coordinates:

r(θ) =
D2 − (D − λ/6)2

sin2(θ) −
(( D

D − λ/6
)2

− 1
)

cos2(θ)

· (3.33)
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Assuming far-field sources (SA 
 D, SA 
 D and D ≥ λ), coherent zones are
defined by the asymptotic branches of the hyperbolas:

θ0 = ±arctan

√( D
D − λ/6

)2

− 1,

which can be approximated in the case of D 
 λ by θ0 → ±√λ/3D. This
derivation is similar to the one proposed by Roux et al. [75]. In their far-field
model, the source S is defined by the angle of incidence θ. The correlation
coefficient then reads:

CC(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
2Δω cos

(
ωD
v

(1 + cos (θ))
)

sinc
(
ΔωD

2v
(1 + cos (θ))

)
[a]

+2Δω cos
(
ωD
v

(1 − cos (θ))
)

sinc
(
ΔωD

2v
(1 − cos (θ))

)
. [b]

(3.34)
Again, CC is dominated by the term [b], which after a second order expansion
leads to:

CC(θ) = 1 − θ
4D2

8v2 (ω2 + Δω2/12) + o(θ4). (3.35)

The coherent angle is thereforeθ0 =

√
2
√

2v/Dω ≈ √λ/2.2 D, which is equivalent
to the angle proposed earlier. An important point to notice is the dependence of
the coherent zone on the non-dimensional parameter λ/D. A series of examples
of coherent zones are displayed in Figure 3.23 for different λ/D ratios. The longer
the distance, or the smaller the wavelength, the smaller the coherent zones. This
quantitatively confirms the observations at the beginning of this section: it’s more
difficult to reconstruct the GF through correlations at high frequency, or if the
receivers are far apart than at lower frequency, or for closer receivers.

5.3. Convergence rate in homogeneous medium

In the following, we propose a statistical model of the convergence rate based on
a geometrical approach. We assume that the source has a random position in a
2-D space:

• if the source is in the coherent zone around A, we assume that it will yield
a coherent contribution to GA→B(τ) = G+AB;

• if the source is in the coherent zone around B, we assume that it will yield a
coherent contribution to GB→A(τ) = G−AB;

• if the source is in the incoherent area, it will contribute to the remnant noise
in the correlation.
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Figure 3.23. Coher-
ent zones ϑ for differ-
ent ratios of D/λ. The
greater the distance D be-
tween the receivers, the
smaller the coherent zones,
and the slower the con-
vergence of the average in
the passive reconstruction
to the GF.

Contributions from different sources within the coherent zones will add up lin-
early, resulting in constructive interferences. Contributions from sources in the
incoherent area will add incoherently, resulting in random interferences. For N
normalized sources evenly distributed in the whole surface or volume, Nc is the
number of sources in the coherent zone ϑ around A or B, and Ni is the number
of sources in the incoherent zone ϑ. Then the expected intensity of the GF in the
correlation CN

AB is proportional to N2
c , and the intensity of the remnant noise is

proportional to Ni. CC(N) is the convergence estimator of the correlations aver-
aged over N sources. Given the coherent/incoherent contribution of sources, the
convergence rate reads:

CC(N) =
Nα√

N2α2 +N(1 − α2)
, (3.36)

where α is the statistical contribution of one source. This contribution is the ratio
of coherent to incoherent surfaces, weighted by a geometrical factor that arises
from the geometrical spreading between the source and the two receivers:

α =

∫
ϑ

1
SA · SB

dS∫
ϑ

1
SA · SB

dS
· (3.37)

Note in the far field approximation, α is just a the surface ratio that simplifies into
α = 2θ0/2π with θ0 = ±√λ/3D. For D 
 λ, in that case, the probability for a
given source to be in the coherent zone is (2/2π)

√
λ/3D, and the signal to noise

ratio of the correlations can be approximated by

RSB =
2

2π

√
Nλ
3D

[2-D]. (3.38)
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This result is close to the one proposed by Weaver et al. [106], and also Sabra
et al. [107]. In the case of real ambient noise, the medium is continuously excited
by random sources. The number of independent sources in a record of length
ΔT and bandwidth Δω is roughly ΔTΔω. The signal-to-noise ratio in the case of
random noise is therefore:

RSB =
2

2π

√
ΔTλ

3DΔω
· (3.39)

5.4. Verification of the convergence rate using numerical
simulations

Correlation of the wave field originating from a random source S is evaluated
numerically using the same calculation as Section 5.1:

CS
AB(τ) =

1
2π

∫
G0(ω, SA)G∗0(ω, SB)eiωτdτ ⊗ f (τ). (3.40)

Then correlations are averaged over N random sources, and they are compared
to the reference GF. N varies from 1 to 5 000 sources. The correlation coefficient
CC(N) is additionally averaged over the realizations of the source distributions.
For our theoretical model of convergence rate, the coefficient α is also evaluated
numerically using 106 positions. Curves for the convergence rate resulting from
our theoretical model and from simulations are displayed in Figure 3.24 for differ-
ent distances D between A and B ranging from λ to 10λ. An excellent agreement
is found between simulations and our statistical model. We conclude that the con-
vergence rate of correlations in a homogeneous medium reduces to the evaluation
of the geometrical factor α that coincides with the normalized contribution of one

10
0

10
1

10
2

10
3

0

0.5

1

Number of Sources

C
or

r.
 C

oe
ff.

D=λ

D=3λ

D=10λ

Figure 3.24. Scattered
dots: convergence of the
correlations CC(N) versus
the number of sources N
for different distances D
between A and B. This
convergence is estimated
through the normalized
correlation coefficient be-
tween the reference GF
and the correlations. Thick
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source. As α is linked to the coherent areas, we found that this model quantita-
tively describes the dependence of the convergence rate on the frequency f and
the distance D: convergence is slower at high frequencies and for long distances
between receivers.
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4
Role of scattering and time-symmetry

in the correlations

In this chapter, we discuss quantitatively the impact of the anisotropy of energy
flux on the time asymmetry of the Green’s function (GF) recovered by cross-
correlations. To that end, we will propose a theoretical approach followed by
numerical simulations, ultrasonic experiments, and finally an application to real
seismic data.

1. Multiple scattering and isotropy

1.1. Theory

For sake of simplicity, we consider here the theory for scalar waves. The results are
not expected to be different for the energy of elastic waves as it will be discussed
later. The angular distribution of energy at position R and time t is described by
a specific intensity IR(p̂, t) defined as the energy flux in space direction p̂ per unit
solid angle. The specific intensity is the solution of a radiative transfer equation,
which can be derived from an ensemble average of the wave equation [2,16]. The
radiative transfer equation is a local detailed energy balance which describes the
transport of energy through a multiple scattering medium. In general, it is an
integro-differential equation that can be solved only numerically. However, after
many scattering events, the initial distribution of energy in phase space tends
to be homogenized, which implies that the angular dependence of the specific
intensity departs only slightly from isotropy.

When this assumption is valid, IR can be expanded as follows:

IR(p̂, t) =
1

4π
[
ρ(R, τ) + 3J(R, τ) · p̂ + · · · ] (4.1)

where ρ denotes the energy density, and J is the energy current vector which
points in the direction of maximum energy flow. The dots denote higher order
multipoles that are neglected. Equation (4.1) forms the basis of the diffusion
approximation, which should apply at t 
 τ∗, where τ∗ denotes the transport
mean free time. We recall that the transport mean free time τ∗ is the typical time
after which the scattered energy of a wave in a particular direction is spread
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over all directions. We introduce the “ideal” field-to-field correlation function C
between two stations located at R + r/2 and R − r/2 as

CR(r, τ) =

+∞∫
−∞

u(R + r/2, t + τ/2)u∗(R − r/2, t − τ/2)dt, (4.2)

where R represents the mean distance between source and stations and r the
interstation distance. We will assume now that the averaging over time and over
the ensemble can be interchanged. The diffusion approximation can be used to
derive an asymptotic (t → ∞) relation between C and the ensemble average GF
of the medium [84]:

CR(r, τ) = ρ(R, τ)
∂
∂τ

[〈GB(r, τ)〉 − 〈GB(r,−τ)〉]− 3J(R, τ) · ∇ [〈GB(r, τ)〉 − 〈GB(r,−τ)〉] .
(4.3)

In equation (4.3) brackets 〈·〉 denote an ensemble average, and GB is the retarded
causal GF filtered in frequency band B. Equation (4.3) applies to ensemble av-
eraged quantities only and is, therefore, not expected to apply strictly in the
seismological case. However, it establishes a relatively simple relation between
the field-to-field correlation function from a single source and partial derivatives
of the (time-symmetric) GF.

It can be inferred that the partial derivatives ∂τ and ∂r acting on the brackets
[·] yield even and odd functions of time respectively. Thus, as long as the dipolar
(J) and isotropic (ρ) terms are of the same order, a time asymmetry is expected to
persist.

In the diffusive regime, the energy density is the solution of a simple diffusion
equation:

∂tρ(R, t) −D∇2ρ(R, t) = δ(t)δ(R) (4.4)

and is related to the energy current by Fourier’s law:

J(R, t) = −D∇ρ(R, t). (4.5)

The diffusion constant of the medium is denoted by D and is related to the
transport mean free time τ∗ by

D = v2τ∗/3. (4.6)

In equation (4.4) the delta functions represent idealized source terms for small
earthquakes. Note that equations (4.4) and (4.5) are valid for coupled elastic
waves. In that case, ρmust be interpreted as the sum of P and S energy densities
and relation (4.6) takes a more complex form [108]. For scalar waves in a simple
infinite scattering medium with homogeneous background, the diffusion equation
is easily solved, and the ratio Γ between the causal and anti-causal parts of the
correlation function can be written as [20]

Γ(R, t) =
1 + 3R/2vt
1 − 3R/2vt

· (4.7)
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This relation is easily obtained by noting that J/ρ = R/2t and ∂r = v∂τ for a
propagating wave of the general form h(t − R/v). Equation (4.7) shows that for
a single source the convergence of the ideal correlation function toward time
symmetry is algebraic, of order t−1 only. This result has to be used with some
caution, since it relies on the assumption that the angular dependence of the
specific intensity can be described by equation (4.1).

1.2. Monte-Carlo simulation of radiative transfer

To assess the range of validity of this expansion, we numerically solved the full
elastic radiative transfer equation using the Monte Carlo method of [109]. Our
analysis is limited to elastic body waves in an infinite space. The code previously
developed to evaluate energy densities has been adapted to calculate the angular
distribution of flux. Numerical solutions of the transport equations and analytical
results of the diffusion approximation are shown in Figure 4.1. The medium is
composed of spherical inclusions with slight (5%) deviations of density, P, and S
velocities from the homogeneous background. The product of shear wavenumber
and sphere radius is kSa ≈ 2. The scattering mean free time of shear waves is
roughly 8 s and the detector is located 80 km away from a point-like shear source.
Figure 4.1a demonstrates the rapid mixing of P and S modes. After about 50 s
(six mean free times), the P to S energy ratio has stabilized. However, Figure 4.1b
shows that the energy flux is strongly anisotropic at the same lapse time: the
ratio between forward and backward fluxes is still larger than 4. It is therefore
important to carefully make the distinction between the stabilization of the P to S
energy ratio, the validity of the diffusion approximation, and equipartition.

In the equipartition regime, all directions of propagation and all polarizations
are supposed to be equally represented. Under these condition, the theoretical
value of the energy ratio v3

S/2v3
P (where vP and vS denote the shear and compression

velocities) can be obtained from a simple mode counting argument [38]. Note that
this result is valid only for an open space and can be generalized to the case of
the half-space [26,40]. Figure 4.1 shows that the anisotropy of the field remains at
very large times and, therefore, that equipartition occurs asymptotically (t→ ∞).
On the contrary, the P to S energy ratio stabilizes at the theoretical value v3

S/2v3
P

after a finite time. At this stabilization time, the diffusion approximation wrongly
predicts both energy density and flux anisotropy. After about 100 s, radiative
transfer and diffusion theory agree extremely well, but the residual anisotropy
of intensity is still of the order of 2 and decays algebraically as predicted by
equation (4.7).

The total energy density is correctly predicted by the diffusion approximation
only when the dipolar term describes with sufficient accuracy the anisotropy of
the specific intensity. The calculations prove:

1. that the stabilization of the P to S energy ratio is a rapid phenomenon;

2. that this stabilization does not imply isotropy of the wave field;
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Figure 4.1. Comparison between numerical (Monte Carlo) solutions of the radiative
transfer equation, and analytical solutions of the diffusion equation. (a) Energy density
(top) and P to S energy ratio. (b) Angular distribution of elastic energy flux. The dashed and
solid lines show the results of the diffusion approximation and radiative transfer equation
respectively. The energy flux decreases monotonically from θ = 0 (forward direction) to
θ = π (backward direction), where θ denotes the angle between the propagation direction
and the source-observer vector. The results for θ = π/4, π/2 and 3π/4 are also plotted.
Figures from [120], reprinted with permission from AGU.
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3. that the diffusion approximation may largely underestimate the anisotropy
of the energy flux, even in the multiple scattering regime.

It is important to notice here that formal equipartition would imply perfect
isotropy (all modes, i.e. directions, equally represented). The stabilization of
the P to S ratio occurs before the equipartition which is the asymptotic behavior
of diffuse waves for large times. Therefore, one may expect large time asymme-
tries of the field-to-field correlation functions as shown by equation (4.7), provided
the sources are located in the same distant region. The asymmetry is expected to
disappear both in the average cross-correlations of late coda signals, or with an
isotropic distribution of sources around the seismic network. In the latter case,
each source produces an asymmetric correlation function, but the antisymmetric
terms from many sources are expected to average out. In next section, we illus-
trate these points with a different numerical simulation scheme. This simulations
will solve the real wavefield and will allow field-field correlations.

1.3. Numerical simulation of wave propagation
and correlation

Another set of numerical simulations is conducted in a 2-D acoustic medium. This
configuration is chosen because it is a simple way to describe wave propagation
at the surface of the Earth. We solve the wave equation using a finite difference
code [28, 110]. The field produced by each of several sources S is computed at
each point in the medium. We consider a weakly scattering medium, where the
distance of propagation is smaller than the transport mean free path �∗ of the
waves. The scattering is caused by a distribution of small rigid scatterers with
radius a. The background velocity is 3.3 km/s. The product of the wavenumber
k by the radius a, ka = 1. Following the time-reversal interpretation developed
by Derode et al. [23] (and in Sect. 3, Chap. 3), we choose to place the sources S
all around A (the reference point at the center of the grid marked with a cross
in Figure 4.2a in order to form an equivalent of a perfect time reversal mirror.
Each source S sends a broadband pulse with 0.1 Hz central frequency. The
correlations are computed between the field GSA(t) at the reference point A and
the field GSR(t) at any other point R(x, y) of the grid. The correlation is averaged
over the entire set of sources S. The wave field reconstructed by correlations is
displayed in Figure 4.2 for correlation times −30 s, 0 s and 30 s. Time τ = 0 is the
central time of the correlations, when all the energy is focused at A as if A were
a source. We observe a converging wavefront at negative times, and a diverging
wavefront at positive times. These wavefronts correspond to the causal (positive
times) and anticausal (negative times) parts of the GF between A and any point
R in the medium. The nearly perfect reconstruction of the GF (including the
converging and diverging wavefronts) is due to the quasi-ideal distribution of
sources around A, the length of the coda (as long as allowed by the numerical
schemes: 200 oscillations), and the absence of absorption.
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Figure 4.2. Numerical simulation of the reconstruction of the causal and anticausal
parts of the GF from cross-correlations. (a) Configuration of the numerical experiment.
1000 sources S (×) are surrounding the reference point A (+). The black dots indicate the
point scatterers. (b) Snapshot of the cross-correlation between the field in A with the field
at location (x, y) after averaging over the sources S for correlation time τ = −30 s. The
weakly diffusive medium is characterized by the transport mean free path �∗ = 640 km
which is larger than the distance between the points where the correlations are computed.
A converging wavefront is well-defined and constitutes the anti-causal part of the GF.
(c) Snapshot for correlation time τ = 0 s: the wavefront is focused on A. (d) Snapshot
for τ = 30 s: the diverging wavefront corresponds to the causal part of the GF. Figures
from [120], reprinted with permission from AGU.

Let’s now illustrate the effect of a non-homogeneous distribution of sources
and finite durations of recording, in conditions closer to seismology. The con-
ditions of computation are similar to those used to produce Figure 4.2 but we
now consider a configuration which mimics a set of earthquakes along a fault.
40 sources S are aligned in the x-axis direction along a 400-km-long segment lo-
cated 450 km away from the receivers as depicted in Figure 4.3. Snapshots of the
correlation function are presented in Figure 4.3 for time (b) τ = −30 s, (c) τ = 0 s,
and (d) τ = 30 s. For τ < 0, the wavefront is only reconstructed in the direction of
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Figure 4.3. Numerical simulation of the asymmetry of the reconstructed GF. (a) 40 sources
S are aligned along the x-axis (crosses). The reference point is at the center of the plot,
indicated by a “+”. (b) Snapshot of the cross-correlation between the field in A with the
one at location (x, y) after averaging over the sources S for correlation time −30 s. The
converging wavefront is only partially reconstructed in the direction of the sources. (c)
Snapshot for correlation time t = 0 s: the wavefront is focused on A. Note the high level
of remaining fluctuations. (d) Snapshot for t = 30 s: the diverging wavefront is defined
only in the direction opposite to the source region. Figures from [120], reprinted with
permission from AGU.

the sources S, corresponding to the anti-causal part of the GF. For τ > 0, only the
causal part of the GF is reconstructed in the region opposite to the sources.

This numerical experiment confirms that the spatial distribution of the sources
controls the time symmetry of the correlations. If the source distribution is asym-
metric, the time-symmetry of the correlations can be broken. This is particularly
true in weakly scattering (or homogeneous) media. This can be understood as
well in terms of the time-reversal interpretation (see Sect. 4, Chap. 3, [94, 103]).
The uneven distribution of earthquakes in a limited region has a similar effect as
a limited aperture of a time-reversal mirror.
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Figure 4.4. (a) Same experiment as in Figure 4.3 for time t = −30 s in the weakly diffusive
medium. Only the late coda was processed, corresponding to lapse times larger than
the mean free time. This part of the acoustic signal is made of multiply scattered waves
propagating in all directions. The wavefront converges on A. Once again diffusion has
restored the wavefront isotropy and the time-symmetry of the GF. (b) Same experiment
as in Figure 4.3 for time τ = −30 s for a strongly scattering medium with mean free path
�∗ = 120 km. The converging wavefront is isotropic, and, therefore, the time symmetry of
the GF is restored. Figures from [120], reprinted with permission from AGU.

At long lapse times, the field becomes diffuse, and the argument given above
(Eq. (4.7)) holds. We therefore expect that even with an inhomogeneous distribu-
tion of sources, scattering restores the broken time symmetry of the correlations.
We checked this expectation with the same numerical experiment as before, but
we correlated only the waves of the late coda. Late times in the coda are defined
as τ > t∗, where t∗ is the mean free time, t∗ = �∗/v. After t∗, the waves have traveled
more than �∗, and the field is evolving toward isotropy. The result is shown in
Figure 4.4a and proves that the time symmetry of the correlations is restored by
using large enough lapse times.

As a consequence of the discussion above on the isotropization of the field,
we expect stronger scattering to improve the reconstruction of the GF even for
an inhomogeneous distribution of sources. This effect was already confirmed by
laboratory experiments [103]. We performed numerical simulations in a strongly
scattering medium (Fig. 4.4) and processed the complete coda window. Again,
the converging wavefront is clearly symmetric despite the uneven distribution of
sources.

Besides the question of the source distribution, the distribution of scatterers
can be a source of time asymmetry as well. In the case of an inhomogeneous
distribution of scatterers, one may expect preferential directions of arrival of
scattered waves. As discussed above, and whatever its origin, such an anisotropy
of the energy flow results in a temporal asymmetry of the correlations.
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2. Passive reconstruction of Rayleigh waves
in an ultrasonic analogous crust

In this section, we present experimental results obtained in the lab with laser-
induced and laser-detected ultrasonic waves propagating in a heterogeneous slab
mimicking the Earth crust. Our aim is to illustrate the role of scattering in the
time-symmetry of correlations, and investigate the role of mode coupling (bulk-
to-surface conversion) in the Rayleigh wave passive retrieval. In order to achieve
small-scale seismology, we propose to investigate the emergence of the GF in the
correlations of elastic waves propagating in a solid heterogeneous medium with a
free surface. Because field experiments are tedious and natural environments are
mostly unknown (especially in the scattering properties), we build an Earth crust
model at the scale 1/10−6 (presented in Fig. 4.5). Waves are sensed at ultrasonic
frequencies at the free-surface of an elastic open medium. In our experiment
surface waves are not initially excited. This is different from the work of Malcolm
et al. [20], where ultrasonic Rayleigh waves were generated on the same surface
they were measured. In addition they used a finite cylindrical medium with
possibly round trip wave trains whereas our experiment is conducted in a nearly
open medium. In our configuration, we would not expect the Rayleigh wave to
be reconstructed in the correlation, except if scattering is present and mode con-
version between Rayleigh and bulk waves occurs. To verify this assumption and
study the role of mode conversion, we used two samples of identical dimensions,
one with scatterers the other without.

Figure 4.5. 106 → 1 scaled
interpretation between
the Earth crust and our
ultrasonic experiment. In
the crust, the scattering
mean free path was es-
timated in Mexico [44]
at 1 Hz: �∗ = 30 km. In
the aluminum waveg-
uide, �∗ = 5.5 mm at
1 MHz. Figure reprinted
with permission from
[É. Larose et al., Phys.
Rev. E 72, 046607 (2005)].
Copyright 2007 by the
American Physical Society.
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2.1. Laser generation and detection of ultrasound

The laser devices have the advantage of being sharp, broad-band, and non-
contacting (remote sources and detectors). In Figure 4.6 are presented the wave-
fronts propagating in an homogeneous medium in a source-receiver configura-
tion. At time t after the source, the bulk wavefronts are localized along a sphere
of radius vPt and vLt. On the free surface (z = 0), the perturbation is localized at
x = ±vRt.

Figure 4.6. Schematic view of optical
generation and detection of ultrasonic
waves in an elastic body.

Generation of ultrasound in solids with a pulsed laser has been subject to a
great deal of publications (see for instance [111–113]). Very schematically, the
laser beam heats the surface of the elastic body. Depending on the intensity of
the incoming beam, two regimes are possible (see Fig. 4.7). In the thermoelas-
tic regime, the heat induces dilation of the focal spot just beneath the surface.
This thermal expansion mainly creates lateral shear waves (essentially Rayleigh
waves). If the laser intensity is increased (I > 15 mW/cm2 for aluminum), the
heat is strong enough to vaporize a thin layer of metal. The laser then mimics a
vertical force.

Figure 4.7. Two possible mechanisms of elastic wave generation with a laser source. In the
thermoelastic regime (low-intensity incident beam), surface waves are mainly generated.
If the laser intensity is increased, the source turns to the ablation regime where the top of
the metal is partially vaporized. Rayleigh waves are still emitted preferentially, but bulk
waves are stronger than in the thermoelastic regime.
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The laser detector used in the following is a heterodyne interferometer, and
has been developed by Royer et al. [114]. It has the advantage of a very broad-
band response (20 kHz–45 MHz) and a sensitivity of 10−4Å/

√
Hz (for a complete

description, see also [113]).

2.2. Elastic waves in a homogeneous slab

Our first experiment takes place in a homogeneous medium: an aluminum slab
without holes. Our aim is to mimic seismic waves propagating in the earth. We
reproduce in this small-scale experiment the main features of the Earth crust. A
duraluminum slab (25 mm thick) with dimensions roughly 10−6 of those of the
crust is used (Fig. 4.8).

(a) Experimental setup
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Figure 4.8. (a) Experimental setup in transmission configuration. (b) Example of the signal
detected on the top after a source on the bottom (0.8 MHz high-pass filter). Several arrivals
are clearly visible: direct P and S wave, followed by multiply reflected/converted paths
(P3, PPS, P5...).

The source we employed to simulate earthquakes was a Q-switched Nd:YAG
laser that shot 24 ns pulses at the bottom side of the slab (each pulse energy: 9 mJ).
In the ablation regime, both Rayleigh and bulk waves are generated. Rigorously,
such a source is not truly reproducible since the laser impact can damage the
surface. To make the experiment as reproducible as possible while staying in
the ablation regime, the shot intensity was no more than 280 MW/cm2. A 1 ms
record was acquired 100 times without any observable change. In the following
experiments, for a satisfactory signal to noise ratio, each impulse response was
averaged over 100 consecutive shots.

The detection of the free surface motion is achieved with a non-contacting
and quasi-punctual device: a heterodyne optical interferometer. It is mounted
perpendicularly to the slab and then measures the absolute vertical component
of the free surface displacement (top side), with a fine spatial resolution; the size
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of the laser spot is ∼100 μm whereas the typical elastic wavelengths here range
between 1 and 10 mm. This is similar to seismology, where sensors are nearly
punctual compared to the wavelengths considered (several kilometers at 1 Hz).
However seismic sensors usually provide time records of the three components
of the displacement field. Here the interferometer measures only the vertical
movements of the free surface.

Ideally, the slab should have infinite dimensions along the directions x and y.
To approach this condition, we attach a thick layer of dense plasticine on the lateral
sides and edges of the duraluminum sample with the aim of creating absorbing
boundary conditions and avoiding the generation of Rayleigh waves by mode
conversion at the edges. The energy decay time τabs was initially found to be
23 000 μs (see Fig. 4.9). With the plasticine it decreased to 120 μs. We therefore
simulated an open slab in the x and y directions with a free surface at the top.
Rigorously, the earth crust is a waveguide that partially leaks energy through the
Moho discontinuity to the underlying mantle. To perfectly match this feature we
should have placed a infinite medium with a different impedance at the bottom
side of the aluminum slab. Yet we think that our results and conclusions do not
suffer too much from this omission: the central point of our setup is to mimic an
elastic medium, infinite in the horizontal directions with a free surface on the top.
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Figure 4.9. (a) Averaged intensity I(t) obtained in transmission through the homogeneous
aluminum slab without plasticine. (b) Averaged intensity I(t) with absorbing lateral layer,
and theoretical fit (see Sect. 2.4) for scalar wave diffusion in a 2-D semi-infinite slab. Note
that at late time, scattering does not play any role in the intensity decay. Figure reprinted
with permission from [É. Larose et al., Phys. Rev. E 72, 046607 (2005)]. Copyright 2007 by
the American Physical Society.

In an elastic body, three different kinds of wave polarization are possible.
Compressional (or longitudinal) waves are analogous to acoustic waves in fluids
(velocity vP = 6.32 mm/μs in duraluminum). Shear (transverse) waves have two
possible polarizations (velocity vS = 3.13 mm/μs): one we call SV (vertical) in
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the x–z-plane (see Fig. 4.5) and one SH (horizontal) in the x–y-plane. SH waves
have no contribution in the z-direction and, therefore, will not be detected by
the interferometer. In addition to bulk waves, surface waves exist but here only
Rayleigh waves (vR = 2.9 mm/μs) will be taken into account, since the others
cannot be detected (no vertical displacement). The shortest wavelength in the
aluminium slab is 0.9 mm, which is much greater than the duraluminum alloy
grain size. Since the orientation of the grains is random, we consider the alloy to
be isotropic for elastic waves in the frequency band of interest.

2.3. Elastic waves in a heterogeneous slab

The experimental setup depicted in Figure 4.10 is designed to mimic the scat-
tering of elastic waves through the Earth crust, at ultrasonic frequencies (0.8–
3.2 MHz) [22, 115]. Fifty-four cylindrical holes (radius a = 2 mm) were drilled
at random along direction y so that the waves propagating through the slab
could undergo multiple scattering. The 2-D spatial Fourier transform of the hole
positions was calculated and is almost perfectly flat in the range of ultrasonic
wavelengths involved in the experiment, which confirms the absence of spatial
correlation between the holes. The density of scatterers was n = 0.0105 mm−2.

Figure 4.10. Experimental setup: the propagation medium is an aluminum block drilled
with 54 vertical cylindrical holes (diameter: 4 mm). A Q-switched Nd:YAG laser shoots
on the bottom side 100 pulses (24 ns duration and 280 MW/cm2 intensity each). On the
top side a heterodyne interferometer senses the vertical displacement of the aluminum/air
interface. This measure is repeated at 7 different locations (X0 = 0 mm → X6 = 60 mm)
for each source position. Plasticine was stuck on the edges and the four lateral sides to
mimic absorbing boundary conditions and avoid the generation of Rayleigh waves by
mode conversion at the edges. Figure reprinted with permission from [É. Larose et al.,
Phys. Rev. E 72, 046607 (2005)]. Copyright 2007 by the American Physical Society.
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The overall translational symmetry along the y-axis of both the free surface
and the cylindrical scatterers avoid any coupling between SH mode and the other
SV and P modes. Therefore SH waves will not be considered here and SV waves
will be referred to as S (shear) waves. The wave propagation in our experiment
will be treated as 2-dimensional (and quasi 1-D for the surface Rayleigh waves).
Waves initially propagating in the y-direction are rapidly lost by absorption by
the plasticine.

The laser source and the laser interferometer can be translated independently:
35 sources and 7 sensing positions were used during the experiment, resulting in
a set of 35 × 7 impulse responses. A typical waveform is depicted in Figure 4.11.
Around 1 MHz it lasts nearly 800μs, and shows a long diffusive decay comparable
to the seismic coda. Due to the strong scattering on the cylindrical cavities, no
top-bottom reflection was observed in the data. This confirms the highly diffusive
nature of the propagation in the scattering slab. The relevant scattering properties
are discussed and evaluated in next section.
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Figure 4.11. Top: typical
waveform obtained through
the scattering slab around
1 MHz. The sensitivity of
the heterodyne interferometer
is 10−4Å/

√
Hz corresponding

the optimal level of optical
reflection on the sensed sur-
face. After averaging over
100 records we reached the
precision of 10−2 Å. Bottom:
intensity averaged over sev-
eral source/sensor positions.
Figure reprinted with permis-
sion from [É. Larose et al.,
Phys. Rev. E 72, 046607
(2005)]. Copyright 2007 by the
American Physical Society.

2.4. Wave scattering and transport properties

Scattering cross section of an empty cylinder

In order to evaluate the amount of scattering and mode conversion, we calculated
the differential cross-section ∂σ/∂θ and the total scattering cross-section σ of a
cylindrical void in a elastic medium excited by a compressional or shear plane
wave. For a detailed derivation we refer to references [116–118]. The differential
scattering cross-section gives the angular distribution of the scattered surfacic
intensity, normalized by the incident surfacic intensity. The total elastic cross-
section is σ =

∫
∂σ/∂θdθ. In 2-D it has the dimensions of length. It corresponds
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to the scattering strength of an object at a given frequency. In an elastic medium,
mode conversion can occur and different cross-sections must be considered. In
the case of an incident compressional wave, they are denoted as σPP, σPS and
σP = σPP + σPS, respectively for the P to P, P to S and total P elastic cross-sections.
We also calculated the elastic cross-sections for an incident shear wave (S), σSP,
σSS and σS = σSP + σSS.

Here follows a brief calculation of the wave field scattered by a cylindrical
cavity insonified by a plane compressional wave. Three displacement potentials
are relevant: Φi is the displacement potential of the incident P wave, Φs is the
scattered P wave potential and Ψs is the scattered S wave potential. They can be
expanded as:

Φi(r, t) =
∞∑

m=0

εmimJm(kPr) cos(mθ)e−iωt,

Φs(r, t) =
∞∑

m=0

AmH(1)
m (kPr) cos(mθ)e−iωt,

Ψs(r, t) =
∞∑

m=1

BmH(1)
m (kSr) sin(mθ)e−iωt,

where Jm and H(1)
m are respectively the Bessel and Hankel functions both of first

kind and of order m, and εm is the Neumann factor. Taking into account the
null traction condition at the surface of the cylinder allows the calculation of the
Am and Bm coefficients. Those coefficients are given in [116–118]. The scattering
cross-sections are

σP→P =
2
kP

⎡⎢⎢⎢⎢⎢⎣2|A0|2 +
∞∑

m=1

|Am|2
⎤⎥⎥⎥⎥⎥⎦ , σP→S =

2
kS

⎡⎢⎢⎢⎢⎢⎣
∞∑

m=1

|Bm|2
⎤⎥⎥⎥⎥⎥⎦ ,

σP = σP→P + σP→S.

The corresponding differential scattering cross-sections are

∂σP→P

∂θ
(θ) =

4
kP

∣∣∣∣∣∣∣
∞∑

m=0

Ami−m cos(mθ)

∣∣∣∣∣∣∣
2

,

∂σP→S

∂θ
(θ) =

4
kS

∣∣∣∣∣∣∣
∞∑

m=1

Bmi−m sin(mθ)

∣∣∣∣∣∣∣
2

.

The differential cross-sections plotted in Figure 4.12a have been computed at
1.2 MHz and 2.4 MHz frequencies. The elastic scattering sections are plotted in
Figure 4.12b for frequencies ranging from 0.1 MHz to 200 MHz. The average in
the frequency band of interest (0.8–3.2 MHz) was σP = 9.2 mm. This value is
comparable to measurements by [119]. The same calculations were conducted
for an incident shear wave. The average was σS = 12 mm in the 0.8–3.2 MHz
frequency band.
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Figure 4.12. (a) Differential scattering cross-sections of a cylindrical cavity calculated
for a compressional P or shear S incident plane wave. Each pattern is normalized by its
maximum. (b) Elastic scattering cross-sections. Between 0.8 and 3.2 MHz, scattering is
stronger for shear waves. At high frequencies the elastic cross-sections tend to the limit
of twice the geometrical diameter. Figure reprinted with permission from [É. Larose et al.,
Phys. Rev. E 72, 046607 (2005)]. Copyright 2007 by the American Physical Society.

Transport properties
When the elastic wave propagates through the aluminum slab drilled with holes,
it undergoes multiple scattering. Let ϕ(t) (respectively ϕ0(t)) be the vertical dis-
placements sensed at the free surface through the scattering (respectively ho-
mogeneous) medium. Classically, this field is split into two contributions: the
coherent and the incoherent part. The coherent wave is the ensemble-averaged
field

〈
ϕ(t)

〉
(averaged over disorder configurations, here: cylinders positions).

We emphasize the difference between the coherent and the ballistic wave (i.e. the
first arrival). For a detailed discussion about scattering effects on coherent and
ballistic waves, see [6]. Away from resonances, the coherent wave can be roughly
thought of as an attenuated version of the direct wavefront ϕ0(t). When there
is no intrinsic dissipation, the energy of the coherent wave decays with the slab
thickness H as e−H/�, where � is the elastic mean free path. Assuming a dilute set
of scatterers, the elastic mean-free path is simply related to density of scatterers n
and their elastic cross-section σ by

� =
1

nσ
·

From the theoretical scattering cross section calculated above, we find �P =
10.3 mm. In order to measure the mean-free path experimentally, we used two
aluminum slabs of exactly the same dimensions. The first served as a reference
and provided measurements of ϕ0(t) for different source-sensors positions. The
second one was drilled with holes. By translating the source-receiver device along
the slab, we achieved something very similar to a configurational averaging and
measured the energy of the coherent wave

〈
ϕ(t)

〉2. Between 0.8 and 3.2 MHz, we
obtained �P = 9 ± 2.5 mm from these experiments.
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The intensity of the incoherent part was also studied. The time evolution of
the averaged incoherent intensity I(t) =

〈
ϕ(t)2

〉
is governed by another parameter:

the transport mean free path �∗. In an elastic body, transport quantities have been
theoretically defined by [108]:

�∗P =
1
n

σS − σ∗SS + σ
∗
PS

(σP − σ∗PP)(σS − σ∗SS) − σ∗PSσ
∗
SP

(4.8)

�∗S =
1
n

σP − σ∗PP + σ
∗
SP

(σP − σ∗PP)(σS − σ∗SS) − σ∗PSσ
∗
SP

(4.9)

with σ∗ =
∫

(∂σ/∂θ) cos(θ)dθ. It was evaluated numerically: �∗P ≈ �∗S = 5.5 mm.
In an experiment, this parameter is very hard to measure with a reasonable
precision. The coherent backscattering effect [53, 54, 56, 66] (also referred to as
weak localization) does give a direct estimation of the transport mean free path.
However, our experimental configuration did not allow this special measurement,
since we could not place a laser sensor in the vicinity of the laser source. Yet we
checked that the experimental intensity decay I(t) gives an order of magnitude
for �∗ that is consistent with the theoretical value.

For the sake of simplicity we propose a 2-D scalar wave model for I(t) [59],
under the diffusion approximation. In an infinite slab of thickness H with perfect
reflections on both sides, the averaged transmitted intensity reads:

I(X, t) = I0

⎧⎪⎪⎨⎪⎪⎩ 1

2H
√
πDt

+

∞∑
n=1

(−1)n

H
√
πDt

e−
n2π2Dt

H2

⎫⎪⎪⎬⎪⎪⎭ e−
X2
4Dt− t

τabs

with τabs the absorption time (taking into account the intrinsic absorption in
the aluminum and the lateral leaking due to the plasticine) and D the diffusion
constant. X is the lateral distance between source and receiver. This formula is
obtained using a modal decomposition of the diffusion equation in the z direction.
The intensity I(t) is a mix of compressional and shear waves, each mode traveling
with its own parameters (velocity, �∗, diffusion constant) and interchanging their
energy through scattering events. In our experiment �∗S and �∗P are of the same
order. The diffusion constant was approximated by

D =
1

2(1 + 2v2
P/v

2
S)

(
vP�

∗
P + 2vS

(vp

vs

)2
�∗S

)
≈ 40 mm2/μs.

This assumption is valid after a couple of mean free times, when the equipartition
regime [26] has been reached. Equipartition means that the density of compres-
sional and transverse modes equilibrates. Considering the specific velocities of
each mode [38], we infer that 80% of the energy is transported by S waves, and
only 19% by P waves (and an additional 1% by surface waves). Hence our best fit
(thick line in Fig. 4.9) of the intensity decay in the coda gives τabs = 120 μs ± 10%
and �∗ = 5−20 mm. The early part of the intensity is significantly sensitive to �∗,
whereas the late part mainly depends on τabs.
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2.5. Two-point correlation of diffuse fields

In this section, we focus on the experimental reconstruction of the direct GF from
passive correlations. The main idea is to correlate diffuse fields sensed at two
different locations on the top side when a source generates bulk waves on the
bottom. Since we record the vertical component of the surface displacements,
the two-point correlations should simulate a vertical source at the surface, which
mainly generates surface waves. Indeed, the experimental correlations we ob-
tained reveal a wave packet that travels at the speed of a Rayleigh wave. We
insist that our sources do not generate surface waves at the top side of the slab.
Moreover if a surface wave happened to be generated anywhere, it would be
completely absorbed by the plasticine. Under these conditions no Rayleigh wave
should travel on the top surface, and no Rayleigh wave should be passively re-
trieved by correlations. Why then should passive imaging give rise to a Rayleigh
wave train in our experiment?

We propose first to examine the role of scatterers in the emergence of the direct
Rayleigh wavefront in the correlations. To that end we separately correlated coda
records obtained through two different aluminum slabs: the first drilled with
holes, the second without. Each impulse response lasted ≈ 800 μs before reaching
the noise level (see Fig. 4.11). We emphasize that these record lengths are far
from the Heisenberg time (break time) at which the modes of the aluminum block
would be resolved (here TH ≈ 106 μs) and correlations would naturally converge
to the GF. This modal approach is irrelevant to our experiment. The records were
correlated and averaged over the 35 available sources. For the scattering slab, this
reads: 〈

Cij(τ)
〉
=

35∑
S=1

∫ t=600 μs

t=0 μs
ϕ(S,Xi, t)ϕ(S,Xj, t + τ)dt,

where Xi and Xj are the sensors points (running from X0 = 0 mm to X6 = 60 mm
along the array). And for the homogeneous slab:

〈
C0

i j(τ)
〉
=

35∑
S=1

∫ t=600 μs

t=0 μs
ϕ0(S,Xi, t)ϕ0(S,Xj, t + τ)dt.

To enhance the signal-to-noise ratio, each correlation is time symmetrized
(= 〈C(+τ)〉 + 〈C(−τ)〉) and normalized by its maximum. Results are displayed in
Figures 4.13 and 4.14. A propagating wavefront (traveling at the Rayleigh wave
velocity vR = 2.9 mm/μs) is clearly visible in the presence of scatterers, whereas
it does not appear in the homogeneous slab. We also summed the 6 normalized
propagating peaks after having delayed each signal according to the Rayleigh
wave travel time. The summation is displayed in the inset in each figure. In
the scattering slab, its amplitude nearly corresponds to the coherent addition of
6 pulses. In the homogeneous device, the amplitude of the summation is ≈2.5
(incoherent addition of 6 uncorrelated fields). We conclude on the necessity of
mode coupling due to scattering for the Rayleigh wave to emerge from the passive
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Figure 4.13. GF reconstruction for different pairs of receivers. Correlations are averaged
over the 35 sources and filtered in the 0.8–1.6 MHz frequency band. (a) 7 cross-correlations
〈Cij(τ)〉 in the diffusive aluminum plate. (b) 7 cross-correlations 〈C0

i j(τ)〉 obtained in the
homogeneous aluminum block, where the mode conversion possibly occurring at the edges
was suppressed by the plasticine. The insets show the summation of the 6 wavefronts from
X0 = 10 mm to X6 = 60 mm after a time-reduction based on the Rayleigh wave speed (dotted
line, vR = 2.9 mm/μs). Figure reprinted with permission from [É. Larose et al., Phys. Rev.
E 72, 046607 (2005)]. Copyright 2007 by the American Physical Society.
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Figure 4.14. Same as Figure 4.13
except correlations are filtered in
the 1.6–3.2 MHz frequency band.
The signal-to-noise ratio in (a)
is increased compared to the re-
sults obtained at lower frequen-
cies. Figure reprinted with per-
mission from [É. Larose et al.,
Phys. Rev. E 72, 046607 (2005)].
Copyright 2007 by the American
Physical Society.

correlations of diffuse fields generated by bulk waves sources. This is especially
relevant for applications to seismology. Therefore, it appears once again [103]
that the role of scattering is crucial in passive imaging. Firstly, because of multiple
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Figure 4.15. Evolution of the asym-
metry in the reconstructed GF in the
low frequency regime (0.8–1.6 MHz),
for early (a) and late (b) times. Fig-
ure reprinted with permission from
[É. Larose et al., Phys. Rev. E 72, 046607
(2005)]. Copyright 2007 by the Ameri-
can Physical Society.

scattering, at late times the equipartition regime can be attained whatever the
sources/receivers positions. Secondly, because of mode conversions due to the
scatterers, a Rayleigh wave emerges from the passive correlations even though
no Rayleigh wave was generated by the sources. Note that the bandwidth in the
upper band record is a little wider than in the lower band. This was done to
compensate for the coda shortening (<600 μs) so that the product TΔ f was kept
constant.

We can go a little further and catch a glimpse of the time symmetry properties.
We performed the correlations into two consecutive time windows: from 0 to
45 μs and from 45 μs to 600 μs, and did not time-symmetrize the correlations
(Figs. 4.16 and 4.15). 45 μs is twice the time after which the diffuse energy spreads
homogeneously along the array of receivers (length L = 30 mm) : L2/4D ≈ 22 μs
in an open 2-D scattering medium. The time series were filtered in two frequency
bands: 0.8–1.6 MHz and 1.6–3.2 MHz.
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Figure 4.16. Evolution of the asym-
metry in the reconstructed GF in the
high frequency regime (1.6–3.2 MHz),
for early (a) and late (b) time windows.
Figure reprinted with permission from
[É. Larose et al., Phys. Rev. E 72, 046607
(2005)]. Copyright 2007 by the Ameri-
can Physical Society.
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In the first time-window, from 0 to 45 μs, correlations are asymmetric in time.
This means that the causal part (τ > 0) and the acausal part (τ < 0) of the
correlations are different (see left part of Figs. 4.15 and 4.16). In the causal part,
a Rayleigh wavefront is clearly visible whereas noise is dominating the acausal
part. This is due to the preferential direction of Rayleigh wave propagation (waves
traveling from X0 to X3 in our experiment). There is a net flux of energy from X0

to X1, X2 and X3 (distances 10, 20 and 30 mm in Figs. 4.15 and 4.16). This flux is
due to the uneven distribution of sources in comparison to the receiver couples
X0 − X1, X0 − X2 and X0 − X3: most of the sources are on the side of X0. At the
early times of the coda (from 0 to 45 μs), the diffusion regime is not yet attained.

Later in the coda, from 45 μs to 600 μs, the wave field in the bulk of the
aluminum slab is very likely to be equipartitioned. In the low frequency band (0.8–
1.6 MHz), the time-symmetry of the correlation is indeed restored [84, 120] (see
right part of Fig. 4.15): Rayleigh waves travel in all directions. Nevertheless and
surprisingly, the asymmetry persists in the high frequency band (from 1.6 MHz
to 3.2 MHz, see right part of Fig. 4.16). To interpret this observation, we have
carefully studied the location of the scattering sources around the array. In the high
frequency band, the Rayleigh wavelength is ∼1.5 mm. The generation of Rayleigh
waves by scattering necessarily occurs in the first half-wavelength beneath the
free surface [121]. In our scattering slab, one hole was nearly showing on the
surface (position X < 0), another one was 0.61 mm beneath (position X > 60 mm),
the others being located much deeper. Rayleigh wave trains are mainly generated
by the hole nearest to the surface, then propagate along the array of receivers
(from X0 to X6 point). These waves are almost unperturbed (attenuated) until
they reach the edges of the slab and the absorbing plasticine. They contribute to
a very clear propagating pulse in the positive part of the correlation. The weak
coupling due to the deeper hole (z = −0.61 mm) on the X6 side contributes to a
smaller pulse propagating from X6 to X0 in the negative part of the correlations.

This interpretation is in agreement with observations in the low frequency
band (0.8–1.6 MHz), where the average Rayleigh wavelength is 3 mm (Fig. 4.15).
At least 5 holes are present in the first half wavelength and should cause significant
scattering of Rayleigh waves and coupling between surface and bulk waves.
This time, the holes are evenly distributed along the sensor array. In the late
coda, correlations X0 × X1, X0 × X2 and X0 × X3 are nearly symmetric. The time
symmetry is obtained due to scattering by a symmetric distribution of scatterers.
Under these conditions, a global equipartition among bulk and surface waves is
guaranteed. Furthermore the reconstructed surface wave is strongly attenuated
along its path because it senses many scatterrers along the array. In addition, these
scatterers contribute to the signals around τ = 0 in the correlations, which degrade
the reconstruction. We think this interpretation explains why the symmetric
wavefront is much more noisy at low frequencies (Fig. 4.13), where a lot of cavities
are encountered in the first half wavelength, than at higher frequencies where the
Rayleigh wavefront can propagate freely (Fig. 4.15).

Finally, we comment on the possible misidentification of the waves that are
reconstructed in our experiment. Indeed, if many scatterers are present within
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a wavelength, the overall wave velocity may be different (effective medium). In
the heterogeneous plate, a reduced-speed shear wave might propagate with the
same wavespeed as a Rayleigh wave in the bulk aluminium plate (i.e., without
cavities). In our experiment, the hole interspacing is 10 mm on average, which
is larger than the largest ultrasonic wavelength. Thus, it is reasonable to assume
that the shear waves propagate in the aluminium plate with the same wavespeed
as in the bulk. The measured wave velocity is 2.9 mm/μs at all frequencies (from
0.8 MHz to 3.2 MHz) and indeed corresponds to the velocity of the Rayleigh wave.

To conclude, the cross-correlation of diffuse fields was performed, allowing
us to retrieve passively the Rayleigh wave between two sensors only when scat-
tering was present. Without scatterers, and in the case of bulk wave generation
and surface detection, no Rayleigh wave was reconstructed. This illustrates the
role of scattering and mode conversion in the GF passive reconstruction. Anal-
ysis for different time-windows and frequency bands confirms observations in
acoustics [106] and seismology [92] that the Rayleigh wave reconstruction was
harder with increasing frequency (see also Chap. 3 on the convergence rate). Here
we found that the Rayleigh wave reconstruction was more efficient in the high
frequency band (Fig. 4.17). In addition we observed that even in the late coda
where waves are expected to be equipartitioned, asymmetry in the correlations
may remain. Both observations are due to the very specific coupling between bulk
and Rayleigh waves, which occurs if scatterers are present in the first wavelength
beneath the free surface. We emphasize that equipartition of bulk waves does not
always mean equipartition of surface waves. On the one hand, our experiments
show the need of scattering to passively retrieve the impulse response between
two sensors, on the other hand they show that scattering occurring between the
sensors degrade the reconstructed Rayleigh waves.

Figure 4.17. (a) Homogeneous
slab: no mode conversion. (b) At
late times + high frequency, mode
conversion to Rayleigh waves
mainly occurs at one scattering
cavity, leading to an anisotropic
energy flux, and an asymmet-
ric correlation. (c) At late times
+ low frequency, mode conver-
sion to Rayleigh waves occurs ev-
erywhere, leading to an isotropic
energy flux, and a symmetric
correlation.
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3. Correlation of seismic coda in Alaska
In seismology, two kinds of fields are usually considered as random: the seismic
noise and the scattered waves of the coda. Seismic noise has the advantage to
be easy to record and to exist even in regions without earthquakes. Shapiro
et al. [122] have shown that coherent broadband dispersive wave trains emerge
from the cross-correlation of ambient seismic noise records between stations many
hundred kilometers apart and that dispersion curves can be measured in the
absence of earthquake records. However, the question of the origin of seismic
noise is still open. Without a clear understanding of the source of the seismic noise,
the relevant propagation regime (ballistic, diffusive, etc.) remains unknown. It is
thus difficult to better understand the properties of the emergence of the GF from
diffuse wave fields using only noise records.

In present section [120], we concentrate on coda waves since they are produced
by a known source, with precise location and origin time, and they have been
shown to result from multiple scattering in the Earth lithosphere. Campillo and
Paul [92] showed that extracting the GF from field-to-field correlation of scattered
waves is a valid approach not only in the controlled and favorable conditions of
the laboratory, but also with natural signals such as actual seismograms produced
by earthquakes. They used coda waves produced by moderate earthquakes in
Mexico. The part played by multiple scattering and diffusion in the coda of
the seismograms has been a subject of discussion since the pioneering papers
of [14, 15]. The importance of multiple scattering for the seismic coda is attested
to by the success of the use of radiative transfer theory to explain the observation
of energy decay [17,44,123,124]. Furthermore, the diffuse character of coda waves
has been demonstrated by the observation of the stabilization of different energy
ratios [26, 41, 125], a phenomenon associated with the principle of equipartition
in the phase space of a random field (e.g. [38]). Equipartition means that all the
possible modes are excited at the same level of energy.

In present context, the word modes refers to all body waves or normal modes
of surface waves that are potentially excited in the region probed by the diffuse
field and can be coupled by local scattering. Equipartition is a property of diffuse
elastic waves. It implies a stabilization of the ratio of S to P wave energy with
time, independently of the source. It is an important point in the context of
the present paper, since it indicates that the modes which make up the GF are
represented in the diffuse field. In the following, we first summarize theoretical
and experimental arguments that clarify the conditions for the emergence of the
GF from field correlations. We then present an application with data from a
temporary broadband network in Alaska. Finally, we discuss the role played by
the source distribution and the time evolution of the wave-field structure toward
complete randomness.

3.1. Data processing

Temporary networks of seismic stations installed in regions with a high level of
seismic activity provide useful data sets to study the properties of the emergence
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of GF from the correlations of coda waves. They include numerous stations
with identical instrument characteristics that make it possible to compute cross-
correlations between many station couples separated by a large range of distances
and with different orientations. Time-distance seismic sections can be constructed
from the correlation signals where the propagating waves can be easily identified
even with a poor signal-to-noise ratio. Actually, only limited averaging can be
performed with coda records, and the deterministic signal is mixed with the
remnant random fluctuations of the diffuse field.

We present here an application of the extraction of GF from coda waves to
the data of a temporary network in Alaska. During the Broadband Experiment
Across the Alaska Range (BEAAR), a network of 36 broadband seismographs was
operated during 2.5 years ending in August 2001 [126]. Most stations recorded
simultaneously about 100 regional earthquakes with magnitude larger than 3.3.
Locations of stations and epicenters are shown in Figure 4.18a. Note that the
distribution of earthquakes is not even and that they are mostly concentrated to
the southeast of the network. The broadband seismograms were first band-pass-
filtered. For each couple of stations, the horizontal components of the seismo-
grams were rotated assuming the inter-station great circle path to be the radial
direction. We used coda records starting 20 s after the arrival of the S wave and
ending when the signal-to-noise ratio was smaller than 4. An example of a record
is shown in Figure 4.18b. Because of the exponential decrease of coda amplitude
with time, we cannot perform a simple cross-correlation between the coda signals
recorded at the two stations without strongly overweighting the earliest part of
the coda.
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Figure 4.18. (a) The paths between couples of stations for which average cross-correlations
have been computed are shown in inset. (b) Example of broadband record from a regional
earthquake. Note that the signal remains well above the noise level for several hundred
seconds after the S wave arrival. Figures from [120], reprinted with permission from AGU.
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To avoid this problem, we followed [127] by disregarding the amplitudes com-
pletely and considering only one-bit signals. Campillo and Paul [92] checked that
this procedure leads to the same results as compensating for amplitude atten-
uation with time in successive time windows. For each couple of stations, the
cross-correlation of one-bit signals was computed for each earthquake, normal-
ized by the maximum amplitude, and averaged over the entire set of events. This
processing was performed for all combinations of components, such as vertical
to vertical (Z/Z), vertical to transverse (Z/T), radial to radial (R/R), etc. The results
of [92] suggest that these different field-to-field correlations contain the different
terms of the elastic Green’s tensor. Wapenaar [99] demonstrated the retrieval of
the elastic Green’s tensor from surface displacement fields produced by a distribu-
tion of sources on a closed surface in the medium. Even if the source distribution
does not fulfill such a condition in actual experiments, he gives a firm theoretical
argument for the reconstruction of the polarized elastic response.

Figure 4.19 shows the results of the processing in the frequency band 0.08–
0.3 Hz. The nine polarization permutations correspond to the terms of the Green’s
tensor, that is for example the R/Z correlation corresponds to the vertical dis-
placement produced by a force in the radial direction. Since we disregard the
amplitudes of the coda waves by using one-bit signals, the relative amplitude
of the reconstructed signals between the components is lost. Traces with a max-
imum amplitude at negative time have been time-reversed to concentrate the
large-amplitude pulses at positive times and have a better view of the presence,
or the absence, of symmetry in time. Note that the location of the maximum
amplitude pulse at positive or negative times depends only on the order of the
signals in the cross-correlation, which is arbitrary. Clear propagating wave trains
can be observed on the Z/Z, Z/R, R/Z, R/R, and T/T components. The Z/T, R/T,
T/Z, and T/R components contain only noise, as expected from the symmetries
of the Green’s tensor. This figure confirms the conclusions of [92] for numerous
paths with different azimuths.

When a propagating branch can be seen at positive times, a symmetric one
is more or less clearly visible, depending on the component, at negative times.
This symmetric wave train is particularly clear on the Z/Z and T/T components at
short offsets. We discuss the question of the time symmetry in more detail in next
section.

To test the reliability of the extraction of the GF from the data, we computed
synthetic GF in a 1-D velocity model derived from the seismic profiles recorded
by [128] in the neighbor Tanana terrane. The computations are performed for a
vertical point source acting at the free surface. The receivers are also at the free
surface in a configuration similar to our station-to-station measurements. The
synthetic section in the frequency band 0.08−0.3 Hz is shown in Figure 4.20 in the
same distance range as in Figure 4.19. It is dominated by low-frequency surface
waves (Rayleigh waves in this case), as the cross-correlation records. As expected
for a point force source at the free surface, the body wave contributions to the
GFs are negligible. We performed the same computation in a frequency band
centered on 1 Hz (Fig. 4.20). The surface waves still dominate. This argument
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Figure 4.19. Average cross-correlations as a function of interstation distance. The corre-
lations have been computed for every permutation of components of motion, vertical (Z),
radial (R) and transverse (T). Figure is from [120], reprinted with permission from AGU.
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Figure 4.20. Synthetic
vertical seismograms for
source and receivers at
the free surface in a flat-
layered crust. The source
is a vertical force. Two
different frequency bands
are considered. Note
the prominence of the
Rayleigh waves. Figure is
from [120], reprinted with
permission from AGU.

based on a flat-layered structure must be moderated by the fact that surface waves
at these frequencies are strongly diffracted by topography and shallow structures
which are neglected in the 1-D model. It is nevertheless a good indication that
the assumption that the prominent arrivals in the actual surface/surface GF are
surface waves is reasonable for the frequency and distance ranges considered
here.

The reconstructed arrivals can be observed at distances as large as 200 km,
confirming the existence of strong long range correlations in coda waves. As
already observed by [92], and demonstrated by the comparison with synthetics,
the dominant signals correspond to the fundamental Love and Rayleigh waves.
A simple phase velocity measurement on the Z/Z and T/T components of Fig-
ure 4.19 confirms that the velocities of the prominent wave trains are in a good
agreement with the expected dispersion curves of Rayleigh and Love waves in
the simple model derived from [128]. The signal-to-noise ratio decreases with
increasing distance. This is a natural consequence of the spatial decay of the GF.
The deterministic signal decreases rapidly while the physical fluctuations of the
diffuse fields remaining after partial averaging are independent of the epicentral
distance. We assume here that the fluctuations are proportional to the square of
the amplitude of the diffuse field. This amplitude is known to vary weakly with
distance in the diffuse regime. It has been shown to be almost independent of
distance for the late coda (e.g. Fig. 3 in [67]). These observations suggest that even
amplitude characteristics could be reconstructed from field correlations. How-
ever, a reliable measurement of the amplitude decay with distance would require
that the same set of earthquake records and time windows are used for each pair
of stations. It is not the case here, since all stations were not operating exactly at
the same time.
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We are able to reconstruct only the surface waves because the GF is expected
to be dominated by surface waves. A high level of noise remains after the limited
averaging performed. It prevents an unambiguous identification of body waves.
The reconstruction of the high frequencies is difficult because absorption limits
the durations of the available coda records. These limitations could be overcome
with a larger data set.

3.2. Time symmetry and isotropy of diffuse wave fields

In Figure 4.19, we arbitrarily chose the direction of time so that the maximum
amplitude of the average cross-correlation is at a positive time. Swapping the
two stations in the cross-correlations gives a time series which is exactly the time-
reversed of the original by definition of cross-correlation. Since the identification
of the waves relies only upon the variations of the travel time with distance, this
choice has no consequence. On the other hand, Figure 4.19 exhibits a strong
asymmetry of the cross-correlation time functions. One must remember that the-
oretically we expect to see both causal (retarded) and anti-causal (advanced) parts
of the GF. Nevertheless we observe that for most station pairs, a single direction
of time is favored. A similar observation was made by [92] in Mexico. They used
earthquakes along the subduction and found that the cross-correlation functions
are asymmetrical for stations inland with an orientation perpendicular to the coast
and symmetrical for stations located along the coast within the earthquake source
region. They suggested that time asymmetry indicates a preferential direction of
flow of the energy of coda waves, a property that could appear as paradoxical
in the context of random fields. In the following, we will discuss this issue in
relation with multiple scattering and the uneven distribution of epicenters which
are mostly located to the southeast of the network in Alaska.

Consider the Z/Z correlation profile of Figure 4.19. Using different bandpass
filters, we attempted to see whether or not the level of asymmetry varies with
frequency. However, the signal-to-noise ratio does not allow any convincing
visual comparison. To achieve a more quantitative analysis we performed a slant-
stack of the cross-correlations. For each trace, the arrival time of the Rayleigh wave
was measured in the positive times, where, by construction, the largest amplitude
is found. We then shifted the traces of the time of the maximum and stacked all
the arrivals in the positive times. We stacked the signals in the negative times
in the same way using time shifts opposite to the ones measured in the positive
times. This operation enhances the coherent arrivals and takes into account the
variations of wave velocity among the different paths. Finally we computed
the ratio between the maximum amplitude of the stacked Rayleigh pulses in
the positive time to the maximum amplitude of the stack in the negative time.
The stacks were performed for all traces corresponding to interstation distances
between 20 and 120 km which have the best signal-to-noise ratio. This processing
was applied to the sections of the Z/Z correlation profile of Figure 4.19 after band-
pass filtering. We obtained an amplitude ratio of 3.8 in the band 0.12–0.3 Hz and
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4.0 in the band 0.08–0.15 Hz indicating that the symmetry is slightly stronger for
high frequency.

However, we also expect the late coda to behave differently from the early coda.
Due to anelastic absorption, the early coda includes more high frequencies. As a
consequence, the influences of both lapse time and frequency on the symmetry
are mixed in this analysis when we consider cross-correlations computed on the
whole coda length.

To clarify this point, we studied the dependence of the causal to anticausal am-
plitude ratio with the lapse time in the coda window. We formulate as a first order
hypothesis that the larger the lapse time, the more isotropic the coda. According
to this argument, we expect the correlations computed in later time windows
to be more symmetric in time since the corresponding diffuse wave field is more
isotropic, and all directions of propagation are closer to being equally represented.
To verify this effect, we compared the amplitude ratio of positive and negative
times for correlations computed for different lapse times and the same two fre-
quency bands as before. We considered first the correlations computed from the
first 300 s of coda (early coda) filtered in the low frequency band (0.08–0.15 Hz).
We found a ratio of stacked amplitudes of 5.6. We repeated the measurement for
correlations computed from record windows starting 300 s after the beginning
of the coda (late coda). The amplitude ratio between the causal and anticausal
signals is 3.9. This indicates that the correlations are more symmetrical when
measured from the late coda than from the early coda. In other words, the longer
time the scattered waves propagate, the more isotropic they are.

We performed the same analysis in the band 0.12−0.3 Hz. For the early coda
the amplitude ratio is 4.3 while it is 3.1 in the late coda. This confirms that the
pulses emerging from the cross-correlations of the late coda are more symmetric
in time than those computed from the early coda. Comparing ratios obtained
in the two frequency bands, we find that the values are smaller for the band
0.12−0.3 Hz than for 0.08−0.15 Hz. This indicates that the high frequency waves
evolve faster toward isotropy. In the following, we investigate theoretically and
from numerical simulations what is the expected evolution of the net flux of energy
with time along a seismogram and if this evolution accounts for the observations.

To conclude on our experiments on real earthquake records in Alaska, the
emergence of the GF is clearer at low frequency (0.1−0.3 Hz) than at higher
frequency. However, the correlations exhibit a clear time asymmetry (Fig. 4.19).
This asymmetry proves that the forward flux dominates and that the excitation
of the propagation modes that make up the diffuse field is anisotropic. Indeed
the earthquakes we used are concentrated in the southeast of the center of the
network as shown by Figure 4.18a. Due to absorption and noise, the coda records
are not long enough to reach the isotropy of the diffuse field. The resulting
average flux of energy is responsible for the observed time asymmetry of the
cross-correlation. The relative amplitude of causal and anti-causal waves, and its
evolution with time, can be used to measure scattering properties of the medium
such as transport mean free path.
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5
Application to passive imaging

In this chapter, the passive imaging technique through correlation of diffuse waves
or noise is applied:

1. to make the tomographic image of a stratified medium with diffuse ultra-
sound (Sect. 1);

2. to localize an interface with diffuse ultrasounds (Sect. 2);

3. to image the first ≈20 km beneath California with ambient seismic noise
acquired by contemporary broad-band seismic stations (Sect. 3.1);

4. to image the first 10 m of the Lunar subsurface using ambient noise obtained
during the Appolo era (Sect. 3.2).

1. Imaging from one-bit correlations of wideband
diffuse wave fields

We present an imaging technique based on correlations of a multiply scattered
wave field. Usually the Green function (GF) GAB between two points (A,B) is
determined by direct transmit/receive measurement. When this is impossible,
one can exploit another idea as proposed in Chapters 3 and 4: if A and B are
both passive sensors, GAB can be retrieved from the cross correlation of the fields
received at A and B. Though the principle is applicable to all kinds of waves, it
is illustrated here by experiments performed with ultrasound in the MHz range.
These experiments must be thought of as an example of “small-scale seismology”:
we will build an image of a layered medium through a highly scattering sample
via the correlations of the ultrasonic coda waves. We will emphasize the role
of broadband multiple scattering and source averaging in the efficiency of the
method, and we will show the benefit of performing one-bit correlations. We
will also apply this imaging technique to the case of a slowly changing medium,
similarly to diffuse wave spectroscopy (DWS).

Let’s recall the basic notations used in our experiment and processing. A and
B are two receiving points, and S is a source. We will note GIJ(t) as the wave field
sensed at I when a Dirac δ(t) is sent by J. If e(t) is the excitation function in S, then
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the wave fieldsΦA andΦB received at A and B will be e(t)⊗GAS(t) and e(t)⊗GBS(t),
⊗ representing convolution. The cross correlation CAB of the fields received at A
and B is then

CAB(τ) =
∫
ΦA(t)ΦB(t + τ)dt (5.1)

= GAS(−t) ⊗ GBS(t) ⊗ f (t) (5.2)

with f (t) = e(t) ⊗ e(−t). It was argued in previous sections that this two-point
correlation CAB of a perfect diffuse field, averaged over time or averaged over a
series of sources perfectly surrounding the medium, would yield the GF between
the passive receivers [23]. Such a perfect distribution of sources surrounding
sensors A and B has been tested in numerical simulations [23] where A and B were
deep inside the scattering medium, and with ultrasound (see Sect. 4, Chap. 3 and
Ref. [129]).

In practice, whatever the type of waves involved, expecting a perfect distri-
bution of sources is unrealistic for at least two reasons: first the limited number
of sources, second their uneven distribution. In seismology, for instance, seismic
stations (A, B) record the displacement field at the Earth’s surface, but the sources
(S, the earthquakes) are mostly aligned along faults.

1.1. Experimental setup

In order to test and illustrate the possibility of imaging based on the correlation
of coda waves with a limited number of sources, we have designed laboratory
experiments (Fig. 5.1).

The experiments take place in a water tank. We use a 118-element ultrasonic
array to simulate 118 earthquakes. For each run of the experiment, one of the
elements sends a short pulse (3 MHz center frequency) that traverses a highly
scattering medium. This medium consists of a random arrangement of verti-
cal steel rods (average density 29.5 rods/cm2, diameter 0.8 mm). The sample’s
mean free path is �∗ = 3.5 mm (this was estimated by the coherent backscattering

Figure 5.1. Experimental setup. Figure reprinted with
permission from [É. Larose et al., J. Appl. Phys. 95, 8393
(2004)]. Copyright 2007, American Institute of Physics.
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effect [56]), whereas its smallest dimension is 15 mm; therefore, the waves un-
dergo many scatterings before they emerge from the scattering slab and reach the
receiver.

Behind the slab, we place the medium that we want to image. It consists of four
liquid layers (alcohol, oil, water, sugar syrup) with different sound speeds. The
receiver is a 0.39 mm piezoelectric transducer. It is translated downwards along
the z-axis, and records the scattered signals that are generated each time one of the
elements on the array fires a pulse. Those records are equivalent to seismograms,
except they are made only of compressional waves. A typical signal is plotted in
Figure 5.2a. It lasts more than 300 μs, i.e., 300 times the initial pulse, and shows
a high degree of multiple scattering. It should also be noted that the receiver
is facing downwards; therefore, it cannot record direct waves coming from the
sources, but purely multiply scattered contributions. Moreover, following the Van
Cittert-Zernike theorem and given the typical distances involved here, the spatial
coherence of the field measured by the receiver is≈ λ. No coherent wavefronts are
propagating between the receiver’s positions. The 118 sources fire successively,
and 118 “seismograms” are generated and recorded for each position z of the
receiver. The scattered waveforms are GSz(t), with S the index of the earthquake
and z the position of the receiver.

Figure 5.2. Typical experimental
results. (a) Waveform G(S = 60,
z1 = 36 mm, t) received by
the passive sensor at depth
z1 = 36 mm when source #60
fires a pulse. (b) Cross correlation
CS=60(z1 = 36 mm, z2 = 16 mm, t).
(c) Cross correlation C(z1 =
36 mm, z2 = 16 mm, t) averaged
over the 118 sources. Figure
reprinted with permission from
[É. Larose et al., J. Appl. Phys.
95, 8393 (2004)]. Copyright 2007,
American Institute of Physics.
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1.2. Normal correlations

Next, we choose a pair of receiver positions (z1, z2), and we cross correlate the
field due to the source S

CS(z1, z2, t) = GSz1 (t) ⊗ GSz2(−t). (5.3)

A typical result is shown in Figure 5.2b for S = 60, z1 = 36 mm, and z2 = 16 mm.
Nothing seems to emerge from the correlation. Then, we repeat this for the
118 sources and sum the correlations to get

C(z1, z2, t) =
118∑
S=1

Cs(z1, z2, t). (5.4)

A typical result is plotted in Figure 5.2c. This time, a strong peak emerges from
the correlation at time t = −13.6 μs, corresponding to the time of flight |z1 − z2|/c.
This is the signature of the direct GF between z1 and z2. In this example, the
distance between the receivers is 20 mm, so from the arrival time t = −13.6 μs we
get an estimation of the sound velocity between z1 and z2: 1.47 mm/μs. The peak
appears only at negative times and not at positive times due to the location of the
receiver, i.e. the scatterers and its limited directivity [103]: the receiver sees only
what is coming toward its front face.

Here, the sound velocity between z1 and z2 could be estimated only because
the peak was sufficiently above the surrounding noise. Actually, this term is
improper since it is not noise per se, but fluctuations of the correlation between
the waveforms outside the peak. In order to see the peak emerge from the
signals presented in Figure 5.2, we had to average the cross correlations on a large
number of sources (up to 118). The evolution of the signal-to-noise ratio (SNR)
in the averaged cross correlation versus the number of sources N is presented in
Figure 5.3. The SNR was calculated as follows. The signal level is the value of the
envelope of the peak, and the noise level is the mean amplitude of the envelope
of C(z1, z2, t) outside the peak, in a 25 μs-long time window. As the number of
sources N is increased, the peak emerges more and more. The SNR seems to grow
like N0.4, whereas a classical N0.5 dependence would have been expected. This
indicates that the contributions from different sources are not fully decorrelated
(indeed, the array pitch is slightly smaller than the wavelength) and/or do not
contribute equally to the signal, but the range of N is too small to conclude that
the exponent 0.4 is really meaningful.

Even though the sources were not arranged as a perfect time-reversal device,
the experimental results show that the main feature of the direct GF can be re-
trieved from the correlations. This is achieved due to multiple scattering in the
random sample. Once again we can refer to the TR interpretation. As we have
argued, in a time-reversal experiment, there is a forward step (propagation from
A to B, record the field in S) and a backward step (time reverse and send back the
field in S, observation of the resulting field at point B). If the time reversal were
perfect, then the backward step would be identical to the forward step. Similarly,
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Figure 5.3. Experimental results for the evo-
lution of the signal-to-noise ratio (in dB) versus
the number of sources. The solid line represents
the one-bit correlations, the dashed line for “nor-
mal” correlations. The observation points were
at z1 = 36 mm and z2 = 16 mm. Figure reprinted
with permission from [É. Larose et al., J. Appl.
Phys. 95, 8393 (2004)]. Copyright 2007, Ameri-
can Institute of Physics.

the key question to the retrieval of the GF is: if this were a TR experiment, would
the backward step be identical to the forward step? Although this is almost
never the case, except in a thought experiment, past experiments have already
shown that time-reversal focusing is more efficient (i.e., the backward step and
the forward step are more alike) in the presence of strong multiple scattering or
reverberation [6, 87, 130, 131]: the focused peak is narrower in space, indicating
that the angular spectrum of the wave field is precisely recovered. Strong multi-
ple scattering or reverberation virtually enhance the size of a TR device, i.e., the
number of sources involved.

1.3. 1-bit correlation

Interestingly, this technique also works with one-bit correlations: instead of
recording the entire waveforms GSz(t), we record and cross correlate only their
sign, i.e. a series of +1/− 1 as shown in Figure 5.4. And, one-bit correlations seem
to give even better results than “normal” correlations (see Figs. 5.2b and 5.4b for
a comparison). Again, it has already shown [127, 132] that one-bit time reversal
in a multiple scattering or reverberating medium gives a higher SNR than a clas-
sical time reversal, since it gives more importance to the longest scattering paths,
artificially reinforcing multiple scattering. The benefit of one-bit correlation will
be effective only if the recording time is significantly larger than the decay time of
the multiply scattered signals. For a multiple scattering slab with thickness L, the
typical decay time is the Thouless time L2/D, with D the diffusion constant (here,
D ≈ 2.6 mm2/μs). As long as the recording time is larger than the Thouless time,
the effect of one-bit digitization is to reinforce the weight of the longest and most
diffracted scattering paths relative to early arrivals. Experimental results show
the interest of one-bit correlations: in Figure 5.3, the SNR is systematically higher
by ≈4 dB with one-bit correlation; therefore, a smaller number of sources can be
employed which is interesting for any practical implementation of the method.

It should also be noted that the retrieval of the GF takes advantage of the
large frequency bandwidth available in pulsed ultrasound (here, the spectrum
spans from 2 to 4 MHz). Suppose we had only one source, working in a nar-
row frequency band: then, the retrieval of the GF would completely fail. Once
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Figure 5.4. Same as Figure 5.2,
except that only the sign (+1/ − 1)
of the scattered wave forms has
been recorded and cross corre-
lated (one-bit correlations). Fig-
ure reprinted with permission
from [É. Larose et al., J. Appl.
Phys. 95, 8393 (2004)]. Copy-
right 2007, American Institute of
Physics.

again, the time-reversal interpretation is enlightening. Indeed, in a one-channel
time-reversal experiment performed in a multiple scattering medium on a single
realization of disorder, focusing cannot be achieved if the frequency band is too
narrow [6]: the reemission of the phase-conjugated monochromatic wave just
creates a speckle pattern that is not focused back at the source. However, as the
frequency bandwidth Δω is progressively enlarged, it has been shown that a TR
device manages to refocus the wave through the multiple scattering slab, even
with only one source [6, 87, 130]. The underlying idea is that we take advantage
of frequency averaging as soon as the bandwidth Δω is larger than the corre-
lation frequency δω of the scattering medium. In a homogeneous and lossless
medium, δω � Δω. But, in a multiple scattering slab, the correlation frequency
Δω is inversely proportional to the Thouless time (Δω is also often referred to as
the Thouless frequency). Since there are roughly Δω/δω decorrelated frequencies
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Figure 5.5. Experimental results
for the evolution of the signal-
to-noise ratio (in dB) versus the
number of sources for different
frequency bandwidths. The ob-
servation points were at z1 =
36 mm and z2 = 16 mm. The
scattered waveforms were one-bit
digitized. The central frequency
is 2.9 MHz. The frequency band-
width Δ f is indicated in the leg-
end, as well as α the percentage
of energy within each frequency
band. Figure reprinted with per-
mission from [É. Larose et al., J.
Appl. Phys. 95, 8393 (2004)].
Copyright 2007, American Insti-
tute of Physics.

available in the spectrum, the SNR can be expected to rise as
√
Δω/δω, if the power

spectral density is flat. Hence, using a large frequency bandwidth is another way
of increasing the SNR. This is illustrated in Figure 5.5, where the SNR has been
plotted versus the number of elements and the bandwidth. The proportion α of
energy within a frequency band (ω1, ω2) is denoted by

α =

∫ ω2

ω1
S(ω)dω∫ ∞

0 S(ω)dω
(5.5)

with S(ω) the power spectral density of the scattered signals. In Figure 5.5, the
bandwidths are indicated by the values of α.

However, it should be noted that enlarging the frequency band is not a sub-
stitute for source averaging. If we want to retrieve all the details of the exact
GF, the only solution is to have sources surrounding the medium. But, if we are
satisfied with a simple estimate of the first arrival of the GF, then enlarging the
frequency band helps because it increases the peak-to-noise ratio, at least as long
as dispersion in the medium to be imaged between z1 and z2 can be neglected. A
different approach consists of extending the bandwidth to infinity (Δω
 δω) and
invoking a self-averaging property to retrieve an ensemble-averaged GF with a
single source [84]. Naturally, this holds only if the ensemble-averaged GF itself
does not depend on frequency (i.e., the scattered wave field expressed as a func-
tion of frequency has to be a stationary, or even ergodic, random process) so that
an ensemble average can be replaced by a frequency average.

As a preliminary conclusion, the time-reversal interpretation indicates that in
order to retrieve the exact GF from the correlations, the sources of the earthquakes
should be placed in such a way that they completely surround the medium and
the sensors. But, the time-reversal interpretation (based on previous works on
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time reversal) also indicate that when this condition cannot be fulfilled, one can
still estimate the main features of the GF (at least an arrival time) using several
tricks:

1. take advantage of a multiple scattering medium;

2. use a frequency bandwidth significantly larger than the correlation fre-
quency of the scattering medium;

3. digitize the waveforms over a single bit;

4. average the results over all available sources. This is what was done in
Figure 5.4 to retrieve the arrival time of the direct GF between the two
observing points located at z1 = 36 mm and z2 = 16 mm.

1.4. Passive tomography

Now, we can repeat the same procedure for every pair of neighboring observation
points (z1, z2) and estimate the velocity profile (i.e., build an image) of the layered
medium (Fig. 5.6). We have done so along the full length of the vertical axis, with
a displacement step of 2 mm. Note that, at room temperature, it is difficult to dis-
tinguish between the water and the oil layers, since their estimated velocities are
1478 and 1472 m/s, respectively. Yet interestingly, if we repeat the experiment after
heating the sample by 8 ◦C, we see that the measured velocity of the water layer
increases to 1492 m/s, whereas that of the oil layer decreases to 1444 m/s, which is
consistent with what is known of these two liquids, and the two layers are better
separated on the profile (Fig. 5.6). The velocities estimated by passive imaging
were found to coincide with those obtained by direct pulse-echo measurements
in the four liquids to within 2%.

Figure 5.6. Sound-speed pro-
file deduced from the travel times
measured by one-bit correlations
of the scattered wave field. Two
set of measurements were per-
formed: before (triangles) and af-
ter (circles) heating the sample by
8 ◦C. The four layers are clearly
imaged. Figure reprinted with
permission from [É. Larose et al.,
J. Appl. Phys. 95, 8393 (2004)].
Copyright 2007, American Insti-
tute of Physics.
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1.5. Passive imaging of a dynamic medium

The same experimental procedure was also applied to a two-layer medium
(oil/sugar syrup). Initially the liquids are at rest, and the image of velocity profile
clearly shows the two layers (Fig. 5.7). Then, the medium is scrambled to form
an emulsion: the velocity profile we obtain shows an apparently homogeneous
medium with a sound speed of 1.57 mm/μs. The experiment is repeated on the
same sample while each liquid progressively separates from the other. After
12 hours the separation is complete. Thus, the images obtained from correlation
of the scattered fields were able to monitor the evolution of a medium undergoing
a slow structural change. This amounts to “passive diffusive wave spectroscopy”,
in interpretation with diffusive wave spectroscopy (DWS) or coda wave interfer-
ometry (CWI) [19,133]. However, in the situation depicted here, the change in the
scattered wave fields is not due to a movement of the scatterers, but to a change
in the medium we image through the scatterers.

Figure 5.7. Sound-speed profiles ob-
tained as the medium under investiga-
tion changes. Initially, there are two well-
separated layers (oil/syrup). Then, they
are mixed together to form an appar-
ently homogeneous emulsion. Progres-
sively, the two phases of the emulsion
separate again, and the process can be
monitored by the sound-speed profiles.
Twelve hours later, the separation is com-
plete. Figure reprinted with permission
from [É. Larose et al., J. Appl. Phys. 95,
8393 (2004)]. Copyright 2007, American
Institute of Physics.

To conclude this section, the TR interpretation tells us that when the TR cri-
terion (perfect sources distribution) is only partially fulfilled, multiple scattering
helps achieve a correct estimate of the arrival time of the GF. It was also shown
that one-bit correlations (i.e. with processing only the sign of the wave field) can
give similar estimations with fewer sources, because one-bit processing tends to
give more weight to the longest and most diffracted paths compared to normal
processing, which enhances the role of multiple scattering. In next section, we
will aim at imaging localized reflectors.

2. Passive imaging of interfaces in open scattering
media

The previous experiments showed the possibility of reconstructing the direct
(ballistic) wave between two passive sensors from the time-correlations of acoustic

Ann. Phys. Fr. 31 • No 3 • 2006



108 Mesoscopics of ultrasound and seismic waves: application to passive imaging

Figure 5.8. Experimental setup
and typical waveforms. The
sources S shoots a 1μs pulse one
after another. The receiver’s di-
rectivity pattern is represented
(lobes). It is rotated twice at
each position. Figure reprinted
with permission from [É. Larose
et al., Appl. Phys. Lett. 88,
104103 (2006)]. Copyright 2007,
American Institute of Physics.

scattered wave fields in open media. Here we illustrate how the passive imaging
technique can also retrieve detailed features of the GF, beyond the ballistic wave.
We now aim at imaging an aluminum/water interface with only a few sources.
The experimental setup (Fig. 5.8) is comparable to the one in Section 1 [94]. We
use N = 118 aligned sources S to illuminate a scattering medium made of vertical
steel rods randomly distributed. The interface to be imaged is behind this complex
structure. A typical example of such a coda waveform is shown in Figure 5.8.
Again, the whole setup is 2-D.

As in the previous experiment, a conventional ultrasonic transducer (size
∼ λ) is used. Unfortunately the transducer is not omni-directional. This is
compensated for by rotating the sensor at least twice at each position. Then
the receiver is translated along the x-axis. The emission/reception sequence is
repeated for 12 different locations i. This provides a set of 118 × 12 records
for each sensor angle. For each pair (zi, zj), we compute the time- and source-
averaged correlation:

Cij(τ) =
1
N

N∑
S=1

∫
GSzi (t)GSzj(t + τ)dt. (5.6)

The resulting traces are displayed in Figure 5.9 where both the direct and the
reflected hyperbolic-shaped wavefronts are visible. Note that one single corre-
lation CS

ij(τ) does not contain any clear arrival: a source averaging is needed.
The measurement of the arrival times along the sensor array provides a precise
measurement of the interface position: it was parallel to the array and 33.2 mm
from the x-axis. The estimated error on the reconstructed travel times is of the
order of one record sample: 0.05 μs. The signal-to-noise ratio of the reconstructed
waveforms roughly corresponds to Weaver’s theoretical prediction [106] in 2-D:

5 <
NT

2
√
πΔ

c
2πR f0

< 20

(typically, R = 10 mm).
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Figure 5.9. 118 source-averaged correlations Czizj (τ) for 12 distances zi − zj. The direct and
reflected signals are superimposed. Dotted lines represent the arrival times for the direct
and reflected paths. The scatterer is a plane interface positioned 33.2 mm away from the
sensor array. Figure reprinted with permission from [É. Larose et al., Appl. Phys. Lett. 88,
104103 (2006)]. Copyright 2007, American Institute of Physics.

These results show that it is possible to retrieve the details of the GF of an
open medium beyond the first (ballistic) arrival. Note that it differs from [134]
in that the whole coda (high-order multiple scattering contributions) is processed
and taken advantage of; the signal-to-noise ratio is noticeably improved. These
results have been obtained using distant sources, but can be generalized to the
case of purely random noises in any field of wave physics. In seismology, these
observations suggest that the application range of Passive Imaging would extend
to seismic prospecting or imaging of deep Earth.

3. Application to seismic noise

3.1. Passive tomography of California using ambient seismic
noise

To image the Earth interior, the traditional technique is to deploy dense arrays of
receivers and record the seismic wavefield emanated from distant earthquakes.
Nevertheless this traditional observational method cannot fully exploit emerging
array data because they are based on seismic waves coming from select source
regions predominantly near plate boundaries and are observed at stations far from
the source regions, such as most locations within the United States. An original
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Figure 5.10. (a) Paths where Rayleigh wave group velocity measurements were obtained
from cross-correlations of ambient seismic noise. White triangles show locations of USAr-
ray stations. (b) Group-speed maps constructed by cross-correlating 30 days of ambient
noise between USArray stations filtered from 7.5-s-period Rayleigh waves. Black solid
lines show known active faults. Figure is from [93], all rights reserved.

idea to cross-correlate noise to passively image the medium has been applied to
ambient seismic noise [90, 122] at different places in North America. Two teams,
one lead by Shapiro [93], the other by Sabra [135], took advantage of the dense
array of seismic stations (see map, Fig. 5.10a) available in California to reconstruct
a series of Rayleigh wave paths and perform a high resolution tomography of the
subsurface.

The seismic noise is not as fully diffused as thermal ultrasonic noise [80], but
the distribution of the ambient sources randomizes when averaged over long
times. Ambient seismic noise is additionally randomized by scattering from het-
erogeneities within Earth [26]. Surface waves are most easily extracted from the
ambient noise because they dominate the GF between receivers located at the sur-
face and also because ambient seismic noise is excited preferentially by superficial
sources, such as oceanic microseisms and atmospheric disturbances [13]. The seis-
mic noise field is often not perfectly isotropic and may be dominated by waves
arriving from a few principal directions. To reduce the contribution of the most
energetic arrivals, the first team disregarded the amplitude by correlating only
one-bit signals [92, 94] before the computation of the cross-correlation, whereas
the other clipped (saturated) the highest amplitudes (to lower their statistical
weight).

The number of total stations and the exact processing technique differs from
one team to another. Nevertheless, both teams found similar maps of the sub-
surface, confirming the strong robustness of estimating the Rayleigh wave arrival
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from correlation of ambient noise. The authors produced detailed images of
the crystal structure that delineated sedimentary basins from igneous complexes,
and even fault lines that offset different rock types. One example is presented in
Figure 5.10b for Rayleigh waves filtered around 7.5 s.

3.2. Lunar subsurface investigated from correlation
of seismic noise

Passive imaging (Fig. 5.11) has been achieved in seismology using seismic
coda [92, 120] as well as seismic noise [93, 122, 135] for frequencies ranging from
0.025 to 0.2 Hz. On Earth, these studies have shown that a statistical treatment
of seismic noise yield the GF when averaged over sufficiently long time. Mi-
croseismic background noise is mainly excited by surface sources like oceanic
and atmospheric perturbations [13]. Our aim now is to take the passive imaging
method beyond the Earth and apply it to extraterrestrial planets on which neither
an ocean nor an atmosphere exists. In particular, our aim is to investigate the
method in the case where the microseismic background noise is made of fully
diffusive waves, at frequencies higher than previously investigated [93].

Figure 5.11. Passive imag-
ing with seismic noise:
beyond the Earth...

The only solar system body other than the Earth from which we have seis-
mic observations pertinent to its interior properties is the Moon. From 1969 to
1972 the US Apollo program installed one short-lived and four long-lived seismic
stations on the Moon. All but the first station were operated until 1977. The
data collected by the Apollo seismic network provided the basis for a number
of studies of lunar seismicity and internal structure published during the 1970s,
early 1980s, and again recently [136–140]. In addition to the above passive seismic
experiment, active seismic experiments were also carried out on missions 14, 16
and 17. The active seismic experiments performed at the Apollo 14 and 16 sites
were turned on only during the landing missions in active mode and weekly
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30-minute passive listening periods following the missions, with the weekly lis-
tening modes terminated on December 7, 1973, thereafter only monthly opera-
tional checks were performed (ALSEP status report, 1976). The main objective
was to infer the velocity structure of the uppermost part of the crust down to a
few km depth using traditional seismic refraction techniques [141].

Apollo 17 touched down on the floor of the Taurus-Littrow Valley near the
southeastern rim of the Serenitatis Basin, which consists of irregular, heavily
cratered regolith developed on lava flows partly filling an embayment between
massifs 2 km high [142]. The Apollo 17 Lunar Seismic Profiling Experiment
(LSPE) was deployed on December 14, 1972, at a distance of about 180 m WNW of
the lunar module. Four geophones, with natural resonant frequencies of 7.5 Hz,
labeled G1 to G4, were deployed in a triangular array (see Fig. 5.12) and recorded
the vertical ground velocity in the frequency range from 3 to 30 Hz during the
landing mission in 1972 [143] and then again from August 1976 to April 1977. The
geophones were simultaneously connected to the central station where the seismic
signals S1...4(t) were sampled at 118 Hz and digitized before being telemetered
to the Earth. Prior to conversion into a 7-bit digital format (counts 0 to 127),
the signals were conditioned using a logarithmic compression, which was done
to increase the dynamic range. A typical four-channel record is displayed in
Figure 5.12.

Figure 5.12. Configuration
of the Apollo 17 LSPE ex-
periment. It was composed
of four geophones (velocime-
ters): G1, G2, G3 and G4,
all connected to a central sta-
tion for signal sampling, dig-
itization and telemetering.
Sample of raw seismic data
from each geophone are dis-
played in the enclosed box
(no logarithmic decompres-
sion), for August 16, 1976
(UTC time). Typical corre-
lations C13(τ), C23(τ), C34(τ)
are plotted between the cor-
responding pair of sensors.
Crosses in the center of each
correlation trace mark τ = 0.
NASA photo A17.S72_37259.
Figure from [24], reprinted
with permission from AGU.
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We processed continuous data from August 15, 1976, to April 24, 1977. They
are time-windowed into 2016 record samples, each lasting about T = 3 hours for
a given record d. The correlated traces are calculated directly from the raw data
without applying any decompression or correction filter. The absence of decom-
pression tends to equalize the noise amplitude. For a given pair of geophones i, j,
and the record d, a cross-correlated trace is determined as

Cd
ij(τ) =

∫ d+T

d
Si(t + τ)Sj(t)dt. (5.7)

Correlated traces are then filtered in the frequency range of interest (4–12 Hz). The
central part of each trace |τ| < 0.5 s (cross talking between geophones contribute to
a peak at the correlation time τ = 0) is not displayed. Each trace is normalized by
its maximum value. Finally, we computed the average of the correlations over the
set of records d. Typical results are displayed in Figures 5.12, 5.13a and 5.14a. A
well-defined pulse is observed for both positive and negative correlation times τ.
Why should this pulse emerge from the correlations? Seismic waves propagating
in the direction j→ i add up coherently in the correlation, and contribute to this
well-defined pulse for times τ > 0 (causal part of the correlations). Seismic waves
propagating in the opposite direction (i→ j) contribute to the well defined pulse
for times τ < 0 (acausal part of the correlations). Waves propagating in other
directions add up incoherently and contribute to the residual fluctuations in the
correlations [75].

The reconstructed pulses are interpreted as Rayleigh waves between geo-
phones i and j, i.e. the ground velocity response of the subsurface at j (i) to a
vertical impulsive force at i ( j). They are found to propagate with an average
velocity of ∼50 m/s, and are clearly dispersive, as shown in Figure 5.13a. The
group velocity is defined as the envelope arrival time of the Rayleigh pulse. This
pulse is filtered around 14 different frequencies, ranging from 3.6 Hz to 11.4 Hz
(bandwidth 33%). Velocities were calculated when the signal-to-noise ratio (SNR)
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Figure 5.13. Dispersion analy-
sis of the Rayleigh pulse. (a) The
wave packet is filtered in two
non-overlapping frequency bands
(around 4.5 Hz and 9 Hz). (b) Ob-
served dispersion curve of the
Rayleigh wave group velocity.
Dots: observations. Crosses:
calculated data from the profile
shown in (c). (c) Result of the
inversion of the dispersion curve
showing the upper 10 m of the
shear wave velocity profile. Fig-
ure from [24], reprinted with per-
mission from AGU.
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Figure 5.14. (a) Example of correlation C34(τ) filtered in the 4–12 Hz range. The right
peak (causal part, τ > 0) corresponds to the Rayleigh wave propagating from G4 to G3 as
if G4 was a vertical impulsive source. The left peak is the acausal part, τ < 0. (b) SNR of
the causal (right) and acausal (left) Rayleigh pulse as a function of record date d (x-axis in
Julian days from 1976 to 1977). Black lines represent days when the Sun was shining and
heating the Apollo 17 landing site. The increase in the SNR is synchronized with the Sun’s
illumination, oscillating with a periodicity of 29.5 days. Figure from [24], reprinted with
permission from AGU.

of the correlated traces was >2. When possible we averaged velocities over the
three central pairs of geophones. We plotted the dispersion curve in Figure 5.13b,
which is used to image the subsurface velocity structure by inverting the Rayleigh
wave group velocity [144]. In our inversion, a four layer model was assumed with
variable thickness and velocities. The uncertainties on observed velocities are es-
timated to be 5%. The obtained shear-wave velocity profiles are displayed in
Figure 5.13c. The indicated jump below 5 m depth is taken to be the base of the
lunar regolith, consisting of impact breccias. Cooper et al. [141], using travel time
inversion of refracted P-waves, found that the compresionnal wave velocity be-
neath the Apollo 17 site was around 100 m/s from 0 to 4 m depth and then 327 m/s
from 4 to 32 m depth. Our shear wave profile thus complements and is consistent
with previous observations [141, 145]. Thus, by comparing these profiles, we can
conclude that the vP/vS ratio of the Lunar regolith is ∼2.

The correlations were not only calculated for the 3 central pairs, but also for
pairs 1-2, 2-4 and 4-1. However, the amplitude of the reconstructed Rayleigh
wave was found to be very low, which can possibly be explained by the fact that
as the distance between those sensors is almost twice that of the central pairs, the
Rayleigh pulse consequently suffers a greater amount of geometrical spreading
and scattering attenuation. Another explanation is due to Sabra et al. [107] and
Weaver et al. [106], who showed that for a given distance between the sensors,
the efficiency of the reconstruction also depends on the wavelength, with longer
wavelengths resulting in better GF reconstruction. This idea was illustrated by
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numerical simulations earlier in the manuscript (see Sect. 5, Chap. 3). We have
also observed that the Rayleigh wave reconstruction from correlations between
the central pairs filtered above 11 Hz is less efficient with increasing frequency.

As a curious feature of our correlations we found that the Rayleigh wave
emergence fluctuates with time of the year. To quantify these variations, we
estimated the SNR of the correlated traces as a function of record date d [106].
The signal level corresponds to the amplitude of the (causal or acausal) peak. The
noise is defined as the standard deviation of the subsequent fluctuations from
τ = ±2 s to τ = ±4 s (Fig. 5.14a). Rigorously speaking, this part of the correlated
trace, representing apparent group velocity below 30 m/s, should obscure the
rest of the impulse response (for instance reflections of the Rayleigh pulse by
surrounding heterogeneities). These contributions are often much weaker than
the direct pulse, and probably negligible compared with the remaining noise (the
seismic signal that does not yield the GF in the correlation and the electronic
noise). The SNR displayed in Figure 5.14b is calculated for both the causal (right)
and acausal (left) part of the correlation. It is found to fluctuate with a periodicity
of exactly 29.5 days which is also the lunation period. The SNR increases during
daytime (displayed as thick horizontal bars in Fig. 5.14b), and decreases at night,
pointing to an origin of the Rayleigh wave with solar illumination. The following
is proposed as an explanation for the coupling between solar radiation and the
Rayleigh wave generation. When the sun heats the lunar surface, temperature
increases from −170 ◦C to +110 ◦C [146], leading to very high vertical thermal
gradients, and resulting in slumping or cracking of the lunar surface material.
This interpretation is in line with what was observed during the Apollo era where
a large percentage of the seismic events were found to be very small Moon-quakes,
termed thermal Moon-quakes, occurring with great regularity [147]. Their activity
starts abruptly about 2 days after lunar sunrise and decreases rapidly after sunset.

The SNR was also calculated for correlated traces averaged over an increasing
number N of time-windows d. From N = 1 to 100 (corresponding to a total
record length of 300 hours), the SNR is found to increase as

√
N, meaning that

waves not contributing to the Rayleigh pulse add up incoherently. For longer
record lengths (higher N), the SNR saturates, which might be due to remnant
sources. Indeed, identical waveforms were observed from thermal Moon-quakes
occurring at different times. Another reason for the SNR to saturate might be
cross-talking between acquisition channels.

The correlated traces displayed in Figures 5.12 and 5.14a are not found to be
symmetric in time. Though the pulse arrival times are symmetric, waveform am-
plitudes may change due to preferential direction of propagation of the incident
wave field [84, 120, 148]. The peak amplitude for each part of the correlations,
and for each couple of geophones, is evaluated. Since the reconstructed peak
amplitude is proportional to the intensity of the incident waves, we interpret this
asymmetry as an anisotropy of the wavefield. Let us assume that the symmetric
part of the traces is generated by an isotropic flux Φ0 (waves coming from all di-
rections onto the array), and furthermore that the asymmetric part, corresponding
to the excess of amplitude observed on one part of the traces, is generated by an
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Figure 5.15. Schematic view of the anisotro-
pic flux.

anisotropic fluxΦ (preferential wave incidence). The peak amplitude is therefore
proportional toΦ0±(1/2)Φ cos(θi) whereθi is the incident angle of the anisotropic
flux onto the pair of geophones i − 3 (Fig. 5.15). To quantify the asymmetry, we
estimate the following ratio:

P+3i − P−3i

P+3i + P−3i

=
Φ
Φ0

cos(θi) (5.8)

where P+3i is the peak amplitude of the C3i(τ) positive part. Note that this ratio for
pair 3−4 can be deduced from Figure 5.14a. It should be noted that this flux is
not a remnant wave train (which would appear as a peak at different times τ in
the three pairs). It corresponds to the preferential direction of propagation of the
diffuse field intensity. Using this array technique, we evaluated quantitatively
the incident direction of the seismic anisotropic flux to be +22◦ relative to G4−G3
(Fig. 5.15), pointing in the S-E direction to Steno crater, as either a dense area of
scatterers or an area with intense thermal Moon-quake activity.

To conclude, we have shown that even in a quiet seismic environment with
feeble sources, it is possible to obtain a Rayleigh wave dispersion curve from
correlation of ambient seismic noise. From the inversion of this dispersion curve
we estimated the shear wave velocity profile, which provided new information
on the velocity structure of the regolith at the Apollo 17 site. Moreover, we have
established the Sun as an active generator of lunar seismic noise. In particular
the SNR of the reconstructed Rayleigh pulse was found to be strongly dependent
on solar illumination. The seismic activity originates from the strong thermal
gradients induced during lunar day as well as night. We have applied an array
technique for locating noise sources. The weak anisotropy of the seismic diffuse
waves reveals a preferential direction of propagation, possibly originating from
an area with dense scatterers or increased thermo-seismic activity.

The results presented here establish the method of extracting the Rayleigh-
wave GF by cross-correlating seismic noise, as indeed extendable to extrater-
restrial planets that not only differ in size, evolution, and consequently seismic
activity, but also in nature of origin of the noise from that of the Earth. This
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provides a novel avenue for future seismic exploration of the planets on which
quakes might occur infrequently and are most probably also inhomogeneously
distributed, of which Mars might be cited as an example [149]. In addition it
holds the potential of increasing the scientific return, as noise between events
can be successfully used rather than being discarded as has traditionally been
the case. Specifically, to probe deeper into the subsurface on future seismic mis-
sions, the following points should be kept in mind. Distances between stations
should preferably be between one and a few tens of wavelengths, as scattering
attenuation might become important for greater distances. The depth probed be-
ing roughly 1/3 of the Rayleigh wavelengths implies going to lower frequencies
which necessitates the deployment of broad-band seismometers [150].
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