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ON THE BEHAVIOR AT INFINITY OF AN INTEGRABLE FUNCTION

We denote by x a real variable and by n a positive integer variable. The reference measure on the real line R is the Lebesgue measure. In this note we will use only basic properties of the Lebesgue measure and integral on R.

It is well known that the fact that a function tends to zero at infinity is a condition neither necessary nor sufficient for this function to be integrable. However, we have the following result.

Theorem 1. Let f be an integrable function on the real line R. For almost all x ∈ R, we have [START_REF] Ya | Continued Fractions[END_REF] lim n→∞ f (nx) = 0 .

Remark 1. It is too much hope in Theorem 1 for a result for all x because we consider an integrable function f , which can take arbitrary values on a set of zero measure. Even if we consider only continuous functions, the result does not hold for all x. Indeed a classical result, using a Baire category argument, tells us that if f is a continuous function on R such that for all nonzero x, lim n→∞ f (nx) = 0, then lim x→±∞ f (x) = 0. Thus for a continuous integrable function f which does not tend to zero at infinity, property (1) is true for almost all x and not for all x.

Remark 2. Let f be an integrable and nonnegative function on R. We have f (nx) dx = 1 n f (x) dx. Hence for any nonnegative real sequence (ε n ) such that n ǫ n /n < +∞, we have

n ε n f (nx) dx < +∞ ,
and the monotone convergence theorem (or Fubini's theorem) ensures that the function x → n ε n f (nx) is integrable, hence almost everywhere finite. In particular, for almost all x, we have lim n→∞ ε n f (nx) = 0. This argument is not sufficient to prove Theorem 1. Now we will state that, in a sense, Theorem 1 gives an optimal result. The strength of the following theorem lies in the fact that the sequence (a n ) can tend to infinity arbitrarily slowly.

Theorem 2. Let (a n ) be a real sequence which tends to +∞. There exists a continuous and integrable function f on R such that, for almost all x, lim sup Question. Under the hypothesis of Theorem 2, does there exist a continuous and integrable f such that, for all x, lim sup n→∞ a n f (nx) = +∞? We do not know the answer to this question, and we propose it to the reader. However, the next remark shows that the answer is positive under a slightly more demanding hypothesis.

Remark 3. If the sequence (a n ) is nondecreasing and satisfies n 1 nan < +∞, then there exists a continuous and integrable function f on R such that for all x, lim sup n→∞ a n f (nx) = +∞.

Remark 4. In Theorem 2 we cannot replace the hypothesis lim n a n = +∞ by lim sup n a n = +∞. Indeed, by a simple change of variable we can deduce from Theorem 1 the following result: for all integrable functions f on R, lim n→∞ nf (n 2 x) = 0 for almost all x.

(Apply Theorem 1 to the function x → xf (x 2 ).) Thus the conclusion of Theorem 2 is false for the sequence (a n ) defined by

a n = √ n if n is a square of integer, 0 if not.
In the remainder of this note, we give proofs of the two theorems and of Remark 3.

Proof of Theorem 1. The function f is integrable on R. Let us fix ε > 0 and denote by E the set of points x > 0 such that |f (x)| ≥ ε. We know that E has finite measure. We are going to show that, for almost all x ∈ [0, 1], we have nx ∈ E for only finitely many n's. (If A is a measurable subset of R, we denote by |A| its Lebesgue measure.)

For each integer m ≥ 1, let E m := E ∩ (m -1, m].
Let us fix a ∈ (0, 1). For each integer n ≥ 1, we consider the set

F n := 1 n E ∩ [a, 1) =   1 n m≥1 E m   ∩ [a, 1) = 1 n m≥1 (E m ∩ [na, n)) .
We have

+∞ n=1 |F n | = +∞ n=1 +∞ m=1 1 n |E m ∩ [na, n)| .
In this doubly indexed sum of positive numbers, we can invert the order of summation. Moreover, noticing that

E m ∩ [na, n) = ∅ if n > m/a or n ≤ m -1, we obtain +∞ n=1 |F n | = +∞ m=1 [m/a] n=m 1 n |E m ∩ [na, n)| ≤ +∞ m=1 |E m | [m/a] n=m 1 n .
By comparison of the discrete sum with an integral, we see that, for all m ≥ 1,

[m/a] n=m 1 n ≤ (1 -ln a). Thus we have +∞ n=1 |F n | ≤ (1 -ln a) +∞ m=1 |E m | = (1 -ln a)|E| < +∞ .
This implies that almost every x belongs to only finitely many sets F n . (This statement is the Borel-Cantelli lemma, which has a one line proof :

½ Fn < +∞ almost everywhere since

½ Fn (x) dx = ½ Fn (x) < +∞ .)
Returning to the definition of F n , we conclude that, for almost all x ∈ [a, 1], for all large enough n , x / ∈ F n , i.e. nx / ∈ E. Since a is arbitrary, we have in fact: for almost all x ∈ [0, 1], for all large enough n, nx / ∈ E. We have proved that, for all ε > 0, for almost all x ∈ [0, 1], for all large enough n, |f (nx)| ≤ ε. Since we have to consider only countably many ε's, we can invert for all ε > 0 and for almost all x ∈ [0, 1]. We conclude that, for almost all x ∈ [0, 1], lim n→∞ f (nx) = 0. It is immediate, by a linear change of variable (for example), that this result extends to almost all x ∈ R.

Proof of Theorem 2. We will utilize the following theorem, a fundamental result in the metric theory of Diophantine approximation [START_REF] Ya | Continued Fractions[END_REF]Theorem 32].

Khinchin's Theorem. Let (b n ) be a sequence of positive real numbers such that the sequence (nb n ) is nonincreasing and the series n b n diverges. For almost all real numbers x, there are infinitely many integers n such that dist(nx, Z) < b n .

We will also make use of the following lemma, which will be proved in the sequel. Let us prove Theorem 2. Replacing if necessary a n by inf k≥n a k , we can suppose that the sequence (a n ) is nondecreasing. Applying the preceding lemma to the the sequence c n = 1/ √ a n , we obtain a sequence (b n ) such that the sequence (nb n ) is nonincreasing, n b n = +∞, and n b n / √ a n < +∞. The sequence (b n ) tends to zero, and we can impose the additional requirement that b n < 1/2 for all n.

We consider the function f 1 defined on R by

f 1 (x) = 1/ √ a n if |x -n| ≤ b n for an integer n ≥ 1, 0 if not.
This function is integrable, due to the last condition imposed on (b n ). By Khinchin's theorem, for almost all x > 0, there exist pairs of positive integers (n, k(n)), with arbitrarily large n, such that

|nx -k(n)| ≤ b n .
Let us consider one fixed such x in the interval (0, 1). We have lim n→∞ k(n) = +∞ and, since lim n→+∞ b n = 0, we have k(n) ≤ n for all large enough n. For such an n, we have

|nx -k(n)| ≤ b k(n) and hence f 1 (nx) = 1 √ a k(n) .
(We used here the fact that the sequence (b n ) is nonincreasing.) Thus, for arbitrarily large n, we have

a n f 1 (nx) = a n √ a k(n) ≥ √ a k(n) .
(We used here the fact that the sequence (a n ) is nondecreasing.) This proves that lim sup n→∞ a n f 1 (nx) = +∞. This argument applies to almost all x between 0 and 1.

For each integer m ≥ 1, let us denote by f m the function f m (x) = f 1 (x/m). This function f m is nonnegative and integrable on R. It is locally a step function.

For almost all x between 0 and m, we have

lim sup n→∞ a n f m (nx) = +∞ .
From this, it is not difficult to construct a continuous and integrable function f on R such that, for all m > 0, there exists A m > 0 with f ≥ f m on [A m , +∞). (For example, we can choose an increasing sequence of numbers (A m ) such that

+∞ Am f 1 (x) + f 2 (x) + • • • + f m (x) dx ≤ 1 m 2 ; then we define g = f 1 + f 2 + • • • + f m on the interval [A m , A m+1 ). Since m Am+1 Am f 1 (x) + f 2 (x) + • • • + f m (x) dx < ∞ ,
this function g is integrable. Then we just have to find a continuous and integrable function f which dominates g; this can be achieved since the function g is locally a step function: choose f to be zero on (-∞, 0] and continuous on R such that g ≤ f and, for all m > 0,

m m-1 f (x) -g(x) dx ≤ 1/m 2 , so that +∞ 0 f (x) -g(x) dx < +∞ .)
For almost all x ≥ 0, we have lim sup n→∞ a n f (nx) = +∞. A symmetrization procedure extends this property to almost all real numbers.

The first part of Theorem 2 is proved. The second part is a direct consequence. We consider the function f constructed above, and we denote by F the set of x such that the sequence (a n f (nx)) is bounded. The set {nx | x ∈ F, n ∈ N} has zero measure. We modify the function f on this set, choosing for example the value 1. The new function is integrable and satisfies, for all x, lim sup n→∞ a n f (nx) = +∞.

Proof of Lemma 1. The sequence (c n ) is given, and it goes to zero. We will construct by induction an increasing sequence of integers (n k ) and a nonincreasing sequence of positive numbers (d k ), and we will define b n = d k /n for n k-1 ≤ n < n k . The numbers d k will be chosen so that

n k -1 i=n k-1 b i = 1 ; thus we require that d k :=   n k -1 i=n k-1 1 i   -1 .
We start from n 0 = 1, and then we choose n 1 > n 0 such that, for all n ≥ n 1 , |c n | ≤ 1/2. In the next step, we choose n 2 > n 1 such that d 2 ≤ d 1 and, for all n ≥ n 2 , |c n | ≤ 1/4. More generally, if n 1 , n 2 , . . . , n k-1 have been constructed, we choose

n k > n k-1 such that d k ≤ d k-1 and, for all n ≥ n k , |c n | ≤ 2 -k . (Of course, this is possible because lim n→+∞ n i=n k-1 1 i -1 = 0.)
This defines the sequence (b n ) by blocks. The sequence (nb n ) is nonincreasing and, for all k ≥ 1, we have

n k -1 i=n k-1 b i = 1 and n k -1 i=n k-1 b i c i ≤ 2 1-k .
This guarantees that n b n = +∞ and n b n c n < +∞. The lemma is proved. About Remark 3. Dirichlet's lemma in Diophantine approximation (based on the pigeon-hole principle) concerns the particular case b n = 1/n in Khinchin's theorem and it gives a result for all x.

Lemma 2 (Dirichlet's Lemma). For all real numbers x, there exist infinitely many integers n such that dist(nx, Z) ≤ 1 n . Now, we justify Remark 3. We consider a nondecreasing sequence of positive real numbers (a n ) such that Here is a proof of this claim: for each k ≥ 1, there exists n(k) such that n≥n(k)

1 na n ≤ 1 k 2 .
We have This function is integrable. Using Dirichlet's lemma, we have the following: for each fixed x in (0, 1), there exist pairs of positive integers (n, k(n)), with n arbitrarily large, such that |nxk(n)| ≤ 1/n. We have lim n→∞ k(n) = +∞ and, for all large enough n, k(n) ≤ n. Hence there exist infinitely many n's such that

n card{k | n(k) ≤ n} 1 na n = k≥1 n≥n(k) 1 na n < +∞ ,
|nx -k(n)| ≤ 1 k(n)
and so f (nx) = b k(n) .

For such an n, we have

a n f (nx) = a n b k(n) ≥ a k(n) b k(n) .
(We used here the fact that the sequence (a n ) is nondecreasing.) This proves that lim sup n→∞ a n f (nx) = +∞. This result obtained for all numbers x between 0 and 1 extends to all real numbers by the same argument as the one used in the proof of Theorem 2. We can also replace the local step function by a continuous one as we did before.

Theorem 1 answers a question asked by Aris Danilidis.

  n→∞ a n f (nx) = +∞ . 1 Moreover, there exists an integrable function f on R such that, for all x, lim sup n→∞ a n f (nx) = +∞ .

Lemma 1 .

 1 Let (c n ) be a sequence of nonnegative real numbers going to zero. There exists a sequence of positive real numbers (b n ) such that the sequence (nb n ) is nonincreasing, n b n = +∞, and n b n c n < +∞.

  We claim that there exists a sequence of positive real numbers (b n ) such that b n a n → +∞ and b n n < +∞ .

  and we can define bn := card{k | n(k) ≤ n}/a n .Given this sequence (b n ), we consider the function f defined on R byf (x) = b k if |x -k| ≤ 1/k, k an integer, k ≥ 2, 0 if not.