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ON THE BEHAVIOR AT INFINITY OF AN INTEGRABLE
FUNCTION

EMMANUEL LESIGNE

Abstract. We prove that, in a weak sense, any integrable function on
the real line tends to zero at infinity. Using Khintchine’s metric theorem
on Diophantine approximation, we establish that this convergence to
zero can be arbitrarily slow.

We denote by x a real variable and by n a positive integer variable. The
reference measure on the real line R is the Lebesgue measure. In this note
we will use only basic properties of the Lebesgue measure and integral on
R.

It is well known that the fact that a function tends to zero at infinity is a
condition neither necessary nor sufficient for this function to be integrable.
However, we have the following result.

Theorem 1. Let f be an integrable function on the real line R. For almost
all x ∈ R, we have

(1) lim
n→∞

f(nx) = 0 .

Remarks

(R1) It is too much hope in Theorem 1 for a result for all x because we
consider an integrable function f , which can take arbitrary values
on a set of zero measure. Even if we consider only continuous func-
tions, the result does not hold for all x. Indeed a classical result,
using a Baire category argument, tells us that if f is a continu-
ous function on R such that for all non-zero x, limn→∞ f(nx) = 0,
then limx→±∞ f(x) = 0. Thus for a continuous integrable function
f which does not tend to zero at infinity, Property (1) is true for
almost all x and not for all x.

(R2) Let f be an integrable and non-negative function on R. We have∫
f(nx) dx =

1
n

∫
f(x) dx. Hence for all non-negative real sequence

(εn) such that
∑

n

εn/n < +∞, we have

∑
n

∫
εnf(nx) dx < +∞ ,

1
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and the Monotone Convergence Theorem (or Fubini’s Theorem) en-
sures that the function x 7→

∑
n

εnf(nx) is integrable, hence al-

most everywhere finite. In particular, for almost all x, we have
lim

n→∞
εnf(nx) = 0

This argument is not sufficient to prove Theorem 1.

Now we will state that, in a sense, Theorem 1 gives an optimal result.
The strength of the following theorem lies in the the fact that the sequence
(an) can tend to infinity arbitrarily slowly.

Theorem 2. Let (an) be a real sequence which tends to +∞. There exists
a continuous and integrable function f on R such that, for almost all x,

lim sup
n→∞

anf(nx) = +∞ .

Moreover, there exists an integrable function f on R such that, for all x,

lim sup
n→∞

anf(nx) = +∞ .

Question and Remarks

Under the hypothesis of Theorem 2, does there exist a continuous
and integrable f such that, for all x, lim sup

n→∞
anf(nx) = +∞?

We do not know the answer to this question, and we propose it to
the reader. However, next remark shows that the answer is positive
under a slightly more demanding hypothesis.

(R3) If the sequence (an) is non-decreasing and satisfies
∑

n

1
nan

< +∞,

then there exists a continuous and integrable function f on R such
that for all x, lim sup

n→∞
anf(nx) = +∞.

(R4) In Theorem 2 we cannot replace the hypothesis limn an = +∞ by
lim supn an = +∞. Indeed, by a simple change of variable we can
deduce from Theorem 1 the following result: for all integrable func-
tions f on R,

lim
n→∞

nf(n2x) = 0 for almost all x.

(Apply Theorem 1 to the function x 7→ xf(x2).)
Thus the conclusion of Theorem 2 is false for the sequence (an)
defined by

an =

{√
n if n is a square of integer

0 if not
.

In the remainder of this note, we give proofs of the two theorems, and of
Remark (R3).
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Proof of Theorem 1. The function f is integrable on R. Let us fix ε > 0
and denote by E the set of points x > 0 such that |f(x)| ≥ ε. We know that
E has finite measure. We are going to show that, for almost all x ∈ [0, 1],
we have nx ∈ E for only finitely many n’s.
(If A is a measurable subset of R, we denote by |A| its Lebesgue measure.)

For each integer m ≥ 1, we denote Em := E ∩ (m − 1,m]. Let us fix
a ∈]0, 1[. For each integer n ≥ 1, we consider the set

Fn :=
(

1
n

E

)
∩ [a, 1) =

 1
n

⋃
m≥1

Em

 ∩ [a, 1) =
1
n

⋃
m≥1

(Em ∩ [na, n)) .

We have
+∞∑
n=1

|Fn| =
+∞∑
n=1

+∞∑
m=1

1
n
|Em ∩ [na, n)| .

In this doubly indexed sum of positive numbers, we can invert the order
of summation. Moreover, noticing that Em ∩ [na, n) = ∅ if n ≥ m/a or
n ≤ m− 1, we obtain

+∞∑
n=1

|Fn| =
+∞∑
m=1

[m/a]∑
n=m

1
n
|Em ∩ [na, n)| ≤

+∞∑
m=1

|Em|
[m/a]∑
n=m

1
n

.

By comparison of the discrete sum with an integral, we see that, for all

m ≥ 1,
[m/a]∑
n=m

1
n
≤ (1− ln a). Thus we have

+∞∑
n=1

|Fn| ≤ (1− ln a)
+∞∑
m=1

|Em| = (1− ln a)|E| < +∞ .

This implies that almost every x belongs to only finitely many sets Fn.
(This statement is the Borel-Cantelli Lemma, which has a one line proof :∑

1Fn < +∞ almost everywhere since∫ ∑
1Fn(x) dx =

∑ ∫
1Fn(x) < +∞ .)

Returning to the definition of Fn, we conclude that, for almost all x ∈
[a, 1], for all large enough n , x /∈ Fn, i.e. nx /∈ E.

Since a is arbitrary, we have in fact: for almost all x ∈ [0, 1], for all large
enough n, nx /∈ E.

We have proved that, for all ε > 0, for almost all x ∈ [0, 1], for all large
enough n, |f(nx)| ≤ ε. Since we have only to consider countably many ε’s,
we can invert for all ε > 0 and for almost all x ∈ [0, 1]. We conclude that, for
almost all x ∈ [0, 1], limn→∞ f(nx) = 0. It is immediate, by a linear change
of variable (for example), that this result extends to almost all x ∈ R. �
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Proof of Theorem 2. We will utilize the following theorem, a fundamental
result in the metric theory of Diophantine approximation1.

Khinchine’s Theorem. Let (bn) be a sequence of positive real numbers
such that the sequence (nbn) is non-increasing and the series

∑
n bn diverges.

For almost all real numbers x, there are infinitely many integers n such that
dist(nx, Z) < bn .

We will also make use of the following lemma, that will be proved in the
sequel.

Lemma 1. Let (cn) be a sequence of non-negative real numbers going to
zero. There exists a sequence of positive real numbers (bn) such that the
sequence (nbn) is non-increasing,

∑
n bn = +∞ and

∑
n bncn < +∞.

Let us prove Theorem 2.
Replacing if necessary an by infk≥n ak, we can suppose that the sequence

(an) is non-decreasing. Applying the preceding lemma to the the sequence
cn = 1/

√
an, we obtain a sequence (bn) such that the sequence (nbn) is non-

increasing,
∑

n bn = +∞ and
∑

n bn/
√

an < +∞. The sequence bn tends to
zero, and we can impose that bn < 1/2 for all n.

We consider the function f1 defined on R by

f1(x) =

{
1/
√

an if |x− n| ≤ bn for an integer n ≥ 1
0 if not

.

This function is integrable, due to the last condition imposed on (bn).
By Khintchine’s Theorem, for almost all x > 0, there exist pairs of positive

integers (n, k(n)), with arbitrarily large n, such that

|nx− k(n)| ≤ bn.

Let us consider one fixed such x in the interval (0, 1). We have limn→∞ k(n) =
+∞ and, since limn→+∞ bn = 0, we have k(n) ≤ n for all large enough n.
For such an n, we have

|nx− k(n)| ≤ bk(n) hence f1(nx) =
1

√
ak(n)

.

(We used here the fact that the sequence (bn) is non-increasing.)
Thus, for arbitrarily large n, we have

anf1(nx) =
an

√
ak(n)

≥ √
ak(n) .

(We used here the fact that the sequence (an) is non-decreasing.)
We have lim supn→∞ anf1(nx) = +∞.

This argument applies to almost all x between 0 and 1.

1Theorem 32 in the book : A.Ya. Khintchine, Continued Fractions, original edition
in Russian 1935, English translation published by University of Chicago Press in 1961,
reedited by Dover in 1997.
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For each integer number m ≥ 1, let us denote by fm the function fm(x) =
f1(x/m). This function fm is non-negative and integrable on R. It is locally
a step function. For almost all x between 0 and m, we have

lim sup
n→∞

anfm(nx) = +∞ .

From this, it is not difficult to construct a continuous and integrable
function f on R such that, for all m > 0, there exists Am > 0 with f ≥ fm on
[Am,+∞[. (For example, we can choose an increasing sequence of numbers
(Am) such that∑

m

∫ +∞

Am

f1(x) + f2(x) + . . . + fm(x) dx < ∞ ,

then we define g = f1 + f2 + . . . + fm on the interval [Am, Am+1[. This
function g is integrable and is locally a step function ; it is dominated by a
continuous and integrable function f .)

For almost all x ≥ 0, we have lim supn→∞ anf(nx) = +∞.
A symmetrization procedure extends this property to almost all real num-

bers.
The first part of Theorem 2 is proved. The second part is a direct con-

sequence. We consider the function f constructed above, and we denote
by F the set of x such that the sequence (anf(nx)) is bounded. The set
{nx | x ∈ F, n ∈ N} has zero measure. We modify the function f on this
set, choosing for example the value 1. The new function is integrable and
satisfies, for all x, lim supn→∞ anf(nx) = +∞. �

Proof of Lemma 1. The sequence (cn) is given, and it goes to zero. We will
construct by induction an increasing sequence of integers (nk) and a non-

increasing sequence of positive numbers (dk) and we will define bn =
dk

n
for

nk−1 ≤ n < nk.

Numbers dk are chosen so that
nk−1∑

i=nk−1

bi = 1 ; thus we impose

dk :=

 nk−1∑
i=nk−1

1
i

−1

.

We start from n0 = 1.
We choose n1 > n0 such that, for all n ≥ n1, |cn| ≤ 1

2 .
We choose n2 > n1 such that d2 ≤ d1 and, for all n ≥ n2, |cn| ≤ 1

4 .
More generally, if n1, n2, . . . , nk−1 are constructed, we choose nk > nk−1

such that dk ≤ dk−1 and, for all n ≥ nk, |cn| ≤ 2−k.

(Of course, this is possible because limn→+∞

(∑n
i=nk−1

1
i

)−1
= 0.)

This defines the sequence (bn) by blocks. The sequence (nbn) is non-increasing



6 EMMANUEL LESIGNE

and, for all k ≥ 1, we have
nk−1∑

i=nk−1

bi = 1 et
nk−1∑

i=nk−1

bici ≤ 21−k .

This guarantees that
∑

n bn = +∞ and
∑

n bncn < +∞. The Lemma is
proved. �

About Remark (R3). Dirichlet’s Lemma in Diophantine approximation (based
on the pigeon-hole principle) concerns the particular case bn = 1/n in Khint-
chine’s Theorem and it gives a result for all x.

Lemma 2 (Dirichlet’s Lemma). For all real numbers x, there exist infinitely
many integers n such that dist(nx, Z) ≤ 1

n .

Now, we justify Remark (R3).
We consider a non-decreasing sequence of positive real numbers (an) such
that ∑

n

1
nan

< +∞ .

We claim that there exists a sequence of positive real numbers (bn) such
that

bnan → +∞ and
∑ bn

n
< +∞ .

Here is a proof of this claim: for each k ≥ 1, there exists n(k) such that∑
n≥n(k)

1
nan

≤ 1
k2

.

We have ∑
n

card{k | n(k) ≤ n} 1
nan

=
∑
k≥1

∑
n≥n(k)

1
nan

< +∞ ,

and we can define bn :=
1
an

card{k | n(k) ≤ n}.
Given this sequence (bn), we consider the function f defined on R by

f(x) =

{
bk if |x− k| ≤ 1/k, k integer ≥ 2
0 if not

This function is integrable.
Using Dirichlet’s Lemma, we have the following: for each fixed x in ]0, 1[,

there exists pairs of positive integers (n, k(n)), with n arbitrarily large, such
that |nx − k(n)| ≤ 1/n. We have limn→∞ k(n) = +∞ and, for all large
enough n, k(n) ≤ n. Hence there exist infinitely many n’s such that

|nx− k(n)| ≤ 1
k(n)

and so f(nx) = bk(n) .
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For such an n, we have

anf(nx) = anbk(n) ≥ ak(n)bk(n) .

(We used here the fact that the sequence (an) is non-decreasing.)
This proves that lim supn→∞ anf(nx) = +∞. This result obtained for all
numbers x between 0 and 1 extends to all real numbers by the same argument
as the one used in the proof of Theorem 2. We can also replace the local
step function by a continuous one as we did before. �

Theorem 1 answers a question asked to the author by by Aris Danilidis.
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Université François-Rabelais Tours
Fédération Denis Poisson - CNRS
Parc de Grandmont, 37200 Tours. France

emmanuel.lesigne@lmpt.univ-tours.fr


