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ON THE BEHAVIOR AT INFINITY OF AN INTEGRABLE

FUNCTION

EMMANUEL LESIGNE

We denote by x a real variable and by n a positive integer variable. The reference
measure on the real line R is the Lebesgue measure. In this note we will use only
basic properties of the Lebesgue measure and integral on R.

It is well known that the fact that a function tends to zero at infinity is a condition
neither necessary nor sufficient for this function to be integrable. However, we have
the following result.

Theorem 1. Let f be an integrable function on the real line R. For almost all

x ∈ R, we have

(1) lim
n→∞

f(nx) = 0 .

Remark 1. It is too much hope in Theorem 1 for a result for all x because we
consider an integrable function f , which can take arbitrary values on a set of zero
measure. Even if we consider only continuous functions, the result does not hold
for all x. Indeed a classical result, using a Baire category argument, tells us that
if f is a continuous function on R such that for all nonzero x, limn→∞ f(nx) = 0,
then limx→±∞ f(x) = 0. Thus for a continuous integrable function f which does
not tend to zero at infinity, property (1) is true for almost all x and not for all x.

Remark 2. Let f be an integrable and nonnegative function on R. We have
∫

f(nx) dx = 1
n

∫

f(x) dx. Hence for any nonnegative real sequence (εn) such that
∑

n ǫn/n < +∞, we have

∑

n

∫

εnf(nx) dx < +∞ ,

and the monotone convergence theorem (or Fubini’s theorem) ensures that the func-
tion x 7→ ∑

n εnf(nx) is integrable, hence almost everywhere finite. In particular,
for almost all x, we have limn→∞ εnf(nx) = 0. This argument is not sufficient to
prove Theorem 1.

Now we will state that, in a sense, Theorem 1 gives an optimal result. The
strength of the following theorem lies in the fact that the sequence (an) can tend
to infinity arbitrarily slowly.

Theorem 2. Let (an) be a real sequence which tends to +∞. There exists a

continuous and integrable function f on R such that, for almost all x,

lim sup
n→∞

anf(nx) = +∞ .
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Moreover, there exists an integrable function f on R such that, for all x,

lim sup
n→∞

anf(nx) = +∞ .

Question. Under the hypothesis of Theorem 2, does there exist a continuous and
integrable f such that, for all x, lim supn→∞ anf(nx) = +∞?
We do not know the answer to this question, and we propose it to the reader.
However, the next remark shows that the answer is positive under a slightly more
demanding hypothesis.

Remark 3. If the sequence (an) is nondecreasing and satisfies
∑

n
1

nan

< +∞,
then there exists a continuous and integrable function f on R such that for all x,
lim supn→∞ anf(nx) = +∞.

Remark 4. In Theorem 2 we cannot replace the hypothesis limn an = +∞ by
lim supn an = +∞. Indeed, by a simple change of variable we can deduce from
Theorem 1 the following result: for all integrable functions f on R,

lim
n→∞

nf(n2x) = 0 for almost all x.

(Apply Theorem 1 to the function x 7→ xf(x2).) Thus the conclusion of Theorem 2
is false for the sequence (an) defined by

an =

{√
n if n is a square of integer,

0 if not.

In the remainder of this note, we give proofs of the two theorems and of Remark 3.

Proof of Theorem 1. The function f is integrable on R. Let us fix ε > 0 and
denote by E the set of points x > 0 such that |f(x)| ≥ ε. We know that E has
finite measure. We are going to show that, for almost all x ∈ [0, 1], we have nx ∈ E
for only finitely many n’s. (If A is a measurable subset of R, we denote by |A| its
Lebesgue measure.)

For each integer m ≥ 1, let Em := E ∩ (m− 1, m]. Let us fix a ∈ (0, 1). For each
integer n ≥ 1, we consider the set

Fn :=

(

1

n
E

)

∩ [a, 1) =





1

n

⋃

m≥1

Em



 ∩ [a, 1) =
1

n

⋃

m≥1

(Em ∩ [na, n)) .

We have
+∞
∑

n=1

|Fn| =
+∞
∑

n=1

+∞
∑

m=1

1

n
|Em ∩ [na, n)| .

In this doubly indexed sum of positive numbers, we can invert the order of sum-
mation. Moreover, noticing that Em ∩ [na, n) = ∅ if n > m/a or n ≤ m − 1, we
obtain

+∞
∑

n=1

|Fn| =

+∞
∑

m=1

[m/a]
∑

n=m

1

n
|Em ∩ [na, n)| ≤

+∞
∑

m=1

|Em|
[m/a]
∑

n=m

1

n
.
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By comparison of the discrete sum with an integral, we see that, for all m ≥ 1,
∑[m/a]

n=m
1
n ≤ (1 − ln a). Thus we have

+∞
∑

n=1

|Fn| ≤ (1 − ln a)

+∞
∑

m=1

|Em| = (1 − ln a)|E| < +∞ .

This implies that almost every x belongs to only finitely many sets Fn. (This
statement is the Borel-Cantelli lemma, which has a one line proof :
∑1Fn

< +∞ almost everywhere since
∫

∑1Fn
(x) dx =

∑

∫ 1Fn
(x) < +∞ .)

Returning to the definition of Fn, we conclude that, for almost all x ∈ [a, 1], for
all large enough n , x /∈ Fn, i.e. nx /∈ E. Since a is arbitrary, we have in fact: for
almost all x ∈ [0, 1], for all large enough n, nx /∈ E.

We have proved that, for all ε > 0, for almost all x ∈ [0, 1], for all large enough
n, |f(nx)| ≤ ε. Since we have to consider only countably many ε’s, we can invert
for all ε > 0 and for almost all x ∈ [0, 1]. We conclude that, for almost all x ∈ [0, 1],
limn→∞ f(nx) = 0. It is immediate, by a linear change of variable (for example),
that this result extends to almost all x ∈ R. �

Proof of Theorem 2. We will utilize the following theorem, a fundamental result
in the metric theory of Diophantine approximation [1, Theorem 32].

Khinchin’s Theorem. Let (bn) be a sequence of positive real numbers such that

the sequence (nbn) is nonincreasing and the series
∑

n bn diverges. For almost all

real numbers x, there are infinitely many integers n such that dist(nx, Z) < bn .

We will also make use of the following lemma, which will be proved in the sequel.

Lemma 1. Let (cn) be a sequence of nonnegative real numbers going to zero. There

exists a sequence of positive real numbers (bn) such that the sequence (nbn) is non-

increasing,
∑

n bn = +∞, and
∑

n bncn < +∞.

Let us prove Theorem 2.
Replacing if necessary an by infk≥n ak, we can suppose that the sequence (an) is

nondecreasing. Applying the preceding lemma to the the sequence cn = 1/
√

an, we
obtain a sequence (bn) such that the sequence (nbn) is nonincreasing,

∑

n bn = +∞,
and

∑

n bn/
√

an < +∞. The sequence (bn) tends to zero, and we can impose the
additional requirement that bn < 1/2 for all n.

We consider the function f1 defined on R by

f1(x) =

{

1/
√

an if |x − n| ≤ bn for an integer n ≥ 1,

0 if not.

This function is integrable, due to the last condition imposed on (bn).
By Khinchin’s theorem, for almost all x > 0, there exist pairs of positive integers

(n, k(n)), with arbitrarily large n, such that

|nx − k(n)| ≤ bn.

Let us consider one fixed such x in the interval (0, 1). We have limn→∞ k(n) = +∞
and, since limn→+∞ bn = 0, we have k(n) ≤ n for all large enough n. For such an
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n, we have

|nx − k(n)| ≤ bk(n) and hence f1(nx) =
1

√
ak(n)

.

(We used here the fact that the sequence (bn) is nonincreasing.) Thus, for arbitrarily
large n, we have

anf1(nx) =
an√
ak(n)

≥ √
ak(n) .

(We used here the fact that the sequence (an) is nondecreasing.) This proves that
lim supn→∞ anf1(nx) = +∞. This argument applies to almost all x between 0
and 1.

For each integer m ≥ 1, let us denote by fm the function fm(x) = f1(x/m).
This function fm is nonnegative and integrable on R. It is locally a step function.
For almost all x between 0 and m, we have

lim sup
n→∞

anfm(nx) = +∞ .

From this, it is not difficult to construct a continuous and integrable function f
on R such that, for all m > 0, there exists Am > 0 with f ≥ fm on [Am, +∞). (For
example, we can choose an increasing sequence of numbers (Am) such that

∫ +∞

Am

f1(x) + f2(x) + · · · + fm(x) dx ≤ 1

m2
;

then we define g = f1 + f2 + · · · + fm on the interval [Am, Am+1). Since

∑

m

∫ Am+1

Am

f1(x) + f2(x) + · · · + fm(x) dx < ∞ ,

this function g is integrable. Then we just have to find a continuous and integrable
function f which dominates g; this can be achieved since the function g is locally a
step function: choose f to be zero on (−∞, 0] and continuous on R such that g ≤ f

and, for all m > 0,
∫ m

m−1 f(x) − g(x) dx ≤ 1/m2 , so that
∫ +∞

0 f(x) − g(x) dx <

+∞ .)
For almost all x ≥ 0, we have lim supn→∞ anf(nx) = +∞. A symmetrization

procedure extends this property to almost all real numbers.
The first part of Theorem 2 is proved. The second part is a direct consequence.

We consider the function f constructed above, and we denote by F the set of x
such that the sequence (anf(nx)) is bounded. The set {nx | x ∈ F, n ∈ N} has
zero measure. We modify the function f on this set, choosing for example the value
1. The new function is integrable and satisfies, for all x, lim supn→∞ anf(nx) =
+∞. �

Proof of Lemma 1. The sequence (cn) is given, and it goes to zero. We will con-
struct by induction an increasing sequence of integers (nk) and a nonincreasing
sequence of positive numbers (dk), and we will define bn = dk/n for nk−1 ≤ n < nk.

The numbers dk will be chosen so that
∑nk−1

i=nk−1
bi = 1 ; thus we require that

dk :=





nk−1
∑

i=nk−1

1

i





−1

.
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We start from n0 = 1, and then we choose n1 > n0 such that, for all n ≥ n1,
|cn| ≤ 1/2. In the next step, we choose n2 > n1 such that d2 ≤ d1 and, for all
n ≥ n2, |cn| ≤ 1/4.
More generally, if n1, n2, . . . , nk−1 have been constructed, we choose nk > nk−1

such that dk ≤ dk−1 and, for all n ≥ nk, |cn| ≤ 2−k. (Of course, this is possible

because limn→+∞

(

∑n
i=nk−1

1
i

)−1

= 0.)

This defines the sequence (bn) by blocks. The sequence (nbn) is nonincreasing
and, for all k ≥ 1, we have

nk−1
∑

i=nk−1

bi = 1 and

nk−1
∑

i=nk−1

bici ≤ 21−k .

This guarantees that
∑

n bn = +∞ and
∑

n bncn < +∞. The lemma is proved. �

About Remark 3. Dirichlet’s lemma in Diophantine approximation (based on the
pigeon-hole principle) concerns the particular case bn = 1/n in Khinchin’s theorem
and it gives a result for all x.

Lemma 2 (Dirichlet’s Lemma). For all real numbers x, there exist infinitely many

integers n such that dist(nx, Z) ≤ 1
n .

Now, we justify Remark 3. We consider a nondecreasing sequence of positive
real numbers (an) such that

∑

n

1

nan
< +∞ .

We claim that there exists a sequence of positive real numbers (bn) such that

bnan → +∞ and
∑ bn

n
< +∞ .

Here is a proof of this claim: for each k ≥ 1, there exists n(k) such that

∑

n≥n(k)

1

nan
≤ 1

k2
.

We have
∑

n

card{k | n(k) ≤ n} 1

nan
=

∑

k≥1

∑

n≥n(k)

1

nan
< +∞ ,

and we can define bn := card{k | n(k) ≤ n}/an.
Given this sequence (bn), we consider the function f defined on R by

f(x) =

{

bk if |x − k| ≤ 1/k, k an integer, k ≥ 2,

0 if not.

This function is integrable.
Using Dirichlet’s lemma, we have the following: for each fixed x in (0, 1), there

exist pairs of positive integers (n, k(n)), with n arbitrarily large, such that |nx −
k(n)| ≤ 1/n. We have limn→∞ k(n) = +∞ and, for all large enough n, k(n) ≤ n.
Hence there exist infinitely many n’s such that

|nx − k(n)| ≤ 1

k(n)
and so f(nx) = bk(n) .
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For such an n, we have

anf(nx) = anbk(n) ≥ ak(n)bk(n) .

(We used here the fact that the sequence (an) is nondecreasing.) This proves that
lim supn→∞ anf(nx) = +∞. This result obtained for all numbers x between 0 and
1 extends to all real numbers by the same argument as the one used in the proof
of Theorem 2. We can also replace the local step function by a continuous one as
we did before. �

Theorem 1 answers a question asked by Aris Danilidis.

References

[1] A. Ya. Khinchin, Continued Fractions, Dover, Mineola, NY, 1997; reprint of (trans. Scripta
Technica, Inc.) University of Chicago Press, 1961; reprint of 3rd Russian ed., State Publishing
House of Physical-Mathematical Literature, Moscow, 1961.
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