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Compressible Fluids:

The discontinuity of the vorticity vector on a

shock wave in thermodynamical variables

Translation of C. R. Acad. Sci. Paris t. 276, A, p. 1377-1380 (1973)
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Abstract

The discontinuity of the vorticity is written as a function of the vector T grad s,
(where T is the temperature and s the specific entropy). The expression is obtained
thanks to potential equations and independently of the mass conservation and the
equation of momentum balance.
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1 Introduction

The aim of this note is to prove that, in the most general instationary case of
perfect compressible fluids, across a shock wave we have the relations:

[u(rot v)tg] = n ∧ [T grad s]

[(rot v)n] = 0
(1)

where v is the velocity vector of the fluid, u is the fluid velocity with respect
to the shock wave, T is the temperature, s is the specific entropy, the indices
tg and n indicate the tangential and normal components to the shock wave of
the vector rot v and the discontinuity of a tensorial quantity α is denoted by
[α] (see[1]).
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We take into account the following shock conditions:

[vtg] = 0 (2)

[

1

2
u2 + h

]

= 0 (3)

where h denotes the specific enthalpy (dh = Tds+
dp

ρ
).

We do not use the following shock conditions:

[ρu] = 0 (4)

[

p+ ρu2
]

= 0 (5)

where ρ is the density and p the pression of the fluid.

We will use the potential equations obtained by P. Casal [2] or J. Serrin [3]
and expressing another form of the equations of the motions of compressible
perfect fluids.

The motion of a compressible fluid is represented by a continuous mapping of
a reference three-dimensional space Do in the physical space Dt occupied by
the fluid at time t:

x = ϕt(X), x ∈ Dt, X ∈ Do,

or equivalently by a continuous mapping Φ : Wo −→ W, z = Φ(Z) where Wo

is a four-dimensional reference space and W the physical time-space,

z =







t

x





 ∈W and Z =







t

X





 ∈Wo .

We assume the motion has a shock wave localized on a surface S(t) propagating
in Dt, image by ϕt of a surface So(t) propagating in Do. We denote by no and
n the unit normal vectors to So(t) and S(t) respectively, and go and g their
respective velocities; then u = nTv − g, where T denotes the transposition.

Equivalently, Σo and Σ are respectively the two corresponding surfaces prop-
agating in Wo and W ; No and N are the associated normal vectors,

NT=(−g,nT ).

Consequently, Φ is a differential mapping on Wo, except on Σo; its Jacobian
matrix is denoted by ∂z/∂Z, F denotes the Jacobian matrix of ϕt:

dx = vdt+ FdX.
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2 Exterior derivative

The covector C = vT has an inverse image Co in Do such that

Co = CF

The exterior derivative of the form C is a 2-form which is isomorph to the
vector rot v. It the image of the 2-form which is the exterior derivative of Co

isomorph to the vector roto

(

Co

T
)

:

rot v =
F

det F
roto

(

Co

T
)

(6)

roto is the rotational on Do (see reference[4]).

The discontinuity of the vorticity vector comes from to parts: one part comes
from the discontinuity of its image roto

(

Co
T
)

, and the other part comes from
the discontinuity of the Jacobian F .

3 Discontinuity of the Jacobian F

∂z/∂Z is a linear mapping transforming any tangent vector to So(t) in a
tangent vector to S(t). If we denote by no

′ = −no/go, we obtain:

[F ] = [v]no
′
T

, no
′
T

= nT F1

u1

= nT F2

u2

where indices 1, 2 indicate quantities upstream and downstream the shock.
Consequently,

nT

[

F

u

]

= 0

Taking into account Eq. (2) we obtain

[v] = [u]n, (7)

[F ] = [u]nno
′
T

, (8)

[

F

det F

]

=
[u]

u2 det F1

(

nnT
− I

)

F1. (9)

where I is the identity matrix.
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4 Discontinuity of the 1-form Co

Due to the fact that Co = vTF and by using Eq. (7) and Eq. (8), we obtain:

[Co] =
[

u2 + gu
]

no
′
T

. (10)

5 Discontinuity of potentials

The dot denotes the material derivative, Ω is the body force potential. We
consider the two quantities ϕ(t,X) and ψ(t,X) (denoted potentials) such that

ϕ̇ = β(t,X), (11)

ψ̇ = γ(t,X). (12)

β and γ are two scalar fields defined in each point of the flow and such that

β(t,X) =
1

2
v2

− h− Ω, γ(t,X) = T.

There exists a covector B function only of X such that

Co =
∂ϕ

∂X
+ ψ

∂s

∂X
+ B. (13)

We can verify that Eq. (13) together with Eq. (11) and Eq. (12) are equivalent
to potential equations proposed by P. Casal in [2] and J. Serrin in [3].
With the condition of adiabaticity

ṡ = 0,

and the equation of balance of mass

∂ρ

∂t
+ div(ρv) = 0,

we obtain the complete set of motion equations.

We can choose ϕ and ψ null on the shock wave and continuous through the
shock surface in the following manner:

ϕ =
∫ t

f(X)
β(τ ,X)dτ, ψ =

∫ t

f(X)
γ(τ ,X)dτ, (14)

where t = f(X) is the equation of the shock surface So(t) which is assumed
regular.
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Potential ϕ being continuous through the shock surface,

[

∂ϕ

∂X

]

= [ϕ̇] no
′
T

=
[

1

2
v2

− h
]

no
′
T

.

By using Eq. (2), Eq. (3) and Eq. (10) we get:

[

∂ϕ

∂X

]

= [Co] . (15)

Due to the fact that ψ is null on the shock wave, Eq. (13) expresses B is
continuous through the shock:

[B] = 0 (16)

6 Discontinuity of the image of the vorticity

Let us consider

Wo = Co
T
−

(

∂ϕ

∂X

)T

, then roto Wo = roto Co
T .

Eq. (13) yields Ẇo = T grado s, the value of grado s being defined on Wo.

Due to Eq. (15), Wo is continuous through the shock and we get:

[

∂Wo

∂X

]

=
[

Ẇo

]

no
′
T

, [roto Wo] = no
′
∧

[

Ẇo

]

,

[

roto Co
T
]

= n′

o ∧ [T grado s] . (17)

The discontinuity of the image of the vorticity is only tangential. Using the
previous results and application Φ, we can verify that this property of the
vorticity remains true.

7 Discontinuity of the vorticity

The results obtained by Eqs (6), (9) and (17) allow to obtain Formulae (1).
This expression general for non stationary perfect compressible fluids is dif-
ferent from the result given by Hayes [5]. This is due to the fact the result is
obtained thanks to Eq. (3) of conservation of energy. It neither uses Eq. (5) of
the balance of the quantity of motion nor Eq. (4) of the conservation of mass.
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To obtain Formulae (1), the knowledge of the enthalpy field is only necessary.
In the special case of a stationary, iso-energetic, irrotational motion upstream
of the shock, the relation can be expressed with the help of the curvature
tensor of the shock surface [6].
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