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Abstract : In numerous applications (Biology, Finance, Internet Traffic, Oceanography,...) data are ob-

served at random times and a graph of an estimation of the spectral density may be relevant for character-

izing phenomena and explaining. By using a wavelet analysis, one derives a nonparametric estimator of the

spectral density of a Gaussian process with stationary increments (also stationary Gaussian process) from

the observation of one path at random discrete times. For every positive frequency, this estimator is proved

to satisfy a central limit theorem with a convergence rate depending on the roughness of the process and

the order moment of duration between times of observation. In the case of stationary Gaussian processes,

one can compare this estimator with estimators based on the empirical periodogram. Both estimators

reach the same optimal rate of convergence, but the estimator based on wavelet analysis converges for a

different class of random times. Simulation examples and application to biological data are also provided.

Keywords: Gaussian processes observed at random times; Nonparametric estimation; Spectral density;

Continuous Wavelet Transform; Fractional Brownian motion; Multiscale fractional Brownian motion,

Heartbeat series.

1 Introduction

Consider first a Gaussian process X = {X(t), t ∈ IR} with zero mean and stationary increments, but results

will be extended in case where a polynomial trend is added to such processes. Therefore X can be written

following an harmonizable representation, see Yaglom (1958) or Cramèr and Leadbetter (1967). We adopt

1
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a more recent notation as in Bonami and Estrade (2003), thus

X(t) =

∫

IR

(
eitξ − 1

)
f1/2(ξ) dW (ξ), for all t ∈ IR, (1.1)

where

• W (dx) is a complex Brownian measure, with adapted real and imaginary part such that the Wiener

integral is real valued. We refer to Samorodnitsky and Taqqu (1994), pp. 325-327 for detailed

definition and properties. Isometry property [31, Formula (7.2.9), p. 327], i.e. IE
[
I(g1) · I(g2)

]
=

∫
g1(x) · g2(x) dx where I(g) =

∫
IR g(x) dW (x) and g ∈ L2(IR, IC) is a deterministic function, is given

for function g such that I(g) is real valued. But, after a decomposition of the stochastic integral into

real and imaginary part, that is with g = g1 + ig2 and I(g) = I(g1) + iI(g2) where I(g1) and I(g2)

are real valued, one can extend the isometry property to complex function and we get

IE
[
I(g1) · I(g2)

]
=

∫

IR
g1(x) · g2(x) dx. (1.2)

• f is a Borelian positive even function so-called the spectral density of X and is such that
∫

IR

(
1 ∧ |ξ|2

)
f(ξ) dξ <∞. (1.3)

In the sequel, f will be supposed to satisfy also Assumption F(H) defined below but conditions are

weak and the class of processes that can be considered is general.

As a particular case, if X is a stationary processes, one will still denote f the spectral density such that

X(t) =

∫

IR
eitξ f1/2(ξ) dW (ξ), for all t ∈ IR, (1.4)

where f is still a Borelian positive even function, but satisfies the stronger condition
∫

IR
f(ξ) dξ <∞. (1.5)

Even if their definition are different, since in the sequel we will consider wavelet coefficients of X which have

the same expression with respect to f for both models (1.1) and (1.4), f will denote as well the spectral

density of a process having stationary increments or a stationary process (see more details in Proposition

2.1). Define also the σ-algebra FX generated by the process X, i.e.

FX := σ
{
X(t), t ∈ IR

}
. (1.6)

A path of such a process X on the interval [0, Tn] at discrete times t
(n)
i for i = 0, 1, . . . , n is observed, i.e.

(
X(t

(n)
0 ),X(t

(n)
1 ), . . . ,X(t(n)

n )
)

is known, with 0 = t
(n)
0 < t

(n)
1 < · · · < t(n)

n = Tn.

A unified frame of irregular observed times, grouping deterministic and stochastic ones, will be considered.

First let us assume that there exist a sequence of positive real numbers (δn)n∈IN and a sequence of random

variables (r.v. in the sequel) (Lk)k∈IN (which could be deterministic real numbers) such that

∀k ∈ {0, 1, . . . , n− 1}, t
(n)
k+1 − t

(n)
k := δn Lk, and δn −→

n→∞
0. (1.7)
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For Z a r.v. and α ∈ (0,∞), denote ‖Z‖α :=
(
IE(|Z|α)

)1/α
if IE(|Z|α) <∞. Now, assume that there exists

s ∈ [1,∞) such that

Assumption S(s) (Lk)k∈IN is a sequel of positive r.v. such that: there exist 0 < m1 ≤ M1 and Ms < ∞
satisfying

m1 ≤ IELk = ‖Lk‖1 ≤M1 and ‖Lk‖s ≤Ms, for all k ∈ IN.

Then we can also defined:

Assumption S(∞) (Lk)k∈IN is a sequel of positive r.v. satisfying Assumption S(s) for every s ∈ IN .

For instance, it is clear that if (Lk)k∈IN is a sequence of exponential or bounded r.v., then Assumption

S(∞) is satisfied. Now, Tn = δn
(
L0 + . . . + Ln−1

)
and under Assumption S(s) for any s ≥ 1,

m1 × (nδn) ≤ IE
(
Tn

)
≤M1 × (nδn). (1.8)

This point will be extensively used in the sequel to replace the asymptotic IE
(
Tn

)
→ ∞ by nδn → ∞.

Comments on the modelling of observation times

Assumptions S(s) on the observation times may seem slightly unusual. This leads to following comments:

1. Generally, for processes observed at random times (see for instance Lii and Masry, 1994), duration

between observation times τk = (tk+1−tk) are random variables not depending on the data length. In

a sense, the asymptotic behavior only concerns the length of observation time Tn (which is necessary

to estimate the spectral density at low frequencies). But the lag between two successive random

observation times have to be sufficiently often very small to allow an estimation of the spectral

density for high frequencies. Hence, observation times have to satisfy a strong condition and are

typically a Poissonian sampling.

2. In our modelling there are two asymptotic behaviors: the length of observation time Tn converges

to infinity and the mesh δn converges to 0. The first one is standard up to the slight difference that

Tn can be random. This assumption is justified by numerous applications; for instance, the duration

of a marathon is clearly random. Thus we have to replace the first asymptotic by IE
(
Tn

)
→ ∞.

The second one is less standard but corresponds to applications. We have followed and transposed

the idea of round-off introduced, to our best knowledge, by Delattre and Jacod (1997) and currently

used today, see for e.g. Robert and Rosenbaum (2008). In this setting, the time is continuous but

round-off with a precision δn. Then, duration between observation times
(
t
(n)
k+1 − t

(n)
k

)
are the mesh

δn multiplied by integer valued random variables Lk. Eventually, we do not assume that r.v. Lk are

independent nor identically distributed.

3. Our choice which is also relative to numerous application cases (see the example of heart rate vari-

ability below) has been to provide a spectral density estimation under very weak condition on the
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observation times. Typically our results remains valid even for regular sampling (and it is not such

case under Masry’s conditions defined below).

4. In applications, signals are observed at discrete times mostly irregularly spaced and random. This

type of observations can be met in medicine, physics, mechanics, oceanography,... In these cases

observation times depend on the measuring instrument, therefore of a hazard independent from that

of the process X. In this context, the hypothesis of independence of durations (Lk)k∈IN and FX is

completely realistic. The only case where this assumption seems restrictive concerns financial data.

However it is until this day always made, see for instance, Hayashi and Yoshida (2005) or Aı̈t-Sahalia

and Mykland (2008).

An example: heartbeat time series

Before going further, let us give a detailed example: the heart rate variability. Cardiologists are interested

in the behavior of its spectral density, usually on both frequency bands (ω1, ω2) = (0.04Hz, 0.15Hz) and

(ω2, ω3) = (0.15Hz, 0.5Hz) corresponding respectively to the orthosympathetic nervous system and the

parasympathetic one, see [33]. The spectral density follows different power laws on the different frequency

bands, i.e. f(ξ) = σi |ξ|−βi when ξ ∈ (ωi, ωi+1). Finally, according to the type of activity or the period of

the day, one notices a variation of these parameters. We send back to Section 3.3, which brings to light

different power laws during the working and sleep hours, i.e. (βwork1 , βwork2 ) 6= (βsleep1 , βsleep2 ).

Actually, heartbeat is measured at frequency 100Hz. For physiological reasons, the duration between

two observations should be between 250 milliseconds and 2 seconds. In this framework, Assumption S(∞)

would be obviously satisfied. Assumption S(s) with s <∞ holds for instance for other physiological signals

like EMG, EEG. . . and VHF intraday financial data.

In the above example both frequency bands seem fixed. In other examples, the frequency of cut between

the various bands associated with various power laws must be determined and constitutes the parameter

of interest. We refer to our work devoted to biomechanical data [4]. These examples show the concrete

character and interesting perspectives of a non-parametric estimation of the spectral density.

Estimation of the spectral density, state of the art

To our knowledge, the estimate the spectral density of a Gaussian process with stationary increments on

finite bands of frequencies from observation at discrete times is a new problem. Recall that the spectral

density f(ξ) = C |ξ|−(2H+1) corresponds to a fractional Brownian motion (fBm in the sequel) with Hurst

index H. However, most of the statistical studies devoted to the fBm or its generalizations concern the

estimation of the local regularity parameter (linked to the behavior of the spectral density at ∞) or the

long memory parameter (linked to the behavior of the spectral density in the neighborhood of 0). The

context of those studies is almost always the observation of a path at deterministic and regularly spaced

discrete times, see for instance Dahlhaus (1989), Gloter and Hoffmann (2007), Moulines et al. (2007) or

the book edited by Doukhan et al. (2003). Begyn (2005) seems to be the only reference concerning the



J-M. Bardet and P.R. Bertrand 5

estimation of H unde r irregular (but deterministic) observation times.

On the other hand, the estimation of the spectral density of stationary Gaussian processes is a classical

problem corresponding to numerous practical applications, see Shapiro and Silverman (1960) or Parzen

(1983). The used methods are based on the periodogram defined by IT (ξ) = (2πT )−1
∣∣∣
∫ T
0 e−iξtX(t) dt

∣∣∣
2
.

However, if (Xt1 , · · · ,XtN ) is known, with regularly spaced observation times ti = i∆ and T = tN = N∆,

then limT→∞ IEIT (ξ) = f(ξ) but limN→∞ IEJN (ξ) =
∑

k∈Z
f(ξ + 2kπ∆−1) where JN is the empirical

periodogram, that is JN (ξ) := (2πN∆)−1
∣∣∣∆

∑N
k=1 e

−iξk∆X(k∆)
∣∣∣
2
: such a phenomena is called aliasing.

To avoid aliasing, random sampling is chosen and then the empirical periodogram becomes asymptotically

unbiased. By using a spectral window an estimator of the spectral density can be deduced and it satisfies

a central limit theorem (CLT) with a rate of convergence T−2/5, see Masry (1978a-b) or Lii and Masry

(1994). These results are obtained for random sampling verifying very specific conditions that we will call

in the sequel:

Masry’s conditions: the process of observation times
(
tk

)
k

is a stationary, orderly point process in-

dependent of X, with known mean rate β and covariance density c(u) and verifies the condition

β2 + c(u) > 0 a.e., where N(·) is the associate counting process, β = IE
[
N

(
(0, 1)

)]
and c(u) its

covariance density function (Masry, 1978, Cor. 1.1, p. 320).

When the trajectory is not sampled but observed at random times not chosen by the experimenter, a first

step before the estimation of the spectral density is to check that the family (ti) satisfies Masry’s conditions

and it is necessary to estimate the mean rate β and the covariance density function c(u).

Wavelet based estimators

We have chosen another approach: a wavelet analysis. This approach was introduced for fBm by Flandrin

(1992), and popularized by many authors, see for e.g. Abry et al. (2003), to estimate the parametric

behavior of a power law spectral density when log |ξ| → ∞ or log |ξ| → −∞ of a time series (with regularly

spaced observation times). In the sequel, we will show that the wavelet analysis is also an interesting tool to

estimate the spectral density for Gaussian processes having stationary increments (or stationary Gaussian

processes) when a path is observed at random times. Let us underline that the wavelet analysis in Abry et

al. (2003) is based on the sample variance of wavelet coefficients and thus is different from that proposed

by Lehr and Lii (1997) or Goa et al. (2002) who respectively consider the wavelet decomposition of the

estimator derived from the empirical periodogram and the periodogram of the Haar wavelet transform of

th e process. In both these last cases, discrete times observation are supposed to satisfy Masry’s conditions

to avoid aliasing.

We consider a non-parametric estimator of the spectral density based on a sample variance of wavelet

coefficients. There are two main differences with the approach of Flandrin (1992) or Abry et al. (2003).

Firstly, the definition of “empirical” wavelet coefficients, see (2.3), is adapted for non regular observations

times. Then a general CLT for sample variance of such “empirical” wavelet coefficients is established (see
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Theorem 2.1) and a CLT for a semiparametric estimator of the spectral density can be deduced for a large

class of fractional processes. Secondly, one considers a sequel of mother wavelets ψλ in a way that enables

the convergence, as λ → ∞ of |ψ̂λ|2 to a Dirac mass concentrated at the frequency ξ = 1. Then a CLT

for a nonparametric estimator of the spectral density is derived (see Proposition 2.2). For observation

times satisfying Assumption S(s) with s > 2, the supremum of the convergence rate of this last CLT is

T
−2/5
n . This is the same convergence rate than the periodogram based estimator one (see for instance Lii

and Masry, 1994), but for a class of observation times clearly more general than the Masry’s one (see for

e.g. Lii and Masry, 1994). Indeed, our assumptions on observation times allow non-stationary or regu-

larly spaced times, for Gaussian stationary processes and also for Gaussian processes having stationary

increments (as fBm). However, a relation between Tn and δn is required (see condition 2.8 below). This

condition depends on the regularity of the trajectory and the variability s of observation times. Therefore,

in terms of the number n of observations, the convergence rate of our estimator f̂ (λn)
n (ξ) is slower than n−2/5.

Finally, let us add two comments on the choice and the advantage of wavelet based estimators. Firstly, our

method plainly uses the time-frequency localization of the wavelet: in frequency, to build a nonparametric

estimator of the spectral density from continuous time observations, and in time, to bound the error of

approximation of the wavelet coefficient with discrete time observation. Conditions required on wavelet

mothers are mild and satisfied by a large set of wavelets (Daubechies wavelet Dp for p ≥ 6, Lemarié-Meyer,

Morlet, Gabor, biorthogornal wavelets, . . . ) and only exclude Haar basis and Daubechies wavelet for p ≤ 4.

Actually, we do not need that the family of functions generated by dilations and translations forms a basis

of L2(IR). Secondly, our wavelet based estimator can be applied to stationary processes as well as processes

having stationary increments. Moreover it is robust to eventual polynomial trends. Such properties are

induced by the number of vanished moments of the mother wavelet. A periodogram estimator does not

satisfy such condition and therefore can not be efficiently applied in so many cases.

The remainder of the paper is organized as follow: Section 2 is devoted to the wavelet analysis of X

and the CLT satisfied by the estimator of f . This estimator is applied to generated data and real data in

Section 3. Section 4 contains the proofs.

2 Main results

This section contains three main results. In the first subsection, we specify conditions on the mother

wavelet, and give a representation formula for the wavelet coefficients of the process. In the second sub-

section, we establish a CLT satisfied by a sample variance wavelet coefficients. This result provides the

rate of convergence of a spectral density estimator in parametric or semi-parametric cases (for instance for

a fBm). Eventually, the third subsection is devoted to a nonparametric estimation of the spectral density

through a localization procedure.



J-M. Bardet and P.R. Bertrand 7

2.1 Definition and harmonizable representation of wavelet coefficients

Let ψ : IR → IC be a function so-called the ”mother” wavelet, and denote f̂(ξ) =

∫

IR
e−iξ x f(x) dx the

Fourier transform of f ∈ L1(IR) ∩ L2(IR). Let (m, q, r) ∈ IN∗ × IR2
+ and the family of assumptions on ψ:

Assumption W(m, q, r) ψ : IR 7→ IC is a differentiable function satisfying:

• Number of vanishing moments: for all n ≤ m+ 1,

∫

IR
|tnψ(t)| dt <∞, and

∫

IR
tnψ(t) dt = 0 for all n ≤ m.

• Time localization: there exists a constant Cψ > 0 such that for all t ∈ IR,

(
1 + |t|

)q ·
∣∣ψ(t)

∣∣ ≤ Cψ.

• Frequency localization: there exists a constant C ′
ψ > 0 such that for all ξ ∈ IR,

(
1 + |ξ|

)r ·
(∣∣ψ̂(ξ)

∣∣ +
∣∣ψ̂′(ξ)

∣∣) ≤ C ′
ψ.

The first condition of W(m, q, r) implies that ψ̂(ξ) = O(ξm) when ξ → 0 and is (m+ 1) times continuously

differentiable. In the sequel, we assume at most W(1, 3, 1/2). These conditions are mild and are satisfied

by many famous wavelets (Daubechies wavelet Dp for p ≥ 6, Lemarié-Meyer, Morlet, Gabor, biorthogornal

wavelets, . . . ). It is also not mandatory to choose ψ to be a “mother” wavelet associated to a multiresolu-

tion analysis of IL2(IR) and the whole theory can be developed without resorting to this assumption.

Let (a, b) ∈ IR∗
+ × IR, and define dX(a, b) the wavelet coefficient of the process X for the scale a and

the shift b, such that

dX(a, b) :=
1√
a

∫

IR
ψ

(
t− b

a

)
X(t) dt

This family of wavelet coefficients satisfies the following property:

Proposition 2.1 (Harmonizable representation) Let ψ satisfy Assumption W(1, 1, 0) and X be a

Gaussian process defined by (1.1) or (1.4) with a spectral density f satisfying respectively (1.3) or (1.5).

Then,

dX(a, b) =
√
a

∫

IR
eibξ ψ̂(aξ) f1/2(ξ) dW (ξ) for all (a, b) ∈ IR∗

+ × IR, (2.1)

and, for a > 0, (dX(a, b))b∈IR is a stationary centered Gaussian process with variance given by

IE
(∣∣dX(a, b)

∣∣2
)

= I1(a) := a

∫

IR
|ψ̂(au)|2 f(u) du for all b ∈ IR. (2.2)

The proof of this proposition is grouped with all the other proofs in Section 4.
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2.2 An estimator of the variance of wavelet coefficients and its application to the

semi-parametric estimation of the spectral density

Let us begin with an example. If X is a fBm with Hurst parameter H ∈ (0, 1), its spectral density

is f(ξ) = C |ξ|−(2H+1) for all ξ ∈ IR∗ (with C > 0). Then for a scale a > 0 a straightforward com-

putation of the variance of wavelet coefficients I1(a) defined in (2.2) shows that I1(a) = K a2H+1 with

K = C
( ∫

IR

|ψ̂(u)|2
u2H+1

du
)
. Therefore a consistent estimator of I1(a) furnishes a consistent estimator of H

obtained by a log-log regression of
(
I1(ai)

)
1≤i≤m onto (log ai)1≤i≤m. The same method works also for

multiscale fBm (see Bardet and Bertrand, 2007b).

Thus our first aim is the estimation of I1(a). When
(
X(t

(n)
0 ), . . . ,X(t

(n)
n )

)
is only known, an explicit

formula I1(a) is not available for both the following reasons:

1. on the one hand, dX(a, b) is defined with a Lebesgue integral and cannot be directly computed from

data. As in Gloter and Hoffmann (2007), an approximation formula will be considered for computing

wavelet coefficients. Thus, for (a, b) ∈ IR∗
+ × IR we define an empirical wavelet coefficient by

eX(a, b) :=
1√
a

n−1∑

i=0

(∫ t
(n)
i+1

t
(n)
i

ψ
( t− b

a

)
dt

)
X

(
t
(n)
i

)
. (2.3)

2. on the other hand, a sample mean of |dX(a, b)
∣∣2 instead on IE

∣∣dX(a, b)
∣∣2 is only computable. Thus,

define the sample estimator of I1(a) by

Jn(a) :=
1

n+ 1

n∑

k=0

∣∣eX(a, ck)
∣∣2, (2.4)

where (ck)k is a family of increasing real numbers (so-called shifts). In this paper, we will consider a

uniform repartition of shifts, i.e. for k = 0, . . . , n,

ck = T ρn + k
Tn − 2T ρn

n
with ρ ∈ (3/4, 1). (2.5)

In this example (ck)1≤k≤n are random variables depending on random times (t
(n)
1 , . . . , t

(n)
n ) but ck+1−ck does

not depend on k. We will see that it is not easy to consider a simpler expression of (ck); for instance ck =

kTn/n could not be used because there would be some edge effects for estimating the wavelet coefficients

in c0 or cn. Therefore a sufficient “distance” from the boundaries 0 and Tn is necessary. However, other

choices of (ck)k are possible (for instance ck = tk) but we have not been able to find an optimal choice

and simulations do not show significative differences between these choices. Now additional conditions on

f have to be considered:

Assumption F(H): f is an even function, differentiable on [0,∞) except for a finite number K of real

numbers ω0 = 0 < ω1 < · · · < ωK , but f admits left and right limits in ωk, with a derivative f ′ (defined on
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all open intervals (ωk, ωk+1) with ωK+1 = ∞ by convention) such that
∫

IR

(
1 ∧ |ξ|3

)
·
∣∣f ′(ξ)

∣∣ dξ <∞. (2.6)

Moreover, there exist C0, C
′
0 > 0 and H > 0, such that for all |x| ≥ ωK

f(x) ≤ C0 |x|−(2H+1) and f ′(x) ≤ C ′
0 |x|−(2H+2). (2.7)

Here there are several examples of processes having a spectral density f satisfying Assumption F(H):

Examples : 1. A smooth Gaussian process having stationary increments satisfies F(H) with H ≥ 1

satisfies F(H) with H ≥ 1.

2. A fractional Brownian motion with Hurst parameter H ∈ (0, 1) satisfies F(H). Indeed, its spectral

density is given by f(ξ) = C |ξ|−(2H+1) and corresponds to a power law of the frequency.

3. However, a fBm is a limited model. For instance, in some biological applications, statistical studies

suggest that the logarithm of the spectral density is a piecewise affine function of the log-frequency, see

for instance Collins and De Luca (1993) or Billat et al. (2009). Furthermore in certain frequency bands

the slope corresponds to a Hurst parameter H larger than 1. For these reasons, in Bardet and Bertrand

(2007a), we have introduced the multiscale fBm such that there exists a family of frequencies ω1 < · · · < ωK

satisfying f(ξ) = Ci |ξ|−(2Hi+1) for |ξ| ∈ (ωi, ωi+1) and i = 0, . . . ,K, with the convention that ω0 = 0 and

ωK+1 = ∞, H0 < 1, 0 < HK and (Ci,Hi) ∈ IR∗
+ × IR for i = 1, . . . ,K − 1. Then Condition (1.3) and

Assumption F(H) are checked with H = HK .

4. A stationary process with a bounded spectral density such as a Ornstein-Uhlenbeck process (for which

f(ξ) := α
(
π(α2 + ξ2)

)−1
with α > 0).

The sample variance of wavelet coefficients Jn(a) computed from the observed trajectory (X(t
(n)
0 ), . . . ,X(t

(n)
n ))

and defined by (2.4) satisfies the following CLT:

Theorem 2.1 Let X be a Gaussian process defined by (1.1) or (1.4) with a spectral density f satisfy-

ing (1.3) and Assumption F(H), ψ satisfying Assumption W(1, 3, 1) and (ck)k defining by (2.5). Under

Assumption S(s) with s > 2 +
1

2H

[
1 − 3H

]
+

and if

IE(Tn) × δ
(s−1)

(
(2H∧1)

1+(2H∧1)

)
∧
(

1+(H∧1)
s+(H∧1)

)
n −→

n→∞
0. (2.8)

Then for all a > 0,

√
IE Tn

(
Jn(a) − I1(a)

) D−→
n→∞

N
(
0 , 4π a2

∫

IR

∣∣ψ̂(az)
∣∣4f2(z) dz

)
. (2.9)

Remark 2.1 1. The convergence rate of the CLT (2.9) is
√
IE(Tn) when Condition (2.8) is satisfied. A

natural question is what happens elsewhere? This leads to the following comments: roughly speaking,

from Theorem 2.1 and Lemma 4.6, one can deduce

Jn(a) = I1(a) +
[
IE(Tn)

]−1/2
ΓU + ζn (2.10)
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where U ∼ N (0, 1), Γ2 = 4π a2

∫

IR

∣∣ψ̂(az)
∣∣4f2(z) dz corresponds to the variance in CLT (2.9) and

ζn corresponds to the discretization error. As soon as Condition (2.8) is fulfilled, the discretization

term ζn is negligible with respect to the CLT term and the rate of convergence is
√
IE(Tn). If the

condition (2.8) is not satisfied, then the upper bound of the mean square error does no more decrease

when IE(Tn) → ∞.

2. It also possible to specify Condition (2.8) by using a relation between δn and n; for this, let

δn = Cδ n
−d with 0 < d < 1.

The following Table 1 summarizes the possible of choices of s and d and the supremum of the con-

vergence rate of the CLT (2.9)) following several cases.

H known H unknown H unknown H unknown
H > 0 H > 0 H ≥ 1/3 H ≥ 1

Condition on s s > 2 + 1
2H

[
1 − 3H

]
+

s = ∞ s > 2 s > 2

Condition on d d >
( 1+(2H∧1)

1+s(2H∧1)

)
∨

(
s+(H∧1)

s(2+(H∧1))−1

)
d ≥ 1

2 d > ( 2
1+s

) ∨ (2s+1
5s−2 ) d > ( 2

1+s
) ∨ ( s+1

3s−1 )

Supremum of the rate of n
1−d

2 for s > 2 + 1
2H

[
1 − 3H

]
+

n−
1
4 n−

1
4 for s = 4 n−

1
4 for s = 3

convergence of CLT (2.9) n−
1
2

1+(H∧1)
2+(H∧1) for s = ∞ n−

3
10 for s = ∞ n−

1
3 for s = ∞

Supremum of the rate of n2 1−d

5 for s > 2 + 1
2H

[
1 − 3H

]
+

n−
1
5 n−

1
5 for s = 4 n−

1
5 for s = 3

convergence of CLT (2.14) n−
2
5

1+(H∧1)
2+(H∧1) for s = ∞ n−

6
25 for s = ∞ n−

4
15 for s = ∞

Table 1: Conditions on s, d and supremum of the convergence rate of the semiparametric estimator of the

spectral density f (CLT (2.9)) and the nonparametric estimator of f (CLT (2.14) with λn ≃ CT
1/5+κ
n ≃

Cn1/5(1−d)+κ with κ > 0 arbitrary small) following the a priori on H.

Note that CLT (2.9) can be applied to an estimation of each Hi of a multiscale fractional Brownian

motion when a trajectory is observed at random times. Indeed, in such a case and if ψ is chosen such as

ψ̂(ξ) 6= 0 only for ξ ∈ [−β,−α] ∪ [α, β] then (see details in Bardet and Bertrand (2007b)):

I1(a) = a2Hi+1Cf,ψ for all ξ ∈ [α/ωi, β/ωi+1],

with Cf,ψ > 0 not depending on a. Therefore a log-log-regression of Jn(a) onto a for several values of

a ∈ [α/ωi, β/ωi+1] provides an estimator of Hi and Ci which follows a CLT with the same convergence

rate than (2.9). Such a result may be of course also applied to a fBm without specifications on the scales

a. This is more precisely stated in the following

Corollary 2.1 (parametric case) Let X be a fBm with parameters H ∈ (0, 1), C > 0, assume that

(X
t
(n)
1

, · · · ,X
t
(n)
1

) is observed, that Assumption S(∞) is fulfilled, that ψ satisfies Assumption W (1, 3, 1) and

that δnIETn −→
n→∞

0, then there exists a constant C > 0 such as for n large enough,

IE
[∥∥∥

( Ĥn

Ĉn

)
−

( Hl

Cl

)∥∥∥
2]

≤ C

IETn
. (2.11)
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where Ĥn and Ĉn are the estimators obtained by log-log-regression of Jn(a) onto a. If moreover, the

Hurst index H is known in advance to lie in the interval (1/3, 1), then Condition S(∞) can be replaced by

Condition S(2 + ε) for any ε > 0.

To our knowledge, only Begyn (2005) provides an asymptotic result on the estimation of H under irregular

observation times but only in the case of fBm and with a stronger condition than Assumption S(∞).

2.3 A nonparametric estimator of the spectral density

The third result of this paper deals with the pointwise estimation of f through a localization procedure in

Theorem 2.1. Let us define the ”rescaled” functions:

ψλ(x) :=
1√
λ
ei x ψ

(x
λ

)
(2.12)

in a way that enables the convergence, as λ → ∞ of |ψ̂λ|2 to a Dirac mass concentrated at the frequency

ξ = 1. Then a rescaled version of the estimator (2.3, 2.4) is introduced:

f̂ (λ)
n (ξ) :=

ξ

‖ψ‖2
L2

1

n+ 1

n∑

k=0

∣∣∣
n−1∑

i=0

X
(
t
(n)
i

) ∫ t
(n)
i+1

t
(n)
i

ψλ
(
ξ
(
t− ck

))
dt

∣∣∣
2
. (2.13)

¿From (2.12), it is obvious that

ψ̂λ(ξ) =
√
λ ψ̂

(
λ(ξ − 1)

)
∀ξ ∈ IR,

and after that

Iλ(a) :=

∫

IR
|ψ̂λ(u)|2 f(u/a) du → f(1/a) ‖ψ‖2

L2 when λ→ ∞

under weak hypothesis. Then a CLT is established for the nonparametric estimator (2.13) with a sequence

(λn)n satisfying λn → ∞ and assumptions of Theorem 2.1. Note the first condition ψλ ∈ W (1, 3, 1) is

fulfilled as soon as λn > Λ when ψ̂ is compactly supported in [−Λ,Λ]. Now, by using an appropriated

choice of a sequence (ψλn
), one obtains:

Proposition 2.2 Assume that assumptions of Theorem 2.1 hold. Moreover, if the spectral density f is a

twice continuously differentiable function on IR∗, if ψ̂ is compactly supported, and if the sequence (λn)n is

such that
λ2
n

nδn
−→
n→∞

0 and
λ5
n

nδn
−→
n→∞

∞, then for all ξ > 0,

√
Tn
λn

(
f̂ (λn)
n (ξ) − f(ξ)

) D−→
n→∞

N
(
0 ,

4π

ξ
f2(ξ)

∫
IR

∣∣ψ̂(u)
∣∣4 du

( ∫
IR

∣∣ψ̂(u)
∣∣2 du

)2

)
. (2.14)

The rate of convergence of the parametric (or semiparametric) estimator is T
−1/2
n , see CLT (2.9). In the

case of nonparametric estimator, with the optimal choice of λn, i.e. λn = C(nδn)
1/5+κ = O(T

1/5+κ
n ) with

κ > 0 arbitrary small, the supremum of the convergence rate of this nonparametric estimator is T
−2/5
n . This

is the same rate of convergence than for the periodogram of a stationary process in continuous time (Parzen,
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1983) or observed during random times satisfying Masry’s conditions (Lii and Masry, 1994). However, in

this last case, Tn ∼ C n p.s. when n → ∞. Our result, CLT (2.14), is clearly more general (processes

having stationary increments and weak condition on the random observation times), but the prize to pay for

obtaining the convergence rate T
−2/5
n is that Tn ∼ C n1−d with d >

( 1 + (2H ∧ 1)

1 + s(2H ∧ 1)

)
∨

( s+ (H ∧ 1)

s(2 + (H ∧ 1)) − 1

)

i.e. for instance Tn ∼ C n
1
2 for s = 3 and H ≥ 1, or for s = ∞ and H > 0; more details are provided in

Table 1).

How to explain that this convergence rate depends on s and H? On the one hand, the smaller H the

more irregular the trajectory of X when X is a process having stationary increments (the Hölder parameter

of a trajectory of X is then H+ for all H+ < H). Therefore empirical wavelet coefficients, defined almost

as a Riemann sum, approximate better a smooth paths than irregular paths and this explains that the

smaller H the smaller the convergence rate of CLT (2.14). In the case of stationary processes, then H ≥ 1

and the convergence rate does not depends on H. On the other hand, the smaller s the more variable

the observed times. Then for each frequency there are not enough successive data with appropriated lag

allowing to correctly estimate the spectral density around this frequency. Then the smaller s the smaller

the convergence rate of CLT (2.14).

Moreover, under W(m, 3, 1),

∫
tnψ(t)dt = 0 for all n ≤ m and any wavelet coefficients of any polynomial

function with degree less or equal to m are vanished. Therefore, the estimator f̂
(λn)
n is robust since

Corollary 2.2 Under Assumption W(m, 3, 1) with m ∈ IN∗, Proposition 2.2 holds when a polynomial

trend with degree less or equal to m is added to X.

3 Numerical experiments

For the numerical applications, one has chosen:

1. ψ is chosen such as ψ̂(ξ) = exp
(
− (|ξ| · (5− |ξ|))−1

)
1|ξ|≤5(ξ) which satisfies Assumption W(m, r) for

any (m, r) (and ψ̂(ξ) = 0 for |ξ| ≥ 5).

2. δn = n−0.6 for insuring the convergence of f̂
(λn)
n (ξ) for any H > 0 and s ≥ 3.

3. λn = nd
′

with 1/6 < d′ < 1/2. However, admissibility condition on wavelets (ψλn
) requires that

nd
′ ≥ Λ = 5. Moreover, for removing the bias term, d′ has to be chosen large enough following n.

Thus, after numerous simulations, we have chosen d′ = log(15)/ log(n).

3.1 Estimation of the spectral density of a fractional Brownian motion observed at

random times

For a standard (IEX2(1) = 1) fBm with Hurst parameter H, f(ξ) = C(H) |ξ|−2H−1dξ with C(H) =
(
HΓ(2H) sin(πH)

)
/π. Three different kind of independent and identically distributed random times are

considered:
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(T1): non-random uniform sampling, such that Lk = 1 for all k ∈ IN∗;

(T2): exponential random times, such that IELk = 1 for all k ∈ IN∗;

(T3): random times such that for for all k ∈ IN∗, the cumulative distribution function of Lk is FLk
(x) =

(1 − x−4)1x≥1 =⇒ IELpk < ∞ for all p < 4 and IEL4
k = ∞. In this case Assumption S(s) is satisfied

if and only if s < 4.

(T4): random times such that for for all k ∈ IN∗, the cumulative distribution function of Lk is FLk
(x) =

(1 − x−2)1x≥1 =⇒ IELpk < ∞ for all p < 2 and IEL2
k = ∞. In this case Assumption S(s) is satisfied

if and only if s < 2. As a consequence, this case does not satisfied the hypothesis of Theorem 2.1.

An example of such estimation of the spectral density for H = 0.2, N = 50000 and random times T2 is

presented in Figure 1. The results of simulations are also provided in the Table 2.
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Fig. 1 An example of the estimation of the spectral density (left) and its logarithm (right) of a FBM

observed at exponential random times (T2) with confidence intervals (H = 0.2, N = 50000).

Comments on simulation results: 1. the larger N the more accurate the estimator of f except for case of

random times T4 (which is a case not included in conditions of Proposition 2.2) ; 2. The results are similar

for T1 and T2, a little less accurate for T3; 3. the smaller H the more accurate the estimator of f .

3.2 Estimation of the spectral density of the stationary Ornstein-Uhlenbeck process

Here, instead of FBM which is a process having stationary increments, we consider the stationary Ornstein-

Uhlenbeck process which is a Gaussian stationary process with covariance r(t) := exp(−α|t|) and therefore

with spectral density f(ξ) := α
(
π(α2 + ξ2)

)−1
. In such case, since this spectral density is an analytic

function, there exists more accurate nonparametric estimator (see for instance, Ibragimov, 2004). However,

to our knowledge, the case of paths observed at random times is not considered is this literature. The

results of simulations are provided in the Table 3.

Comments on simulation results: 1. the larger N the more accurate the estimator of f for all choice of
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random time; 2. The results are similar for T1, T2, T3 and a less accurate for T4; 3. surprisingly, the case

α = 1 is not clearly better than α = 0.1 despite the fact that the larger α the less correlated the process.

3.3 Estimation of the spectral density of heartbeat time series

Heartbeats of several working people have been recorded during 24h (see an example in Figure 3.3).

These data have been kindly furnished by professor Alain Chamoux and Gil Boudet (Faculty of Medicine,

Occupational safety and health, University of Auvergne, Clermont-Ferrand).
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Cardiologists are interested in the study of this signal in two frequency bands: the orthosympathetic and

parasympathetic bands, i.e., the frequency bands (0.04Hz, 0.15Hz) and (0.15Hz, 0.5Hz) respectively.

The definition of these bands is the outcome of research works, see e.g., Task force of the European Society

of Cardiology and the North American Society of Pacing and Electrophysiology (1996), and is based on

the fact that the behavior of the energy contained inside these bands would be a relevant indicator on the

level of the stress of an individual.

Indeed, for the heart rate, the parasympathetic system is often compared to the brake while the or-

thosympathetic system would be a nice accelerator; see e.g. Goldberger (2001). At rest there is a permanent

braking effect on the heart rate. Any solicitation of the cardiovascular system, any activity initially pro-

duces a reduction of parasympathetic brake followed by a gradual involvement of the sympathetic system.

These mechanisms are very interesting to watch in many diseases including heart failure, but also rhythm

disorders that may fall under one or other of these two effects, monitoring the therapeutic effect of several

Medicines including some psychotropic. In the field of physiology such data are crucial for measuring the

level of stress induced by physical activity or level of perceived stress, which can be considered as a criterion

of overtraining in sport.

We decompose these data in 3 temporal zones following the activity:

• Quiet activities (t ∈ [1, 28000] in seconds);

• Intensive activities (t ∈ [28000, 51400] in seconds);

• Sleep (t ∈ [60000, 83400] in seconds).
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Applying the spectral density estimator on those 3 sub-data and plotting its log-log representation for

frequencies in [0.02, 1] Hz, we observe that:

• in zone “Sleep” (see Figure 3), only one regression line could be computed for frequencies in [0.04, 0.5]

Hz which is the usual spectral interval considered by specialists; in this zone Ĥ ≃ 0.99;

• in zone “Quiet activities” (respectively “Intensive activities”), (see Figure 3), two regression lines

could be drawn for frequencies in [0.04, 0.5] Hz, distinguishing the orthosympathetic and the parasym-

pathetic spectral domains. Using an algorithm computing the “best” two regression lines (see for

instance Bardet and Bertrand, 2007b), one obtains that H ≃ 1.34 (respectively H ≃ 1.44) in the

orthosympathetic domain which is [0.04, 0.09] Hz (respectively [0.04, 0.11] Hz) and H ≃ 0.89 (re-

spectively H ≃ 0.79) in the parasympathetic domain which is [0.09, 0.5] Hz (respectively [0.11, 0.5]

Hz).
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Fig. 3.3 Log-log representation of the spectral density estimator during “Sleep” zone (up), “Quiet” activ-

ities (middle) and “Intensive activities” zone (down)
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4 Proofs

4.1 Proofs of useful lemmas and Proposition 2.1

In the sequel, the following lemma will be useful:
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Lemma 4.1 Let X be a Gaussian process defined by (1.1) with a spectral density function f satisfying

(1.3) or by (1.4) with a spectral density satisfying (1.5). Then there exists a constant C0 > 0 such that

|IE (X(t1)X(t2))| ≤ C0(1 + |t1|)(1 + |t2|) for all (t1, t2) ∈ IR2. (4.1)

Proof. Firstly, let us consider X defined by (1.1). For all t ∈ IR, by using (1.2), we have

IE
[
X2(t)

]
=

∫

IR

∣∣∣eitξ − 1
∣∣∣
2
f(ξ) dξ ≤ 2

∫ 1

0
|tξ|2 f(ξ) dξ + 8

∫ ∞

1
f(ξ) dξ

≤ (2t2 + 8) ×
∫ ∞

0

(
1 ∧ |ξ|2

)
f(ξ) dξ.

This implies IE
(
X(t)2

)
≤ C0 (1 + |t|2) where C0 = 4

∫
IR

(
1∧|ξ|2

)
f(ξ) dξ. Then, by using Cauchy-Schwartz

inequality, one deduces (4.1). Secondly, consider X defined by (1.4), then (1.2) and (1.5) imply that

|IE (X(t1)X(t2))| =

∣∣∣∣
∫

IR
ei(t1−t2)ξf(ξ) dξ

∣∣∣∣ ≤
∫

IR
f(ξ) dξ < ∞.

Therefore (4.1) is satisfied with C0 =

∫

IR
f(ξ) dξ. This finishes the proof of Lemma 4.1.

Proof. [of Proposition 2.1] We just give the proof for Gaussian processes defined by (1.1) with a spectral

density function f satisfying (1.3). The key property, which explains that the same representation formula

holds for for Gaussian processes defined by (1.1) or (1.4), is Formula (4.2). Moreover, since Condition (1.5)

implies Condition (1.3), all the convergence results remain valid under Condition (1.5).

Let X be defined by (1.1). Firstly, one can show that for all a > 0 and b ∈ IR, IE
[∣∣dX(a, b)

∣∣2
]
< ∞.

This induces that dX(a, b) is well defined. Indeed, since X is a real valued process, one has

IE
[∣∣dX(a, b)

∣∣2
]

=
1

a

∫

IR

∫

IR
ψ

(
t1 − b

a

)
ψ

(
t2 − b

a

)
IE (X(t1)X(t2)) dt1dt2

≤ C0

a

∫

IR

∫

IR

∣∣∣∣ψ
(
t1 − b

a

)∣∣∣∣

∣∣∣∣ψ
(
t2 − b

a

)∣∣∣∣ (1 + |t1|)(1 + |t2|)dt1dt2

≤ aC0

(∫

IR
|ψ(u)| (1 + |b| + |au|)du

)2

<∞,

where we have used successively the bound (4.1), the change of variable u = (t − b)/a and the second

condition of Assumption W(1, 1, 0). Next, one turns to the proof of the representation formula (2.1).

Firstly, recall that the stochastic of a complex valued function g = g1 + ig2 against a complex Gaussian

measure W with real part W1 and imaginary part W2 is defined by

∫

IR
g(x) dW (x) =

∫

IR
g1(x) dW1(x) −

∫

IR
g2(x) dW2(x)

and that W1 and W2 are Wiener measures, see [31, (7.2.8) p.326]. Now, consider any interval [α,A] ⊂]0,∞[,

the function f is bounded on [α,A] and

∫

IR

∣∣∣∣ψ
(
t− b

a

)∣∣∣∣ dt = a

∫

IR
|ψ(u)| du <∞. Therefore, one can
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apply the Fubini-type Theorem for stochastic integral (see [20, Lemma 4.1, p. 116]) to the two integrals

corresponding to the real and the imaginary part, then by summing up, we get
∫ A

α

[∫

IR

(
eitξ − 1

)
· ψ

(
t− b

a

)
dt

]
f1/2(ξ) dW (ξ) =

∫

IR
ψ

(
t− b

a

)[∫ A

α

(
eitξ − 1

)
· f1/2(ξ) dW (ξ)

]
dt

Since

∫

IR
ψ(u) du = 0, for all couple (a, b) ∈]0,∞[×IR, we have

∫

IR

(
eitξ − 1

)
ψ

(
t− b

a

)
dt =

∫

IR
eitξ ψ

(
t− b

a

)
dt = a eibξ ψ̂(aξ). (4.2)

Thus, for all couple (a, b) ∈]0,∞[×IR we have

a

∫ A

α
eibξ ψ̂(aξ) f1/2(ξ) dW (ξ) =

∫

IR
ψ

(
t− b

a

)[∫ A

α

(
eitξ − 1

)
· f1/2(ξ) dW (ξ)

]
dt (4.3)

From the one hand, the firs condition of W(1, 1, 0) and (1.3) imply that

∫ ∞

0

∣∣∣ψ̂(aξ)
∣∣∣
2
f(ξ) dξ < ∞.

Therefore, one can deduce that for any sequence of couples (αn, An) converging to (0,∞), the sequence∫ An

αn

eiabξ ψ̂(aξ) f1/2(ξ) dW (ξ) converges in L2(Ω). From the other hand,

∫

IR
ψ

(
t− b

a

)[∫ An

αn

(
eitξ − 1

)
· f1/2(ξ) dW (ξ)

]
dt

converges also in L2(Ω), because

IE

∣∣∣∣
∫

IR
ψ

(
t− b

a

)[∫ ∞

0

(
eitξ − 1

)
· f1/2(ξ) dW (ξ)

]
dt

∣∣∣∣
2

<∞.

Indeed, firstly, by using Cauchy-Schwarz inequality, we get that
∣∣∣∣
∫ ∞

0

(
eit1ξ − 1

)
·
(
e−it2ξ − 1

)
f(ξ) dξ

∣∣∣∣ ≤
(∫ ∞

0

∣∣∣eit1ξ − 1
∣∣∣
2
f(ξ) dξ

)1/2

×
(∫ ∞

0

∣∣∣eit2ξ − 1
∣∣∣
2
f(ξ) dξ

)1/2

≤
(∫ 1

0
|t1ξ|2 f(ξ) dξ + 4

∫ ∞

1
f(ξ) dξ

)1/2

×
(∫ 1

0
|t2ξ|2 f(ξ) dξ + 4

∫ ∞

1
f(ξ) dξ

)1/2

≤
(

(4 + t21)

∫

IR

(
1 ∧ |ξ|2

)
· f(ξ) dξ

)1/2

×
(

(4 + t22)

∫

IR

(
1 ∧ |ξ|2

)
· f(ξ) dξ

)1/2

≤ (2 + t1) × (2 + t2) ×
∫

IR

(
1 ∧ |ξ|2

)
· f(ξ) dξ.

Next, by using the isometry property (1.2), we get the following upper bound

IE

∣∣∣∣
∫

IR
ψ

(
t− b

a

)[∫ ∞

0

(
eitξ − 1

)
· f1/2(ξ) dW (ξ)

]
dt

∣∣∣∣
2

=

∫

IR

∫

IR
ψ

(
t1 − b

a

)
ψ

(
t2 − b

a

)(∫ ∞

0

(
eit1ξ − 1

)
·
(
e−it2ξ − 1

)
f(ξ) dξ

)
dt1 dt2

≤
(∫

IR

(
1 ∧ |ξ|2

)
· f(ξ) dξ

)
×

∫

IR

∫

IR
ψ

(
t1 − b

a

)
ψ

(
t2 − b

a

)
(2 + t1) × (2 + t2) dt1 dt2

=

(∫

IR

(
1 ∧ |ξ|2

)
· f(ξ) dξ

)
×

(∫

IR
(2 + t)

∣∣∣∣ψ
(
t− b

a

)∣∣∣∣ dt
)2

< ∞,



J-M. Bardet and P.R. Bertrand 21

where the last bound follows from Condition (1.3) and Condition W(1, 1, 0)). Eventually, one can pass to

the limit in (4.3) which provides

a

∫ ∞

0
eibξ ψ̂(aξ) f1/2(ξ) dW (ξ) =

∫

IR
ψ

(
t− b

a

)[∫ ∞

0

(
eitξ − 1

)
· f1/2(ξ) dW (ξ)

]
dt.

But similar calculations would lead to the same result between the bounds −∞ and 0. By adding the two

integrals between 0 and ∞ and between −∞ and 0, one can obtain

a

∫

IR
eibξ ψ̂(aξ) f1/2(ξ) dW (ξ) =

∫

IR
ψ

(
t− b

a

)[∫

IR

(
eitξ − 1

)
· f1/2(ξ) dW (ξ)

]
dt

=

∫

IR
ψ

(
t− b

a

)
X(t) dt

which implies (2.1). Afterwards, formula (2.1) implies that for all a > 0, b ∈ IR, dX(a, b) is a Gaussian

centered random variable with variance I1(a). Moreover, for all a > 0 and (b1, b2) ∈ IR2, we have

IE
(
dX(a, b1) dX(a, b2)

)
= a

∫

IR
eia(b1−b2)ξ

∣∣∣ψ̂(aξ)
∣∣∣
2
f(ξ) dξ

Thus for a given a > 0, IE (dX(a, b1) dX (a, b2)) is only depending on (b1−b2) which induces that (dX (a, b))b∈IR

is a stationary process. This finishes the proof of Proposition 2.1.

¿From formula (2.1), it is clear that for all (a1, a2) ∈ (0,∞)2 and for all (b1, b2) ∈ IR2,

IE
(
dX(a1, b1) · dX(a2, b2)

)
=

√
a1a2 · γ(b2 − b1, a1, a2)

where

γ(θ, a1, a2) : =

∫

IR
eiθξ ψ̂(a1ξ) ψ̂(a2ξ) f(ξ) dξ. (4.4)

When (a1, a2) are positive numbers, the function γ and its first derivative with respect to θ can be bounded:

Lemma 4.2 Under Assumption W(1, 0, 1/2) and if f satisfies (1.3) and Assumption F(H) with H > 0:

1. for all (a1, a2) ∈ (0,∞)2, there exists C > 0 not depending on θ such that,
∣∣γ(θ, a1, a2)

∣∣ < C
(
1 ∧ |θ|−1

)

for all θ ∈ IR.

2. the function γ is derivable with respect to θ and for all (a1, a2) ∈ (0,∞)2, there exists C > 0 not

depending on θ such that, |γ′(θ, a1, a2)| :=

∣∣∣∣
∂γ

∂θ
(θ, a1, a2)

∣∣∣∣ ≤ C ′ (1 ∧ |θ|−1) for all θ ∈ IR.

Proof. [of Lemma 4.2] Firstly, from Assumption W(1, 0, 0) (induced by Assumption W(1, 0, 1/2)), there

exists a constant c > 0 such that

∣∣ψ̂(ξ)
∣∣ ≤ c

(
1 ∧ |ξ|2

)
for all ξ ∈ IR. (4.5)
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Indeed, from one hand,
∣∣ψ̂(ξ)

∣∣ ≤ ‖ψ‖L1(IR) <∞. From the other hand, ψ ∈ W (1, 0, 0) implies that ψ̂ is

twice continuously differentiable and ψ̂(0) = ψ̂′(0) = 0. From Taylor-Lagrange Formula, for all ξ ∈ IR∗,

there exists ξ0 ∈ IR with |ξ0| ≤ |ξ| such that ψ̂(ξ) =
1

2
ξ2 × ψ̂′′(ξ0). This induces

∣∣ψ̂(ξ)
∣∣ ≤ 1

2
|ξ|2 ×

( ∫

IR
t2 |ψ(t)| dt

)
providing the second bound of (4.5).

Secondly, we show the first item. Inequality (4.5) implies that
∫

IR

∣∣∣ψ̂(aξ)
∣∣∣
2
f(ξ) dξ ≤ c2

(∫

|ξ|≤1
|aξ|4f(ξ) dξ +

∫

|ξ|>1
f(ξ) dξ

)

≤ c2
(
1 ∨ a4

) ∫

IR

(
1 ∧ ξ2

)
f(ξ) dξ < C,

with C > 0 not depending on θ. From Cauchy-Schwarz Inequality,

γ(θ, a1, a2) ≤ c2
(
1 ∨ a2

1

)(
1 ∨ a2

2

) ∫

IR

(
1 ∧ ξ2

)
f(ξ) dξ.

Combined with (1.3), this means that γ(θ, a1, a2) is bounded by a constant. Moreover, with f(ω+
k ) and

f(ω−
k ) denoting the right and left limits of f at ωk, for all 1 ≤ k ≤ K − 1, θ ∈ IR∗ and (a1, a2) ∈ (0,∞)2,
∫ ωk+1

ωk

eiθξψ̂(a1ξ) ψ̂(a2ξ) f(ξ) dξ

=
1

iθ

(
eiθωk+1f(ω−

k+1)ψ̂(a1ωk+1)ψ̂(a2ωk+1) − eiθωkf(ω+
k )ψ̂(a1ωk)ψ̂(a2ωk)

)

−
∫ ωk+1

ωk

eiθξ

iθ

[
f ′(ξ)ψ̂(a1ξ)ψ̂(a2ξ) + f(ξ)

(
a1ψ̂′(a1ξ)ψ̂(a2ξ) + a2ψ̂(a1ξ)ψ̂′(a2ξ)

)]
dξ.

The same result remains in force for k = 0 and k = K. Indeed, by using (4.5) combined with Assumption

F(H), one deduces that for all θ ∈ IR and (a1, a2) ∈ (0,∞)2,

lim
ξ→0

eiθξ f(ξ) ψ̂(a1ξ) ψ̂(a2ξ) = 0 and lim
ξ→∞

eiθξ f(ξ) ψ̂(a1ξ) ψ̂(a2ξ) = 0.

Moreover, since f is an even function,
∫ −ωk

−ωk+1

eiθξψ̂(a1ξ) ψ̂(a2ξ) f(ξ) dx

=
1

iθ

(
e−iθωkf(ω+

k )ψ̂(−a1ωk)ψ̂(−a2ωk) − eiθωk+1f(ω−
k+1)ψ̂(a1ωk)ψ̂(a2ωk)

)

−
∫ −ωk

−ωk+1

eiθξ

iθ

[
f ′(ξ)ψ̂(a1ξ)ψ̂(a2ξ) + f(ξ)

(
a1ψ̂′(a1ξ)ψ̂(a2ξ) + a2ψ̂(a1ξ)ψ̂′(a2ξ)

)]
dξ.

Thus, by summing up and using Assumption F(H), for all θ ∈ IR and (a1, a2) ∈ (0,∞)2,

γ(θ, a1, a2) =

K∑

k=0

∫ ωk+1

ωk

eiθξψ̂(a1ξ) ψ̂(a2ξ) f(ξ) dx+

K∑

k=0

∫ −ωk

−ωk+1

eiθξψ̂(a1ξ) ψ̂(a2ξ) f(ξ) dx

= − 1

iθ

K∑

k=1

(
eiθωk ψ̂(a1ωk)ψ̂(a2ωk) − e−iθωk ψ̂(−a1ωk)ψ̂(−a2ωk)

)(
f(ω+

k ) − f(ω−
k )

)

= − 1

iθ

∫

IR
eiθξ

[
f ′(ξ)ψ̂(a1ξ) ψ̂(a2ξ) + f(ξ)

(
a1ψ̂′(a1ξ)ψ̂(a2ξ) + a2ψ̂(a1ξ)ψ̂′(a2ξ)

)]
dξ
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since the integral of the r.h.s. of the previous equality is well defined. Then,

|γ(θ, a1, a2)| ≤ 1

|θ|
(
2c

K∑

k=1

∣∣f(ω+
k ) − f(ω−

k )
∣∣

+

∫

IR

[∣∣f ′(ξ)ψ̂(a1ξ)ψ̂(a2ξ)
∣∣ + |f(ξ)|

(
|a1|

∣∣ψ̂′(a1ξ)ψ̂(a2ξ)
∣∣ + |a2|

∣∣ψ̂(a1ξ)ψ̂′(a2ξ)
∣∣)

]
dξ

)
.

It remains to show the convergence of the previous integral. Using the same trick as in Formula (4.5),

under Assumption W(1, 0, 0),
∣∣ψ̂′(ξ)

∣∣ ≤ c′
(
1∧ |ξ|

)
with c′ not depending on ξ. So, for all (a1, a2) ∈ (0,∞)2

∫

IR

[∣∣f ′(ξ)ψ̂(a1ξ)ψ̂(a2ξ)
∣∣ + |f(ξ)|

(
|a1|

∣∣ψ̂′(a1ξ)ψ̂(a2ξ)
∣∣ + |a2|

∣∣ψ̂(a1ξ)ψ̂′(a2ξ)
∣∣)

]
dξ

≤ C1 a
2
1a

2
2

∫

|ξ|≤1
|f ′(ξ)|ξ4 + 2|f(ξ)ξ3| dξ + C2

∫

|ξ|>1
|f ′(ξ)| + (|a1| + |a2|)|f(ξ)| dξ

≤ C

∫

IR

[(
1 ∧ |ξ|4

)
· |f ′(ξ)| +

(
1 ∧ |ξ|3

)
· |f(ξ)|

]
dξ

where C > 0 depends on c, c′, a1 and a2. But since
(
1 ∧ |ξ|4

)
≤

(
1 ∧ |ξ|3

)
and

(
1 ∧ |ξ|3

)
≤

(
1 ∧ |ξ|2

)
, then

from Assumption F(H),
∫
IR

(
1 ∧ |ξ|4

)
· |f ′(ξ)| < ∞ and

∫
IR

(
1 ∧ |ξ|3

)
· |f(ξ)| < ∞ and this completes the

proof of the first item. Eventually, one proves the second item. The differentiability is obvious and

γ′(θ, a1, a2) = i

∫

IR
eiθξ ξ ψ̂(a1ξ) ψ̂(a2ξ) f(ξ) dξ.

Assumption W(1, 0, 1/2) implies that for all a > 0, |aξ|1/2|ψ̂(aξ)| ≤ Cψ for all ξ ∈ IR. Combined with

(4.5), this induces that for all a > 0 and θ ∈ IR,

∣∣ϕ′(θ, a1, a2)
∣∣ ≤

∫

IR
|ξ| |ψ̂(a1ξ)| |ψ̂(a2ξ)| f(ξ) dξ

≤ c2(a1 a2)
2

∫

|ξ|≤1
|ξ|5 f(ξ) dξ +

C2
ψ√

a1 a2

∫

|ξ|>1
f(ξ) dξ

≤ C,

with C > 0 not depending on θ. Using the same arguments as above, for all θ ∈ IR∗ and (a1, a2) ∈ (0,∞)2,

γ′(θ, a1, a2) = −1

θ

K∑

k=1

(
eiθωkωkψ̂(a1ωk)ψ̂(a2ωk) +

+e−iθωkωkψ̂(−a1ωk)ψ̂(−a2ωk)
)(
f(ω+

k ) − f(ω−
k )

)

− 1

θ

∫

IR
eiθξ

[
f(ξ)ψ̂(a1ξ)ψ̂(a2ξ) + ξf ′(ξ)ψ̂(a1ξ)ψ̂(a2ξ) +

+ξf(ξ)
(
(a1 ψ̂′(a1ξ)ψ̂(a2ξ) + a2ψ̂(a1ξ)ψ̂′(a2ξ)

)]
dξ

and therefore
∣∣γ′(θ, a1, a2)

∣∣ ≤ C

|θ| , with C > 0 not depending on θ. This finishes the proof.
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4.2 Asymptotic behavior of sample variances of wavelet coefficients for continuous

time processes

Since I1(a) is obviously defined from
∣∣dX(a, b)

∣∣2, we begin with the study of

In(a) :=
1

n+ 1

n∑

k=0

∣∣dX(a, ck)
∣∣2, for a > 0 and n ∈ IN∗. (4.6)

For n ∈ IN∗ and a > 0, define also:

S2
n(a) :=

2 a2

(n+ 1)2

n∑

k=0

n∑

ℓ=0

∣∣∣∣
∫

IR
ei

(
IE(ck−cℓ)

)
ξ
∣∣ψ̂(aξ)

∣∣2f(ξ) dξ

∣∣∣∣
2

. (4.7)

Note that Sn depends on IE(ck − cℓ) and therefore its formula is valid when (ck) are r.v. However, we

begin by proving the following proposition in the case of deterministic (ck) and of course IE(ck − cℓ) can

be replaced by ck − cℓ in (4.7).

Proposition 4.1 Let X be a Gaussian process defined by (1.1) or (1.4) with a spectral density f satisfying

(1.3), ψ satisfying Assumption W(1, 1, 1/2). Then if (ck)k is a family of real numbers such that c1 < c2 <

. . . < cn, n max1≤k≤n{ck+1 − ck} −→
n→∞

∞ and there exists a constant C ′′ > 0 such that for all n ∈ IN∗

max
1≤k≤n

{ck+1 − ck} ≤ C ′′ min
1≤k≤n

{ck+1 − ck} <∞

then ∀a > 0,

1

Sn(a)

(
In(a) − I1(a)

) D−→
n→∞

N (0, 1). (4.8)

Moreover, there exist 0 < Cm < CM not depending on n such that ∀n ∈ N∗,

Cm ≤ Sn(a)
(
n max

1≤k≤n
{ck+1 − ck}

)1/2 ≤ CM . (4.9)

The proof of Proposition 4.1 relies on Lemma 4.2 and the following Lemma which is a Lindeberg CLT (see

a proof in Istas and Lang, 1997):

Lemma 4.3 Let (YN,i)1≤i≤N,N∈IN∗ be a triangular array of zero-mean Gaussian r.v. Define S2
N :=

var (VN ) with VN :=
∑N

i=1 Y
2
N,i and βN := max

1≤i≤N

N∑

j=1

|cov (YN,i, YN,j) |. If lim
N→∞

βN
SN

= 0, then S−1
N (VN −

IE(VN )) converges weakly to a standard Gaussian random variable.

Proof. [of Proposition 4.1]

Consider Yn,i = (n+ 1)−1/2 dX(a, ci) for i = 0, . . . , n and

{
βn = (n+ 1)−1 max1≤i≤n

{ ∑n
j=0 |cov

(
dX(a, ci), dX(a, cj)

)
|
}
,

S2
n = (n+ 1)−2

∑n
i=0

∑n
j=0 cov

(
d2
X(a, ci), d

2
X (a, cj)

) .
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But, by using Formula (4.4), ∀(a, a1, a2) ∈ (0,∞[3, (b1, b2) ∈ IR2

cov
(
dX(a, b1), dX (a, b2)

)
= a γ

(
b1 − b2, a, a

)

cov
(
d2
X(a1, b1), d

2
X(a2, b2)

)
= 2 (a1a2) γ

2(b1 − b2, a1, a2),

since variables dX(a, b) are zero-mean Gaussian r.v. Therefore,

{
βn = a (n + 1)−1 max0≤i≤n

{ ∑n
j=0

∣∣γ
(
ci − cj, a, a

)∣∣
}

S2
n = 2 a2 (n+ 1)−2

∑n
i=0

∑n
j=0 γ

2
(
ci − cj , a, a

) .

Let p and q be such that 1/p + 1/q = 1 with (p, q) ∈ (1,∞)2. Then the Hölder Inequality implies that

βn ≤ C an1/q−1 × max
0≤i≤n

{( n∑

j=0

∣∣∣γ
(
ci − cj , a, a

)∣∣∣
p)1/p}

.

Lemma 4.2 1) implies that for every 1 ≤ i ≤ n, for n large enough,

n∑

j=0

∣∣∣γ
(
ci − cj , a, a

)∣∣∣
p

≤ C
(
#

{
0 ≤ j ≤ n,

∣∣ci − cj
∣∣ ≤ 1

}
+

n∑

j=0

∣∣ci − cj
∣∣−p1∣∣ci−cj

∣∣>1

)

≤ C
(
#

{
0 ≤ j ≤ n, |i− j| min

0≤k≤n−1

∣∣ck+1 − ck
∣∣ ≤ 1

}

+
n∑

j=0

[
|i− j| min

0≤k≤n−1

∣∣ck+1 − ck
∣∣
]−p

1|i−j|max0≤k≤n−1

∣∣ck+1−ck
∣∣>1

)
(4.10)

≤ 2C
(

min
0≤k≤n−1

∣∣ck+1 − ck
∣∣)−1

(
1 +

(
min

0≤k≤n−1

∣∣ck+1 − ck
∣∣)1−p ∑

ℓ≥(max0≤k≤n−1 |ck+1−ck|)−1

|ℓ|−p
)
. (4.11)

Since p > 1,
∞∑

ℓ=1

|ℓ|−p <∞ is finite and thus

∑

ℓ≥(max0≤k≤n−1

∣∣ck+1−ck
∣∣)−1

|ℓ|−p ≤ 1

p− 1

(
max

0≤k≤n−1

∣∣ck+1 − ck
∣∣)p−1 ≤ C ′′

p− 1

(
min

0≤k≤n−1

∣∣ck+1 − ck
∣∣)p−1

,

since by definition max1≤k≤n{ck+1 − ck} ≤ C ′′ min1≤k≤n{ck+1 − ck} <∞. Therefore,

βn ≤ C a

{
n× min

0≤k≤n−1

∣∣ck+1 − ck
∣∣
}−1/p

, (4.12)

with C > 0 not depending on n. Now, a lower bound for S2
n is required. For all a > 0, θ ∈ IR 7→ γ(θ, a, a)

is a continuous map and γ(0, a, a) =
∫
IR

∣∣ψ̂(aξ)
∣∣2 f(ξ) dξ > 0. Therefore, for all a > 0, there exists θa > 0

such that γ(θ, a, a) ≥ 1

2
γ(0, a, a) when |θ| ≤ θa. Then,

S2
n(a) ≥ C ′

1 a
2 n−2 γ2(0, a, a)#

{
0 ≤ i, j ≤ n,

∣∣ci − cj
∣∣ ≤ θa

}

≥ C ′
1 a

2 n−2 γ2(0, a, a)#
{

0 ≤ i, j ≤ n, |i− j| max
0≤k≤n−1

∣∣ck+1 − ck
∣∣ ≤ θa

}

≥ C ′
1 a

2 n−2γ2(0, a, a)
n

2

((
θa max

0≤k≤n−1

∣∣ck+1 − ck
∣∣)−1 ∧ (n− 1)

)
,



J-M. Bardet and P.R. Bertrand 26

since for µ > 0, #
{

0 ≤ i, j ≤ n, |i − j| ≤ µ
}

= 2

[µ]∧(n−1)∑

k=0

n − k ≥ 2
(
[µ] ∧ (n − 1)

) n
2
. Thus, since from

assumptions n max
0≤k≤n−1

∣∣ck+1 − ck
∣∣ −→
n→∞

∞, there exists CM > 0 such that for n large enough:

S2
n(a) ≥ CM

(
n max

0≤k≤n−1

∣∣ck+1 − ck
∣∣)−1

. (4.13)

Now, from (4.12) and (4.13),

βn
Sn

≤ C n1/2−1/p
(

max
0≤k≤n−1

∣∣ck+1 − ck
∣∣)1/2 (

min
0≤k≤n−1

∣∣ck+1 − ck
∣∣)−1/p

.

Therefore βn/Sn ≤ C
(
n max

0≤k≤n−1

∣∣ck+1 − ck
∣∣)1/2−1/p

with C > 0. Next for any p ∈ (1, 2),

lim
n→∞

(
n max

0≤k≤n−1

∣∣ck+1 − ck
∣∣)1/2−1/p

= 0 and thus, lim
n→∞

βn/Sn = 0 and assumptions of Lemma 4.3 are ful-

filled.

Finally, from (4.13), S2
n(a) ≥ CM

(
n max

0≤k≤n−1

∣∣ck+1 − ck
∣∣)−1

with CM > 0 for n large enough. Moreover,

using the bound (4.11) for p = 2 and the lines after (4.11),

n∑

j=0

γ2
(
ci − cj , a, a

)
≤ C

(
min

0≤k≤n−1

∣∣ck+1 − ck
∣∣)−1

=⇒ S2
n(a) ≤ C ′ a2 n−2

n∑

i=0

n∑

j=0

γ2
(
ci − cj , a, a

)
≤ Cm

(
n max

0≤k≤n−1

∣∣ck+1 − ck
∣∣)−1

.

Therefore, inequalities (4.9) are proved.

Proposition 4.2 Let X be a Gaussian process defined by (1.1) or (1.4) with a spectral density f satisfying

(1.3), ψ satisfying Assumption W(1, 1, r) with r > 1/2. Then if (ck)k is a family of r.v. independent to

FX such that ck = c0 + k
n(cn − c0), with

n
1
2r

−1 IE(cn − c0) −→
n→∞

0,
IE(cn − c0)

log n
−→
n→∞

∞ and var (cn − c0) −→
n→∞

0.

Then (4.8) holds with

lim
n→∞

(
IE(cn − c0)

)
S2
n(a) = 4π a2

∫

IR

∣∣ψ̂(az)
∣∣4f2(z) dz. (4.14)

Remark 4.1 For (ck)k satisfying (2.5), under Assumption S(2), Proposition 4.2 holds when n1/2 δn −→
n→∞

0

because IE|Tn − IETn|2 ≤ n δ2n max1≤k≤n IELk.

Proof. [of Proposition 4.2] The sequence of r.v. (ck)0≤k≤n is independent to FX . Therefore,

(dX (a, ck))0≤k≤n as the same distribution than (dX(a, ck − c0))0≤k≤n. Indeed for a sequence of deter-

ministic real numbers (ck)0≤k≤n, (dX(a, ck))0≤k≤n is a stationary sequence and after (dX(a, ck))0≤k≤n
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has the same distribution than (dX(a, ck − b0))0≤k≤n. Next, conditionally to the σ-algebra σ((ck)0≤k≤n),

(dX (a, ck))0≤k≤n as the same distribution than (dX(a, ck − c0))0≤k≤n. Finally, since σ((ck)0≤k≤n) and FX
are independent, (dX(a, ck))0≤k≤n as the same distribution than (dX(a, ck − c0))0≤k≤n.

Now, we can only consider the case: ck = kτn/n with τn := cn − c0. Define

I ′n(a) :=
1

n

n∑

k=0

d2
X

(
a, IEck

)
.

It is clear that (IEck)1≤k≤n is a deterministic sequence. Thus

I ′n(a) − I1(a)

Sn(a)

D−→
n→∞

N (0, 1). (4.15)

Nowadays, one has to check that the error I ′n(a)− In(a) is negligible with respect to Sn(a) in norm L2(Ω).

But

Sn(a) ≥ CM ·
(
n max

0≤k≤n−1

∣∣IE
(
ck+1 − ck

)∣∣)−1/2 ≥ C ×
(
IEτn

)−1/2
.

Therefore, it suffices to prove that lim
n→∞

IEτn× IE
[
(I ′n(a)− In(a))

2
]

= 0. Since the r.v. ck are independent

on FX , one gets

IE
[
(I ′n(a) − In(a))

2
]

= IE
[
IE

[
(I ′n(a) − In(a))

2
∣∣ FX

]]

=
1

(n+ 1)2

n∑

k,k′=0

IE
[
IE

[(
d2
X

(
a, IEck

)
− d2

X

(
a, ck

))(
d2
X

(
a, IEck′

)
− d2

X

(
a, ck′

))∣∣FX
]]

=
2a2

(n+ 1)2

n∑

k,k′=0

IE
[
γ2

(
IEck − IEck′ , a, a

)
− γ2

(
IEck − ck′ , a, a

)

−γ2
(
ck − IEck′ , a, a

)
+ γ2

(
ck − ck′ , a, a

)]
.

Next, from Taylor expansions,

γ2
(
IEck − ck′ , a, a

)
= γ2

(
IEck − IEck′ , a, a

)
+ 2

(
IEck′ − ck′

)
× · · ·

∫ 1

0
γ
(
IEck − IEck′ + λ (IEck′ − ck′), a, a

)
γ′

(
IEck − IEck′ + λ (IEck′ − ck′), a, a

)
dλ

γ2
(
ck − IEck′ , a, a

)
= γ2

(
ck − ck′ , a, a

)
+ 2

(
ck′ − IEck′

)
× · · ·

∫ 1

0
γ
(
ck − ck′ + λ (IEck′ − ck′), a, a

)
γ′

(
ck − ck′ + λ (IEck′ − ck′), a, a

)
dλ.

¿From Lemma 4.2, ∃C > 0 such that
∣∣γ(θ, a, a)γ′(θ, a, a)

∣∣ ≤ C ×
(
1 ∧ θ−2

)
for all θ ∈ IR. One can deduce

that

∣∣∣γ2
(
IEck − IEck′ , a, a

)
− γ2

(
IEck − ck′ , a, a

)
− γ2

(
ck − IEck′ , a, a

)
+ γ2

(
ck − ck′ , a, a

)∣∣∣

≤ C
∣∣ck′ − IEck′

∣∣ ×
∫ 1

0

(
1 ∧ θ−2

1,k,k′(λ)
)

+
(
1 ∧ θ−2

2,k,k′(λ)
)
dλ
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with θ1,k,k′(λ) = IE(ck − ck′) + λ(IEck′ − ck′) and θ2,k,k′(λ) = ck − ck′ + λ(IEck′ − ck′).

Then,

IE
[
(I ′n(a) − In(a))

2
]
≤ 2a2 × (Er1 + Er2) , (4.16)

where, for i = 1, 2, Eri :=

∫ 1

0
IE

[ 1

(n+ 1)2

n∑

k,k′=0

∣∣ck′ − IEck′
∣∣ ×

(
1 ∧ θ−2

i,k,k′(λ)
)]
dλ. Thus θ1,k,k′(λ) =

δ′n
(
(k − k′) − λk′zn

)
with δ′n :=

IEτn
n

and zn :=
τn − IEτn
IEτn

. Then, using δ′n −→
n→∞

0, for n large enough,

Er1 =

∫ 1

0
IE

[ C

(n + 1)2

n∑

k,k′=0

∣∣(k′δ′n) zn
∣∣ ×

(
1 ∧

[
δ′n

(
(k − k′) − λk′zn

)]−2
)]
dλ

≤
∫ 1

0
IE

[ C

(IEτn)2

∫ IEτn

0

∫ IEτn

0
dxdy

∣∣y zn
∣∣ ×

(
1 ∧

[
(x− y) − λy zn

]−2
)]
dλ.

But, for all λ ∈ (0, 1), one has

1

(IEτn)2

∫ IEτn

0

∫ IEτn

0
|y| ×

(
1 ∧ [(x− y) − λy zn]

−2 )
dx dy

= IEτn

∫ 1

0

∫ 1

0
|v| ×

(
1 ∧ (IEτn)

−2 [(u− v) − λv zn]
−2 )

du dv

≤ 2IEτn

∫ 2

0

∫ ∞

0

(
1 ∧ (IEτn)

−2s−2
)
ds dt ≤ 4.

Therefore Er1 ≤ 4IE|zn|. Now, using the same method for Er2, one obtains,

IEτn × IE
[
(I ′n(a) − In(a))

2
]

≤ C IEτn × IE|zn|
≤ C

(
var (cn − c0)

)1/2

−→
n→∞

0

from assumptions. This induces that CLT (4.8) holds.

Now the asymptotic expansion (4.14) can be proved. Consider first the deterministic case and since

n∑

k,k′=0

ei(k−k
′)α =

∣∣∣
1 − ei(n+1)α

1 − eiα

∣∣∣
2

=
sin2((n + 1)α/2)

sin2(α/2)

then,

S2
n(a) =

2 a2

(n+ 1)2

∫

IR2

∣∣ψ̂(aξ)
∣∣2f(ξ)

∣∣ψ̂(aξ′)
∣∣2f(ξ′)dξdξ′

n∑

k,k′=0

ei(k−k
′)

(cn−c0)
n

(ξ−ξ′)

=
2 a2

(n+ 1)2

∫

IR2

∣∣ψ̂(aξ)
∣∣2f(ξ)

∣∣ψ̂(aξ′)
∣∣2f(ξ′)

sin2
(
cn−c0

2
n+1
n (ξ − ξ′)

)

sin2
(
cn−c0

2n (ξ − ξ′)
) dξdξ′

=
16a2

cn − c0

∫

IR2
+

∣∣ψ̂(az′)
∣∣2f(z′)

∣∣∣ψ̂
(
a
(
z′ +

2z

cn − c0

))∣∣∣
2
f
(
z′ +

2z

cn − c0

)sin2
(
n+1
n z

)

n2 sin2
(
z
n

) dzdz′.
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Let us define hn(x) :=
sin

(
n+1
n x

)

n sin
(
x
n

) and h(x) :=
sinx

x
. For all (z, z′) ∈ IR2,

∣∣∣ψ̂
(
a
(
z′ +

2z

cn − c0

))∣∣∣
2
f
(
z′ +

2z

cn − c0

)
−→
n→∞

∣∣ψ̂(az′)
∣∣2f(z′) and h2

n(z) −→
n→∞

h2(z).

However Lebesgue Theorem cannot be applied. Denote ν(x) := |ψ(ax)|2f(x) for x > 0. ¿From Assumptions

F and W(1, r) with r > 1/2, ν is a differentiable function in (0,∞) and ∃C > 0, ∀z′, x > 0, |ν ′(z′ + x)| ≤
C |ν ′(z′)|. Then,

∣∣∣ν
(
z′ +

2z

cn − c0

)
− ν(z′)

∣∣∣ ≤ 2z

cn − c0
C |ν ′(z′)|.

Moreover, |hn(z′)| ≤ 1 for all z′ ∈ IR, and

∫ n

−n
h2
n(z) dz =

1

n2

∫ n

−n

n∑

k,k′=0

e2i(k−k
′) z

n dz

=
2

n

∑

0≤k′<k≤n

sin
(
2 (k − k′)

)

(k − k′)
+

1

n2

n∑

k=0

2n

=
2

n

{
n∑

k=1

(
n+ 1 − k

) sin
(
2 k

)

k

}
+ 2

(n+ 1

n

)
.

Therefore,

lim
n→∞

∫ n

−n
h2
n(z) dz = 2

{ ∞∑

k=1

sin
(
2 k

)

k

}
+ 2 = π, (4.17)

since 2
n

∑
1≤k≤n k

sin
(
2k

)

k ≤ 4 logn
n −→

n→∞
0 and from Dirichlet Theorem, x − π = −2

∑
n≥1

sin(nx)
n for all

x ∈ (0, 2π). Now, for z′ ≥ 0 and n large enough,

∣∣∣
∫

IR+

υ
(
z′ +

2z

cn − c0

)
h2
n(z)dz − υ(z′)

∫ n

0
h2
n(z)dz

∣∣∣

≤ 2C |υ(z′)|
cn − c0

∫ n

0
zh2

n(z)dz +

∫ ∞

n
υ
(
z′ +

2z

cn − c0

)
h2
n(z)dz

≤ 2C |υ(z′)|
cn − c0

∫ n

0
z

4 sin2(z)

z2
dz +

∫ ∞

n
υ
(
z′ +

2z

cn − c0

)
dz

≤ 8C |υ(z′)|
cn − c0

(∫ 1

0
z dz +

∫ n

1

1

z
dz

)
+ C f(z′)

∫ ∞

n

∣∣∣ψ
(
a
(
z′ +

2z

cn − c0

))∣∣∣
2
dz

≤ 8C |υ(z′)|
cn − c0

(∫ 1

0
z dz +

∫ n

1

1

z
dz

)
+ C a−2r f(z′)

∫ ∞

n

Cψ(
1 +

(
z′ + 2z

cn−c0
))2r dz

under Assumption W(1, 1, r). But when r > 1/2,

∫ ∞

n

1
(
1 +

(
z′ + 2z

cn−c0
))2r dz ≤ cn − c0

2

∫ ∞

2n/(cn−c0)

1

x2r
dx ≤ 22r−1

2(2r − 1)

(cn − c0)
2r

n2r−1
,
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and therefore there exists C > 0 such that for all z′ > 0 and for n large enough,

∣∣∣
∫

IR+

υ
(
z′ +

2z

cn − c0

)
h2
n(z)dz − υ(z′)

∫ n

0
h2
n(z)dz

∣∣∣

≤ C
(1 + log(n)

cn − c0
|υ(z′)| + f(z′)

(cn − c0

n1− 1
2r

)2r)

−→
n→∞

0

under assumptions of Proposition 4.2. Finally, with (4.17) in mind, one deduces that for all z′ ≥ 0,

lim
n→∞

∫

IR+

υ
(
z′ +

2z

cn − c0

)
h2
n(z) dz = lim

n→∞
υ(z′)

∫ n

0
h2
n(z) dz =

π

2
υ(z′).

Therefore, using the same method in IR− as in IR+, one obtains

∫

IR

∣∣ψ̂(az′)
∣∣2f(z′)

∫

IR

∣∣∣ψ̂
(
a
(
z′ +

2z

cn − c0

))∣∣∣
2
f
(
z′ +

2z

cn − c0

) sin2(z)

n2 sin2
(
z
n

) dz dz′

−→
n→∞

π

∫

IR

∣∣ψ̂(az′)
∣∣4f2(z′) dz′,

providing the asymptotic behavior of S2
n. The proof is similar in the stochastic case with cn − c0 replaced

by IE(cn − c0).

4.3 Proof of Theorem 2.1

The proof of Theorem 2.1 uses the following lemmas:

Lemma 4.4 Let X be a Gaussian process defined by (1.1) with a spectral density f satisfying (1.3) and

Assumption F(H). Let us define,

R(t, u, t′, u′) := IE
[
(X(t+ u) −X(t)) · (X(t′ + u′) −X(t′)) | FX

]
,

for (t, t′) ∈ IR2, (u, u′) ∈ IR2
+. Then ∃Cf > 0 depending only on the spectral density f such that for all

(u, u′, t, t′) ∈ IR2
+ × IR2, with β =

(
t′ − t+ u′ − u

)
,

∣∣R(t, 2u, t′, 2u′)
∣∣ ≤ Cf

(
uu′ + (uu′)(H+1)/2|β|H−110<H<1

))
.

Proof. To begin with, remark that for all (t, t′) ∈ IR2, (u, u′) ∈ IR2
+,

R(t, 2u, t′, 2u′) =

∫

IR
(e−i(t+2u)ξ − e−itξ)(ei(t

′+2u′)ξ − eit
′ξ) f(ξ) dξ

=

∫

IR
(e−iuξ − eiuξ)(eiu

′ξ − e−iu
′ξ) eiξ(t

′−t)+iξ(u′−u) f(ξ) dξ

= 8

∫ ∞

0
sin(uξ) · sin(u′ξ) · cos

(
ξ(t′ − t+ u′ − u)

)
f(ξ) dξ

= 8 (I1 + I2)
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with I1 :=
∫ ωK

0 · · · dξ and I2 =
∫ ∞
ωK

· · · dξ. From the one hand, with | sin a| ≤ |a| and | cos a| ≤ 1,

|I1| ≤ uu′
∫ ωK

0
ξ2 f(ξ) dξ ≤ C uu′,

where the last inequality follows from (1.3). Now, if H > 1, then the same bound can be extended to I2

since |ξ2f(ξ)| ≤ Cξ1−2H and
∫ ∞
ωK

ξ1−2Hdξ <∞. Therefore if H > 1,

|R(t, 2u, t′, 2u′)| ≤ Cf uu
′

with Cf only depending on f .

If 0 < H < 1, firstly one obtains with a change of variable, | cos a| ≤ 1 and | sin a| ≤ (1 ∧ |a|)

|I2| ≤ 1√
uu′

∫ ∞

ωK

√
uu′

| sin(uξ/
√
uu′) sin(uξ/

√
uu′)| f(ξ/

√
uu′)dξ

≤ (uu′)H
∫ ∞

0
| sin(uξ/

√
uu′) sin(uξ/

√
uu′)| ξ−2H−1dξ

≤ (uu′)H
(∫ 1

0
ξ−2H+1dξ +

∫ ∞

1
ξ−2H−1dξ

)

≤ CH (uu′)H , (4.18)

with CH > 0 depending only on H. Secondly, with β =
(
t′ − t+ u′ − u

)
and an integration by parts,

I2 =

∫ ∞

ωK

sin
(
u ξ

)
sin

(
u′ ξ

)
cos

(
β ξ

)
f
(
ξ
)
dξ

= β−1
([

sin
(
u ξ

)
sin

(
u′ ξ

)
sin

(
β ξ

)
f
(
ξ
)]∞
ωK

−
∫ ∞

ωK

sin
(
β ξ

) ∂
∂x

(
sin

(
u ξ

)
sin

(
u′ ξ

)
f
(
ξ
))
dx

)
,

where Assumption F(H) insures the convergence of bracket term at ∞. Using again Assumption F(H) for

f ′, changes of variables, | cos a| ≤ 1 and | sin a| ≤ (1 ∧ |a|),

I2 ≤ Cf uu
′ + C0 β

−1

∫ ∞

ωK

∣∣ sin
(
β x

)∣∣
(
u

∣∣ sin
(
u′ x

)∣∣ + u′
∣∣ sin

(
ux

)∣∣
)
x−2H−1dx

+C ′
0 β

−1

∫ ∞

ωK

∣∣∣ sin
(
β x

)
sin

(
ux

)
sin

(
u′ x

)∣∣∣x−2H−2dx

≤ Cf uu
′ + C0 β

−1(uu′)H
∫ ∞

0

∣∣ sin(β x/
√
uu′)

∣∣
(
u

∣∣ sin
(
u′ x/

√
uu′

)∣∣ + u′
∣∣ sin

(
ux/

√
uu′

)∣∣
)
x−2H−1dx

+C ′
0 β

−1(uu′)H+1/2

∫ ∞

0

∣∣ sin
(
β x/

√
uu′

)
sin

(
u′ x/

√
uu′

)
sin

(
ux/

√
uu′

)∣∣
)
x−2H−2dx

≤ Cf uu
′ + C0

(
2 (uu′)H

∫ 1

0
x−2H+1dx+ β−1(u+ u′)(uu′)H

∫ ∞

1
x−2H−1dx

)

+C ′
0

(
(uu′)H

∫ 1

0
x−2H+1dx+ β−1(uu′)H+1/2

∫ ∞

1
x−2H−2dx

)

≤ Cf
(
uu′ + (uu′)H + β−1(u+ u′)(uu′)H + β−1(uu′)H+1/2

)
,

where Cf > 0 only depends on f . Therefore with (4.18), for 0 < H < 1,

|I2| ≤ C (uu′)H ∧
(
β−1(u+ u′)(uu′)H + β−1(uu′)H+1/2

)
.
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But the inequality (x ∧ y) ≤ xαy1−α which is valid for all x, y ≥ 0 and 0 ≤ α ≤ 1. Applied to previous

inequality with appropriated choices of α, one obtains |I2| ≤ C (uu′)(H+1)/2βH−1. This completes the

proof of Lemma 4.4.

The error ε(a, b) contains three different terms. The first one corresponds to the replacement of the integral

onto the interval [0, Tn] by its Riemann sum. The second and the third ones correspond to the replacement

of the integral onto IR by the integral onto the interval [0, TN ]. More precisely, one has

εn(a, b) := ε1,n(a, b) + ε2,n(a, b) +ε3,n(a, b) := dX(a, b) − eX(a, b), (4.19)

with

ε1,n(a, b) := a−1/2

{∫ Tn

0
ψ

(t− b

a

)
X(t) dt −

n−1∑

i=0

X
(
t
(n)
i

)
×

∫ t
(n)
i+1

t
(n)
i

ψ
( t− b

a

)}
,

ε2,n(a, b) := a−1/2

∫ ∞

Tn

ψ
( t− b

a

)
X(t) dt,

ε3,n(a, b) := a−1/2

∫ 0

−∞
ψ

( t− b

a

)
X(t) dt.

The following lemma give bounds on IE
∣∣εi,n(a, k)

∣∣2 for i = 1, 2, 3.

Lemma 4.5 Let X be a Gaussian process defined by (1.1) with a spectral density f satisfying (1.3) and

Assumption F(H). Assume also Assumptions W(1, 3, 0) and let (p1, p2) ∈ [1,∞)2 and (q1, q2) be defined

by 1
pj

+ 1
qj

= 1 for i = 1, 2. Then, there exist positive constants C1, C2 and C3 depending only on f , amin,

amax, Cψ and p1, p2, such that for any r.v. b independent on FX and satisfying T ρn ≤ b ≤ Tn − T ρn with

ρ > 1/2, we have

IE
(∣∣ε1,n(a, b)

∣∣2 | FX
)

≤ C1

{ ∥∥ψ
∥∥2

Lq1

( n−1∑

i=0

Lp1+1
i

)2/p1
δ2+2/p1
n (4.20)

+10<H<1 · ‖ψ‖Lq2

(
‖ψ‖Lq2 + ‖ψ‖∞

)( n−1∑

i=0

L
1+p2(1+H)/2
i

)2/p2
δ1+H+2/p2
n

IE
(∣∣εi,n(a, b)

∣∣2 | FX
)

≤ C2 a
5T 2−4ρ
n for n large enough and i = 2, 3. (4.21)

Remark 4.2 When H = 1, the term δ
1+H+2/p2
n = δ

2+2/p2
n should be replaced by ln δn × δ

2+2/p2
n =

O
(
δ
2−ε+2/p2
n

)
for all ε > 0. Thus, if H = 1, it suffices to replace H by 1− and formula (4.20) remains

valid. This convention will be adopted in the following, in order to lighten the notations.

Proof. (1) Bound of IE
(∣∣ε1,n(a, b)

∣∣2 | FX
)
. To begin with,

IE
(∣∣ε1,n(a, b)

∣∣2 | FX
)

=
1

a

n−1∑

i,j=0

∫ t
(n)
i+1

t
(n)
i

∫ t
(n)
j+1

tj

ψ
( t− b

a

)
ψ

( t′ − b

a

)
IE

((
X(t) −X

(
t
(n)
i

))(
X(t′) −X

(
tj

))
|FX

)
dtdt′

=
1

a

n−1∑

i=0

n−1∑

j=0

∫ t
(n)
i+1

t
(n)
i

∫ t
(n)
j+1

tj

ψ
( t− b

a

)
ψ

( t′ − b

a

)
R

(
t
(n)
i , t− t

(n)
i , tj , t

′ − tj
)
dtdt′.
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Lemma 4.4, with 2u = t−t(n)
i , 2u′ = t′−tj and β = t

(n)
j −t(n)

i + 1
2(t′−t(n)

j )− 1
2(t−t(n)

i ) = 1
2(t′+t(n)

j −t−t(n)
i ),

implies

IE
(∣∣ε1,n(a, b)

∣∣2 | FX
)

≤ Cfa
−1

(
S1 + S210<H<1

)

with

S1 :=

n−1∑

i,j=0

∫ t
(n)
i+1

t
(n)
i

∫ t
(n)
j+1

tj

uu′
∣∣∣ψ

( t− b

a

)∣∣∣
∣∣∣ψ

( t′ − b

a

)∣∣∣dtdt′

S2 :=
n−1∑

i,j=0

∫ t
(n)
i+1

t
(n)
i

∫ t
(n)
j+1

t
(n)
j

(uu′)(H+1)/2|β|H−1
∣∣∣ψ

( t− b

a

)∣∣∣
∣∣∣ψ

( t′ − b

a

)∣∣∣dtdt′.

Set

χ(t) :=
n−1∑

i=0

|t− t
(n)
i |1

[t
(n)
i ,t

(n)
i+1]

(t). (4.22)

We have S1 =
(∫ Tn

0 χ(t)
∣∣∣ψ

(
t−b
a

)∣∣∣ dt
)2

, then from Hölder Inequality, for (p, q) ∈ [1,∞]2 with 1/p+1/q = 1,

we have

S1 ≤
∥∥χ

∥∥2

Lp

∥∥ψ
( t− b

a

)∥∥2

Lq .

Obviously
∥∥ψ

( t− b

a

)∥∥
Lq = a1/q

∥∥ψ
∥∥
Lq . ¿From the other hand, for p <∞

∥∥χH
∥∥
Lp =

(∫

IR
χHp(t) dt

)1/p
=

( ∫

IR

n−1∑

i=0

1
[t

(n)
i ,t

(n)
i+1]

(t) |t− t
(n)
i |Hp dt

)1/p

=
( n−1∑

i=0

∫ t
(n)
i+1

t
(n)
i

|t− t
(n)
i |Hpdt

)1/p

= (1 +Hp)−1/p
( n−1∑

i=0

L1+Hp
i

)1/p
δH+1/p
n .

With the convention 1/∞ = 0, this result remains in force for p = ∞. It follows for all 1 ≤ p1 <∞,

S1 ≤
a2−2/p1

∥∥ψ
∥∥2

Lq1

(p1 + 1)2/p1

( n−1∑

i=0

Lp1+1
i

)2/p1
δ2+2/p1
n . (4.23)

Next, in order to bound S2 for 0 < H < 1, write

S2 ≤ Cf
∑

0≤i≤j≤n−1

∫ t
(n)
i+1

t
(n)
i

∫ t
(n)
j+1

tj

∣∣∣ψ
( t− b

a

)
ψ

( t′ − b

a

)∣∣∣(uu′)(1+H)/2|β|−(1−H)dtdt′,
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where u = 1
2 (t− t

(n)
i ), u′ = 1

2(t′ − t
(n)
j ) and β = u′ − u. But since β = 1

2

(
(t′ + tj) − (t+ ti)

)
for i ≤ j and

t ∈ [t
(n)
i , t

(n)
i+1], t

′ ∈ [t
(n)
j , t

(n)
j+1] then |β ≥ 1

2 |t′ − t|. Therefore,,

S2 ≤ Cf
∑

0≤i≤j≤n−1

∫ t
(n)
i+1

t
(n)
i

∫ t
(n)
j+1

tj

∣∣∣ψ
(t− b

a

)
ψ

( t′ − b

a

)∣∣∣(uu′)(1+H)/2|t− t′|H−1dt dt′

≤
∫ Tn

0

∫ Tn

0
χ(t)(1+H)/2χ(t′)(1+H)/2

∣∣∣ψ
(t− b

a

)
ψ

(t′ − b

a

)∣∣∣|t− t′|H−1dtdt′

≤
∥∥∥χ(t)(1+H)/2χ(t′)(1+H)/2

∥∥∥
Lp(IR2)

∥∥∥ψ
( t− b

a

)
ψ

( t′ − b

a

)
|t− t′|H−1

∥∥∥
Lq(IR2)

for any (p, q) ∈ [1,∞]2 with 1/p + 1/q = 1. But for all p ≥ 2

∥∥∥χ(t)(1+H)/2χ(t′)(1+H)/2
∥∥∥
Lp(IR2)

=
(
1 + p(1 +H)/2

)−2/p( n−1∑

i=0

L
1+p(1+H)/2
i

)2/p

Next, with u =
(
t− ck

)
/a and v =

(
t′ − ck

)
/a, one gets

∥∥∥ψ
( t− b

a

)
ψ

( t′ − b

a

)
|t− t′|H−1

∥∥∥
q

Lq(IR2)
≤ a2+q(1−H)

∫

IR2

|ψ(u)ψ(v)|q
|u− v|q(1−H)

dudv

≤a2+q(1−H)
( ∫

IR2,|u−v|≥1
|ψ(u)ψ(v)|qdudv +

∫

IR2,|u−v|<1

|ψ(u)ψ(v)|q
|u− v|q(1−H)

dudv
)

≤a2+q(1−H)
(
‖ψ‖2q

Lq + ‖ψ‖q∞ ‖ψ‖qLq

∫ 1

0
s−q(1−H)ds

)
.

The last integral is equal to
(
1 − q(1 −H)

)−1
when p > 1/H. Thus, for all p2 > 1/H,

S2 ≤
‖ψ‖Lq2

(
‖ψ‖q2Lq2 + ‖ψ‖q2

∞

1−q2(1−H)

)1/q2

aH−3+2/p2
(
1 + p2(1 +H)/2

)2/p2

( n−1∑

i=0

L
1+p2(1+H)/2
i

)2/p2
δ1+H+2/p2
n . (4.24)

Finally by summing up (4.23) and (4.24), one gets the bounds of IE
(∣∣ε1,n(a, b)

∣∣2 | FX
)
.

(2) Bound of IE
(∣∣ε2,n(a, b)

∣∣2 | FX
)
. Since Tn is independent on FX ,

IE
(∣∣ε2,n(a, b)

∣∣2 | FX
)

=
1

a

∫ ∞

Tn

∫ ∞

Tn

ψ
( t− b

a

)
ψ

( t′ − b

a

)
IE

(
X(t)X(t′)

)
dtdt′

≤ Cf
a

(∫ ∞

Tn

∣∣∣∣ψ
( t− b

a

)∣∣∣∣
(
1 + |t|

)
dt

)2
.

from Lemma 4.1. But, according to Assumption W(1, 3), (1 + |t|3)|ψ(t)| is a bounded function and

IE
(
ε22,n(a, b) | FX

)
≤ Cf C

2
ψ a

−1
(∫ ∞

Tn

(
1 + t

)(
1 +

(
t− b

)
/a

)−3
dt

)2
.

If Tn ≥ 1, then 1 +
(
t − b

)
/a ≤ 1 +

(
t − Tn + T ρn

)
/a for all t ≥ Tn and with the change of variable

v =
(
t− Tn + T ρn

)
/Tn,

∫ ∞

Tn

(
1 + t

)
(
1 +

(
t− b

)
/a

)3 dt ≤ Tn a
3

∫ ∞

T ρ−1
n

(
1 + v Tn + Tn − T ρn

)
(
a+ v Tn

)3 dv

≤ T−1
n a3

∫ ∞

T ρ−1
n

(
v + 2

)

v3
dv = a3

[
T 1−2ρ
n + T−ρ

n

]
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If Tn ≤ 1, by using b ≤ Tn,

∫ ∞

Tn

(
1 + t

)
(
1 +

(
t− b

)
/a

)3 dt ≤
∫ ∞

0

(
1 + v + Tn

)
(
1 + v/a

)3 dv ≤ a+
1

2
a2.

Eventually, one deduces the bound of IE
(∣∣ε2,n(a, b)

∣∣2 | FX
)
.

(3) Bound of IE
(∣∣ε3,n(a, b)

∣∣2 | FX
)
. Find a bound for IE

(∣∣ε3,n(a, b)
∣∣2 | FX

)
follows the same steps

than for bounding IE
(∣∣ε2,n(a, b)

∣∣2 | FX
)
.

Lemma 4.6 Under assumptions of Lemma 4.5 and if s > 2 +
1

2H

[
1 − 3H

]
+

and if

δn = n−d with
( 1 + (2H ∧ 1)

1 + s(2H ∧ 1)

)
∨

( s+ (H ∧ 1)

s(2 + (H ∧ 1)) − 1

)
< d < 1,

then for all a > 0,

(n δn) IE
(∣∣εn(a, ck)

∣∣2) −→
n→∞

0 for all 0 ≤ k ≤ n. (4.25)

Proof. With (x+ y + z)2 ≤ 3 (x2 + y2 + z2) for all real numbers x, y, z,

IE
(∣∣εn(a, ck)

∣∣2) ≤ 3 IE
[
IE

(∣∣ε1,n(a, b)
∣∣2 | FX

)]
+ 6 IE

[
IE

(∣∣ε2,n(a, b)
∣∣2 | FX

)]
.

Then using Lemma 4.5, with p1 ≥ 1 and p2 > 1/H, an optimal choice of p1, p2 depends on s. Hence, since

IE (|Z|α) ≤ (IE|Z|)α for any r.v. Z and α ∈ [0, 1] from Jensen Inequality,

1. if 3 ≤ s, with 1 + p1 = s,

IE
( n−1∑

i=0

Lp1+1
i

) 2
p1 δ

2+ 2
p1

n ≤M
2

s−1
s · (n δsn)

2
s−1 ;

2. if max
(
2 +H, 3

2 + 1
2H

)
≤ s, with 1 +

1

2
p2(1 +H) = s,

IE
( n−1∑

i=0

L
1+p2(1+H)/2
i

) 2
p2 δ

1+H+ 2
p2

n ≤M
1+H
s−1
s · (n δsn)

1+H
s−1 .

However, these inequalities may be extended to smaller values of s by using the sharper inequality

IE
( ∑

|xi|
)αβ ≤ IE

( ∑
|xi|β

)α ≤ nα
(

max
0≤i≤n−1

IE(|xi|β)
)α

when (α, β) ∈ (0, 1]2 and therefore for r > 1,
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IE
( ∑

Lri
)αβ ≤ nα

(
max

0≤i≤n−1
IE(|Li|rβ)

)α
; it is then possible to choose rβ = s. Thus,

1’. if 2 < s ≤ 3, with αβ = 2
p1

and s = β + 2
α , the best possible choice is α = 1 and β = s− 2,

IE
( n−1∑

i=0

L
1+ 2

αβ

i

)αβ
δ2+αβn ≤M s

s · nδsn;

2’. if H ≥ 1/2, and 1 +H < s ≤ 2 +H, with αβ = 2
p2

and s = β + 1+H
α , the best possible choice is

α = 1 and β = s− (H + 1),

IE
( n−1∑

i=0

L
1+ 1+H

αβ

i

)αβ
δ1+H+αβ
n ≤M s

s · nδsn;

2”. if 0 < H ≤ 1/2 and 1
2 + 1

2H < s ≤ 3
2 + 1

2H , with αβ = 2
p2

and s = β + 1+H
α , the best possible choice is

α = 2H and β = s− H+1
2H ,

IE
( n−1∑

i=0

L
1+ 1+H

αβ

i

)αβ
δ1+H+αβ
n ≤M2H

s ·
(
nδsn

)2H
.

We finally obtain for n large enough and using n δn −→
n→∞

∞ and n δsn −→
n→∞

0,

• if H ≥ 1/2, IE
[
IE

(∣∣ε1,n(a, b)
∣∣2 | FX

)]
≤ C

(
nδsn 12<s≤2+(H∧1) + (nδsn)

1+(H∧1)
s−1 12+(H∧1)≤s

)
;

• if 0 < H ≤ 1/2, IE
[
IE

(∣∣ε1,n(a, b)
∣∣2 | FX

)]
≤ C

(
nδsn 12∨( 1

2
+ 1

2H
)<s≤ 3

2
+ 1

2H
+ (nδsn)

1+H
s−1 1 3

2
+ 1

2H
≤s

)
;

Both these inequalities may be reduced to only one for all s > 2 ∨ (1
2 + 1

2H ) and H > 0:

IE
[
IE

(∣∣ε1,n(a, b)
∣∣2 | FX

)]
≤

{
C

(
nδsn

)2H∧1
if 2 ∨ (1

2 + 1
2H ) < s < (2 +H ∧ 1) ∨ (3

2 + 1
2H )

C
(
nδsn

) 1+(H∧1)
s−1 if (2 +H ∧ 1) ∨ (3

2 + 1
2H ) ≤ s

.

Hence, with δn = Cδ n
−d,

• 1+(2H∧1)
1+s(2H∧1) ≤ d < 1 if 2 ∨

(
1
2 + 1

2H

)
≤ s <

(
2 + (H ∧ 1)

)
∨

(
3
2 + 1

2H

)

• s+(H∧1)
s(2+(H∧1))−1 ≤ d < 1 if

(
2 + (H ∧ 1)

)
∨

(
3
2 + 1

2H

)
≤ s ≤ ∞

then

(nδn)IE
[
IE

(∣∣ε1,n(a, b)
∣∣2 | FX

)]
−→
n→∞

0.

To finish the proof of Lemma 4.6 it remains to show (nδn)IE
[
IE

(∣∣ε2,n(a, b)
∣∣2 | FX

)]
−→
n→∞

0.

¿From Lemma 4.5 it follows that IE
[
IE

(∣∣ε2,n(a, b)
∣∣2 | FX

)]
≤ C

∫ ∞

0
g(x) fn(x) dx where fn is the proba-

bility distribution function of Tn and g(x) = 1(x<1) + 1(x≥1) x
2−4ρ. Since ρ > 3/4, g(x) ≤ 1 for all x > 0
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and g is a non increasing map,

∫ ∞

0
g(x) fn(x) dx ≤

∫ 1
2
ms n δn

0
fn(x) dx+ g

(1

2
ms n δn

) ∫ ∞

1
2
ms n δn

fn(x) dx

≤ IP
(
Tn ≤ 1

2
ms n δn

)
+ g

(1

2
ms n δn

)

≤ IP
(
|Tn − IE[Tn]| ≥ IE[Tn] −

1

2
ms n δn

)
+

(1

2
ms n δn

)2−4ρ
,

≤ 4
Ms

ms

n δ2n
n2 δ2n

+
(1

2
ms n δn

)2−4ρ
,

from Bienaymé-Chebyshev Inequality since s ≥ 2 and var (Tn) ≤Msnδ
2
n from the independence of (Li)i∈IN .

Therefore (n δn) IE
[
IE

(∣∣ε2,n(a, b)
∣∣2 | FX

)]
−→
n→∞

0.

Proof. [Theorem 2.1] Denote vn(a) =
(
nδsn

)2H∧1
+

(
nδsn

) 1+(H∧1)
s−1 +

(
n δn

)2−4ρ
. Then, following the same

method that in Bardet and Bertrand (2007b), pp. 33-35, one obtains

IE |In(a) − Jn(a)| ≤ C vn(a)
1/2, (4.26)

and from this, Lemmas 4.6 and Slutsky Lemma, the proof is achieved.

4.4 Proof of Proposition 2.2

Proof. It is obvious that

Iλ(a) =

∫

IR

∣∣ψ̂λ(ξ)
∣∣2f(ξ/a)dξ = λ

∫

IR

∣∣ψ̂
(
λ(ξ − 1)

)∣∣2f(ξ/a)dξ

=

∫

IR

∣∣ψ̂
(
v
)∣∣2f

(1

a
+

v

aλ

)
dv.

Then, from a usual Taylor expansion, and since ψ̂ is supposed to be an even function supported in [−Λ,Λ],

∣∣∣Iλ(a) −
∥∥ψ̂

∥∥2

L2(IR)
f(1/a)

∣∣∣ ≤ 1

2a2λ2

(
sup

−Λ/λ≤h

{∣∣∣f ′′
(1 + h

a

)∣∣∣
} ∫ Λ

−Λ
v2

∣∣ψ̂
(
v
)∣∣2dv

)
.

For λ > 2Λ, then sup
−Λ/λ≤h

{∣∣∣f ′′
(1 + h

a

)∣∣∣
}
≤ sup

x>1/2a

{∣∣f ′′(x)
∣∣} < ∞. Therefore, since ψ satisfies Assumption

W(1, 5), there exists C > 0 such that,

∣∣∣Iλ(a) −
∥∥ψ̂

∥∥2

L2(IR)
f(1/a)

∣∣∣ ≤ C
1

λ2
. (4.27)

Let us denote I
(λ)
n (a) (respectively Iλ(a), β(λ)

n and S
(λ)
n (a)) instead on In(a) (resp. I1(a), βn and Sn(a))

when ψ is replaced by ψλ. Firstly,

1

λ

(
4π a2

∫

IR

∣∣ψ̂λ(az)
∣∣4f2(z) dz

)
= 4π a

∫

IR

∣∣ψ̂(u)
∣∣4f2

(1

a
+

u

aλ

)
du

−→
λ→∞

4π a f2(1/a)

∫

IR

∣∣ψ̂(u)
∣∣4 du,
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from Lebesgue Theorem. Hence, if (λn) is a sequence such that λn −→
n→∞

∞,

IE(Tn)

λn

(
S(λn)
n (a)

)2 −→
n→∞

4π a f2(1/a)

∫

IR

∣∣ψ̂(u)
∣∣4 du. (4.28)

Secondly, from the proof of Proposition 4.1 and inequalities (4.12) and (4.13), there exists C > 0 not

depending on n and λ,

β(λ)
n /S(λ)

n ≤ C I−1
λ (a)

(
n max

1≤k≤n

∣∣ck+1 − ck
∣∣)1/2−1/q

for all q ∈ (1, 2).

Thus, since Iλ(a) is bounded, β
(λn)
n /S

(λn)
n −→

n→∞
0 and Proposition 4.1 becomes:

I
(λn)
n (a) − Iλn

(a)

S
(λn)
n (a)

D−→
n→∞

N (0, 1).

Finally, using (4.27) and (4.28), on deduces that for all a > 0,

√
IETn
λn

(
I(λn)
n (a) −

∥∥ψ
∥∥2

L2(IR)
f(1/a)

) D−→
n→∞

N
(
0, 4πaf2(1/a)

∫

IR

∣∣ψ̂(u)
∣∣4du

)
,

when (λn)n is such that
√

IETn

λn

1
λ2

n
−→
n→∞

0, i.e. when λ−5
n n δn −→

n→∞
0. Since also λ−1

n nδn −→
n→∞

∞ (to

obtain a consistent estimator), then with δn = n−d and λn = nd
′
,

1 − d

5
< d′ < 1 − d. (4.29)

Moreover, Proposition 4.2 has also to be checked. In its proof, IEτn has to be replaced by IEτn/λn and since

the bounds C (1∧ |θ|−1) in Lemma 4.2 have to be replaced by C/λ2
n (1∧ |θ|−1), then condition nδ2n −→

n→∞
0

has to be replaced by nδ2n/λ
5
n −→
n→∞

0, that is d′ >
1 − 2d

5
which is satisfied when (4.29) is satisfied.

It remains to control ε2n(a, ck) with Lemma 4.5 and 4.6. For all 1 ≤ q ≤ ∞, with 1/∞ = 0 by con-

vention, ∥∥ψλ
∥∥
Lq = λ(2−q)/2q ∥∥ψ

∥∥
Lq and

∥∥ψ̂λ
∥∥
Lq = λ(q−2)/2q

∥∥ψ̂
∥∥
Lq .

Then, Lemma 4.5 becomes (with λn −→
n→∞

∞):

IE
(∣∣ε1,n(a, b)

∣∣2 | FX
)
≤






• C1 ‖ψ‖2
L1 λn δ

1+(H∧1)
n if s = ∞;

• C1

{
‖ψ‖2

Lq2 λ
2
q2

−1

n

( n−1∑

i=0

L
1+p2(1+H)/2
i

)2/p2
δ1+H+2/p2
n 10<H<1

+
∥∥ψ

∥∥2

Lq1
λ

2
q1

−1

n

( n−1∑

i=0

Lp1+1
i

)2/p1
δ2+2/p1
n

}
, if s <∞.



J-M. Bardet and P.R. Bertrand 39

The case s <∞ can be more detailed following the values of p1 and p2 considered in Lemma 4.6:

a/ if H ≥ 1/2 and

• 2 < s ≤ 2 + (H ∧ 1), then 2/p1 = s− 2 and 1/p2 = (s− (H ∧ 1) − 1)/2 and therefore

IE
(∣∣ε1,n(a, b)

∣∣2 | FX
)
≤ C

(
λ3−s
n + λ2+(H∧1)−s

n

)(
n δsn

)

=⇒ IE
(∣∣ε1,n(a, b)

∣∣2 | FX
)
≤ C ′ λn

(
n δsn

)
;

• 2 + (H ∧ 1) ≤ s, then p1 = s− 1 or 2/p1 = s− 2 and 1/p2 = (1 + (H ∧ 1))/(2(s + 1)) and therefore

IE
(∣∣ε1,n(a, b)

∣∣2 | FX
)
≤ C

(
λ3−s
n

(
n δsn

)
+ λ

s−3
s−1
n

(
n δsn

) 2
s−1 + λ

s−(2+(H∧1))
s−1

n

(
n δsn

) 1+(H∧1)
s−1

)

=⇒ IE
(∣∣ε1,n(a, b)

∣∣2 | FX
)
≤ C ′ λn

(
n δsn

) 1+(H∧1)
s−1 .

b/ if 0 < H ≤ 1/2 and

• 2 ∨
(

1
2 + 1

2H

)
< s ≤ 3

2 + 1
2H , then 2/p1 = s− 2 or 2/p1 = 2

s−1 and 1/p2 = H
(
s− (1

2 + 1
2H )

)
and therefore

IE
(∣∣ε1,n(a, b)

∣∣2 | FX
)
≤ C

(
λ3−s
n

(
n δsn

)
+ λ

s−3
s−1
n

(
n δsn

) 2
s−1 + λ

1−2H(s−( 1
2
+ 1

2H
))

n

(
n δsn

)2H)

=⇒ IE
(∣∣ε1,n(a, b)

∣∣2 | FX
)
≤ C ′ λn

(
n δsn

)2H
;

• 3
2 + 1

2H ≤ s, then 2/p1 = s− 2 or 2/p1 = 2
s−1 and 1/p2 = (1 +H)/(2(s + 1)) and therefore

IE
(∣∣ε1,n(a, b)

∣∣2 | FX
)
≤ C

(
λ3−s
n

(
n δsn

)
+ λ

s−3
s−1
n

(
n δsn

) 2
s−1 + λ

1−2H(s−( 1
2
+ 1

2H
))

n

(
n δsn

)2H)

=⇒ IE
(∣∣ε1,n(a, b)

∣∣2 | FX
)
≤ C ′ λn

(
n δsn

) 1+H
s−1 .

Note that the bound is not always optimal but it simplifies a lot of different subcases. Condition (4.25) is

now
n δn
λn

IE
(∣∣ε1,n(a, b)

∣∣2 | FX
)

−→
n→∞

0. Therefore in any case this condition does not depend on λn and it

can be summarize with δn = n−d with (the case s = ∞ is obtained by replacing with the limit):

• if 2 ∨
(

1
2 + 1

2H

)
≤ s <

(
2 + (H ∧ 1)

)
∨

(
3
2 + 1

2H

)
, d >

1 + (2H ∧ 1)

1 + s(2H ∧ 1)
; (4.30)

• if
(
2 + (H ∧ 1)

)
∨

(
3
2 + 1

2H

)
≤ s <∞, d >

s+ (H ∧ 1)

s(2 + (H ∧ 1)) − 1
. (4.31)

Finally, for b ≤ Tn − T ρn , with ψ satisfying Assumption W(1, 3, 1):

IE
(
ελ,22,n(a, b) | FX

)
= a−1

∫ ∞

Tn

∫ ∞

Tn

ψλ

(t− b

a

)
ψλ

(t′ − b

a

)
IE

(
X(t)X(t′)

)
dtdt′

≤ Cf (aλn)
−1

( ∫ ∞

Tn

∣∣∣∣ψ
( t− b

aλn

)∣∣∣∣
(
1 + |t|

)
dt

)2

≤ Cf (a3λ3
n)

( ∫ ∞

T ρ
n/aλn

|ψ(u)|u du
)2

≤ 1

9
Cf Cψ (a3λ3

n)
([
u−3

]∞
T ρ

n/aλn

)2
≤ 1

9
Cf Cψ a

9 λ9
n T

−6ρ
n .

Therefore the CLT holds when λ9
n (n δn)

1−6ρ −→
n→∞

0, i.e.
nδn
λ2
n

−→
n→∞

∞ since ρ > 3/4.
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N = 103

H = 0.2 H = 0.5 H = 0.8

T1
√
MSE of f̂N (1) 0.47 0.65 0.77

M̂ISE on [0.3, 5] 2.53 13.50 80.89

T2
√
MSE of f̂N (1) 0.65 0.67 0.75

M̂ISE on [0.3, 5] 3.64 10.65 39.85

T3
√
MSE of f̂N (1) 0.42 0.72 1.20

M̂ISE on [0.3, 5] 2.48 7.83 55.20

T4
√
MSE of f̂N (1) 1.03 3.34 2.44

M̂ISE on [0.3, 5] 6.07 84.05 144.40

N = 104

H = 0.2 H = 0.5 H = 0.8

T1
√
MSE of f̂N (1) 0.35 0.37 0.79

M̂ISE on [0.3, 5] 0.95 3.90 57.19

T2
√
MSE of f̂N (1) 0.45 0.47 0.29

M̂ISE on [0.3, 5] 1.04 3.17 16.26

T3
√
MSE of f̂N (1) 0.47 0.46 0.95

M̂ISE on [0.3, 5] 1.20 4.91 26.6

T4
√
MSE of f̂N (1) 0.61 0.61 1.74

M̂ISE on [0.3, 5] 2.74 9.55 49.55

N = 5 · 104

H = 0.2 H = 0.5 H = 0.8

T1
√
MSE of f̂N (1) 0.36 0.30 0.40

M̂ISE on [0.3, 5] 0.81 2.60 10.77

T2
√
MSE of f̂N (1) 0.21 0.22 0.31

M̂ISE on [0.3, 5] 1.07 2.07 7.65

T3
√
MSE of f̂N (1) 0.34 0.26 0.48

M̂ISE on [0.3, 5] 0.74 3.17 13.3

T4
√
MSE of f̂N (1) 0.40 0.56 2.59

M̂ISE on [0.3, 5] 1.02 5.69 41.41

Table 2: Consistency of the estimator f̂N in the case of paths of FBM observed at random times (50

independent replications are generated in each case).
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N = 103

α = 0.1 α = 1 α = 10

T1
√
MSE of f̂N (0.3) 0.51 0.22 0.020

M̂ISE on [0.3, 5] 0.022 0.014 0.00067

T2
√
MSE of f̂N (0.3) 0.30 0.30 0.021

M̂ISE on [0.3, 5] 0.010 0.024 0.0010

T3
√
MSE of f̂N (0.3) 0.36 0.23 0.018

M̂ISE on [0.3, 5] 0.00052 0.015 0.00052

T4
√
MSE of f̂N (0.3) 0.28 0.23 0.032

M̂ISE on [0.3, 5] 0.016 0.016 0.0045

N = 104

α = 0.1 α = 1 α = 10

T1
√
MSE of f̂N(0.3) 0.20 0.18 0.017

M̂ISE on [0.3, 5] 0.0033 0.0088 0.00031

T2
√
MSE of f̂N(0.3) 0.14 0.18 0.019

M̂ISE on [0.3, 5] 0.0032 0.0092 0.00036

T3
√
MSE of f̂N(0.3) 0.17 0.18 0.016

M̂ISE on [0.3, 5] 0.0027 0.011 0.00032

T4
√
MSE of f̂N(0.3) 0.18 0.13 0.024

M̂ISE on [0.3, 5] 0.0058 0.0095 0.00037

N = 5 · 104

α = 0.1 α = 1 α = 10

T1
√
MSE of f̂N (0.3) 0.14 0.10 0.012

M̂ISE on [0.3, 5] 0.0016 0.0045 0.00015

T2
√
MSE of f̂N (0.3) 0.26 0.13 0.011

M̂ISE on [0.3, 5] 0.012 0.0055 0.00014

T3
√
MSE of f̂N (0.3) 0.18 0.14 0.012

M̂ISE on [0.3, 5] 0.0023 0.0049 0.00017

T4
√
MSE of f̂N (0.3) 0.16 0.16 0.017

M̂ISE on [0.3, 5] 0.0084 0.034 0.00019

Table 3: Consistency of f̂N in the case of paths of stationary Ornstein-Uhlenbeck process observed at

random times (50 independent replications are generated in each case).


