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Abstract : In numerous applications (Biology, Finance, Internet Traffic, Oceanography,...) data are observed
at random times and a graph of an estimation of the spectral density may be relevant for characterizing phe-
nomena and explaining. By using a wavelet analysis, one derives a nonparametric estimator of the spectral
density of a Gaussian process with stationary increments (also stationary Gaussian process) from the obser-
vation of one path at random discrete times. For any positive frequency, this estimator is proved to satisfy a
central limit theorem with a convergence rate depending on the roughness of the process and the order moment
of duration between times of observation. In the case of stationary Gaussian processes, one can compare this
estimator with estimators based on the empirical periodogram. Both estimators reach the same optimal rate
of convergence, but the estimator based on wavelet analysis converges for a different class of random times.

One gives also numerical examples and application to biological and financial data.

Keywords: Biological and financial data; Fractional Brownian motion; Gaussian processes observed at random

times; Nonparametric estimation; Spectral density; Wavelet analysis.

1 Introduction

Consider first a Gaussian process X = {X(¢),t € IR} with zero mean and stationary increments, but results
will be extended in case where a polynomial trend is added to such processes. Therefore X can be written

following harmonizable representations (see for instance Cramer and Leadbetter, 1967),

X(t) = /JR (€€ — 1) f/2(6)dW(€), forall te IR, 1)

where W (dx) is a complex Brownian measure such that W (dx) = W(—dx) and E|W (dz)|* = dx, and f is a

Borelian positive even function so-called the spectral density of X and is such that

/]R (1A JE2) £(6) de < oo. (2)

In the sequel, f will be supposed to satisfy also Assumption F defined below but the conditions are weak and
the class of processes that can be considered is general. As a particular case, if X is a stationary processes,

one will still denote f the spectral density such that

X(t):/lRe“E FY2(E)dw (€), for all t e RR. (3)
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Even if their definition are different, in the sequel f will denote as well the spectral density of a process
having stationary increments or a stationary process (see the explanation in Proposition E) Define also the

o-algebra Fx generated by the process X, i.e.
Fx = U{X(t),teB}. (4)
A path of such a process X on the interval [0,7),] at the discrete times t; for i = 0,1,...,n is observed, i.e.
(X(to), X(t1),-.., X (tn)) is known, with 0=tg <ty < -+ <t =Tp.

A unified frame of irregular observed times, grouping deterministic and stochastic ones, will be considered.
Let us assume first that there exists a sequence of positive real numbers (0, ),en and a sequence of random
variables (r.v. in the sequel) (Li)ren (which could be deterministic real numbers) such that

Vke{0,1,...,n—1}, tgy1—tx = 0onLk, and 6, — 0. (5)
It is clear that T, = 6,(Lo + ...+ Ln—1). For Z ar.v. and o € (0,00), denote || Z] := (E(|Z|a))1/a if
E(|Z]*) < co. Now, assume that there exists s € [1, 00] such that

Assumption S(s) (Li)ren is a sequel of independent positive random wvariables, independent to Fx, such
that there exist 0 < ms < My < 0o satisfying

o if s <00, mg < | Lg|ls < Mg forallkeIN.
e if s=00, Moo < Lp < My, forallk € IN.

Before going further, let us give a detailed example: the heart rate variability. Cardiologists are interested
in the behavior of its spectral density on various frequencies bands (wi, wi+1), k = 1,..., K with usually both
frequencies bands (0.04 Hz, 0.15 Hz) and (0.15 Hz, 0.5 Hz) corresponding respectively to the orthosympathic
nervous system and the parasympathic one, see [@] The spectral density follows different power laws on the
different frequencies bands, i.e. f(£) = o;-|¢|7% when ¢ € (w;,w;+1). Finally, according to the type of activity
or the period of the day, one notices a variation of these parameters. We send back to Section 3, which brings to
light different power laws during the working hours and the hours of sleeps, i.e. (3107, gworky £ (gstecr  gsleery
In the example above both frequencies bands seem fixed. In other examples, the frequency of cut between
the various bands associated with various power laws must be determined and constitutes the parameter of
interest. We refer to our work on biomechanicals data [[fj and in the study of the financial data (Section
3). These examples show the concrete character and interesting perspectives of a non-parametric estimation
of the spectral density. In the applications, signals are observed at discrete times mostly irregularly spaced
and random. This type of observation can be met in health, physics, mechanics, oceanography and in these
cases the times of observation depend on the measuring instrument, thus of a hazard independent from that
of the process X. In this context, the hypothesis of independence of durations (Lj)renw and Fx is completely
realistic. The only case where this assumption seems restrictive concerns financial data. However it is until
this day always made, see for instance, Ait-Sahalia and Mykland (2008), Hayashi and Yoshida (2005) or Engle
and Russel (1998).

To our knowledge, estimating the spectral density of a Gaussian process with stationary increments on
finite bands of frequencies from observation at discrete times is a new problem. Recall that the spectral
density f(§) = 02|£|_(2H+1) corresponds to a fBm with Hurst index H. However, most of the statistical
studies on the fBm or its generalizations concern the estimation of the local regularity (linked to the behavior
of the spectral density at +00) or that of the long memory (linked to the behavior of the spectral density in

the neighborhood of 0) from the observation of a path at deterministic and regularly spaced discrete times,
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see for instance Dahlaus (1989), Gloter and Hoffmann (2007), Moulines et al. (2007) or the book edited
by Doukhan, Oppenheim and Tagqu (2003). Begyn (2005) seems to be the only reference concerning the
estimation of H under irregular (but deterministic) observation times. On the other hand, the estimation of
the spectral density of stationary Gaussian processes is a well known problem corresponding numerous practical
applications, see Shapiro and Silverman (1960), Dalhaus (1989), Parzen (1983). The used methods are based

T - 2
/ e X (1) dt
0

t; = iA induces aliasing, that is imp_o EIp(§) = f(£) but imy o BN (E) = Y1 cq f(€ + 2knA™1) where
2

on the periodogram I3 (&) = (27T) ! . However, the observation at regularly spaced times

N
In(€) == 2rNA)! AZ e “FAX(kA)| denotes the empirical periodogram. To avoid aliasing, one uses
k=1

random sampling, then the empirical periodogram becomes asymptotically unbiased, and by using a spectral

window one can deduce an estimator of the spectral density and a Central Limit Theorem (CLT) with a rate
of convergence in T=2/% see Masry (1978 a and b) or Lii and Masry (1994). These results are obtained for

random sampling verifying very specific conditions that we will call in the sequel

Masry’s conditions: the process of observation times (¢;);=1,... » is stationary, independent of X, with known

mean intensity 3 and density of covariance c(u) and verify the condition 32 +c(u) > 0 a.e. (Masry, 1978).

When the trajectory is not sampled but observed at random times not chosen by the experimenter, we then
have to verify that the family (¢;) satisfies Masry’s conditions and to estimate the mean intensity 8 and the
density of the covariance function c(u).

We chose another approach: a wavelet analysis. This approach was introduced for the fBm by Flandrin
(1992), and popularized by many authors, see for e.g. Abry, Flandrin, Veitch, Taqqu (2002), to estimate
the parametric behavior of a power law spectral density when In || — oo or In |{| — —oo. In this work, we
show that the wavelet analysis is also an interesting tool to estimate the spectral density on finite bands of
frequencies for Gaussian processes with stationary increments (or a stationary Gaussian processes) when one
observes one path at random times. Let us underline that the wavelet analysis in Abry et al. (2002) is based
on the empirical variance of the wavelet coefficients and thus is different from that proposed by Lehr and Lii
(1997) or Goa, Ahn and Heyde (2002) who consider respectively the wavelet decomposition of the estimator
derived from the empirical periodogram and the periodogram of the Haar wavelet transform of the process. In
both cases, discrete times observation should satisfy Masry’s conditions to avoid aliasing, this is not any more
the case for the wavelet analysis ¢ la Abry, Flandrin. We obtain then a non-parametric estimator and a CLT
with the same rate of convergence in T~2/° than for the periodogram, but for a class of observation different
from the Masry’s one which allows non-stationnary or regularly spaced times. This method plainly uses the
time-frequency localization of the wavelet:

- in frequency, to build a nonparametric estimator of the spectral density with continuous time observation.
- in time, to bound the error of approximation of the wavelet coefficient with discrete time observation. In-
deed, one uses that 1(t) decreases faster than (1 + [¢t|)~2 and ¢ € L'(IR) to bound the cutting error and the

discretization error, see lemma 4.5.

The remainder of the paper is organized as follow: Section E is devoted to the wavelet analysis of X and
the CLT satisfied by the estimator of f. This estimator is applied to generated data and real data in Section

B. Section [ contains the proofs.
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2 Main results

Let ¥ : IR — @ be a function so-called the "mother” wavelet, and denote f f e~%? f(x) dz the Fourier
transform of f € L*(IR) (" L?(IR). Let (m,r) € [1,00) x IRy and the family of assumptlons on 1):

Assumption W(m,r) ¢ : R — @ is a differentiable function satisfying:
eVne N, [plt")(t)|dt < oo ifn <m+1 and [ t"Y(t)dt =0 if n < m;
o 30y > 0 such that Y& € R, (1+1¢])" (|0 (&)| + [¢'(€)]) < Cy.

The first condition of W(m, r) implies that ¢ (¢) has a zero of order (m+1) at zero and is m times continuously
differentiable. These conditions are mild and are satisfied by many famous wavelets (Daubechies, Lemarié-
Meyer,...). It is also not mandatory to choose ¥ to be a “mother” wavelet associated to a multiresolution

analysis of IL?(IR) and the whole theory can be developed without resorting to this assumption.

Let (a,b) € IR x IR, and define dx(a,b) the wavelet coefficient of the process X for the scale a and the

shift b, such that
1 t—1>
= — X

This family of wavelet coefficients satisfies the following property:

Proposition 2.1 Let ¢ satisfy Assumption W(1,0) and X be a Gaussian process defined by (ﬂ) or (ﬂ) with
a spectral density f satisfying (@) Then,

dx(a,b) = va / ¢ (a€) £ (€) AW (€) for all (a,) € Ry xR, (1)
R
and, for a >0, (dx(a,b))ser is a stationary centered Gaussian process with
lE"dX(a,b)’2 =Ti(a) := a/ b (aw)|? f(u) du for all b € IR. (2)
R

The proof of this proposition is grouped with all the other proofs in Section . A straightforward computation
of Zy(a) is not available from (X (to),..., X (t,)) for two reasons:

1. on one hand, dx(a,b) is defined with a Lebesgue integral and cannot be directly computed from data.
As in Gloter and Hoffmann (2007), an approximation formula will be considered for computing wavelet

coefficients. Thus, for (a,b) € IR% x IR we define an empirical wavelet coefficient by

st =z 3 ([ (T ) xe) ¥

2. on the other hand, a sample mean of |dx (a, b)’2 instead on E’dx (a, b)‘2 is only computable. Thus, define
the sample estimator of Z;(a) by

Jn(a) = n—li—l kZ:O|eX(a,ck)|2, (4)

where (cg)x is a family of increasing real numbers (so-called shifts). In this paper, we will consider a

uniform repartition of shifts, i.e.

T, —27Tr
c, =TF + kT" with p € (3/4,1). (5)
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In this example (cx)1<k<n is depending on T, since shifts could be r.v. depending on random times (¢1, ..., ty).
Another choices of (¢ )i are possible (for instance ¢ = t;) but we have not been able to find an optimal choice
and simulations do not show differences between these choices. Remark that the terms T are necessary to

avoid border effects. Now additional conditions on f have to be considered:

Assumption F f is an even function, differentiable on [0,00) except for a finite number K of real numbers
wo=0<w <+ <wg, but f admits left and right limits in wi, with a deriative f' (defined on all open

intervals (Wi, wk+1) with w11 = 00 by convention) such that

/ (LALEP) - /(&) dE < oo (©)
R
Moreover, there exist Cy,C), > 0 and H € (0,1), such that V|z| > wk

fl@) < Colz[~®HFD  and  f'(z) < Cp x| "I+, )

Here there are several examples of processes having a spectral density f satisfying Assumption F:

Ezxamples : 1. A smooth Gaussian process having stationary increments;

2. A fractional Brownian motion with Hurst parameter H € (0, 1) satisfying IEX (1) = o2 is such that
f(&) = o> HT(2H) sin(nH) |¢|~H+D /7; 3. In Bardet and Bertrand (2007a), the family of multiscale frac-
tional Brownian motions is introduced for which f(£) = o7 |¢]~®H+D for €] € [wk, wri1] Where wp = 0 <
wy < <wg < Wig41 = 400, Hy < 1,0 < Hx < 1 and (0;,H;) € Ry x R fori =1,...,K —1. Then
Condition (fJ) and Assumption F are checked with H = Hy.

4. A stationary process with a bounded spectral density such as Ornstein-Uhlenbeck process.

It is possible to establish a CLT satisfied by J,, (a) which is computed from the observed trajectory (X (¢o), ..., X (ts)).

Theorem 2.1 Let X be a Gaussian process defined by (ﬂ) or (ﬁ’) with a spectral density f satisfying (E)
and Assumption F, v satisfying Assumption W(1,3) and (cx)y defining by (). Under Assumption S(s) with
24 2H < s < oo and if 6, is such that

(H+1)(s—1) . 1 1

. , b ifl+i§s<§+i

n5,11+9( HL 0 with 0(s,H) := (12{{1%;31(5*1) ; § 2{{ ; ?H
1 ifs>2+ %

(1/3 < 6(s,H) < 2), then Va € [amin, Gmaz);

VET, (Ju(a) — Iy (a)) 2, N 0, 47 a? / ’w az ’ A dz) (8)

n—oo

From the computation of the variance of T},, the convergence rate of the CLT (§) is (nd,)"/2. Therefore, When
H is unknown, Theorem . D.1| always holds when s > 4 and n(5 ° = O(1) and its convergence rate is ni=z
and 0( 1 4) when s = co. When H is known, this results can be a little improved and the convergence rate is

o(n%%).

The CLT @ can be used to prove a CLT satisfied by an estimator of f. Indeed, let us consider a family

(¥a)rems, such as

e 9(5) VreR = DO=VAd(E-1) ER,

lﬂk(fﬂ) = \/X
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and v satisfying @(«f) =0 for [§] > A with A > 0. Note that for all A > A, ¢y satisfies Assumption W(m,r)
when ) satisfies Assumption W(m,r). Now, Z)(a) := [ |1/))\ 2 f(ufa)du — f(1/a) W’Hiz when A — oo
under weak hypothesis. Therefore for 0 < ¢, let us deﬁne M (5) = ,({\)(1/5)/ ||7,/1H22, where J\V denotes J,,
when 1) is replaced by ¥, and

n

R n—1 it1 9
() — _
Ve = ||w||c2 - > X / A€l - ) e

k
with ¢ = TP + — (T, — 2TF). By using an appropriated choice of a sequence (¢, ), one obtains:
n

Corollary 2.1 Let X be a Gaussian process defined by (E) or (ﬂ) where the spectral density f is a twice
continuously differentiable function on IR* satisfying (@) and Assumption F. Under Assumption S(s) and
W(1,5) and if ¥ satisfies 12(5) =0 for || > A with A > 0, then V¢ > 0,

m b(u 4du
\/f»—: (FA© - £©) = (o, 4? S [$)] )

(e [()[" )
if 6, = Csn~¢, A = Cxn®, where 0 < %(1—d) <d < %(1—d) <1 and
e ifs=oc0, when d> (2+H)™"
e ifmax (2+2H, 3+ J-)<s<oco, when (s—1— (sH +2s—1)d) <d'(H + 1);
when (s —1)(2—d(3H +2)) <d'(H +1).

£2(9) 9)

e if2+4+2H<s<max (2+2H, 3+ ;),

Remark 2.1 The rate of convergence of the parametric estimator is T_l/2 The optimal rate of convergence
for the nonparametric estimator is Ty, 2/5 , it is obtained by equaling the bias and the variance with A\, = Tl/5
This is the same rate of convergence than for the periodogram in continuous time (Parzen, 1983) or with a

random sampling satisfying Masry’s conditions (Lii and Masry, 1994).

Moreover, under W(m, 5) f t"(t)dt = 0 for all n < m and any wavelet coefﬁments of any polynomial function

with degree less or equal to m are vanished. Therefore, the estimator ﬂl is robust since

Corollary 2.2 Under Assumption W(m,5) withm € IN*, Pmposition holds when a polynomial trend with

degree less or equal to m is added to X.

The following Table 1 summarizes the “optimal” choices of d’ (in order to maximize the convergence rate of

fA’n) following several cases.

H known H known H unknown H unknown
Op fixed 6, non-fixed on fixed &, non-fixed
: 5stdH—1 5stdH—1 T T T 1
Choice of d d (> 55(13+2)767H) Sty —o6-m T F | d (=23+ 5573) 2t 5s
i / 1-d (s—D)(H+1) 1—d ,_1
Choice of d 5 1K 5s(H+2)—6-H 5tk 5(55=3) + K
Conveigence nE-d)-5 ST e 5 n2(—d)—% i
rate

Table 1: Optimal choices of d’ (and therefore (A

the limit of ratios) with 0 < k arbitrary small.

3 Numerical experiments

For the numerical applications, one has chosen:

n)) and convergence rate offn (the case s = oo is obtained as
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1. ¢ is chosen such as §(£) = exp (= (I€]-(5=1€])) 1) 1j¢1<5(&) which satisfies Assumption W(m, ) for any
(m. ) (and (&) = 0 for [¢] > 5).

2. 6, =n~96 for insuring the convergence of ﬁ(f‘")(f) for any H € (0,1) and s > 3.

3. A = n? with 1/6 < d’ < 1/2. However, admissibility condition on wavelets (¢,) requires that
n? > A = 5. Moreover, for removing the bias term, d’ has to be chosen large enough following n. Thus,

after numerous simulations, we have chosen d’ = log(15)/log(n).

3.1 Estimation of the spectral density of a fractional Brownian motion observed

at random times

For a standard (EX?(1) = 1) fBm with Hurst parameter H, f(¢) = C(H)|¢|72H~1d¢ with C(H)
(HT'(2H) sin(rH)) /. Four different kind of random times are considered:

1. (T1): non-random uniform sampling, such that Ly = 1 for all k € IN*;
2. (T2): exponential random times, such that IEL, = 1 for all k € IN*;

3. (T3): random times such that for for all k € IN*, the cumulative distribution function of Ly, is Fp,, (z) =
(1—2M1> = FEL} < oo for all p <4 and FEL} = oc;

4. (T4): random times such that for for all ¥ € IN*, the cumulative distribution function of Ly, is F,, (z) =
(1—27?)1,5; = FL? < oo for all p < 2 and FL? = cc.

An example of such estimation of the spectral density for H = 0.2, N = 50000 and random times T2 is

presented in Figure 1. The results of simulations are also provided in the Table 2.

101 251
\ — Estimation of the spectral density — Logarithm of the estimator of the spectral density
— Spectral densi ~ —— Logarithm of the spectral density

\
\ ity
9F | —— Confidence intervals 2F — Logarithm of the intervals
\
\
|
8r 15- N
N
N
B \
N ~~
\

Estimation of f
Logarithm of the estimator of the spectral density
i 1

Figure 1: An example of the estimation of the spectral density (left) and its logarithm (right) of a FBM observed
at exponential random times (T2) with confidence intervals (H = 0.2, N = 50000).

Comments on simulation results: 1. the larger N the more accurate the estimator of f except for case of
random times T4 (which is a case not included in conditions of Proposition @), 2. The results are similar for

T1 and T2, a little less accurate for T3; 3. the smaller H the more accurate the estimator of f.



J-M. Bardet and P.R. Bertrand 8

| | | H=02 | H=0.5 | H=0.8 |

T1 VMSE of fn (1) 0.47 0.65 0.77

MISE on [0.3,5] 2.53 13.50 80.89

T2 VMSE of fn (1) 0.65 0.67 0.75

N =103 NMISE on [0.3, 5] 3.64 10.65 39.85
T3 | VMSE of fn (1) 0.42 0.72 1.20

MISE on [0.3, 5] 2.48 7.83 55.20

T4 | VMSE of fn (1) 1.03 3.34 2.44
NMISE on [0.3,5] 6.07 84.05 144.40

| | H=02 | H=05 | H=0.8 |

T1 VMSE of fn (1) 0.35 0.37 0.79

MISE on [0.3, 5] 0.95 3.90 57.19

T2 VMSE of fn (1) 0.45 0.47 0.29

N = 10% MISE on [0.3, 5] 1.04 3.17 16.26
T3 VMSE of fn (1) 0.47 0.46 0.95

MISE on [0.3, 5] 1.20 4.91 26.6

T4 VMSE of fn(1) 0.61 0.61 1.74

MISE on [0.3, 5] 2.74 9.55 49.55

| | H=02 | H=0.5 H =0.8

T1 VMSE of fn (1) 0.36 0.30 0.40

MISE on [0.3, 5] 0.81 2.60 10.77

T2 VMSE of fn (1) 0.21 0.22 0.31

N =5-10% MISE on [0.3, 5] 1.07 2.07 7.65
T3 VMSE of fn (1) 0.34 0.26 0.48

MISE on [0.3, 5] 0.74 3.17 13.3

T4 VMSE of fn (1) 0.40 0.56 2.59

MISE on [0.3, 5] 1.02 5.69 41.41

Table 2: Consistency of the estimator ]?N in the case of paths of FBM observed at random times (50 independent

replications are generated in each case).

3.2 Estimation of the spectral density of the stationary Ornstein-Uhlenbeck pro-

cess

Here, instead of FBM which is a process having stationary increments, we consider the stationary Ornstein-
Uhlenbeck process which is a Gaussian stationary process with covariance r(t) := exp(—a|t|) and therefore
with spectral density f(£) := a(w(aQ +§2)) ~'. In such case, since this spectral density is an analytic function,
there exists more accurate nonparametric estimator (see for instance, Ibragimov, 2004). However, to our
knowledge, the case of paths observed at random times is not considered is this literature. The results of

simulations are provided in the Table 3.

Comments on simulation results: 1. the larger N the more accurate the estimator of f for all choice of random
time; 2. The results are similar for T1, T2, T3 and a little less accurate for T4; 3. surprisingly, the case a =1

is not clearly better than o = 0.1 despite the fact that the larger « the less correlated the process.

3.3 Estimation of the spectral density of heart inter-beat series

Heart inter-beats of several patients have been recorded during 24h (see an example in Figure B.3). These data
have been kindly furnished by professor Alain Chamoux and Gil Boudet (Faculty of Medicine, University of

Auvergne, Clermont-Ferrand). We decompose these data in 3 temporal zones following the activity:
e Quiet activities (¢ € [1,28000] in seconds);
e Intensive activities (¢ € [28000,51400] in seconds);
e Sleep (¢ € [60000, 83400] in seconds).

Applying the spectral density estimator on those 3 sub-data and plotting its log-log representation for fre-

quencies in [0.02, 1] Hz, we observe that:

e in zone “Sleep” (see Figure 2), only one regression line could be computed for frequencies in [0.04,0.5]

Hz which is the usual spectral interval considered by specialists; in this zone H~ 0.99;
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[ | | =01 | a=1 ] a=10 |
T1 VMSE of fn(0.3) 0.51 0.22 0.020
MISE on [0.3, 5] 0.022 0.014 0.00067
T2 VMSE of fn(0.3) 0.30 0.30 0.021
N =103 NMISE on [0.3, 5] 0.010 0.024 0.0010
T3 VMSE of fp(0.3) 0.36 0.23 0.018
MISE on [0.3, 5] 0.00052 0.015 0.00052
T4 VMSE of fp(0.3) 0.28 0.23 0.032
NMISE on [0.3, 5] 0.016 0.016 0.0045
| | a=0.1 a=1 o =10 |
T1 VMSE of fn(0.3) 0.20 0.18 0.017
MISE on [0.3, 5] 0.0033 0.0088 0.00031
T2 VMSE of fn(0.3) 0.14 0.18 0.019
N = 10% MISE on [0.3,5] 0.0032 0.0092 0.00036
T3 VMSE of fn(0.3) 0.17 0.18 0.016
MISE on [0.3, 5] 0.0027 0.011 0.00032
T4 VMSE of fp(0.3) 0.18 0.13 0.024
NMISE on [0.3, 5] 0.0058 0.0095 0.00037
| | a=0.1 a=1 o =10
T1 \/@ of fn(0.3) 0.14 0.10 0.012
MISE on [0.3,5] 0.0016 0.0045 0.00015
T2 VMSE of fn(0.3) 0.26 0.13 0.011
N =5-10% MISE on [0.3,5] 0.012 0.0055 0.00014
T3 VMSE of fn(0.3) 0.18 0.14 0.012
MISE on [0.3,5] 0.0023 0.0049 0.00017
T4 VMSE of fn(0.3) 0.16 0.16 0.017
MISE on [0.3, 5] 0.0084 0.034 0.00019

Table 3: Consistency of fN in the case of paths of stationary Ornstein-Uhlenbeck process observed at random

times (50 independent replications are generated in each case).

e in zone “Quiet activities” (respectively “Intensive activities”, (see Figure 3), two regression lines could
be drawn for frequencies in [0.04,0.5] Hz, distinguishing the orthosympathic and the parasympathic
spectral domains. Using an algorithm computing the “best” two regression lines (see for instance Bardet
and Bertrand, 2007b), one obtains that H ~ 1.34 (respectively H ~ 1.44) in the orthosympathic domain
which is [0.04,0.09] Hz (respectively [0.04,0.11] Hz) and H ~ 0.89 (respectively H ~ 0.79) in the
parasympathic domain which is [0.09,0.5] Hz (respectively [0.11,0.5] Hz).

1600 T T T T T T T T

1400 -

1200

1000

800

Heart interbeat in ms

600

400

200 L n n L n n n n
a 5

Time in seconds x 107

Figure 2: An example of heart inter-beats during 24h

3.4 Estimation of the spectral density of log-return of a share

One considers the price of share Total during a day at Paris (see Figure 4). These data has been kindly
furnished by Crédit Agricole Cheuvreux, CALYON (Paris). Applying the spectral density estimator and
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Logarithm of the estimation of f
— Logarithm of the confidence interval

Logarithm of the estimation of f
\ —— Logarithm of the interval

Logarithm of the estimator of f
w IS
T

~
T

b

~log(0.11)

-2
4

-4 -35 -3 -2.5 -2 -15 -1 -05 0
Logarithm of the chosen frequencies (Hz)

Figure 3: Log-log representation of the spectral density estimator during “Sleep” zone (left) and “Intensive

activities” zone (right)

plotting its log-log representation, we observe that durations fit an exponential law with mean 11 seconds
and that the spectral density is linear in for frequencies smaller than 0.008 Hz and has an erratic behavior at
higher frequencies. The critical frequency corresponds to a time lag of 125 seconds and could be interpreted

as the frontier between events and regularity. Remark that for high frequencies a Gaussian distribution is not

appropriated.
26.3 6
26.2 b
Al
2611 7
5 2r
5
T
26 b g
s g
8 £
k]
259 1 E
g
2o
S
258 q
57+ 10
256 L L L L L L i L L L L 1 1 1 )
o 05 1 s 2 25 3 35 % 3 s = ) 3 > i o
emps en secondes x 10 Logarithm of the chosen frequencies (Hz)

Figure 4: An example of quotation of a share during a day, i.e. 8.5 hours (left), and the log-log representation
of the spectral density estimator (right)

4 Proofs

4.1 Proofs of useful lemmas and Proposition 2.7]

In the sequel, the following lemmas will be useful:

Lemma 4.1 Let X be a Gaussian process defined by (ﬂ) with a spectral density function f satisfying (ﬁ)
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Then there exists Coy > 0 such that
|E(X(t)X(t2))] < Co(L+|t])(1+ [t2]) for all (t1,t2) € IR (1)

Proof. For all t € IR, we have
1 [e’e]
EX2(t) = it _11% £(6)de < 2 2 r6)de + 8 d
(t /}R\e 2 () de < /O|t§| F(€)de + /1 £(6) de
< (22 18)x / (LA €2 F(€)de.
0

This implies £ (X (t)*) < Co (14 [t|*) where Co = 4 [, (1 A [€]?) f(€) dé. Then, by using Cauchy-Schwartz
inequality, one deduces () |

Proof. [of Proposition @] Firstly, one can show that for all @ > 0 and b € IR, IEd%(a,b) < co. This
induces that dx(a,b) is well defined. Indeed, one has

Bl (0,0) = // ( ) (t2;b)E(X(ﬁ)X(m))dtldtQ
//‘w(tl )Hw< )‘(1+|t1|)(1+|t2|)dt1dt2

<aCy (/le(@t)l (1416 + |6W|)du)2 < 00,

where we have used successively the bound (fl]), the change of variable u = (f — b)/a and the first condition of
—-b

(=)
(e — l)fl/2 (5)’ dW (£)< oo since the condition (f]) holds. From the Fubini Theorem for stochastic

R

integral (see [[l§, Lemma 4.1, p. 116]),

dx(an)= [ w(2) xwa= [ w(t;b)[ / (e“f—l)fl/Q(s)dW@)}dt
= /R { /R (e = 1)w(?)dt}f”2(§)dvv(§>.

But [, (e —1) w(%) dt = ae™ [ e p(u) du = ae™® Z(af) for all (a,b) €]0, 0o[x IR, which implies ([l])

and dx (a,b) is a Gaussian centered r.v. with variance Z;(a). Moreover, for all a > 0 and (b1, bs) € IR?,

dt<oo

Assumption W(1,0). Next, one turns to the proof of the formula (). It is obvious that

and

B (dx(a,br) dx (a,b2)) = a / ¢ |3 ag)|” (6) e (2)

R

Thus for a given a > 0, IE(dx (a,b1) dx (a,bs)) is only depending on (b — bs) which induces that (dx (a,b))ver

is a stationary process. |

From formula ([l), it is clear that (a1, a2) € [@min, Gmaz)?, ¥b1,b2,0 € IR,

]E(dx(al,bl),dx(az,bz)) = \/a1a2'7(b2*b17a17a2)
y(0,a102) 0 = /Re”%(alsw(azs)f(&)dg. (3)

Lemma 4.2 Let ¢ verify Assumption W(1,2) and f be an even function satisfying (@) and Assumption F.

1. There exists C > 0 depending on 1), f and amaz such that¥(a1,az2) € [amin, Gmaz)?, |'y(9, ai, ag)} <C (1 A |9|71)
forall 0 € R.
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2. The function v is derivable with respect to 0 and there exists C' > 0 depending on ¥, [, Gmin and amaz

as)| = |%(9,a1,a2)‘ <C'(AAI0]7Y) for all 6 € R.

Proof. [of Lemma From Assumption W(1,1/2), 3¢ > 0 such that

such that ¥(ay,az) € [amm,amaz]Q; |7'(9,a1,

[0(&)| <c(1Al¢f) forall €€ R. ()

Indeed, from one hand, |1Z §| < H“/)HLl(R) < o0. From the other hand, ¢ € W (1,1/2) implies that ¢ is twice
continuously differentiable and 1/)( )= 1/) (0) = 0. From Taylor-Lagrange Formula, for all £ € IR*, there exists

& € IR with |&| < |¢] such that $(¢) = %.52 x 9" (&). This induces }$(§)| < %|§|2 X (/ 2. |¢(t)|dt)
providing the second bound of (). "

To show the first item, inequality (E) implies that
- 2 2 4
[ [Peol s < e ([ lesis@act [ s )
A (1va') / (LAE?) f(§)dE < o0,
R

IN

IN

with C' > 0 depending on ¢, f and amq;. From Cauchy-Schwarz Inequality,

W(G,al,ag)§c2(1\/a%)(1\/a§)/ (LAE)f(8)de.

R

Moreover, with f(w;') and f(w,)) the right and left limit of f at wy, for all 1 < k < K — 1, § € IR* and

(ala a2) S [amin; amaz]Qa

/ k1 eieéi(alg){p\@mg) f(€)dx

k

= = (% o) Do) Dlazenss) — % f(o)Dlaran) Doaw))

Wet1 108 = —~ —= ~ = ~
- [ S [P @D + 16 (1 (@16 as6) + axdlane) P(es)) | e

The same result remains in force for ¥ = 0 and k¥ = K. Indeed, by using () combined with Assumption F,
one deduces that V0 € IR, ¥(ai,az) € [amin, Gmaz)?,

lim %€ FO) D@8 Da:6) =0 and i ¢ £() d(r€) (az€) = 0.

Thus, by summing up and using Assumption F, V0 € IR, ¥(a1, a2) € [amin, Gmaz)?,
v(0, a1, az2)

= —% (eww’“i(alwk)@(azwk) - €_i9wki(—a1wk)$(—a2wk)) (i) = )
k=1
L T R 0 NG AT
-5 /R e[ /()9 (@1) Blazg) + F(©) (010 (@1)Plar6) + azih(@r )P (a26) ) | de

since the integral of the r.h.s. of the previous equality is well defined. Then,

K
h0.aa) < (20 Y| - fwp)
k=1

/ Uf 5 (a1€)¥(as€) | +1£(€) (|01||7/)7 (a16)P(az€) | + |az| |1/1 ar§)y a2§)|)}d§)-
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It remains to show the convergence of the previous integral. Using the same trick as in Formula @),under
Assumption W(1,1/2), |7$’(§)| </c (1/\|§|) with ¢’ depending on 1 and d,,4z. So, for all (a1, az) € [amin, Amaz)?

| [1£©7@95 0] + 1O Jarl[ (@105 (@a6)] + ozl [Par€) P (aa)]) | e
< c(c+d)araz| / laraz f/(€)€"| + (lar| + laz])| f(£)€7] d€
|€1<1
we [ 1O+ (ol + a7 de
|€1>1
<c [ Janigh) 1711+ k) - ] de < oo
R
where C' > 0 and this completes the proof of the first item.

Eventually, one proves the second item. The differentiability is obvious and
G = i [ D@ Blaat) 6) de
R

Assumption W(1,1/2) implies that Va € [amins Gmas)s  |a&|"?|1h(ad)| < Cy for all £ € IR. Combined with
(E), this induces that Va € [amin, Gmaz], 0 € IR,

¢ (0, ar,a5)] < / €] 1B (@) 1B (as)] £(6) de
R
2 2 5 C'i
< Plaras) /|§|<1|£| e+ e [ s
<

with C' > 0 only depending on ¥, f, amin and amq,- Using the same arguments as for the first item, V0 € IR*,

(0,1, a2) S [amin; amax]2a

V(0.a1,02) = gi (et (areon)dazen) +
e P (—arwr) d(—aswy ) — flwr))
= 5 | e [rOn@ o) + (5>E<a1§>$<a2§> +
+¢£(6) (a1 P (@€)d(a26) + ad(@ &) (az¢)) ] de
and therefore |7/(6, a1, az)| < |§| with C' > 0 only depending on ¥, amin and dmaz. ]

4.2 Proofs of Proposition §.1 and

Since T (a) is obviously defined from |dx (a, b)‘2, we begin with the study of

n

1
I.(a) = n+lz‘dx(a’ck)‘2’ for a >0 and n € IN*. (5)
k=0

For n € IN* and a € [amin, Gmaz], define also:

S2( 771—}—1222

k=0 £=0

2

/ i(Ben—en)e | Gag) 2 (e) de]| - (6)
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Proposition 4.1 Let X be a Gaussian process defined by (ﬂ) or (E) with a spectral density f satisfying (ﬂ),

VY satisfy Assumption W(1,1). Then if (ck)r is a family of real numbers such that ¢ < ¢ < ... < cp,
n maxi<k<n{Cit1 —cx} — o0 and IC" > 0 satisfying Vn € IN*
n—oo

_ < _
max. {cky1 —cp} <C” r<n1n {Cht1 —cr} < 0

then VYa S [ami’l’h amax];

Moreover, there exist 0 < C,, < Cpr not depending on n such that Vn € N*,
1/2
Cr < Sp(a) (n max {ck+1 — ck}) < Cum. (8)

The proof of Proposition [£.] relies on Lemma 1.4 and the following Lemma which is a Lindeberg CLT (see a
proof in Istas and Lang, 1997):

Lemma 4.3 Let (Yn;)i<i<n Nen= be a triangular array of zero-mean Gaussian r.v. Let S3 := var (Vi) with
VN = Zivzl Y]\QM and BN = Maxi<<N Zjvzl |CO’U (YN,i,YN,j) | If hm B—N = 0 then S (VN — IE(VN))

converges weakly to a standard Gaussian random variable.

Proof. [of Proposition [{i.1]
Consider Yy, ; = (n+1)""%dx (a,¢;) for i = 0,...,n and

{ Bn = (n+1)"" maxi<i<n { Y=o lcov (dx(a, ), dx (a, cj))l},
Sp=(n+1)72 30 Y0y cov (dx(a, ), d% (a, ¢;))

But, by using Formula ({), ¥(a, a1, az2) € (0, 00[3, (b1,bs) € IR?

cov (dX(a,bl),dX(a,bg)) = a'y(bl — bg,a,a)
cov (d%(a1,b1), di (a2, b2)) = 2 (ara2)¥*(by — bz, a1,az),

since variables dx (a,b) are zero-mean Gaussian r.v. Therefore,

By =a(n+1)"! maxo<i<n { Z?:o h(ci —¢j, a,a)’}
S2 =20 (n+1)2 Xy 3072 (ci — ejra.0)

Let p and ¢ be such that 1/p+ 1/q = 1 with (p,q) € (1,00)2. Then the Holder Inequality implies that

fo< o e (3 o)) )
j=0

0<i<n

Lemma @ i) implies that for every 1 < i < n, for n large enough,

S a—craa| <o(#{0<i<n fa—ol <1}+Y Ja—ol )
7=0

7=0; Cifcj‘>1
2 - -p
<c(— + Y[l min Je—al] )
min |epq1 — ci 0<k<n—1
0<k<n-—1 7=0; c.;7Cj|>1
< 20(0552271 ‘ck+1 - ck|)7 ( (O<Ikn<1n |ck+1 — Ck‘ 7PZ |£|—P), (9)

£>(minp<r<n—1 [cp+1—ck|) 7!



J-M. Bardet and P.R. Bertrand 15

o0
Since p > 1, Z |¢|7P < oo is finite and thus
=1

1 . _
Z o = p—1 (0<Ikn<lgf1 Cr+1 — CkDp '

£>(ming<p<n—1 |Ck+1*6k |)’1

Therefore,

—1/p
< Carfnx gin o —alf o

with C' > 0 depending only on 9, @min, @Gmas, and p. Now, a lower bound for S,QI is required. Ya € [amin, Gmaz),
0 € R — ~(0,a,a) is a continuous map and v(0,a,a) = LR |1Z(a§)}2f(§) d¢ > 0. Therefore, for all a €

[@min; @maz], there exists 0, > 0 such that v(0,a,a) > 5 -¥(0,a,a) when |0| < 6,. Then,

52> Cra®>n?¥*(0,a,a) #{0 <i,j <n, |ci—¢;| <0.}
/o2~ 2 . o
> Cra"n"y (O,G,a)#{o <i,j<n,li _3|0§?§§_Fk+1 — o] < 9a}

> Ca*7*(0,a,a)0, (n [ Jnax k41 — ck‘)_l.

Thus, for n large enough, from ([L1]) and(fLd),
B

_ 1/2 . -1/
5 <C-n'/? 1/1’(0;;13}1(_1 |cke1 — cxl) (ogrl?glg—l ki1 —ci|) P

V2712 Gith € > 0. Next for anyp € (1,2), lim (n max |cpp1 — ck’)l/%

< _
Therefore 3,,/S, < C (n O<I;1Sa7)1(_1 ’Ck+1 ck’) S (n ) max

thus, lim 6,/S, =0 and the assumptions of Lemma @ are fulfilled.

Finally, (@) and Assumptions imply S, (a)? > Cy (n0<1%1<ax ) ‘ck“ — ck|)_1 with Cp; > 0. Moreover, using
the bound (f]) for p = 2, o

72(01- — cj,a,a) <C (Ogrkngigil ‘ck+1 — Ck|)71

<.
i M:
S o

-1

= S?lSCIQQn_2 VQ(Cifcj,a,a) < le( max 1‘ck+1—ck|)

n
: : n " 0<k<n—
1=0 j=0

Therefore, inequalities (H) are proved. |

Proposition 4.2 Let X be a Gaussian process defined by (ﬂ) or (E) with a spectral density f satisfying (@), P
satisfy Assumption W(1,1). Then if (ci)r is a family of r.v. independent to Fx such that ¢, = ¢1+ %(cn —¢o),
with n™' IB(c, —co) — 0 and var (¢, —co) — 0, then ([}) holds with

n—oo

lim (E(c, — o)) Sa(a) = 4w a® /IR }@(az)}zlfQ(z) dz. (12)

n—oo

Remark 4.1 For (c)r satisfying (E), under Assumption S(2), Proposition @ holds when n'/?6, — 0

n—oo

because IE|T,, — IET,|* < nd2 maxi<g<n IE L.

Proof. [of Proposition

(ck) is a sequence of r.v. independent to Fx. Therefore, (dx(a,ck))r as the same distribution than (dx (a, c; —
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o))k (stationarity of the sequence), and we can only consider here the case: ¢ = k7,,/n with 7, := ¢, — co.
Define

I (a) := %Zdﬁ((a,Eck).
k=0

It is clear that (IEck)i1<k<n is a deterministic sequence and therefore

Ii(@) ~Ti(a)
5@ e N(0,1). (13)

Nowadays, one has to check that the error I/,(a) — I,,(a) is negligible before S, (a) in norm L?(Q2). But

Sn(a) = Cr - (nos%lgffl B (ckr1 — Ckmim >Cx (7).

Therefore, it suffices to prove that lim 7, x IE[(I},(a) — I(a))?] = 0. Since the r.v. ¢; are independent on

n—oo

Fx, one gets

B[(1;(0) = 1n(@)*] = B[ B[(1} @) = I (@))? | Fx]]

n

1
:m Z E{]E[(dgg (a, Ecy) — d% (a,ck))(c@( (a, Ecy) — d% (a,ck/))’fx]}
k,k'=0
2a? n 5 )
BCESIE > E{V (Ecy — Ecy,a,a) —v*(Ecy, — cx, a,a)
" k,k'=0

—7*(ck = Bew,a,a) + (5 — o, a,0) .
Next, from Taylor expansions,
v (Ecy—cw,a,a) =+ (Ecy—FEcy , a,a)+ 2(Ecy—cy) % -+ -
/ (B Few-iA (Bey — o), a,a)y (FeFew-\ (Few — c), a,a)d\
0 VA (ex—Eey, a,a) =7 (ck—cwr, a, a)+2(cr—Eey ) % - -
/0 (e (e — ), ,0)  (ex—cri (Fews — o), a,) dA.
From Lemma [£.9, 3C' > 0 such that |y(0,a,a)7'(6,a,a)] < C x (LA072) for all € R. One can deduce that
22 (Be—Eew,a,a) 2 (Be-cy,a,a) -2 (e~ B, a,0) 442 (r—cw, a,0)|

S C }Ck/ — Eck/

1
x/ (me;;k,(/\)) + (1A92—,§,k,(/\)) d\
0

with Hl,k,k’()\) = E(Ck—ckr)—l—)\(lEck/ — Ck/) and 92,k,k’ ()\) = ck—ck/—i-)\(lE’ck/ — Cir).

Then,

E[(I,(a) — I,(a))?] <2a® x (€r; + €rp), (14)

1 n
1
where, for ¢ = 1,2, €; := / E{m Z ‘Ck’ — Fcp | x (1 A 9;,621,6,()\))} dX. Thus el,k,k’()\) = (5;((]{5 —
0 k,k/=0
E n n E n .
K — )\k’zn) with &/, := ™ and Zp = 7']E77' Then, using §;, — 0, for n large enough,
n Tn n—oo

€, = /01113{% zn: |(K8,) 20| (1 A (80 ((k— &) — Ak’zn)]‘Qﬂ d\

n+1)2
%50
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< /OllE[(IE%)Q/OETn/OECTIZde’yzn‘ X (1 A [(:c —y)— /\yzn}72)} d.

But, for all A € (0, 1), one has

1 ETr, pET, L
T (Al =) =z )dedy

1,1
= ETn/ / | x (LA (1) [(u—v) — Av zn] )du dv
o Jo
2 [e%s)
< 2E7’n/ / (1 A (ETn)72872) dsdt < 4.
0
Therefore €ty < 4JF|z,|. Now, using the same method for ty, one obtains,

Et, x E[(I},(a) — I,(a))?] < C Er, x IE|zy,)|

< C(var (cn — co))1/2
— 0

from assumptions and therefore the CLT () holds.

Now the asymptotic expansion (@) can be proved. Consider first the deterministic case and

Si(“):%/w |D(a&)|* (&) | (ag")|* £ (&) dede’ kkz (k') (enze0) (¢
~ i L ool Pre) S G e
:Cj“io Ri’@(az')ff(z') Dol =) )[4 2260)”281;?)%)@6,24
Let us define hn(z) = %(2) and h(z) = 228 For all (5,7) € R,

‘1/1( 2 + - ))’2]‘(,2'—1- 2z )H:O W(az')ff(z’) and hZ(z) — h%(2).

Co Cn — Co n— o0

However Lebesgue Theorem cannot be applied. Denote v(x) := |¢(ax)|?f(z) for z > 0. From Assumptions F
and W(1,3), v is a differentiable function in (0,00) and 3C' > 0, Vz',z > 0, |v/(2' + z)| < C|V/(2)|. Then,

2z
Cp — Co

‘Z/(Zl + ) —v(2)

<

Moreover, |h,(z')] <1 for all 2’ € IR, and

/n dzf— Z 2=k Z 4.

-n "k k=1

2 sin(2(k—K)) 1 <
=n i—F)y m2 _02”

Therefore,
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since 2 zlgkgnksm (21) < 41"% — 0 and from Dirichlet Theorem,  — 7 = —23_ -, Smgl—"m) for all

k
n—oo

x € (0,27). Now, for 2/ >0,

‘ /,Rf(zl T L)hi(z)dz — (2" /Onhi(z)dz‘

Ch —Cp
2 " & 2z
< h2(z2)d ! h2(z)d
_Cn—CO/oZn(Z>Z+/n v(z Jrcn—co) ~(2)dz
2 " 4sin? oo 2
< /z sm2(z) der/ V(z'+ i )dz
Cn —Co Jo z n Cp — Co
4 4+ 1 i C
SSLg(n)-l-Cf(z’)/ w2 —dz
Cn — C n / _ 2z
0 1+ + %)
4 + 1
§8 + Og(n) +C/f(zl)n572f
Cp — Cp

Finally, with n 62" — 0 when r = 3, one deduces that for all 2’ > 0,

2 n
lim [ v(2 + 72) h2(2)dz = lim v(2') /h%(z) dz = = v(z').
n—oo [k, Cn — Co n—00 0 2

Therefore,

[ 1P [ [o(at+ o) (e 2 )njlﬁg?%) 4z d2

Cn — Co n — €0

— W/IR‘QZ(az’)|4f2(z’)dz',

n—oo

providing the asymptotic behavior of S2. The proof is similar in the stochastic case with ¢, — ¢y replaced by
E(cy — co). |

4.3 Proof of Theorem .1

The proof of Theorem uses the following lemmas:

Lemma 4.4 Let X be a Gaussian process defined by (ﬂ) with a spectral density f satisfying (@) and Assumption
F. Let us define,

R(tu,t', ) i= B|(X(t+u) = X (1) - (X( + ) = X(¢)) | Fx],

for (t,t") € IR?, (u,u’) € IR%Z. Then 3C; > 0 depending only on the spectral density f such that for all
+ f
(u, v/, t,t') € R:L x R?, with = (' —t+u —u),

|R(t2u.¢',20)| < Cy (wn) + ((wa)™ A () [BPF~% (wa)TH1/2)371) ).
Proof. To begin with, remark that for all (¢,t',u,u’) € IR,

R(t,2u,t', 2u') = / (eI IS _ =i (I(FH2UNE _ i) f(g) g
R

:/ (e—iug . eiuf)(eiu’g . e—iu’&) ei&(t’—t)-i—if(u/—u) f(f) d¢
R

:8/OO sin(ug) - sin(u'€) - cos (E(t' — t +u' — u)) f(£) dE
0
=8 (I + I2)
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with I; := --df and I, = f ---d¢. From one hand, with |sinal < |al,

L < uu'/wff(ﬁ)dESCUU’,
0

where the last inequality follows from (E) From the other hand,
1 > . n u’ 1
sin (

NOTT N UU’g)(\/— )COS(\/_ ! (\/_

Then, with Assumption F combined with | cosal <1 and [sina| < (1 A al),

I, =

£)de.

o0

1
L] < (uu)? (/ 22z~ CHAD g 4 o~ (2H+D) dx)
0 1

< C(uu)¥, (15)

since H € (0, 1). It remains to prove || <C (uu/'B?H =24 =1 (uw')#1/24 wu/) with C > 0. First, with an

integration by parts,

17 ([sn () o () oo (e )f(&)r

WKVUU

/

/wj S sm )aaz(sm(\/%:c) sin(\/z_ulx)f(\/%))dz),
4

where Assumption F insures the convergence of bracket term at co. But |87 sin(bwi) sin(uwg) sin(v'wi) f(wj)| <

Cuw’ since |sinal < |a|. Thus,
|| <I3+ 1y + Cud

with, using again Assumption F, |cosal < 1,

=5t . sin( N )Hmcos<\/u_ )&n(m)
Jr\/%cos(\/%x)sin(\/%z)”f( zu’)’dz
:%(uu’)HJrl/?/ooo sin(\/%x)‘( sin(\/%x)‘_y Sin( Zu/x)‘)xf(zHﬂ)dx
and
145\/%7 6: sin( b /z)sin(\/%z)sin( Z/u/:c)f’< zu/)‘dz

sin

z) ’x7(2H+2)dx.

:Qw H+1/2
ety

Both those integrals can be decomposed as f

. u . u
sin [ ——=u= ) sin
) ( vuu! ) ( vuu!
Vu ﬁ 1 00 . . .
v/ +f\/ﬁ/ﬁ---+f1 ---. Using |sinal < (Ja| A1), with
C > 0 denoting a constant which may vary from one line to the other,

[ () (i) s ()0
= 1n X 111 X 111 X X X
o 0 uu! uu! uu

2 Vuu'/B

< 22— CHAD) g0 < CB2H_1(u u/)l/Q—H
“Vuu! Jo B ’
li

Vuu'/B
I :/O sin (\/%x) sin (\/%x) sin (\/Z—u’

Vuu'/B
< B / 23 o~ QH+2) 4, < CBQH_l(u u/)l/Q—H,
0

uu

x) }x_(QH”)d:E
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132/\/1W/B sin(\/%x)‘( sin(\/%x)‘ + Sin(\/%z)’)Zf@HJrl)dz

1
§2/ $$_(2H+1)d$ < C(l +62H_1(UUI)I/Q_H),
Vaw /g

I42:/1 sin( s x)sin( Y x)sin( :
Noxral vuu vuu! vuu!
1
S/ SCQ $7(2H+2)d1' < C(l JrﬂQH*l(uu’)l/Q*H),
Vuu'

' U
sin z )|+ |sin ( x) sz(QHJrl)dz
(Vuu/)‘ Muu/

:I:) ‘x7(2H+2)dx

sin (\/%:c)‘(

<2 o~ CH+D) go <

sin g x | sin Y x ) sin v z) |2~ CH+2) gy
() () o ()|
1

vuu!
S/ 2 CHA2) gy <
1

This implies that it exists C' > 0 such that,
0571 (u u/)1/2+H(1 + ﬁ?Hfl(u u/)1/27H)

C(BH (wu) 2 4 (wu) 5272)
— |I2| < C(ﬁ_l(uu/)l/Q"'H + (UU/)B2H_2 + (UUI))

Is + 14

IN

IN

Combined with ([[F), this completes the proof of Lemma [.4. |

Next, let us define the error of discretization of the wavelet coefficients by

e(a,b):=¢1 n(a,b)+e2.n(a,b)+es3 ,(a,b):=dx (a,b)—ex(a,b), (16)

1ala,By=a 2 ([0S0 X (0= X (1) [0 (42 dt)

with § e5,(a,b):=a=1/2 % 4(
esn(a, —a‘1/2f P&t

) X(
t—b

2) X (
X
)X ()dt

The following lemmas give bounds on E‘Ei,n(a, k)‘2 fori=1,2,3.

Lemma 4.5 Let X be a Gaussian process defined by (E) with a spectral density [ satisfying (E) and Assump-
tion F. Assume also Assumptions W(1,3) and (S(s)). Then, with Cy defined in Lemma [f.4, if b is a r.v.
independent on Fx such that TP < b <T, —TF with p>1/2, fori=2,3,

E(|esn(a,b)|? | Fx) <CrC2(a> T2 15,51 +a(1 + g)ﬁnd), (17)
and  E(|e1,n(a,0)|* | Fx) <Cruvinla)
where
if s = 00, vi.(a) < 4135+ (a2 (iler + ool

2
ol +al ]| 83 );

. 9 20|48y P mé”””
ozfs<00,vl,n(a)—W(Z )
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n—1

2|9l sl a2 (Z L}+p2(1+2H))1/p251+2H+1/p2
H al/p2 (1 +p2(1 —+ 2H)) 1/p2 i=0
L6l cas [l oo n-t
s ey (Z Lm0z /75 5112/
aH=2+2/ms (1 + ps(1+ H)/2)*" N5

for all (p1,p2,p3) € [1,00)% x (1/H, c0) with p% + qij =1 fori=1,2,3.
Proof. (1) Bound of 1E(|517n(a,b)‘2 | Fx). To begin with,

E(jern(a,b)]” | Fx

)
énzl - t’i},(t;b)¢(t’*b)E((X(t)fx(ti))(X(t')fx(tj))mx)dtdt'

a

1% bit tﬁl tb t’b
E / / )R(ti,tfti,tj,t’ftj)dtdt’.

Lemma [£.4, with 2u = t — ¢; and 2u’ = ¢ — t;, implies

IE(‘{;‘Ln(a,b)’2 | fx) < Cfa_l(Sl —I—Sg), with

o5 < Z /t +l/tﬁﬁu ¢ (t/ab)dtdt’

sz

.5, Z /t +1/t]+1 (wed) uu’)|ﬂ|2H72+(UU/)H+1/2|5|71))1/)(15 b)7/)( ab)dtdt/

a
2,j=0

But, 51 < ( ‘1/1( )‘dt) where

n—1
Z |t - ti|1[ti7ti+l](t)
1=0

21

(18)

From Holder Inequality, S7 < quapr( )Hz:q for (p,q) € [1,00])? with 1/p+1/q = 1. Since Hz/z( )ch =

at/1|v|| £q» from Minkosvski Inequality,

HXHz:p:(/RXp(t)dt)l/p
([, (S tmns0) " G ra)”
=0

n—1 tit1 /p n—1 1/p
< (Z/t |t7ti|pdt) <(p+1) ”p(ZLPH) T,
=0 " =0

for p < oco. It follows S; < az/qu)Hiq X HxHip If s = 00, one can choose p = oo and ||x|| _ = dn max (1Ll oo)-
<i<n

Then,
S1 < a? My ||y, 02

If s < 00, one can deduce that for all 1 < p; < oo,

a’” 2/p1H¢H£01 = +I\ P ooy
Si S oy (ZOLpl ) gz,
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22

Next, in order to bound S,, one uses twice the inequality (z Ay) < x%y*~* which is valid for all 2,y > 0 and

0 < a < 1. Thus,

(uu')H A (uu')|ﬁ|2H_2 < (uu')(1+H)/2)|ﬁ|_(1_H) with ap = 1/2
(wu) A (uu) V2371 < (wu) /2B~ with ay = H

Therefore Sy < So1 + Sap with

i+1 ptigl t b b
5'21—2/ / ( )( u’)(1+H)/2|ﬁ|7(17H)dtdt/
e g W
522—22 / / ( )(uu’)(lJrH)/?|5|*(1*H)dtdt/_
t; a

0<i<j<n—1

On the one hand, when ¢ = j then b = %( —t) and

szé/on (B 2 ‘w( )’dt

where the functions x and g are respectively defined by (E) and

n—1 t;
t) ;l[ti’tm](t)(/ti +1| — 4| D2 = (- H)’w( )‘dt’)

Next, by using ¢ € L>*(R), (1 — H) € (0,1) and L; = t;41 — t;, one gets

tit1
TOES STl (IRl IR
=0 g

1+3H)/2
EHwHOO(thW (L),

Let X(t) == S0 1[ti7ti+l](t)Lz(-l+3H)/2|t — t;|+H)/2 By using Hélder inequality for all (p,q) €

1/p+1/q=1,

2 .
S < g a4l c [l 2ol Xl o

If s = 00, one can fix p = 0o and ||X||e < 572 and after

2
S < gpax [l [$ller x 0,72

If s < oo, [X|lze < (14 p(1+2H) Y (Z L1+p(1+2H)) (5,11+2H+1/p and after, for all 1 < py < o0,

=0

n—1

Sy < 2@1/q2|\1/)||oo|\7/’||£012 (ZL;+P2(1+2H))1/p25711+2H+1/P2_
H(1+po(1+2H)" NS

[1,00]? with

(21)

(22)

From the other hand, since 3 = 3 ((t/ +¢;) — (t+t;)) = 2(t' —t) > 0 for i < j and t € [t;, tip1], t' € [tj, j41],

and with 1 — H < 1,

bit tm t b N
S22 < / / ( )( o Y2 ¢ =g gt
t; t;

O<z<_]<n 1

/ / YOAHH) 2y (47) (L H) /27/1(tab)1/1( ab)|t7t’|H’1dtdt’
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() (e

for any (p, q) € [1,00]? with 1/p+1/q = 1. But for all p > 2

Lip s my2) nilL?“’(”H)/? 2
)(+p<+>/) (> z )

=0

< |y iy

£r(IR2) £9(R?)

(1+H)/2 X(t )(1+H)/2}

) oer

Next, with u = (¢ — ¢;)/a and v = (¥ — ¢x)/a, one gets

(e (-
§a2+q(1H)(/Rzﬁuv>1|1p(u)1/1(u)|qdudv+/ﬂzﬁuvd%dUdv)

1
<@ (2 + el [l [ 570 as)

orqi-m) [ _[P(@)()]?
<a / = p]a1— ) dudv

The last integral is equal to (1—q(1—H))_1 when p>1/H. Thus, Vps>1/H,

1122 /g 51
S99 9]l 2oz (11| Fas+1= qs(lojH)) L+ps(14+H)/2) 2/P3
< (Z L; )

< ; (23)
6711+H+2/p3 aH73+2/p3 (1+p3(1+H)/2)2/p3 et
If s = 00, one can fix p = 0o and ¢ = 1, and thus
_ 1
S < @ Wller ([¥ller + gl lloo) 30 (24)

Finally by summing up ([[9), (R1) and (4) if s = co, and by summing up (0), 3) and @3) if s < oo, one
gets the bounds of vy ,(a).

(2) Bound of E(|es,,(a, b)’2 | Fx). Since T}, is independent on Fx,

E(|e2,n(a,b)| 2 Fx)= / / t/ab)]E(X(t)X(t’))dtdt’
< /
a T,

1/,(%)\ (1 +lthar)”

from Lemma [L.1]. But, according to Assumption W(1,3),

E(3,(a,b) | Fx) < CpCla™! (/TOO (1+4)(1+ (t—b)/a)_3dt)2.

n

If T, > 1, then 1+ (t —b)/a < 1+ (t — T, + Tf)/a for all t > T, and with the change of variable v =
(t — T, + Tﬁ)/Tn,

/°° (1+1) ”
T, (14 (t— b)/a)3

IN

0 _ TP
Tna3/ (1+ 0T, + Tn3 Tr) "
TP=1 (a+vTy)

IN

T, a? / %dv =ad [Tﬁ_2p+Tn_p]
TP~

n

If T, <1, by using b < T,

/—(1+t) dtg/ 7(1+U+Tn)dv§a+la2.
0

T, (1—1—(1&—1))/@)3 (1-i—v/a)3 2

Eventually, one deduces ([L7).
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(3) Bound of E(|es,(a, b)|2 | Fx). Find a bound for IE(|e3,,(a, b)‘2 | Fx) follows the same steps than for
bounding E(|z€27n(a,b)|2 | Fx). |

Lemma 4.6 Under assumptions of Lemma @ and if s > 2H + 2 and

14 HED(—1)
. ICOET:ES 0,

no

E(|€n(a,ck)|2) <wp(a), and (nd,)v,(a) — 0. (25)

Proof. With (z +y + 2)? <3 (2% + y? + 2?) for all real numbers z, vy, z,
E(|€n(a, ck)}Q) < 3Ct FEvin(a)+6Cf Evyn(a)

where v; ,(a) and vy, (a) have been defined in Lemma [£.3.
o If s = 0o, from Assumption S(s), Mmao (n 5n) <T, =T, — oo. Thus,

(n6,) E(|en(a,c)’) < C1 (nd2H) +Cy (n6,)* "

which converges to zero as soon as n62+# — 0 and p > 3/4.
e If 1 < s < oo, from Lemma [L5, with (p1,p2,p3) € [1,00)% x (1/H,00), an optimal choice of py,p, ps will
depend on s. Hence, since IE (|Z|*) < (IE|Z|)” for any r.v. Z and « € [0,1] from Jensen Inequality,

1. if3<s, with 1+4+p; =s,

2s

! = 242 —2_ 2
+1)\7P1 P S— =
JE(§ j7d ) O P < MIT TS
=0

2.if 24+ 2H < s, with 14+ pa(1+2H) =s,

n—1 1 1 H (142H)s
IE( 3 Lz}+p2(1+2H)) R P
i=0
1
3. ifmax (2+ H,3 + 557) <'s, with L+ ops(1+H) =5,
=it (1+H)/2\ 55 JHH+Z L ayp (4D
IE(ZLz P3 ) S(Sn pP3 S Mss—l .p -1 5ns—1

i=0
However, the inequalities 1. and 3. may be extended respectively to 2 < s <3 and 2+ H < s < % + % using
a more sharp inequality which is I£( ) |xi|)aﬁ <EBE(Y |zil?)" < n*(E(|]z;]))" when (a,3) € (0,1]%

1 if2<s<3, with aﬂ:;—l,azlandﬂ:s—l

n—1
1+2\ P ,
B(Y L) 60 < My o
=0

3. if1+3H<s§%, with aﬁzﬁ—g,a:%andﬁ:s—%,

H+1 H+1

n—1 1 o
IE(ZLZH-I—;?) B5711+H+a5 <M : - (”52) S
i=0

» e H+1 3H+1 : _ 2 _ . Ht1
37 if S < s < 25, with aﬁ—pB,a—2Handﬁ—s S

e e 1+H 2H 2H
E(ZLi aﬁ) o el < M- (nd}) ™
i=0
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We finally obtain for n large enough and using nd, — oo and né2t# — 0 (necessary condition for

n—oo n—oo

s = 00),

H41

o FEvi,(a) <C (n&fl) s

,for 2+ 2H < s <max (2+2H , 5 + 357 );

o FEvi,(a) <C (n&fl)%r, for max (2+2H, 1+ 55) < s <max (2+2H, 2 + 5= );
1+H

e Fvi,(a) <C (n&%)ﬁ, for s > max (2 +2H, % + %)

(therefore, the first inequality is only possible when H < 1/4 and the second one when H < (/17 —1)/8).
Those three inequalities may be reduced to only one:

H41

Evyn(a) < C (nd};) ™ forall s>2H + 2, (26)

with 0(s) = s1,.1, 0 + (3 + %)1%+%§5<%+% + (s =1)1,55, 1. Hence, (ndn)Evin(a) — 0 when

n—oo
s>2H + 2 and
14 EEDE—D
n(s (s)+H+ _ 0

n—oo

To finish the proof of Lemma [£.q it remains to show (nd,,)[Evs ,,(a) — 0. From ([[7) it follows that Fuvs ,(a) <

n—oo
o0

C / g(x) fn(x)dr where f, is the probability distribution function of T}, and g(x) = 1(z<1) + L(z>1) 24,

0
Since p > 3/4, g(x) <1 for all z > 0 and ¢ is a non increasing map,

/Ooog(x)fn(x)d;c < /O%ms”‘Snfn(x)derg(%msn&n) /OO Folz) da

%msnzin
1 1
< ]P(T <§ 6n)+g(§msn6n)
< P(T,~ BT > BIL] - gmond,) + (5manda)’ ™",
My 715% 1 2-4
< g n2 5721 + (5 msnén) P’

from Bienaymé-Chebyshev Inequality since s > 2 and var (T},) < Mynd? from the independence of (L;)icmv-
Therefore (nd,) Even(a) — 0. |

Proof. [Theorem @] Following the same method that in the end of the proof of Bardet and Bertrand
(2007b), one obtains

E|l,(a) = Ja(a)] < Coa(a)'?, (27)
and from this, Lemmas @ and Slutsky Lemma, the proof is achieved. |

4.4 Proof of Proposition R.J]

Proof. It is obvious that

Ty(a) = /JR |07 ()] f(¢/a)de = A /]R D(ME — 1) (¢ a)de

_ /JR W(U)ff(é + = )dv.

Then, from a usual Taylor expansion, and since QZ is supposed to be an even function supported in [—A, A],

f”(ﬂ)\}/_ifw(v)fdv).

a

’IA H7/’||£2(1R)f 1/a) ’ = 2a2)\2 (_f}lxpgh{



J-M. Bardet and P.R. Bertrand 26

1+h

For A > 2A, then sup { f”(L)‘} < sup {|f"(z)|} < oo. Therefore, since ¢ satisfies Assumption
—A/A<h a z>1/2a

W(1,5), there exists C' > 0 such that,

~ 1
178 (@) = 18] gy F1/0)| < € 55 (28)

Let us denote I (a) (respectively Zy(a), N and S5V (a)) instead on I, (a) (resp. Z1(a), B,, and S, (a)) when
1 is replaced by ). Firstly,

%(47”12 /173}17;;(&2)}4]”2(2)&’) = 47ra/B}TZ(u)|4f2(é+%)du
)\:;o 47raf2(1/a)/lR|7:/;(u)|4du’

from Lebesgue Theorem. Hence, if (\,,) is a sequence such that A, — o0,

n—oo

)\n n— oo

B (sm@) — amaf1/a) [ 3] au (29)

Secondly, from the proof of Proposition [.1] and inequalities ([L0) and ([L1)), there exists C' > 0 not depending
on n and A,
_ 1/2-1/
BN /SN < 0T (a) (n max. k41 — cxl) ? forall ¢ € (1,2).

Thus, since Zy(a) is bounded, 6,(,)‘")/5‘,9") — 0 and Proposition @ becomes:

n—oo

Ondy
I (‘jj)lkn(“) 2, N0, 1).
Sn" (a) n—oo

Finally, using (P§) and (RJ), on deduces that for all a > 0,

) (@) = [0y £ 1/0) 2 (0.4 (1)) [ [0 ).

when (A, ), is such that ET, 1 0, ie when /\;5 nd, — 0. Since also A;lnén — o0 (to obtain

Xn A2
n—oo n—oo n—oo

a consistent estimator), then

1—d
—— <d'<1-d (30)

Moreover, Proposition @ has also to be checked. In its proof, IET, has to be replaced by F1,/), and since
the bounds C (1 A |0|7!) in Lemma [i.9 have to be replaced by C/A2 (1 A |8]71), then condition nd2 — 0

n—oo
U

has to be replaced by nd2/\> — 0, that is d’ > 1=

n—oo

which is satisfied when (B() is satisfied.

It remains to control €2 (a,cy) with Lemma @ and @ For all 1 < ¢ < oo, with 1/00 = 0 by conven-
tion,

[9all 0 = A2 [, and - [da]l gy = AOD2 1B,

Then, using the choice of (p1, p2,p3) obtained in Lemma @, Lemma @ becomes (with ), — 00):

n—oo

oif s =00, v1,(a) <CA, S

oifmax(2+2H,%+%)§s<oo,
H+1 2 —2

s5=3 2 _2 H+1 s—2—H H+1l
vra(e) < C(AT () TH AL T (06;) T AT (n )T )
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s—2—H H+1
= v1n(a) <C' AT (n)) " since0 < H <1ands>3;

e if 24+ 2H < s <max (2+2H, 3 + 757),

s—2—H
= wvia(a) <O N, nolt3H,

)
Condition (§) is now 1on v1,n(a) — 0 and then, conditions required on d and d’ are:

)\n n—oo
eif s=00, d> 2+ H)™ Y (31)
H—-d(s(H+2)—-1
eif max (24 2H , 3 + ) <s<oo, > }(I‘Sif ) ); (32)
—1)(2—-d(3H +2
oif 2+ 2H<s<max (2 +2H, 3 + L), 7> )(H+(13 +2) (33)
Finally, for b < T,, — T, with v satisfying Assumption W(1,5):
A2 t'—b / /
B(35(a,b) | Fx)= w ( - V(X (0)X (t) drat
_ 2
<Cy (a/\n)*1 ‘1/; — ‘ (1+|t|)dt)
s a)\n
o0 2
<@ ([ Wwluda)
TH/aAn
<lee (ﬁﬁ)({u*?’]w ) < <lec,eonr
— 9 f "b n TT’Z/GIAn 9 f ¢
Therefore the CLT holds when \) (n6,)!=%—0, i.e. 9d'+(1—d)(6p — 1)<0,
/ 1 .
= d' < 3 (1 —d) since p € (3/4,1). (34)
Combining conditions (B{), (B1)), (), BI) and (B4) on d and d’, one deduces:
1—-d 1-d
e ifs=o0, d>(2+H) " and — <d < —5
e if max (2 +2H % + %)§s<oo,
s+H—-(s(H+2)—1)d 1-d , _1—d
< .
H+1 ) <=5
o if2+42H<s<max(2+2H, 3+ 75),
(s—1)(2—d(BH+2) 1-d , _1—d
< —.
ma H+1 ) <d =5
[ |
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