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WAVELET ANALYSIS OF A CONTINUOUS-TIME
GAUSSIAN PROCESS OBSERVED AT RANDOM TIMES
AND ITS APPLICATION TO THE ESTIMATION OF THE

SPECTRAL DENSITY

By JEAN-MARC BARDET* AND PIERRE, R. BERTRAND**

* CES (SAMOS-Matisse), University Paris 1 Panthéon-Sorbonne, France

** Laboratoire de Mathématiques, University Clermont-Ferrand II, France

In numerous applications (Finance, Internet Traffic, Biology,...)
data are observed at random times. From a wavelet analysis, one de-
rives a nonparametric estimator of the spectral density of a Gaussian
process with stationary increments (also stationary Gaussian process)

observed at random times.

1. Introduction. The aim of this paper is a wavelet analysis of a
continuous-time Gaussian process which is discretely observed at random
times. Gaussian processes with stationary increments, and therefore also
stationary Gaussian processes, are considered. such processes admit an har-
monizable representation and are characterized by their spectral density
function, called f in all the sequel. The spectral density of the paradigmatic
example of fractional Brownian motions (fBm) follows a power law, that is
f(&) = Cl¢|~ A+ where H is called the Hurst parameter and C' > 0.

Two points are the core of this work: 1) A nonparametric estimation of the
spectral density on a finite band of frequencies is constructed and studied.
2) The process is observed at random times. Both these points justify the
use of wavelet analysis.

To our knowledge, there are very few studies in both these directions,
mainly Gao, Anh and Heyde (2002) and Lii and Masry (1994) for the first
point and only Begyn (2005) for the second one (but with irregular deter-
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ministic observation times). This is a sharp contrast with the large literature
devoted to the estimation of the Hurst parameter of a fBm or its general-
izations observed at deterministic regularly spaced discrete times.

Stress that the motivation of this work is not a theoretical refinement, but
modelling applications. As Engle and Russell (1999) has so rightly pointed
out "with the rapid development in computing power and storage capacity,
data are being collected and analyzed at ever higher frequencies. For many
types of data, the ultimate in high frequency data collection has been reached
and every transaction is recorded. This limit has been reached for financial
market [...] Transaction data inherently arrive in irregular time intervals [...]
treated as random variables.” Afterward, this limit has also been reached for
biological signals as heart rate obtained by Holter monitoring of ECG and
EEG, EMG or DNA sequences.

From the other hand, in some applications the behavior of the spectral
density on a finite band can provide relevant information, see for instance,
Collins and de Lucas (1993) or Bardet and Bertrand (2007b) for modelling
postural gait with a spectral density following two different power laws on
two finite bands of frequencies. Similarly in turbulence and other fields of
physics one wishes to determine the inertial range, that is the maximal finite
band of frequencies on which the spectral density follows a spectral law, see
Frisch (1995) or Papanicolaou and Sglna (2002). We guess this approach is
relevant in many other applications and the wavelet-based spectral density
estimator is an accurate (see Proposition cvg:Ip and results of simulations)
and robust (see Corollary 1)) estimator.

The remainder of the paper is organized as follow: Section 2 is devoted
to mathematical description. In Section 3 the main result, a central limit
theorem (CLT) for the estimators of the variance of wavelet coefficients, is
provided. In Section 4, an application is studied: a nonparametric estimation
of the spectral density. This estimator is applied to generated data and real

data in Section 5. Section 6 contains the proofs.

2. Description of the problem. In this paper, we consider Gaussian

processes X = {X(t),t € IR} with zero mean and stationary increments,
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but results will be extended in case where a polynomial trend is added
to such processes. Therefore X can also be written following harmonizable

representations (see for instance Cramer and Leadbetter, 1967),
(1) X(t) = / (¢ 1) FY2(e)aw(e), forall te IR,
R

where W (dx) is a complex Brownian measure, with adapted real and imag-
inary part such that the Wiener integral is real valued, and f is a Borelian

positive even function so-called the spectral density of X and is such that

(2) [ anig®) £ de < .

In the sequel, f will be supposed to satisfy also Assumption F defined below.
As a particular case, if X is a stationary processes, one will still denote f

the spectral density such that
3) X(t) = / U FI2(6) aW(¢),  forall t€ RR.
R

Even if their definition are different, in the sequel f will denote as well the
spectral density of a process having stationary increments or a stationary

process (see the explanation in Proposition R.T]).

Define also the o-algebra Fx generated by the process X, i.e.
(4) Fx :=oc{X(t), t € R}.

A path of such a process X on the interval [0,T,,] at the discrete times t;

fori=0,1,...,n is observed, i.e.
(X (to), X(t1),...,X(tn)) is known, with 0=1t¢ <t; <--- < t,, = Tp.

A unified frame of irregular observed times, grouping deterministic and
stochastic ones, will be considered. Let us assume first that there exists
a sequence of positive real numbers (d,)nenv and a sequence of random
variables (r.v. in the sequel) (Lg)ken (which could be deterministic real
numbers) such that

(5) Vke{0,1,....,n—1}, tpo1—tx = 0Lk, and &, — O.

n—oo
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It is clear that T;, = 6, (Lo + ...+ Ly—1). For Z ar.v. and a € (0,00), de-
note || Z]|o := (E(|Z|O‘))1/a if IE(]Z]*) < co. Now, assume that there exists
s € [1, 00] such that

Assumption S(s) (Lg)remnw s a sequel of independent positive random vari-

ables, independent to Fx, such that there exist 0 < mg < Mg < 00 satisfying

o if s <oo, ms < | Lglls < Mg forallk e IN.
o ifs=00, Moo < Lp < My, forallk e IN.

” can be a little

Remark that the hypothesis “(Lg)ge v independent to Fx
restrictive, especially in Finance, but this condition always seems supposed
in the literature (see for instance, Ait-Sahalia and Mykland, 2008).

The aim of this paper consists in the wavelet analysis of (X (t),...,X(tn))
in order to estimate the spectral density f. This method was already ap-
plied with in view the estimation of (respectively) the long-memory or the
self-similarity parameter of (respectively) stationary processes or processes
having stationary increments, see the seminal paper of Flandrin, 1992 and
its developments by Abry et al., 1998, Abry et al., 2001, Bardet et al., 2000,
Moulines et al., 2007 or Gloter and Hoffmann, 2007. Note that in all these pa-
pers times series (i.e. t; = i) were considered. This method was also applied
in Bardet and Bertrand (2007a, 2007b), for the special cases of Gaussian

continuous time processes regularly sampled with ¢; = ¢ A, and A,, — 0.

But what the wavelet analysis consists in? Let ¢ : IR — @ be a function so-
called the "mother” wavelet, satisfying some conditions (denoted W(m,))
specified in Section J. Let (a,b) € IR% x IR, and define dx (a,b) the wavelet
coefficient of the process X for the scale a and the shift b, such that

dx(a,b) := %/}R(b (t;b> X(t)dt

This family of wavelet coefficients satisfies the following property:

Proposition 2.1 Let ¢ satisfy Assumption W(1,0) and X be a Gaussian
process defined by (1) or () with a spectral density f satisfying (). Then,

(6)  dx(ab)=va [ ™0(ag) [ AWE) for all (a,b) € IR} x R
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and, for a >0, (dx(a,b))per is a stationary centered Gaussian process with

(7) E|dx(a, b)]2 =Ti(a) := a/lR [ (aw)|? f(u) du for all b € IR.

The proof of this proposition is grouped with all the other proofs in Section
. By considering varying cases of a and ), it is possible to estimate f (see
Section [). However, a straightforward computation of Z;(a) is not available

from (X(to),...,X(t,)) for two reasons:

1. on one hand, dx(a,b) is defined with a Lebesgue integral and cannot be
directly computed from data. Since the process X will be supposed
to have a.s. continuous paths but with a regularity ax < 1 a.s., an
approximation formula will be considered for computing wavelet co-
efficients. Thus, for (a,b) € IR} x IR we define an empirical wavelet

coefficient by

(8) ex(a,b) = \/Lanz:o (/;Hl TZJ(?) dt) X(tz)

2. on the other hand, a sample mean of |dx (a, b)]2 instead on IE|dx (a, b)‘2
is only computable. Thus, define the sample estimator of Z;(a) by
1 n

9) Jn(a) = Z ‘ex(a,ck)‘Q,

n+1 pr

where (cg)g is a family of increasing real numbers (so-called shifts). In
this paper, we will consider a uniform repartition of shifts, i.e.

T, —2TF
(10) cp =TP +k———" with p € (3/4,1).
n

In this example (cg)i<k<n is depending on T, since shifts could be r.v.
depending on random times (1, . .., t,). Another choices of (¢ )x are possible
(for instance ¢ = tx) but we have not been able to find an optimal choice
and simulations do not show differences between these choices. Remark that

the terms T are necessary to avoid border effects.
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3. Estimation of the variance of wavelet coefficients. The aim
of this section is the estimation of Zj(a) for 0 < amin < @ < Amar < 00
using the estimator J,(a) defined in (f). Let us consider first the following

assumptions on f and ).

Assumption F f is an even function, differentiable on [0,00) except for a
finite number K of real numbers wg = 0 < wy < -+- < wg, but f admits
left and right limits in wy, with a derivative f' (defined on all open intervals

(W, Wrt1) with wg 41 = 00 by convention) such that

(11) | anig®) 17 de < oe.

Moreover, there exist Cy,Cy >0 and H € (0,1), such that V|x| > wk
(12)  f(@) < Cola7*and - f'(@) < Cp fo72F,

Here there are several examples of processes having a spectral density f

satisfying Assumption F:

Example 1 o A smooth Gaussian process having stationary increments;
e A fractional Brownian motion with Hurst parameter H € (0, 1) satis-
fying IEX (1) = o2 is such that f(¢) = 0® HT'(2H) sin(zwH) |¢|~CH+D /.
e In Bardet and Bertrand (2007a), the family of multiscale fractional
Brownian motions is introduced for which f(£) = o €]~ CH:+D for
€] € [wk,wrt1] where wg = 0 < w1 < - < wWwrg < Wk41 = +00,
Hy<1,0< Hg <1 and (04,H;) € Ry x R fori=1,...,K — 1.
Then Condition (@) and Assumption F are checked with H = H.
o A stationary process with a bounded spectral density such as Ornstein-

Uhlenbeck process.

Denote f(£) = [ e " f(x) dz the Fourier transform of f € L'(IR) N L*(IR).
Next, let (m,r) € [1,00) x IRy and the family of assumptions on 1):

Assumption W(m,r) ¢ : R +— € is a differentiable function satisfying:
eVnc N, [R[t")(t)|dt < oo if n <m+1 and [Rt"P(t)dt =0 if n < m;
* 3Cy > 0 such that V¢ € IR, (1+[€])" (J(&)] + [/ (€)]) < Cy.

The first condition of W (m, r) implies that ¢(¢) has a zero of order (m+ 1)
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at zero and is m times continuously differentiable. These conditions are mild
and are satisfied by many famous wavelets (Daubechies, Lemarié-Meyer,...).
It is also not mandatory to choose ¥ to be a “mother” wavelet associated to
a multiresolution analysis of IL?(IR) and the whole theory can be developed

without resorting to this assumption: the choice of ¢ is then large.

Now, it is possible to establish a CLT satisfied by .J,,(a) which is computed
from the observed trajectory (X (to),..., X (tn)).

Theorem 3.1 Let X be a Gaussian process defined by (]) or (@) with a
spectral density f satisfying () and Assumption F, v satisfying Assumption
W(1,3) and (cx)x defining by (10). Under Assumption S(s) with 2 + 2H <
s < oo and if 6, is such that

HAD (=) 1 1
s— 1 1 3 1
14+6(s,H , o SHT1 fstsg<s<itam
nén (3 L> 0 U}Zth G(S,H) = (H+<1|>)(8—1) 3 1 < <2 1
neo Tam o Uitagsss2+y

1 ifs>2+%

(1/3 < 0(s,H) <2), then Ya € [amin, Gmaz),

(13) VET, (Ju(a) - Ti() 2 N[0, dma? / [D(az)|" £2(=) dz).

n—oo

From the computation of the variance of T,,, the convergence rate of the

CLT (@) is (nd,)"/2. Therefore when H is unknown, Theorem B.]] always
s—1

holds when s > 4 and n5 ~* = O(1) and its convergence rate is n#—2 and

o(nl/ 4) when s = co. When H is known, this results can be a little improved
1_6(s,H)
and the convergence rate is o(n2 #0GH) ),
4. A nonparametric estimator of the spectral density. Let us

consider a family (¢))ae R such as

a(z) = %e”w%) Ve R — G\(6)=VAS(AE-1) VE€R,

and 1) satisfying 12({) = 0 for |{] > A with A > 0. Note that for all A > A, ¥

satisfies Assumption W(m,r) when ¢ satisfies Assumption W(m,r). Now,
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T(@) = [l Br ()P F(u/a) du — F(1/a) 161 when A — oo under weak
hypothesis. Therefore for 0 < &, let us define fV &) = Jr(f‘)(l/g)/ [E

where J,SA) denotes J,, when v is replaced by 1, and

n

ZIHZI i/:i+1%(£(t—ck))dt2

Hl/}ng n+l i

V)

)

with ¢ = TP + n (T,, — 2TPF). Using an appropriated choice of a sequence
(14, ), one obtains:

Proposition 4.1 Let X be a Gaussian process defined by (@) or (§) where
the spectral density f is a twice continuously differentiable function on IR*
satisfying (B) and Assumption F. Under Assumption S(s) and W(1,5) and
if V¥ satisfies @(5) =0 for |§| > A with A > 0, then V¢ > 0,

T, 47 i) W(u)rldu
14) /<2 (FP(e) = fe)) 2 N[0, =2 f2(¢) = :
() 50 @ = 1©) = N0, 7 O 2 = )

if 0 = Csn~% Ay = C\n?, where 0 < 2 (1 —d) <d <3 (1-d) <1 and
o ifs=o0, when d> 2+ H)!

e ifmax(2+42H, 3 + 3)<s<oco, when (s—1— (sH +2s—1)d) <d'(H + 1);
e if2+2H<s<max(2+2H, 3+ 57), when (s—1)(2—d(3H +2)) <d'(H+1).

Moreover, under W(m,5), [t"¢(t)dt = 0 for all n < m and any wavelet

coeflicients of any polynomial function with degree less or equal to m are
An)

f

vanished. Therefore, the estimator is robust since

Corollary 4.1 Under Assumption W(m,5) with m € IN*, Proposition [/.1

holds when a polynomial trend with degree less or equal to m is added to X .

The following Table 1 summarizes the “optimal” choices of d’ (in order to

maximize the convergence rate of f,) following several cases.

5. Numerical experiments. For the numerical applications, one has

chosen:

1. ¢ is chosen such as ¥(¢) = exp ( — (€] - (5 — €))7 1) 11¢j<5(€) which
satisfies Assumption W (m,r) for any (m,r) (and ¢ (€) = 0 for €] > 5).
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H known H known H unknown H unknown

On fixed 0n non-fixed On fixed dn non-fixed
Choiceof d | d (> sisi=7) | simmsm tr | d(25+55) | s+55
Choice of d’ Ldtg % AR 2(25;71:&)—&—&
Convergence n20-d-5% R e n20-d-5 no—s %

TABLE 1
Optimal choices of d' (and therefore (\n)) and convergence rate of f, (the case s = oo is
obtained as the limit of ratios) with 0 < k arbitrary small.

2. 0, = n~96 for insuring the convergence of ]‘A}(L)‘")(f) for any H € (0,1)
and s > 3.
3. Ay = n? with 1/6 < d’ < 1/2. However, admissibility condition on

4 > A = 5. Moreover, for removing the

wavelets (1), ) requires that n
bias term, d’ has to be chosen large enough following n. Thus, after

numerous simulations, we have chosen d’' = log(15)/log(n).

5.1. Estimation of the spectral density of a fractional Brownian motion
observed at random times. For a standard (IEX?(1) = 1) fBm with Hurst
parameter H, f(¢) = C(H)|¢|~21~1d¢ with C(H) = (HT'(2H)sin(nH)) /7.
Very large samples of fBm can be generated using the circulant matrix em-
bedding method (see Bardet et al., 2003) which is a very low time consuming

method. Four different kind of random times are considered:

1. (T1): non-random uniform sampling, such that Ly = 1 for all k € IN*;

2. (T2): exponential random times, such that IEL; =1 for all k € IN*;

3. (T3): random times such that for for all k& € IN*, the cumulative
distribution function of Ly, is Fp, (z) = (1 — 27*)1;5>1 = FL} < 00
for all p < 4 and IEL} = oo;

4. (T4): random times such that for for all £ € IN*, the cumulative
distribution function of Ly is F, (z) = (1 — 27%)1,>1 = EL{ < 00
for all p < 2 and IEL? = cc.

An example of such estimation of the spectral density for H = 0.2, N =
50000 and random times T2 is presented in Figure (b.1l). The results of
simulations are also provided in the Table (b.1]).
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10- 25F

— Estimation of the spectral density — Logarithm of the estimator of the spectral density
— Spectral density — Logarithm of the spectral density

—— Confidence intervals 2 — Logarithm of the intervals
N
N -

Estimation of f

Logarithm of the estimator of

F1Gc 1. An ezample of the estimation of the spectral density (left) and its logarithm (right)
of a FBM observed at exponential random times (T2) with confidence intervals (H = 0.2,
N = 50000).

Comments on simulation results: 1. the larger N the more accurate the
estimator of f except for case of random times T4 (which is a case not
included in conditions of Proposition [.1]); 2. The results are similar for T1
and T2, a little less accurate for T3; 3. the smaller H the more accurate the

estimator of f.

5.2. Estimation of the spectral density of the stationary Ornstein- Uhlenbeck
process. Here, instead of FBM which is a process having stationary incre-
ments, we consider the stationary Ornstein-Uhlenbeck process which is a
Gaussian stationary process with covariance r(t) := exp(—«|t|) and there-
fore with spectral density f(£) := a(n(a? + 52))_1. In such case, since this
spectral density is an analytic function, there exists more accurate non-
parametric estimator (see for instance, Ibragimov, 2004). However, to our
knowledge, the case of paths observed at random times is not considered is
this literature. The results of simulations are provided in the Table (F.2).

Comments on simulation results: 1. the larger N the more accurate the es-

timator of f for all choice of random time; 2. The results are similar for T1,
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1 | | H=02 | H=05 | H=038 |

T1 | VMSE of fy (1) 0.47 0.65 0.77
MISE on [0.3, 5] 2.53 13.50 80.89
T2 | VMSE of fn(1) 0.65 0.67 0.75
N =103 MISE on [0.3, 5] 3.64 10.65 39.85
T3 | VMSE of fy (1) 0.42 0.72 1.20
MISE on [0.3, 5] 2.48 7.83 55.20
T4 | VMSE of fn(1) 1.03 3.34 2.44
MISE on [0.3, 5] 6.07 84.05 144.40

1 | | H=02 | H=05 | H=038 |

T1 | VMSE of fn(1) 0.35 0.37 0.79

MISE on [0.3, 5] 0.95 3.90 57.19

T2 | VMSE of fn(1) 0.45 0.47 0.29

N =10% MISE on [0.3, 5] 1.04 3.17 16.26
T3 | VMSE of fy(1) 0.47 0.46 0.95

MISE on [0.3, 5] 1.20 4.91 26.6

T4 | VMSE of fn(1) 0.61 0.61 1.74

MISE on [0.3, 5] 2.74 9.55 49.55

1 | | H=02 | H=05 | H=038 |

T1 VMSE of fn(1) 0.36 0.30 0.40

MISE on [0.3,5] 0.81 2.60 10.77

T2 | VMSE of fn(1) 0.21 0.22 0.31

N =5-10% MISE on [0.3, 5] 1.07 2.07 7.65
T3 | VMSE of fn(1) 0.34 0.26 0.48

MISE on [0.3, 5] 0.74 3.17 13.3

T4 | VMSE of fn(1) 0.40 0.56 2.59

MISE on [0.3, 5] 1.02 5.69 41.41

TABLE 2

Consistency of the estimator J/t\N in the case of paths of FBM observed at random times
(50 independent replications are generated in each case).

T2, T3 and a little less accurate for T4; 3. surprisingly, the case a = 1 is
not clearly better than oo = 0.1 despite the fact that the larger « the less

correlated the process.

5.3. Estimation of the spectral density of heart inter-beat series. Heart
inter-beats of several patients have been recorded during 24h (see an example
in Figure p.J). These data has been kindly furnished by professor Alain
Chamoux and Gil Boudet (Faculty of Medicine, University of Auvergne,
Clermont-Ferrand). We decompose these data in 3 temporal zones following

the activity:
e Quiet activities (¢ € [1,28000] in seconds);

e Intensive activities (¢ € [28000, 51400] in seconds);
e Sleep (t € [60000,83400] in seconds).
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| =01 | a=1] a=10

T1 | VMSE of fn(0.3) 0.51 0.22 0.020
MISE on [0.3, 5] 0.022 0.014 | 0.00067
T2 | VMSE of fn(0.3) 0.30 0.30 0.021
N =103 MISE on [0.3, 5] 0.010 0.024 0.0010
T3 | VMSE of fn(0.3) 0.36 0.23 0.018
MISE on [0.3, 5] 0.00052 | 0.015 | 0.00052
T4 | VMSE of fn(0.3) 0.28 0.23 0.032
MISE on [0.3, 5] 0.016 0.016 0.0045
| | a=0.1 a=1 a =10
T1 | VMSE of fn(0.3) 0.20 0.18 0.017
MISE on [0.3,5] 0.0033 0.0088 | 0.00031
T2 | VMSE of fn(0.3) 0.14 0.18 0.019
N = 10% MISE on [0.3, 5] 0.0032 0.0092 | 0.00036
T3 | VMSE of fN(0.3) 0.17 0.18 0.016
MISE on [0.3, 5] 0.0027 0.011 0.00032
T4 | VMSE of fN(0.3) 0.18 0.13 0.024
MISE on [0.3, 5] 0.0058 0.0095 | 0.00037
| | a=0.1 a=1 a =10
T1 | VMSE of fn(0.3) 0.14 0.10 0.012
MISE on [0.3,5] 0.0016 0.0045 | 0.00015
T2 | VMSE of fn(0.3) 0.26 0.13 0.011
N=5-10% MISE on [0.3, 5] 0.012 0.0055 | 0.00014
T3 | VMSE of fn(0.3) 0.18 0.14 0.012
MISE on [0.3, 5] 0.0023 0.0049 | 0.00017
T4 | VMSE of fN(0.3) 0.16 0.16 0.017
MISE on [0.3, 5] 0.0084 0.034 | 0.00019

Consistency of fN in the case of paths of stationary Ornstein-Uhlenbeck process observed
at random times (50 independent replications are generated in each case).

Applying the spectral density estimator on those 3 sub-data and plotting its

log-log representation for frequencies in [0.02, 1] Hz, we observe that:

e in zone “Sleep” (see Figure @), only one regression line could be

computed for frequencies in [0.04,0.5] Hz which is the usual spectral

TABLE 3

interval considered by specialists; in this zone H~ 0.99;

e in zone “Quiet activities” (respectively “Intensive activities”, (see Fig-
ure b.J), two regression lines could be drawn for frequencies in [0.04, 0.5]
Hz, distinguishing the orthosympathic and the parasympathic spec-
tral domains. Using an algorithm computing the “best” two regression
lines (see for instance Bardet and Bertrand, 2007b), one obtains that
H ~ 1.34 (respectively H ~ 1.44) in the orthosympathic domain which
is [0.04,0.09] Hz (respectively [0.04,0.11] Hz) and H =~ 0.89 (respec-
tively H ~ 0.79) in the parasympathic domain which is [0.09,0.5] Hz

(respectively [0.11,0.5] Hz).
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Fi1G 2. An example of heart inter-beats during 24h

5.4. Estimation of the spectral density of log-return of a share. One con-
siders the price of share Total during a day at Paris (see Figure p.4)). These
data has been kindly furnished by Crédit Agricole Cheuvreux, CALYON
(Paris). Applying the spectral density estimator and plotting its log-log rep-
resentation, we observe that durations fit an exponential law with mean 11
seconds and that the spectral density is linear in for frequencies smaller than
0.008 Hz and has an erratic behavior at higher frequencies. The critical fre-
quency corresponds to a time lag of 125 seconds and could be interpreted as
the frontier between events and regularity. Remark that for high frequencies

a Gaussian distribution is not appropriated.
6. Proofs.

6.1. Proofs of useful lemmas and Proposition [2.1. In the sequel, the fol-

lowing lemmas will be useful:

Lemma 6.1 Let X be a Gaussian process defined by (1) with a spectral
density function f satisfying (3). Then there exists Co > 0 such that

(15) |IE(X(t1)X(t2))] < Co(1+ [t1])(1 4 |t2]) for all (t1,t2) € IR?.
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Logarithm of the estimation of f
\/— —— Logarithm of the interval

Logarithm of the estimation of f
\ —— Logarithm of the interval

IS
T

Logarithm of the estimator of f
w
T

~
T

~log(0.11) : 10g(0.5)

N ‘ O

.
4 -35 -3 -25 -2 -15 -1 -05 0
Logarithm of the chosen frequencies (Hz)

log(0.04)

-2
-4 -35

F1a 3. Log-log representation of the spectral density estimator during “Sleep” zone (left)
and “Intensive activities” zone (right)

Proof. For all ¢t € IR, we have
2 _ ite 1|2 Lo >
Bx0) = [ |1 pode <2 [P r@as s [ de
< @E+8)x [P r©)d

This implies E(X(¢)?) < Co (1 + [t|*) where Co = 4 [ (1 A [€]%) f(€) dE.
Then, by using Cauchy-Schwartz inequality, one deduces ([[5). [ |

Proof. [of Proposition R.|] Firstly, one can show that for all a > 0 and
b € R, [Ed%(a,b) < oo. This induces that dx(a,b) is well defined. Indeed,

one has

Ed3% (a,b) = // ( ) (t2a_b>E(X(tl)X(tz))dtldtQ
//‘ (tl )Hw< > (1 + [t1]) (1 + [t2])dtydts

<aCy (/IR [(u)] (1+ b + \au\)du)2 < 00,

where we have used successively the bound ([1F), the change of variable

u = (t—b)/a and the first condition of Assumption W(1,0). Next, one turns
t—>b
to the proof of the formula (f). It is obvious that / ‘¢(—)‘ dt<oo and
R a
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Logarithm of the estimator of f
o

6 . . . . . .
0 05 1 T1.5 s 25 3 ] = 5 5 ” 3 >
emps en secondes x 10 Logarithm of the chosen frequencies (Hz)

Fic 4. An example of quotation of a share during a day, i.e. 8.5 hours (left), and the
log-log representation of the spectral density estimator (right)

/ ’(eitg - 1)f1/2(£)‘ dW (€) < oo since the condition () holds. From the
R
Fubini Theorem for stochastic integral (see [[[§, Lemma 4.1, p. 116]),

dX(a,b):/qup(?) X(t)dt:/le,Z)(t_b)UB (e“5—1)f1/2(£)dW(£)]dt

a

~ [ @ = ne(=2)a s egare)

But [p (e — 1) 1&(%) dt = ae® [ y(u)du = ae® E(a@ for all
(a,b) €]0, co[x IR, which implies () and dx(a,b) is a Gaussian centered r.v.

with variance Z;(a). Moreover, for all a > 0 and (b1, bo) € IR?,

(16) E(dx(a, bl) dx(a, bz)) =a /B

0 ¢ ag)|” 1(6) de.

Thus for a given a > 0, IE(dx(a,b1) dx(a, b)) is only depending on (b —bs)
which induces that (dx(a,b))per is a stationary process. [ |

From formula (f), it is clear that ¥(ay,az2) € [@min, Gmaz)?, Vb1, b2, 0 € IR,

IE(dx(a1,b1),dx(az,b2)) = +/araz -y(ba — b1,a1,a2)
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=~

(A7) 2O araz): = [ ™ h(ar6) Dlasg) 1(6) de.

Lemma 6.2 Let ¢ verify Assumption W(1,2) and f be an even function
satisfying (B) and Assumption F.

1. There exists C > 0 depending on ¢, f and ames such that ¥(ay,as) €
[@mins Gmaz], 17(0,a1,a2)| < C (1A |9|_1) for all 0 € IR.

2. The function vy is derivable with respect to 6 and there exists C' > 0
depending on ), f, Gmin and Gmqx such that ¥(a1,as) € [amin, amax]27

0
170, a1, a2)| := fa—g(aal,@)’ <C'(AA07) for all 6 € IR,

Proof. [of Lemma [6.29] From Assumption W(1,1/2), 3¢ > 0 such that
(18) D) <c(LAEf) forall &€ R,

Indeed, from one hand, |1;(£)| < |[#[lL1(ry < oo. From the other hand, ¢ €
W(1,1/2) implies that 1 is twice continuously differentiable and (0) =
12’ (0) = 0. From Taylor-Lagrange Formula, for all £ € IR*, there exists
& € IR with [&| < |¢| such that (&) = %-52 x 1" (&). This induces

V()] < % €] x (/ t2 - 1p(t)] dt) providing the second bound of ([[§).
R

To show the first item, inequality (L) implies that

IN

= 2
[ soa < @ ([ et [ reae)

§1>1

< A1v a4)/ (LAE2)f(€)dE < o0,
R
with C > 0 depending on ¢, f and 4. From Cauchy-Schwarz Inequality,
Y0.a1,0) < FAVa) v ad) [ (1A f(E)de.

Moreover, with f(w;") and f(wy )) the right and left limit of f at wy, for all
1<k<K-1,0¢c R and (a1, az2) € [amin, Gmaz)?,

[ ) dlast) f6) do

Wi
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_ % ( iewkﬂf(wlzﬂ);(alwkﬂ)@(awkﬂ) - eié)wkf(w;)g(awk)lg(azwk))
w41 06 = i o b " W'
- [ S [1©9@Ba) + 1O (P @6 aag) + ardlar§)i aat)) | de.

The same result remains in force for £ = 0 and k£ = K. Indeed, by using
(I§) combined with Assumption F, one deduces that V0 € IR, ¥(ay,az) €

[amin, amam] 25

lim e £(&) (ar1€) Plazg) =0 and  lim % f(&)9h(a1€) d(az€) = 0.

Thus, by summing up and using Assumption F, V¥ € IR, ¥(ay,az2) € [amin, Gmaz)?,

’7(9’ ai, (12)
K

= —% (eww’@(mw)lg(aww - efwwkg(—alwk)@(—azwk)) (f(wi) = Flwp)

7 / O ()5 (@r1€) Blaz€) + £(€) (1 (a1€)D(az€) + asD (@) (asg)) | de

since the integral of the r.h.s. of the previous equality is well defined. Then,

O ana)| < m(%Zifwk - @)

+ | [1£1©3@€)d06)] + 17O (anl[P(@1€)026)| + ] [ D€ (a26) )] ).

It remains to show the convergence of the previous integral. Using the same
trick as in Formula ([[§),under Assumption W(1,1/2), ’W )| < (A€

with ¢ depending on ¥ and amaz. So, for all (a1, as) € [amin, Gmas)?
[ [1£©5@&B ()| + )l (7 (@1€)Daz)] +laal [3(ar) (ax6)]) ] de
<t [ mal O]+ (o] + )€ de
+e? [ 1O+ (] +laal s (€)] de

<o [ [@nlgh 171+ ALl - 1fE)) d < o

where C' > 0 and this completes the proof of the first item.
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Eventually, one proves the second item. The differentiability is obvious and
P0ana) = i [ e ed@e)dlase) F)de.

Assumption W(1,1/2) implies that Va € [amin, Gmaz) ]a{\l/zw(af)] < Cy
for all ¢ € IR. Combined with ([§), this induces that Ya € [amin, maz),
0elR,

W)l < [ 0@ [Paas)] £6) e

2 2 5 d Ci d
Panar)? [P 1@ + e [ )

<
< C,
with C' > 0 only depending on 9, f, amin and ampae.. Using the same argu-

ments as for the first item, V0 € IR*, (a1, a2) € [amin, Gmaz)?,

K
Z ( Ok o (arw) i (azwr) +

CblP—‘

’}/(9,&1,&2) =

N———

(F) - )
= 5 ) el <£>Z<a1£> Paat) + £8P @i Flaze) +
B N —
+££(6) (a1 97 (@16)(a2€) + a2 )i (a26) ) | de
<C
g

and gz |

+€72€wkwk¢(_alwk)$(_a2wk)

and therefore |v'(0,a1,a2)| < —, with C' > 0 only depending on ¢, amin

6.2. Proofs of Proposition and p-3. Since Z;(a) is obviously defined
from |dx (a, b)‘2, we begin with the study of
1 n

(19)  IL,(a) = o] l;)‘dx(a,ck)]2, for a > 0 and n € IN*.

For n € IN* and a € [amin, Gmaz], define also:

) st s S| e e
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Proposition 6.1 Let X be a Gaussian process defined by (1) or ([{) with
a spectral density f satisfying (B), ¢ satisfy Assumption W(1,1). Then
if (cx)r is a family of real numbers such that ¢; < ca < ... < ¢p,

n maxj<g<n{Cit1 —ck} — o0 and 3C" > 0 satisfying Vn € IN*

n—oo

— < C" mi —
max {ersn — cpp < CF min {cppr — opp < 00

then Ya € [amin, Gmaz),

. (In(a) — T1(a)) 2, N(0,1).

Sn(a) n—00

(21)
Moreover, there exist 0 < Cp, < Cyr not depending on n such that Yn € N*,

1/2
(22) O < Snla) (n max {exar —ex})' < O,

The proof of Proposition [.] relies on Lemma 6.3 and the following Lemma
which is a Lindeberg CLT (see a proof in Istas and Lang, 1997):

Lemma 6.3 Let (Yni)i<i<N, Nev+ be a triangular array of zero-mean Gaus-
sian r.v. Let By 1= maxj<i<n Zé\le lcov (Yni, Ynj)| and Viy := N, Y
S% = war (Vy). If A}im g—N =0, then Sy' (Vv — IE(Vy)) converges weakly

to a standard Gaussian random variable.

Proof. [of Proposition B.1]
Consider Y, ; = (n + D™Y2dx(a,¢;) for i =0,...,n and

Bp=(n+1)"1 maxj<;<n { Z?:o lcov (dx (a,¢;),dx(a, cj))|},
51% = (n + 1)_2 zT'L:O Z;’L:O cov (dg((a, Ci)’ d%{ (a’ Cj))

But, by using Formula ([[7), V(a, a1, as) € (0,003, (b1,b2) € IR?
cov (dx(a,b1),dx(a,bs)) = avy(by —ba,a,a)
Cov (d?}((al, bl), d%{(ag, b2)) = 2 (alag) ’)/2(1)1 — b2, aq, ag),

since variables dx (a,b) are zero-mean Gaussian r.v. Therefore,

By =a(n+1)"" maxo<icn { Y=o [v(ci = ¢j,a, a)\}
S2=2a?>(n+1)"2%", > 7=0 72 (e; — ¢j,a,a)



20 J.-M. BARDET AND P.R. BERTRAND

Let p and ¢ be such that 1/p + 1/¢q = 1 with (p,q) € (1,00)2. Then the
Hoélder Inequality implies that

B, < Ca-n"7!x max {(i ")/(Ci —¢j,a,a) ’p)l/p}.
=0

0<i<n

Lemma p.2 i) implies that for every 1 < i < n, for n large enough,

n n
> "Y(Ci —Cj7a7a)’p§0(# {0<j<nfe—¢| <13+ |a _Cj|7p)

j=0 =05 |ei—¢;|>1
<c 2 . —p
< ( e P + Z [I% =l Juin | Jeks1 = Ckﬂ )
0<k<n—1 7=0;ci—c;|>1
(235 20(_min_ fexsr — cxl) 1+ (pmin Jee+s = cl) Y ).

£>(ming<p<n—1 |ckt1—crl) 7!

oo
Since p > 1, Z |¢|7P < oo is finite and thus
(=1

£2(ming<p<n—1 ’Ck+1—ck‘)71
Therefore,
—-1/p
(24) b < Car{nx min Jan-alf .
with C > 0 depending only on ¥, min, Gmaez and p. Now, a lower bound for
S2 is required. VYa € [@min, Gmaz), 0 € IR — (0,a,a) is a continuous map

and v(0,a,a) = [ ]@(a§)]2 f(&)d¢ > 0. Therefore, for all a € [amin, Gmaz],
1
there exists 0, > 0 such that v(0,a,a) > 3 -v(0,a,a) when |0] < 6,. Then,

S2 > Cra*n?~4%(0,a,a) # {0 <14, <n, |c; — ¢;| <04}
> O a®n"292(0,a, )#{0<w<n =] <rggx4ck+l—ck|<e}
> (! g2 A2 _
(25) > C1a”v7(0,a,a) b, (n 0<rl£1<ax |41 ck‘)

Thus, for n large enough, from (RJ) and(®4),

&<C nl/z_l/p( max |ck+1—ck}) ( min |cpp1 — o

)—1/p
S, — 0<k<n-—1 0<k<n-—1
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Therefore 3,/S, < C (n 0<rl£1ax k1 — ck])l/%l/p with C > 0. Next for

N2/ . B
any p € (1,2), hrrgo (n o x| |ck41 — k) = 0, thus, nh_)rréoﬂn/Sn =0

and the assumptions of Lemma [p.J are fulfilled.

Finally, (§) and Assumptions imply S,,(a)? > Cy (n o e k1 — ck})

with Cys > 0. Moreover, using the bound (R3)) for p = 2,

n

Y (e — ¢j,a,a) <C( min |cpyq — ck|)_1
0

iz 0<k<n—1
n n 1
2 2 -
= Sy <Ca*n” ZOZ ¢i = ¢ja,a) < Cpy n(ogggg ks =)
Therefore, inequalities (P2) are proved. |

Proposition 6.2 Let X be a Gaussian process defined by (1) or (@) with
a spectral density f satisfying (), ¥ satisfy Assumption W(1,1). Then if
(ck)k is a family of r.v. independent to Fx such that ¢ = ¢1 + %(cn — ),
with n =Y IE(c, — cg) — 0 and var (c, — cg) — 0, then (1) holds with

n—oo n—oo

(26) lim (E(c, — co)) S2(a) = 47 a® /IR }&(az)}zlfQ(z) dz

n—oo

Remark 6.1 For (c)y satisfying ([L4), under Assumption S(2), Proposition
6.3 holds when n'/28, — 0 because E|T,—ET,|> <né2 maxi<p<n FLg.

n—o0
Proof. [of Proposition

(ck) is a sequence of r.v. independent to Fx. Therefore, (dx(a,ck))r as the
same distribution than (dx(a,cr — co))x (stationarity of the sequence), and
we can only consider here the case: ¢ = k7,,/n with 7, := ¢, — ¢o. Define

n

I'(a) = Z d% (a, Ecy,).

k=0

It is clear that ([E'cg)1<k<p is a deterministic sequence and therefore

(27) m‘gn;(f)l@ n%o N(0,1).
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Nowadays, one has to check that the error I] (a) — I,,(a) is negligible before
Sp(a) in norm L2(2). But

_ B ~1/2 ~1/2
Sn(a) > Cu (nogr/?é;(—l |E (k1 — cx))) >C x (FEr,) "

Therefore, it suffices to prove that lim FEr, x E[(I(a) — In(a))z] = 0.
n—oo

Since the r.v. ¢; are independent on Fx, one gets

E[(I}(a) - [,(a))*] = B[ B[(I(a) - In(a))* | Fx]]

1 n
=~ 17, 2 P (o o) = di (0. ) (05 (0 o) = di (a,0)) 7]
k,k'=0
= 20 i JE{VQ (Ecy — Ecy,a,a) — y*(Ecy — ¢, a,a)
(n+ 1)2k,k/:0

—v*(cx — Ecpr,a,a) + 42 (ck — e, a, a)}.
Next, from Taylor expansions,
Y (Ecy—cpr, a,a) =7 (IBcy—IEcy, a,a)+ 2(IEcy—cp) X -+ -
/01 Y(Ecy—IEcp+ (Ecy — c),a,a)y (Ecy—IEcy+\ (Ecy — cxr), a,a)d\
YA (cx—IEcy:, a,a) =72 (cr—cpr, a, a)+2(cp—IFep) X - -

1
/ ’)/(Ck—ck/—{—)\ (]Eck/ - Ck/), a, CL) ’)//(Ck—ck/+)\ (Eck/ - Ck/), a, CL) dA.
0

From Lemma .2, 3C > 0 such that |y(6,a,a)y'(6,a,a)] < C x (1A0~?) for
all § € IR. One can deduce that

‘72 (Ecy—Ecy,a,a) —? (Ecy—cy,a,a) —~? (ck—FEcy,a, a)—i—’y2 (ck—cpr,a,a) }
1
< Cley — Eep| % / (LA 2 N) + (1IN0, (N)dA
0 9 b 9 b

with el,k,k/()\) = E(Ck—ck/)-l-)\(ECk/—Ck/) and 62,k,k/()\) = Ck—Ckr-l-)\(Eck/—Ck/).
Then,

(28) E[(I},(a) — In(a))’] <2a* x (€r; + €ry),

n
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. 1 1 2
Where, for: = 1, 2, Er; = /0 E[mkkzl ’Ck/ ]Eck/‘x 1/\9 ik k’()‘))} dA.
/ / / . / — Er,
Thus 601 1 (N) = 8, ((k — k') — \K'2,) with 0, := —= and 2, := 7IET .

Then, using 6/, — 0, for n large enough,
n—oo

Gt = /olE[(nf1)2ka|“/ zal % (LA [, ((k — ) = M'zq)] % )] dx

1 C ET, rlET, 9
< /0 JE[W/O ; dxdyly zn| x (1 A —y) — Ay 2] )} dA.

But, for all A € (0,1), one has
1 IEr, rIET, 9
—_— IAN[(z—y)— A “)dxd
Er), ) WX QA =) =z )drdy
1,1
= ETn/ / | x (1A (IE7,) "2 [(u — v) — Av 2] 2 )dudv
0 Jo
2 poo
< 2]E’7’n/ / (LA (E1,) %57 %) dsdt < 4.
0 Jo
Therefore €rvy < 4IF|z,|. Now, using the same method for &ry, one obtains,

B, x E[(I},(a) — In(a))’]

IN

C ET, x IE|z,|
< C(var (¢cp —Co))1/2

— 0
n—00

from assumptions and therefore the CLT (1)) holds.

~

Now the asymptotic expansion (Rf) can be proved. Consider first the de-

terministic case and

Sp(a)= L 1Y D(a8))* £ ()| (at") | £(¢))dede! Z i(k— k') En0d (e g7y
(n+1)2 o
2 2 R N , , : 2 cn co
- | 1P i) s )Ssj; (( ))) dede’
16a2 ~ |~ , 2 2 9 n2 ,
- Cp, _aCO Ri‘w(az )‘2'](.(2 ) w(a(z +Cn _ZCO)) ‘ f o +cn _ZcO)nZ sin Z(Z()%)d'?;dZ .
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sin(z) sin z

and h(z) :=

Let us define h,(x) := . For all (z,2') € IR?,

n sin (%)

’ 2z T NI2 e
(a(z+ — )’ f( _CO) — |P(a)|"f(z)) and hi(z) — Rh%(2).

n—oo n—0o0

However Lebesgue Theorem cannot be applied. Denote v(x) := |[¢(ax)|? f(x)
for z > 0. From Assumptions F and W(1,3), v is a differentiable function
in (0,00) and 3C > 0, Vz/,x > 0, [/ (2’ + 2)| < C|V/(2')|. Then,

2z

Cp — Cp

2z

Cn — Cp

) —v(2) C ().

IN

’I/(ZI—{—

Moreover, |hy,(2")| <1 for all 2’ € IR, and
n
/ B2 (2 - / S k) gy
ot e

sin(2(k—k)) 1
> —hE Z 2n
1<k'<k<n (k — &)

{zn: (n — k) Sin](fk)}+2

k=0

S

S

Therefore,

2k
fun [ 1) —2{28”12 )}”:”

. in (2k ..
since % > 1<k<n k$ < 413%—” — 0 and from Dirichlet Theorem, x —

n—oo

T==2Y 51 Singlm) for all z € (0,27). Now, for 2/ > 0,

‘/ (2 + )hZ( Ydz —v(Z / h2(z dz’
B+ Cn —
2 2 / 2z 2
< / zhn(z)dz—i—/ v(z' + Vhy (2)dz
0 n Cn — Co

Cp — Cp n
2 n 4 sin? 00 2
< /z%(z)dz—l—/ v(z' + : ) dz
Cn —Co JO z n Cn — Co
4+1 0 C
< gitlos(n) ¥ &

eI A e
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4 +log(n)

Cnp — €

<8 + O f(Z)n o2

Finally, with n 62" — 0 when r = 3, one deduces that for all 2’ > 0,

n—oo

2 n
lim [ v(z'+ Yh2(2)dz = lim v(2) /hi(z) dz = = v(2').
n—oo Jjp, Cp — Co n—o0 0 2

Therefore,

/R|$(az/)|2f(z/) /JR ‘@(a(z#cn{z%))‘zf(z# 2_2:60) Sin2 Z( ) dz d?!

n—oo

providing the asymptotic behavior of S2. The proof is similar in the stochas-

tic case with ¢, — ¢g replaced by IE(c, — cp). [ |

6.3. Proof of Theorem [3.]. The proof of Theorem B.1] uses the following

lemmas:

Lemma 6.4 Let X be a Gaussian process defined by (1) with a spectral
density f satisfying (B) and Assumption F. Let us define,

R(tu,t' ') o= B[(X(t+u) — X (1) - (Xt +) = X (1) | Fx],

for (t,¥') € R%, (u,u’) € IR?. Then 3C; > 0 depending only on the spectral
density f such that for all (u,u/,t,t') € IR% x IR?, with = (t' —t+u —u),

|R(t,2u,t',2u")| < Cf(uu') + ((uu’)H A ((u)| B2 (uu')H“/Z\ﬁ]_l)).
Proof. To begin with, remark that for all (¢,¢,u,u') € IR,
R(t’2u,t/,2u1):/B(ei(t+2u)£ e (U HRE _ i) £(6) g
:/]R(efmg L) (E _ ey I O HE ) f gy ge

:8/000 sin(u€) - sin(u'€) - cos ((t' — t +u' —w)) f(£)dE
:8(11 —|—IQ)
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with I; := ---dg and Iy = [2° -+~ d€. From one hand, with |sina| <|al,

L o< ud /WKrSQf(fS)df < Cud,
0

where the last inequality follows from (). From the other hand,
u u’ 6] 1
sm —¢) (——=¢) cos d€.
h= = [ sin (A=) (=) cos (=) (me)e

Then, with Assumption F combined with |cosa| <1 and |sina| < (1 A |al),

1 o]
|12| < (uu/)H (/ $2 x7(2H+1) de + / x*(?HJrl) dac)
0 1

(29) < C(uu)¥,

since H € (0, 1). It remains to prove |Io|<C (uw/ B2 =24 371 (wu/ ) I+ 24 und!)
with C' > 0. First, with an integration by parts,

! x

I} . U . u >
mx) sin (mx) sin (mm)f(m)lmm

£ Jsin

0o 38 0 u u’ x
p— ] - : - d
/LUK\/WSIH ( V ’LL’U/ )8.%' (Sln (\/uu/x) st (\/uu/x) f(q/uu/)) x)7
where Assumption F insures the convergence of bracket term at oo. With

|sina| < |al, then |37 sin(bwg) sin(uwk) sin(v'wy) f(wi)| < Cuw'. Thus,
|I2| < 13—|—I4 + Cuu'

with, using again Assumption F, |cosa| < 1,

=p[" /uqu sm( N )Hmcos(\/u_m)sin(ﬁx)
dx

e (i )Sm(,rﬁ‘u o) ()
c HH1/2 u —(2H+1
:E(uu +// ‘ ( —uu’ )‘(‘sm( —uu )‘—i—‘sm( _uux)Dx (2HH )1

and

I,= sm B x)sin(
ﬁ\/uu Swie uu

:%(uu)H‘H/Z/ ’51n< B = )sin(

\/u— ) sin (m )f,(\/m—)
) sin ( )’x_(2H+2)dac.
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Both those integrals can be decomposed as [ “*/7 ... —i—f\l/m/ﬁ cee [0
Using |sina| < (Ja| A 1), with C' > 0 denoting a constant which may vary

from one line to the other,

Vuu' /B
.731:/0 ‘sin (mx)Msm (m
2  [Vuu'/B

vuu' Jo
Vuu' /B . u ) u
Iy :/0 ‘ sin (mx) sin (mx) sin (mx) ‘x
< p / u'/B 2B 5 CH2) gy < 0 BH (o)1 /2H
0

/

u x)’ + ‘ sin (\/%x)’)af(ﬂprl)dx

< 22 p~CHHD go < O g2H=1 (g /)2

—(2H+2) 7,

1 u ) ” B
L= /m/ﬁ [sin ( f_) (s ()| + [sin (< 2a) )21V

1
§2/ za~CH Dy < (14 g2 (w2 H),
Vuu'/B

1 /
Lo :/\/W/B ‘ sin (\/%x) sin (\/%x) sin (\/%x) ‘x*@H”)dx

1
S/ 222 CHD) gy < O(1 4 B2H 1 (wu!) /2 H),
Vuud /B

133:/100’sin(\/%w)‘(’sin(\/%x)‘—i—’sin(\/%m)‘)x(2H+1)dx
<2/OO z~ P g < 1
<2/ < =

I43:/1°°‘sjn(\/%x) sin( Zu/:c) sjn( u x)’x_(2H+2)d$

o0
< —(2H+2) 7, < .
_/1 T der < SH 1

This implies that it exists C' > 0 such that,
Is+ 1, < Cﬁfl (uu’)1/2+H(1 + 62H71(uu/)1/27[{)

C(ﬁfl(uu/)l/%rH_|_(uul)ﬁ2Hf2)
— L] < CE M ud) P 4 (ud)B 4 (wid)).

IN

Combined with (RJ), this completes the proof of Lemma [.4- [ |
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Next, let us define the error of discretization of the wavelet coefficients by

(30) e(a,b):=e1n(a,b)+e2n(a,b)+e3n(a,b):=dx(a,b)—ex(a,b),

e1nla,0)i=a 2 (JIo(E2) X (Ddt—0m) X () f1 9 (5L dt
W Y oo bima 2 () X ()

ezn(a,b)=a" Y2 [0 (ER) X (t)dt
The following lemmas give bounds on E|e; »(a, k)‘2 fori=1,2,3.

Lemma 6.5 Let X be a Gaussian process defined by () with a spectral den-
sity f satisfying (B) and Assumption F. Assume also Assumptions W(1,3)
and (S(s)). Then, with Cy defined in Lemma [6-4, if b is a r.v. independent
on Fx such that TP < b <T, —TF with p > 1/2, fori=2,3,

_ a
31)  E(ein(a,b)* | Fx) <CrC3(a®T3 1,51 +a(1+ 5)21Tn<1)7
and IE(|e1n(a, b)|2 | Fx)<Cruin(a)
where
. _ 1
oif s = 00, vin(a) < [l (@ ([l er + 7 lloo)
2 _
+ = 10 lloodl! + al| ] 21007 );

A ]y ALy
. - a P[] ey p1+1 24+2/p1
o if s <00, v1u(a) < (py + 1)2/p1 (Zo Li ) n

-1
2|9 lloo 19l 2o (TLZ L1+pz(1+2H))1/p251+2H+1/p2
Halle2 (14 py(1+2H) PN "
Yl gas 1Yl _
[ = 2/
£93 T 1-g3(1-H) (ZLZHps(HH)/?) p3571L+H+2/p3,

aH=2+2/p3 (1 4 p(1 +H)/2)2/p3 pard
for all (p1,p2,p3) € [1,00)2 x (1/H,o00) with p%- + q%_ =1fori=1,2,3.

Proof. (1) Bound of E(|ey,,(a, b)|2 | Fx). To begin with,

E(le1n(a,0)] | Fx)
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P ”ZW%W'; ) (00X () (X(0)-X ) £

nlnl

i Z Z /t1+1/tg+1 — b)R(ti,t—ti,tj,t/—tj)dtdtl-

szO

Lemma p.4, with 2u =t —t; and 2u’ = t' — t;, implies

E(le1n(a,b)’ | Fx) < Cra~'(Si +8,), with

n—1
«5< Y /m/tﬁl (t/ ®)aar
t;

i,j=0

-&f<§:t/lf/]“ wel /A (BRI 4+ )28 o () o (v

4,7=0 a
But, 51 < ( ‘1/)( )‘ )2 where
n—1
(32) x(t) = Z |t — ti‘l[ti,ti+1](t)'
=0

From Holder Inequality, Sp

IN

Izl (552) |20 for (p.q) € [1,00)2 with
1/p+1/q = 1. Since H¢( )HU = al/q‘lem, from Minkosvski Inequality,

Il =( [ xwar

/ n—1 1/
< / Zyt IO R
i=0
_ n—1
([ ) iRy
=0 i=0

for p < oco. It follows S; < az/qubHiq X HxHip If s = oo, one can choose
p= o0 and [, = b s (|Lilc). Then,

(33) S1 < a® Mo |92, 62
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If s < 00, one can deduce that for all 1 < p; < o0,

a* ||71Z’H 1)\ 2/P
3 S T 2/151 (ZLPI ) e

Next, in order to bound Sa, one uses twice the inequality (z A y) < 2%y~

which is valid for all z,y > 0 and 0 < « < 1. Thus,

(wu YA ()| 622 < (uwu))IHD/D)|5-0-H)  with qy = 1/2
(wu)H A (o) B2 |87 < (wo)IFD/D|B~0-H)  with ap = H

Therefore Sy < So1 + Sa2 with
tit1 ft; 1 t b b
521_2/ +/ oi=0 )( W YH/2) 1= (1=H) gy gy

t; t _by S —bN
522_22 / +1/ J+1 ¢ tab)(uul)(1+H)/2|B|_(1_H)dtdt/'

0<i<j<n—1 a

On the one hand, when i = j then b = (¢’ —t) and

521=%/0T x (&) 2g( \w( )‘dt

where the functions x and g are respectively defined by (BJ) and

):jzé 1[151,,t2.+1](1t)(/tfi+1 (¢ — ¢, (F/2]p (- H) ‘1/1( )‘dt)

Next, by using ¢ € L*(IR), (1 — H) € (0,1) and L; = t;+1 — t;, one gets

tit1
<Z totin) ) (19 lloo Itiga — 1] T2 / 6= -y

n—1

<o (X T (D).

=0
Let X(t) = S0 Ly (L2t — 13]0+D/2. By using Holder in-
equality for all (p,q) € [1,00]% with 1/p+1/q =1,

2 -
S < 4 a4l oo 1l 2o X1 v
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1+2H
O,

If s = 00, one can fix p = 0o and || X||eo < and after

2
(35) Sn < gax|Ple[$ller x o, 2.

_ n—1 l/p
If s < oo, [Xller < (1+p(1+2H) ”p(ZLZHPOHH))

=0

SLH2HHL/p ang

after, for all 1 < py < 00,

(36) So1 < 20" % [|1h| oo ||| o2 (nilL1+p2(1+2H))1/p251+2H+1/p2‘
H(l+102(1+2H))1/p2 =

From the other hand, since 3 = 3((¢/ +t;) — (t +¢;)) > 2(¢ —t) > 0 for

i<jandte€ [ti,tiJrl], t' e [tj,tj+1], and with 1 — H < 1,

5 < Z /z+1/ J+1 t b t b)( u/)(1+H)/2|t_t'|H_1dtdt/

0<i<j<n—1

/TVT” (LHH) /2, (4 )(HH)/QT,Z)(t b)¢< )|t 1

a

o)D)=y

for any (p,q) € [1,00]? with 1/p 4+ 1/q = 1. But for all p > 2

< HX(t)(1+H)/2X(t/)(1+H)/2

LP(IR?) La(IR?)

P A+H)/2, (7)1 H)/2 2/p

Jx

—2/ n—1
U(W): (1 +p(1+ H)/Q) p( ; L@;+p(1+H)/2)

Next, with v = (t — ¢x)/a and v = (¥’ — ¢x)/a, one gets

o (D e

_ [ (w)(w)|?
§a2+q(1 I{)(/Hg2 uof>1 |1/)(u)1/)(v)|qdudv—|— B27|u7v|<1 mdud’l})

< 2+q(17H)/ | (u)p(v)]? dudv
L£a(IR?) — Rr? |u — v]ad—H)

1
a0 ([l + [l [0l [ 5~ ds).

The last integral is equal to (1—q(1—H))71 when p>1/H. Thus, Vp3>1/H,

@ Ve
522 <H1/JH£Q3(WHU‘3 o) qg(zlLlerg(HH)/?)?/m

(37) < i
5}L+H+2/p3 aH—3+2/ps (1+p3(1+H)/2)2/P3 i=0
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If s = 00, one can fix p = oo and ¢ = 1, and thus

_ 1
(38) o < & Bller (19ller + llelloo) 6,71

Finally by summing up (B3), BJ) and (Bg) if s = oo, and by summing up
(B4), (BG) and (B7) if s < oo, one gets the bounds of vy ,(a).

(2) Bound of E(|ea,(a, b)|2 | Fx). Since T,, is independent on Fyx,

t’ b
E(|ean(a,b) | Fx)= / / ) B (X (0)X(t)) et
1+ [t])dt ’
T%W - y<+u>).
from Lemma [.1. But, according to Assumption W(1,3),

E(e3,(a,b) | Fx) < CpCla (/TOO (A+6)(1+(t—b)/a) at)

IfT,>1,then 1+ (t—0)/a <14 (t =T, +TF)/a for all t > T,, and with
the change of variable v = (t — T,, + 17 /Ty,

©0 (1+1¢) © (14+vT,+ T, —TF)
/ dit < Ta3/ v
1 R Vo (R L A

_ < (v+2 _ _
S /Tf’l( 3 )dv = a® [T} +T,,7]

If T,, <1, by using b < T,

00 1+t o (1 T,
/ ( +) dtﬁ/ %dvga—klaz.
w (1 0 2

—i—(t—b)/a)3 (1+v/a)

Eventually, one deduces (B1)).

(3) Bound of E(|es ,(a, b)]2 | Fx). Find a bound for IE(|e3»(a, b)‘2 | Fx)
follows the same steps than for bounding IE(|e2 (a, b)|2 | Fx). ]
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Lemma 6.6 Under assumptions of Lemma and if s > 2H + 2 and

14 D)
'I’L(Sn 0(s)+H+1 O,
n—oo

, o 1, 1
with 0(s) := s Lo+ (5+ —H)1%+L§S<%+L +(s—1) >3, 1, then
for all a € [amin, Gmaz), 1 <k

(39) ]E(|6n(a,ck)|2) <wpla), and (nd,)vy(a) — 0.

n—oo

Proof. With (z +y + 2)? < 3 (2% + y? + 2?) for all real numbers z, y, z,
E(|en(a, ck)‘Q) < 3Cf Evipn(a) +6Cf Evyy(a)

where v1 ,,(a) and vg,(a) have been defined in Lemma [f.5.

o If s = oo, from Assumption S(s), me (nd,) < T, = T,, — oc. Thus,

(né,) E(|en(a, ck)‘z) < Ci(n 5,21+H) +Csy (n 5n)3_4p

which converges to zero as soon as n 6277 — 0 and p > 3/4.
e If 1 < s < oo, from Lemma [6.5, with (p1,p2,p3) € [1,00)? x (1/H, 00),
an optimal choice of pi,pe,ps will depend on s. Hence, since IF (|Z]%) <

(E|Z|)” for any r.v. Z and « € [0,1] from Jensen Inequality,

1.if 3 <s, with 1+ p; =s,

2s

n—l NZ 242 2
E( Z Lfl'ﬁ‘ )Pl 611 P1 S Mss_l . n:&i—l;
=0

2.if 24 2H < s, with 1+ py(1+ 2H) =s,

E( nil Li1+p2(1+2H)) %5
=0

14+2H+L L2 4oy (42H)s
" P2 SMss—l . et 5n s—1 7

1
3.if max (2+ H,3 4+ 57) < s, with 1+§p3(1+H) = s,
1+H 14 H (1+H)s

n—1 2 2
= 14+H+-=
E( Z L;+P3(1+H)/2) P3 5n P3 S ]\4'85—1 .ns—1 5n s—1
=0

However, the inequalities 1. and 3. may be extended respectively to 2 <
s<3and 2+ H < s < % + ﬁ using a more sharp inequality which is
B(S i)™ < B |2:]°)" < n®(B(|z:|?))" when (a, 8) € (0,1]?:

1. if 2 < s <3, with aﬂ:p%,azlandﬁzs—l
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n—l 1+l CVB
B(Y L) 620 < M; - ns;
=0

3’1f1+3H<8S2—I—517 with aﬁ:%7a:%andﬁ:3_%7

H+1 H+1

n-1 1HH | of
B(Y L) s e <t s
=0

e H+1 3H+1 . 2 H+1
3”.1fﬁ<s§ 1 with aﬁ:p—g,a:QHandB:s—%,

2H
nolo 1l 0B

(5 1Y spemees <o gy
i=0

We finally obtain for n large enough and usingn §,, — oo andnd>*% — 0
n—oo n—oo

(necessary condition for s = 00),
H+1

o Evin(a) <C(nds) = ,for2+2H < s <max (2+2H, 3 + 55);
o FEvip(a) < C(n&,‘i)QH, for max (2 + 2H , 3 + 57) < s < max (2 +
2H , 3+ 557); »
o Ev,(a) <C(nd3) =1, for s > max (2+2H, 3 + )
(therefore, the first inequality is only possible when H < 1/4 and the second
one when H < (v/17 — 1)/8). Those three inequalities may be reduced to

only one:

T

+

(40) Fvip(a) < C(né)) 7™ forall s>2H + 2,

(ndp)IEv p(a) — 0 when s > 2H + 2 and

n—oo

1+ (H+1)(}§_1)
nén 0(s)+ +1_> 0.

n—oo

To finish the proof of Lemma [.g it remains to show (nd,)Fvy,(a) — 0.

n—oo

From (Bl it follows that Fvy,(a) < C / 9(x) fn(z) dx where f, is the
0

probability distribution function of T, and g(z) = 1(z<1) + Le>1) 2=,

Since p > 3/4, g(x) <1 for all x > 0 and ¢ is a non increasing map,

o0

| @ h@ s < /Oémsnénf""”)d“g(%msn‘s")/1 F)de

gmsnén
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1 1
1 1 _
< P(Tu— BT 2 B[T,] — 5msnd,) + (gmsnanf .
MS né,% 1 2—4p
< m—8n25%+(§msn5n) )

from Bienaymé-Chebyshev Inequality since s > 2 and var (T;,) < Msnd>
from the independence of (L;)ien. Therefore (né,) IEva,(a) — 0. [ |

n—0o0

Lemma 6.7 Under the same assumptions and notations as in Lemma |4,

there exists C > 0 such that for every a >0 and n € IN¥,
(41) IE|I,(a) — Jyu(a)| < Cvp(a)/?.

Proof. Since d = d(a,c;) and e = e(a,c;) are Gaussian r.v., |d|? — |e|?

have finite second order moment and Jensen’s inequality implies

Bl ~h@| = 1|3 (i) ~ fetw,c0)?] |
k=0
< g 2y (e - et )

Since d and e are jointly Gaussian r.v. with zero means,
B(|df — |e[*)? = Bld - ¢|*|d + ¢|* == Ele*| 2],

where ¢ = d — e and Z = d + e are also jointly Gaussian and have mean
zero. By using that Z = oy0y'pe + £, where o = Fle|?, 03 = |[EZ)?,
p = corr(e, Z) and where ¢ is independent of ¢ and Gaussian, one can show
that

2 2
asp
Elc|?|Z)? = (JE\ay‘*)—;Q + B2 E|¢)? = 30%03p” + oio3(1 — p?) < 3oio3.
1

Since E|e|?|Z|? = 3 E|e|? IE|d + e|? and |d + ¢|?> = |2d — £|? < 81d|? + 2|¢|?,

Y53 (Bl e ) (8 [t e + ] )

k=0

B |1(@) = Ju(a)| € 225
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1/2 1/2
<Cup(a)'’* (4Z1(a) + Crop(a)) ',

from Lemma [.6 and since ]E‘d(a,ck)‘z = TZi(a) for k € IN. Assumption
W(1,3) and formulas () and ([]) imply sup |Z1(a)| < co. Owing to

ac€|min, Gmaz

Lemma [.5, v,(a) is bounded, this finally provides ({I]). [ |

Proof. [Theorem B.J]] From Lemmas p.g and [.7,
(42) lim (n6,)"? IE |I,(a) — Ju(a)| = 0.

n—0o0

Now, using Markov inequality, one deduces that for all € > 0,
3
P (v/ndy|J, -1 >e) < —————— 0,
( n n’ N(a’) n(a)’ —8) — /néncvn(a) njc:o

that achieves the proof with v/nd,|J,(a) — Z1(a)| < v/nd,|I,(a) — I,(a)| +
Vnoy|I,(a) — Ii(a)| and Slutsky Lemma. [ |

6.4. Proof of Proposition [[.]. Proof. It is obvious that
= [ 1Bx@ P r(/arde = [ [5OE - D) (&)
R R
~ 1
= [ 190) P (5 + =)o

Then, from a usual Taylor expansion, and since 1 is supposed to be an even

function supported in [—A, A],

1+h
‘IA kuﬁ 1/a)‘ ~ 2a 2)\2 (El)gh{ (= a ‘}/ ZW o)l dv).
For A > 2A, then sup { f”(ﬂ)‘} < sup {|f"(z)|} < oo. Therefore,
—A/A<h a >1/2a

since 1) satisfies Assumption W(1,5), there exists C' > 0 such that,
1
(43) (@) = ] gy S (/)| < € 55

Let us denote I (a) (respectively Zy(a), B and S5 (a)) instead on I,,(a)
(resp. Z1(a), B,, and S, (a)) when v is replaced by ). Firstly,

%(471&2 /IR‘%(GZ)‘Llf%Z)dZ) — 47Ta/11%|$(u)|4f2<2+%)du



WAVELET ANALYSIS OF A PROCESS OBSERVED AT RANDOM TIMES 37
— dma f*(1/a) / ]1/1 ] du,
A—00

from Lebesgue Theorem. Hence, if ()\,) is a sequence such that A\, — oo,
n—oo

(44) %(S,(f‘")(a)f — 4raf?(1/a) / e | du.

n n—oo

Secondly, from the proof of Proposition B.I] and inequalities (4) and (R),
there exists C' > 0 not depending on n and A,

BN /SN < 0T N a) (n Hax |Ckt1 — ck])l/%l/q for all ¢ € (1,2).

Thus, since Zy(a) is bounded, ﬁ()‘" /ST(L "), 0and Proposition .1 becomes:

1(0) ~ Ty (@) o
Ov) —
Sy (a) n—o00
Finally, using (f3) and (f4)), on deduces that for all a > 0,

N(0,1).

ET,
An

(@) = [0 gy (1) N (0, 47ma s w/m )[du),

when (), is such that 1?\::" % — 0, i.e. when \;5néd, — 0. Since
n—oo n—oo

also A-'nd, — oo (to obtain a consistent estimator), then

n—oo

1—d
(45) ——<d<l-d

Moreover, Proposition .9 has also to be checked. In its proof, IET, has to
be replaced by IFT,/\, and since the bounds C (1 A [#]7!) in Lemma (.3
have to be replaced by C/X2 (1 A |#]~1), then condition 762 — 0 has to

n—oo
/

be replaced by né? o/ )\5 — 0, that is d’ > which is satisfied when

(E9) is satisfied.

It remains to control €2 (a, ;) with Lemma p.5 and p.6. For all 1 < ¢ < oo,

with 1/00 = 0 by convention,

[all gy = AEP20 0] o, and [[da]]y = A2 .
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Then, using the choice of (p1,p2,ps3) obtained in Lemma [f.6, Lemma p.j§
becomes (with A\, — o0):
n—oo

o if s =00, viu(a) <CN, 6717,+H;

e if max (2+ 2H, %+%)<s<oo
s=3 2H+1 2H+1 s—2—H H+1
v1n(a) gC()\ﬁ’l(n(SS) LA, T (n85) T AL (n0) =)

s—2—H +1

= wvip(a) <C'A\ " (nd)) =T since 0 < H <1 and s > 3;

I

oif 2+ 2H < s <max (2+2H, §+L),
s—2—H

= vpa(a) <O\ TN ol

n
Condition (B9) is now —" v1,(a) — 0 and then, conditions required on

n n—oo
d and d' are:

(46) oif s =00, d > (2+ H)™ Y
s+ H—d(s(H+2)—1)
H+1 ’

: (s —1)(2 — d(3H +2))
(48) oif 2+ 2H<s<max (2+2H, 3 + ;L) d'> T .

Finally, for b < T,, — T, with v satisfying Assumption W(1,5):

(47) oif max (2 +2H , 2 + ;1) <s<oo, d'>

E(ey2(a,b) | Fx)= ‘1/ / wx( - b)]E(X(t)X(t’))dtdt’

<Cilarn) ‘ )| @+ 1) dt)2

<cr @) ([ °°M (w)| udu)2

1 313 —3]>° 1 91,9 —6p
S § Cf Ci/’ (a )‘n) ([u }T,’Z/aAn) S § Cf C¢a )\nTn .
Therefore the CLT holds when \) (n6,)} =% —0, i.e. 9d+(1—d)(6p—1)<0,
, 1 .
(49) = d' < <3 (1 —d) since p € (3/4,1).
Combining conditions (i), (B6), (E7), (E]) and () on d and d’, one deduces:

1-d 1-d
o if s=o00, d>(2+H)71and?<d’§T;
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e ifmax(2+2H, %+%)§s<oo,

s+H—(s(H+2)—1)d 1—dy _, 1-d
max( H+1 5 )<d§ ’
° if2—1—2H§$<nr1ax(2—i—2H,%-1—%)7
(s—1)(2-dBH+2) 1-d o 1-d
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