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Fast semi-analytic computation of elastic edge singularities

Martin COSTABEL, Monique DAUGE, Yvon LAFRANCHE

IRMAR, Campus de Beaulieu, Université de Rennes 1, 35042 Rennes Cedex, France

Abstract

The singularities that we consider are the characteristic non-smooth solutions of the
equations of linear elasticity in piecewise homogeneous media near two dimensional cor-
ners or three dimensional edges. We describe here a method to compute their singularity
exponents and the associated angular singular functions. We present the implementa-
tion of this method in a program whose input data are geometrical data, the elasticity
coefficients of each material involved and the type of boundary conditions (Dirichlet, Neu-
mann or mixed conditions). Our method is particularly useful with anisotropic materials
and allows to “follow” the dependency of singularity exponents along a curved edge.

1. Introduction

In linear elasticity, problems are usually solved with industrial codes using the finite element
method. However, when the elastic body has corners on its boundary, such as a polygon or a
polyhedron, the solution obtained is inaccurate near the corners. The reason is that on such
domains, elliptic boundary value problems admit singular solutions. Thus, special “tools” to acquire
some knowledge about those solutions can be very useful.

We consider the linear equilibrium equations of an elastic material €2, possibly heterogeneous :
we suppose that €2 can be decomposed in several homogeneous parts i, with £k =1,..., K. Here
we treat corners in two dimensional domains and edges in three dimensional ones. The corners and
edges in question are those of §2, of course, but also those of any of the homogeneous subdomains
Q. The equations in € can be written in general form

Lku:f in Qk, k=1,...,K, (1)

with boundary conditions on 02 and transmission conditions at the interfaces between the €.

If Q is two dimensional, from the general theory (see KONDRAT’EV [5], GRISVARD [4] or NICAISE
[7]), we know that, near any of its corners O, the solution can be seen as a sum of a regular part
Ureg and a singular one using. Except in particular cases where logarithmic terms appear, uging can
be expanded in the generalized form

Using ™~ Z Bi Ty'igi(g) (2)
i=1

where (r,0) are the polar coordinates with O as origin, B; the stress intensity factors, v; the
singularity exponents (or eigenvalues) and g;(0) the angular singular functions (or eigenfunctions).
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The numbers v; are real or complex and characterize, along with the associated angular functions
gi, the behaviour of the solution near 0. They only depend on the boundary conditions, on the
geometry of the subdomains 2, and on the material laws.

In the case of an edge, the description of the splitting into regular and singular parts is more
complicated, see [3] for instance, but still involves singularity exponents v; and angular singular
functions g;, possibly changing along the edge.

We are interested here in the computation of those two quantities, taking into account expressions
provided by the theoretical work [1]. The core of the method is the knowledge for each v € C and
each material index k, of an explicit solution basis of the homogeneous system without boundary
conditions

Li(r’g(6)) =0. (3)

Applying the boundary and transmission conditions to these bases leads to the construction of a
matrix A(v) whose determinant is called “characteristic determinant”. Singularity exponents are
the roots of the equation det A(v) = 0, whose solution is obtained using Cauchy integrals.

Such a method is known and has been put into practice for isotropic materials, see NICAISE
& SANDIG [8]. But up to now, the other methods proposed for anisotropic materials are more
numerical and less analytic than ours.

By a finite element approach in the one dimensional domain © of the angular variable 6,
LEGUILLON & SANCHEZ-PALENCIA in [6] construct a matrix whose eigenvalues are the singularity
exponents. YOSIBASH in [11] and [12] uses a formulation of the problem based on a modified Steklov
method and constructs also a matrix with a similar role, by the p-version of finite elements in a
thin bi-dimensional annulus of the form {z € R?; ro <r < 71, 0 € O}.

The method of PAPADAKIS & BABUSKA [10] is closer to ours : they solve numerically the
equations (3) with transmission conditions and boundary conditions on one side by two initial
value problems and construct a matrix g(u) with the boundary conditions on the other side and
then find the roots of the characteristic determinant det g(u) using Cauchy integrals.

The main advantage of our method is to remain as close as possible to the exact solution since the
solution bases of the equation are known almost analytically (only the roots of a symbol associated
with the system Ly have to be computed). In particular, the angular singular functions g; belong
to the spaces generated by the above mentioned bases. We stress again the fact that an important
part of the calculation is made explicitly, which is essential considering accuracy and computation
time.

In §2 and 3, we recall from [1] and [2] the determination of the solution bases of equations
(3). In §4 the principles for the construction of the matrix A(v) are explained and in §5 their
numerical implementation is described. In section §6 and 7, we present the computation of the
singularity exponents and of the angular singular functions. In §8 we treat some specific aspects of
three dimensional geometries. Finally, to show the range of application of the method and compare
with the earlier works, we give in §9 various examples in two and three dimensions, especially for
anisotropic materials, and with different boundary conditions. We draw some conclusions in §10.

2. Theoretical aspects : the solution bases

In this section and in the following one, we concentrate upon the solution basis of equation (3)
for one material. Thus we drop the material index k.
2.1 Definitions and notations
We denote by
. d the dimension of the space, d = 2 or 3,
. x4, £ =1,...,d the space variables in IR?,
. © the domain,
. L the operator associated with the system of linear elasticity.
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Figure 1

If d = 2, the domain € is polygonal : its boundary is the union of a finite number of segments
whose ends are the corners of Q. If d = 3, we consider domains with edges in the following sense :
the boundary of € is the union of a finite number of smooth two dimensional surfaces whose
boundaries are the edges of {2. We assume that at each point O in an edge of 2, the domain is
locally diffeomorphic to a wedge (a plane sector times R).

Figure 2

Université de Rennes 1 3
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We consider the general elasticity equilibrium equation
Lu=f in Q.

The operator L is an elliptic d x d system of second order operators. Let O denote a corner of {2
in 2D and a point in an edge of Q in 3D. We now have to define a reduced operator M associated
with L at O : the operator M acts in two variables and is the part of L which determines the
singularities in O.

In 2D, see Figure 1, O is a corner and w = w1 — wy is the opening of the tangent sector to 02
in O. We denote by (r,0) the polar coordinates with the origin taken in O. In that case,

MY

In 3D, see Figure 2, O belongs to an edge of the domain. We introduce local axes (O; &, ¥, Z) with
Oz tangent to the edge in O. In the plane (O; %, %), w = w1 — wyg is the opening of the tangent
sector to 9 in O. We denote by (r, 0, z) the cylindrical coordinates with the origin taken in O. The
operator associated with the system L(9z1,0x2,0x3) is mapped in the local axes to the operator
Z@(ax, 0y, 0z). Singularity exponents depend on this operator, but without the tangent derivatives

0z. Thus, in that case,
M(0z,0y) ' Lo (0, dy, 0).

2.2 The main result

M is then a d x d elliptic system in the plane variables (z,y). From Theorem 2.1 of [1], there
holds :

The homogeneous problem (without boundary conditions) M (r* (v, 6)) = 0 has exactly
2d independent solutions ¢;(v,8),j =1,...2d, for any fixed v € C.

The important point is that from [1], [2], we know an explicit formula for the solutions ¢; for
any non integer v. In order to describe it, let us introduce for a € C the Cayley transforms of the
symbol M

Mi(a)=M(a+1,i(a—1)) and M_(a) =M1+ a,i(1l — ).
As a consequence of ellipticity of the system, det M, («) (resp. det M_(«)) has d roots inside the
unit disk |a] < 1. We denote them by oz;r (resp. o), j = 1,...d. Let M () be the matrix of

cofactors of My («) and M, () the one associated with M_(«) and let q;f (resp. ¢; ) be a non-zero
column of M;fl(a;r) (resp. M;d(a;))
We assume that the a;r (resp. o) are all distinct. Then a solution basis is
(v, 0) = e’w”(aje%‘) + 1)”qj-', j=1,...d,

pjra(v,0) = e (aje +1) g, j=1,...d.

Remark. The roots ozj' (resp. ozj_) are generically all distinct when the material is anisotropic. If
some of them coincide, there still exists an explicit formulation based on Cauchy integrals (given
in [2]). We do not treat here the case when the material is anisotropic and some roots coincide,
since it corresponds to a quite rare situation, highly depending on the accuracy of the data.

However, an important particular case is the isotropic one, where the roots «; are all equal to
zero. One can find an explicit formulation of the solution basis in several papers, for instance in
[4] and [8]. In cartesian coordinates, a solution basis in the isotropic case is given by

Université de Rennes 1 4
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e in dimension 2 :

)= (S0 = (S0

o= (Y0 i, = (GO s,

(A p)sin(0(v — 2)) (A +p)cos(0(v —2))
where 1 (1,0) = <()\ + ) cos(0(v — 2)) ) and (v, 0) = ( (A + p)sin((v — 2)) ) ‘

e in dimension 3, the third equation of the system is a Laplace equation uncoupled from the
others. The six basis functions are then given by the four previous ones with a zero third
component, plus

0 0
vs(v,0) = 0 ,  we(v,0) = 0
sin(fv) cos(6v)

3. Expression of the elasticity system

Notation. In the following, we write 0 instead of JOxy.

The system L comes from the application of the laws of mechanics in the case of linear elasticity
and depends on the classical quantities :

. displacement field u = (uq,...uq),

. strain tensor e (u) = %(&Cul + Jiug),

. stress tensor o;(u) = >4, @ijii €x1(u), where a;j, are elasticity constants satisfying the
following symmetry properties

Qijkl = Qjikl = Qijlk = Oklij-

The general equilibrium equation is

Lu=f where (Lu); = — Z 0,04 (u),
J
or, taking into account the previous definitions and properties

1
-5 > " aiji 0Ok + Ouk) = fi. (4)

ki

To simplify the expressions, a common practice is to change the name of the coefficients by
setting cpq = aijki, according to the following numbering convention which takes into account
the symmetries :

D, q 1 2 3 4 5 6
17, kl 11 22 33 23 13 12

Each index i,j,k,[ varies in {1,...d}. From the definition (§ 2.1), the reduced operator M
associated to the system (4) is then
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e in dimension 2,
[011312 +2¢160102 + 0668§]U1 + [0168% + (c12 + c66)0102 + 0263§]U2
{ [016812 + (c12 + c66) 0102 + 026822} u1 + [066812 + 2¢260102 + 0223§]U2
e in dimension 3 (with z = x3 the coordinate along the edge),

[€110F 4 2¢160102 + 6603 |ur + [c160F + (c12 + c66)O102 + 2603 |ua +
(1507 + (c14 + ¢56)0102 + ca603 | us

[0168% + (c12 + c66)0102 + 02683]71'1 + [066812 + 2¢260102 + 622322} U +
[e560F + (ca5 + €46)0102 + 2405 us

[0158% + (c14 + ¢56)0102 + 0463§]u1 + [656312 + (ca5 4 €46) 0102 + 02433]1@ +
[e550F + 2¢450102 + 4403 |us

4. Characteristic determinant

We already know a solution basis of the homogeneous problem without boundary or transmission
conditions. To compute the singularity exponents, we have now to take them into account.
4.1 Dirichlet and Neumann conditions

Given the normal vector @ = (n1,...n4) at a point on the boundary 9 of the domain, the
normal stress vector is defined by o(u)7.

There are essentially two kinds of boundary conditions :
Dirichlet condition : w =0,
Neumann condition : o(u)i = 0.

Dirichlet conditions are straightforward. Neumann conditions need however to be expressed
precisely. In particular, in dimension 3, the “reduced” normal stress T'(u), where the tangential
derivative J5 along the edge has to removed, has to be used.

The components of vector T'(u) are the following :
e normal stress T'(u) = ()7 in dimension 2
[61181'LL1 + c16(O1ug + Gour) + 0128211,2]”1 + [61681'LL1 + co6(Or1ug + Gau) + 0268211,2]712

[61681'LL1 + 666(81'LL2 + 82114) + 0268211,2]”1 + [61281'LL1 + Cg@(al'uq + (92114) + 0228211,2]712

e reduced normal stress f(u) in dimension 3 (considering the definition of the axes, the third
component ng of the normal vector is zero)

O1ug + Oour) + c1501us + c1202us + 01432U3; ni+
Oruz + Gaur) + c5601u3 + Ca602us + ca602u3 | N2

[c1101u1 + c16
[c1601u1 + Co6

O1us + Do
O1us + Do

+ 65681U3 + 62682U2 + 64682'LL3_ ni+
+ 62581U3 + 62282U2 + 62482U3_ na

[c1601u1 + Co6
[c1201u1 + C26

O1ug + O2uy) + c5501u3 + CasOoug + 6458211,3; n1+
O1ug + O2u1) + c4501u3 + Ca40oug + 6448211,37 no

[c1501u1 + C56
[c1401u1 + C46

)
)
)
)
)
)

P~ o~ P~ o~ P~ o~

Université de Rennes 1 6



Fast semi-analytic computation of elastic edge singularities

4.2 Construction of the boundary condition matrix

We consider the general situation of a transmission problem between several materials, each of
them in one domain Q. Let O be the corner of a € in dimension 2, or a point in one edge of a
Q. in dimension 3. After a possible renumbering, let €1, ..., Qk be the domains containing O in
their boundaries. In dimension 2, tangents at the boundaries in this point define angular sectors
T’y lying between angles wy_1 and wg. In dimension 3, we cut € by the plane perpendicular to the
edge containing O and we are reduced to the previous geometry, which allows for the definition of
T and wg.

Let Mj, be the reduced operator associated with the system Ly in the domain €. The singularity
exponents v and the associated angular functions g at O for the problem

Lku = f in Qk,
Transmission conditions on 9 \ 992, (5)

Boundary conditions on 0f2,

are the complex numbers v and the non-zero functions g : (wo,wx) — €4 solution of the problem

Mk(r”g(ﬁ)) =0 in (wg—1,wi), k=1,..., K,
Transmission conditions on wg, k=1..., K — 1. (6)

Zero boundary conditions on wy and wg.

Any solution (v, g) of (6) is such that for any k, the restriction gy of ¢ to (wk—1,wy) belongs to
(k)

the space generated by the ¢; (v), thus there exist coefficients zj(.k) such that

2d
%:Z%k)@k)@, k=1,... K. @

Jj=1

Thus, to solve (6), we have to find all non-zero set of coeflicients zj(.k), ji=1,....,2d, k=1,..., K,
satisfying the conditions

Boundary conditions in wg
2 e ) ) - Y0 2P0l () (wr) =0
Y2 2T () (wr) = T3 AP T (08P () (1) =0
Y A T ) = 5 A W) w—) =0
3 AT (oD ) (wre—r) = 08, AT (o () (wre—1) = 0
Boundary conditions in wg

which ensure the boundary and transmission conditions for the function g defined by (7).

As the functions involved are homogeneous of degree v or v — 1 in r, it suffices that the above
equalities hold for = 1. This can be expressed as a system A(v)z = 0 with z € C**¥ and A(v)
the characteristic matrix given below. It admits a non-zero solution if A(v) is not invertible. So,
singularity exponents v can be computed as solutions of the equation det A(v) = 0.

We denote by :

e () (1) the set of basis solutions {gpék)(u, 0),7 = 1,...2d} associated with M}, whose
expressions are given in § 2.2,

Université de Rennes 1 7
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e Dy, ®(v) = (¢1(v,60), - .., ¢24(v,00)) the trace of Dirichlet boundary conditions along the
line # = 6y for the solution basis @,

° Ne(f)d)(y) = (f(r”gpl(y, 0N vz, - ., T(r" poa(v, 60))|r=1) the trace of Neumann boundary
conditions associated with M}, along the line 8 = 6, for the solution basis .

With the above notations, the characteristic matrix A(v) is the 2dK x 2dK matrix built by
blocks in the following manner, each block X, D® or N® being of dimension (d, 2d) :

X1, 0 0 0 X1k
D, @M () —D,, &3 (v) 0 0 0
NP () —NPoe® (1) 0 0 0

0 D, ®? ) —D,,®® (1) 0 0
NPe@w) —NPoe®w) o 0
0 0 D, ®®)(v) 0
A= 0 0 NG (1) 0
w3
0 0 0 0
0 0 0 v =Dy, @B (v)
0 0 0 0 . —NYO o))
Xok 1 0 0 0 ... Xok

It remains to describe explicitly the boundary blocks X1 1, X1 x, Xox,1 and Xox k.

4.3 General boundary conditions
There are two situations.
4.3.i Case of an interior point.

This is the situation when O belongs to the interior of the domain €2. This means that O is an
interior transmission point. Then wx = wy + 27 and all the domains are filling the space. The
boundary operators X are

X171 =D, @M (), X1 g =D, 25 (v),
Xox1=NPoD W), Xopx = —NE W) ().

4.3.ii Case of an exterior point.

This is the situation when O belongs to the boundary of the domain 2. Thus boundary conditions
are imposed on the boundary angles wy and wx. We always have Xox 1 = X1 x = 0, and according
to boundary conditions that are chosen, we have

- Dirichlet conditions :

X11 = Dy @ (v), Xox.x = Duy @) (1)
- Neumann conditions :

X1 = NS))(I)(U(V)’ Xok k = NQ()I;)(I)(K)(V).

Université de Rennes 1 8
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It is possible to take into account mixed boundary conditions, such as Dirichlet along a
boundary and Neumann along the other. We can also treat other types of mixed conditions :
we mention normal Dirichlet — tangent Neumann and tangent Dirichlet — normal Neumann. For
their introduction, let us use the general vector notation # for each function ¢ (v, 6).

In dimension 2, we consider the orthonormal basis (7, ), deduced from (27, 2%) by a rotation,
and we write the boundary conditions in this basis :

- normal Dirichlet — tangent Neumann

1%t component : #@-7 =0

—

2" component :  T(&@) - =0
- tangent Dirichlet — normal Neumann

1%¢ component :  @-t =0
274 component :  T(@) -7 = 0

In dimension 3, we consider the orthonormal basis (7, %, Z), deduced from the local basis (&, 7, Z)
by a rotation around z. The direction Z’is, by definition, a tangent direction, so we have here one
normal direction 77 and two tangent directions ¢ and Z.

To the previous components, where z3 stands for 2, we then have to add
- Dirichlet tangent : 4 -2'=0

- Neumann tangent : T'(%@) - 2 =0

5. Computation of the characteristic matrix
We describe here the computational aspects of the determination of the matrix A(v).

5.1 Roots of the determinant of the symbol

We recall that, for each non isotropic material, the solution basis given in § 2.2 involves the
computation of aj and a; , roots of det My () and det M_(«).
5.1.i General case.
Let £ € R and let us consider the symbol M (1,&). Note that det M(1,£) is a polynomial of degree
2d in £ with real coefficients. There holds

The roots oz;r are given by
+_ \ def 7+ 0
where the 3;, j = 1,...,d are the roots of det M(1,£) of negative imaginary part. The

+

roots a; are equal to the conjugates a; .

Indeed, let S8 be one of the roots of det M(1,£). Then for « = A(f3), B is the Cayley transform

_ d_efi(()c—l)
f=Bla) = a+1

of a. Then, since det M (1, 8) = (o + 1)~?det M, (a), « is a root of det M (c). Moreover, writing
a = pe’, we get
8- —2psin® +i(p* — 1)

~ (p+cosh)? +sin’0

so that |a| <1 <= Img < 0.

Université de Rennes 1 9
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In the same way, for v = A(f3), there holds § = —B(«a), and « is root of det M_(a). Moreover
la] <1 <= Img > 0. Finally, if 3 is a root of det M (1,&), then [ is also a root since M is real.

Thus, it is sufficient to compute the roots of det M (1,&) with negative imaginary part. From
a computational point of view, using det M (1,&) is more efficient than using directly det M, («)
because its coefficients are real : we can expect a better accuracy.

Several methods can be used to compute the roots of this polynomial. We chose Bairstow’s
method, which is based on a factorization of the polynomial into a product of polynomials of degree
2 using Newton—Raphson’s method. We finally use Newton’s method on the original polynomial
to get more accuracy on each root.

5.1.ii Orthotropic axisymmetric case in dimension 2.

Here, the roots of the symbol can be computed explicitly. In the case of an orthotropic system, we
have c¢16 = c26 = 0. The matrices My (a) and M_(«a) are then

(611 — 066)(a2 + 1) + 2(C11 + 066)05 i(Clg + 666)(a2 — 1)
My (a) = ; 2 2
i(c12 + ce6) (a0 — 1) (ce6 — caz)(a® + 1) + 2(cep + c22)
and
M_(a) = <(Cll — co6) (@ + 1) + 2(c11 + co)ar —i(c12 + ces) (0 — 1) )
I —i(c12 4 cg6) (@ — 1) (co6 — Ca2) (0 + 1) + 2(ces + caz)ax |

In the orthotropic axisymmetric case, we have also ¢11 = co2. Setting ¢11 = a2 = K1, g6 = kg and
c12 + ce = 7, the determinant can be written

D= [72 — (k1 — /-@6)2]044 + 2(Kk? + 6K1kg + /-;g —vHa? + [72 — (k1 — Hﬁ)z].

8
D=0+<=a' 20> +1=0 with b=1+4 —— 0
(K1 — k) —

The discriminant of this equation is A = b*> — 1 and A > 0. Indeed, assume |b| < 1. We then
have a? = b+ iv1 — b2, so |a?| = 1, which contradicts the ellipticity hypothesis ensuring that 2
roots are inside the unit disk and 2 roots outside.

Thus, we have a® = b+ v/A and we look for roots of minimum modulus. Using the fact that
|b| > 1 implies [b] > VA, we get :

e ifb>0,a==+Vb—VA

e ifb< 0, a==4ivV—b—VA.

5.2 Solution basis

The solution basis is computed using the formulas given in § 2.2. This involves the computation
of the matrix of cofactors and then the extraction of the vectors ¢™ and ¢~.

As the coefficients of the matrix M are real, there holds

M_ (@)= M::l(a) and ¢~ =qt.

a

So it is sufficient to compute vectors ¢* which we normalize in order to ensure stability of the
numerical computations.

Université de Rennes 1 10
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5.3 Applying Neumann conditions to the solution basis

In the equations given in § 4.1, u = (u1,...uq) is successively replaced by every function
;)i = 1,...2d, where ¢;(v) = (g;1(v),...¢;a(v)) is one element of the solution basis
given in § 2.2. To calculate 0;u, we then need to use polar coordinates.

With (n1,n2) = (—siné, cos ), we get for r7¢;(v) :
{ O (re;(w)) = 17 (n2ve;(v) +n1dep;(v))
Oa(rei(v)) = rH(=mve;(v) +n2 dpp;(v))

The last term to describe is dgip; (v).

5.3.1 Non isotropic case.
Let v = oajezw and 8 =i(y — 1). Recalling that a; = @ and q; = E, we have for j=1,...d
89801‘(1/; 0) = ﬂl/ e—ieu(,y_’_ 1)”_1qj7
Doprra(r,0) = Buvd®(F+1)" g,
5.3.ii Isotropic case.
We have
69901(1/’ 9) = _V@Q(% 9)7 89502(V7 9) = wpl(V’ 9)’ 89903(V7 9) = V(SD4 - 21/11)(% 9)7
Dopa(v,0) = v(—p3 + 2¢2)(11,0), o5 (v,0) = vips(1,0), dowe(v,0) = —vps(v,0),
where 1 and 19 are defined in § 2.2.

Thus we have all elements for the construction of the blocks D, ®(v) and NS“’@(V).

6. Computation of singularity exponents

6.1 Numerical aspect
Singularity exponents are the roots of the equation det A(v) = 0. To compute this determinant,
we make an LU decomposition of A(v).

The next problem is to locate the roots. For that purpose, we use Cauchy integrals over closed
curves. Given holomorphic functions f and g and a closed simple contour C', Cauchy’s formula is

1 AL
Sim Cg( )f(y) d ’;g(ﬂ)

where S is the set of the roots of f in the interior of C. Taking g(v) = 1, we can compute the
number of roots inside the curve and thus isolate each root, which we then compute with g(v) = v.
We use this formula with f(v) = det A(v). In our code, the curves used are rectangles or circles.
The quadrature method chosen is Simpson’s rule over a rectangle and trapezium rule over a circle.
The computation of the integrand is crucial. Here, we take advantage of the particular form of the
function f. Thus, we have
f'wv)

fw)
where tr(M) is the trace of the matrix M and A’(v) the matrix A(v) derived element by element
with respect to v.

=tr(A' (V) A7 (v)),

The computation of A’(v) is explicit (see below) ; so only the non-zero elements are computed,
with the maximum precision possible. Moreover, A’(v) is computed at the same time as A(v)
reusing several intermediate calculations.

Université de Rennes I 11
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6.2 Computation of the derived matrix
We already defined v = a;r €2 and 3 = i(y—1). Moreover, let § be defined as § = log(y+1) —i6.
To compute the matrix A’(v) we need the derivatives of each element of A(r) with respect
to v. Thus, we have to compute terms such as 9,(Dg®) and 8V(Nék)<1>), ie. 0y(p;(v)) and
0, (T (0, ()]—).
6.2.1 Non isotropic case.

From the definition of the solution basis, we get, for j =1,...d :
Ovip;(v,0) = 0 p;(v,0),
Bpjra(¥,0) = 8 ¢jra(v,9).

As for Neumann conditions, the gradient vector used in the computations can be written as

vp;(v,8) . [ n2 my
R (39903‘ (1,6) with R = ny m )
After derivation with respect to v, we get

(1, 0) +v dyp;(v,0)
R( 9 (Dop;(v,0)) ) '

It remains to write the last component, which is for j =1,...d :

8,000;(r,0) = L 90i(1,0),
Bu0ppjraw,0) = L oo i(v,6).

6.2.ii Isotropic case.
We have

al/(Pl(Va 0) = _9()02(”7 9)7 81/()02(1/) 0) 20(,01(1/, 0)) 8”@3(”7 9) = (9<P4+¢2)(Va 0);
Ovpa(v,0) = (—0ps + Y1) (v, 0),  Ovips(v,0) = bps(r,0),  Oups(v,0) = —0p5(v,0),

and

0001 (v,0) = (—p2 — Ovp1)(v,0),  0,0pp2(v,0) = (1 — Ovip2)(v,0),
81/819503(”7 9) = (904 + 980904 + (V - 2)¢1)(Va 9)a 81/80@4(1/’ 9) = (_903 - 980903 - (V - 2)¢2)(V’ 9)’
0,095 (v, 0) = (g6 + 0, p6)(1,0),  0,0pps(v,0) = (—p5 — VO, p5)(1,0),

where 11 and 1o are defined in § 2.2.

6.3 Algorithmic aspect

With our program, the search of the roots can be done manually, or automatically in a given
rectangular domain of the complex plane.

In the automatic case, many tests have been performed to devise an efficient method. They led
to an iterative method based on successive splits of the initial domain into smaller and smaller
rectangles in order to isolate a root. Given a predefined tolerance €, an estimation v("™ of v satisfying
|V(") — 1/("_1)| < ¢ is then computed, using successive integrals over circles.

Provided a good idea of the location of the roots, one can significantly reduce the time devoted
to the splitting phase. Indeed, what is of practical interest is often to study problems depending
continuously on a parameter. We use the fact that the location of the exponents also varies
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continuously with respect to this parameter as a partial information to find the exponents at
the next step. Obviously, if the step size is too large, this additional information is not helpful and
then ignored.

7. Computation of singular functions

Let gaj (1/ 0) be defined as gaj (1/, 0) for 0 € (wr—1,wk) and by 0 for 0 € (wo,wk) \ (Wk—1,wk)-
A singularity exponent v is solution of the equation det A(v) = 0, that is to say there exists a non
zero linear combination, cf (7),

K 2d

ool

k=1 j=1

solution of the homogeneous problem with boundary conditions (6) : any such function is an angular
singular function associated with the singularity exponent v.

Coefficients zJ( ) are the components of a vector z lying in ker A(v). In order to exhibit such a

vector, a method consists in computing the singular value decomposition of A(r). We then have
A(v) = USV* where U and V are two unitary matrices and S a diagonal matrix containing the
singular values of A(v). This decomposition is quite adapted to our purpose since it turns out that,
if the singular value s;; is null, then the i-th column vector of V is in ker A(v).

In general, the dimension of ker A(v) is equal to the multiplicity of v, considered as the root
of the analytic function det A(v). In this case, the method is able to completely determine the
singular functions. The accuracy on v is essential in order to correctly separate the singular values
and thus select the right vectors in the matrix V.

However, it can happen that the dimension of the kernel is less than the multiplicity of the
singularity exponent v. Then, logarithmic terms appear in the asymptotic expansion of uging in the
form Bo1”go(0) + B177(91(0) + In7go(0)) + - - -, where (go, g1, - ..) forms a Jordan chain. In this
case, singular functions are not necessarily in ker A(v) and cannot be computed directly with this
method. This situation is easily detected by comparing the multiplicity of the exponent with the
dimension of the kernel.

8. Case of a three dimensional domain

We know that in a point O lying on an edge, singularity exponents do not depend on tangential
derivatives 0,. Thus, the problem remains bidimensional in the plane (O;&,%). Computing
singularity exponents in other points of the edge means to move the local axes along the edge
and the coefficients of rigidity matrices in the local basis, because, except for isotropic material,
those coefficients depend on the basis used.

Each material is assumed to be homogeneous, so coefficients are invariant under translation.
Then given two orthonormal basis B and B’, we consider a rotation R whose matrix is defined by
R = [R(B)]|g = [B']5- We know the coefficients in B and are looking for them in B’.

Let us denote by o and e, (resp. ¢/ and ¢’) the stress tensor and the strain tenmsor written
in B (resp. B’). Then we have ¢/ = RToR and ¢ = RTeR. Since in B coefficients are
characterized by the relation o;; = a;jm €1 (to simplify the expressions, we use the summation
convention upon identical indices in an expression), coefficients @’ used in B’ can be deduced from
oy = Ry 0ij Rjj = Riv Rjjr @ijk €.

We then have O-::lj/ = a/;;lj/klll 62/[! where a/;;lj/klll = Rii’ RJJ' Rkk;/ Rll' Qijkl -

Université de Rennes 1 13



Fast semi-analytic computation of elastic edge singularities

9. Examples

In this part, we illustrate the efficiency of the method. We compare with known results, focusing
on some interesting details. At last, we propose a typical example of our own, showing what is easy
to obtain in dimension 3.

All the computations have been done on a DEC Alpha workstation using double precision
arithmetic. The tolerance € has been set to 1077.

9.1 Isotropic case

First of all, we made some experiments to ensure that the code is able to deal correctly with
isotropic materials. We processed several data sets in 2 and 3 dimensions taken from [8] and [12],
and got the same results.

For example, in [8], we can find some graphics related to a plane domain consisting of two
materials M7 and Ms. Poisson ratios are o1 = 0.17 and o2 = 0.29. Young modulus are £; = 1 and
E; =4(1 4 02)E1/(1 + 01). Lamé coefficients are deduced from the formulas

FEo FE

A= —=7  and p= .
1—0—202 ¢ HT579,

For a slit-domain, wg = 0°, wy = 360° and w; runs from wy to wy. With Neumann boundary
conditions and a step size for wy equal to 1°, it takes 207 seconds to compute 3444 exponents and
obtain the same figure as the one shown in that paper.

9.2 Variation of the opening

We refer here to an example taken from [10]. Two anisotropic materials occupy the upper half
plane as shown in Figure 3, graphite between 0 and wy, adhesive between w; and 7.
Both are orthotropic axisymmetric materials. The coefficients of Hooke’s law are for graphite
C11 = C22 = 2041337, Cip = 091860168, Ceg = 1.]., C16 = C26 = O,
and for adhesive

C11 = C22 = 15384615, Cip = 0461538, Cep = 07, C16 = C26 = 0.

Dirichlet boundary conditions are assumed.

O X1
Figure 3

Figure 4 shows the real and imaginary part of the exponents of singularities with respect to
the opening angle wy, which varies from 0° to 180° by step of half a degree. Real exponents are
represented by dots, complex ones by circles (on reduced graphs, they appear as bold lines). The
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Im(v)

35r

251

Re(v)
N

0.5r N

0 | | | | | | | |
0 20 40 60 80 100 120 140 160 180

Opening angle (deg.)

Figure 4

computing time for all these exponents is 148 seconds, including time for some more with real part
greater than 3.8. This graph is the same as the one presented in [10].

At the top of the graph, we notice a peak of the curve of the real part near w; = 44°. We made
a zoom near this point : beyond the limit of the graph in Figure 4, there exists a quasi symmetric
curve, where the imaginary parts are crossing (see Figure 5). By changing the value of the data
coefficient c17 to 1.33 in the adhesive, we get the Figure 7. Finally, for ¢;; = 1.41, we get the Figure
6 which shows a complex crossing point.

48 50 42 48 50 42 48 50

44 6 44 6 44 6
Opening angle (deg.) Opening angle (deg.) Opening angle (deg.)

Figure 5 Figure 6 Figure 7
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We have a better view of the phenomenon by plotting the exponents in the complex plane, which
is shown on the Figures 8, 9 and 10, corresponding to c;; = 1.5384615,1.41 and 1.33 respectively
(real exponents have been discarded). We can notice that the distance between two points grows
while approaching the crossing point. As the values of the opening angle are equidistant, this
manifests an important variation at this point. Moreover, if we compute in a smaller region
surrounding this point, we get exactly the same kind of graph.

0.8 0.8
0.6 0.6
=
0.4 £ 0.4
0.2 0.2
0 0
3 4.5 3 . . 4.5
Re(v) Re(v)
Figure 9 Figure 10

9.3 Multi-material internal interface

We refer here to [12] where we can find five 3D examples with numerical results. We tested these
five examples and got exactly the same results, at least up to the significant digits given in the
paper.

One of the examples, also treated in [9], is an internal edge lying on (O, Z), intersection of three

domains as shown in Figure 11. Each domain is made of the same orthotropic material (fiber/resin
composite) with different fiber orientations.

y

ol

Figure 11
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The rigidity matrix is the inverse of the compliance matrix given below :

1/F,
E; = B3 =0.105, Fy =1,
—vi2/Ey 1/Es 1 3 5
_1/13/E1 _V23/E2 1/E3 (sym) B o B
0 0 0 1/Gas G12 = G13 = Gaz = 0.0425,
0 0 0 0 1/Giy - -
0 0 0 0 0  1/G 1z = 0.02205, v13 = 23 = 0.21.

With the previous data, the fiber direction is ¢ and the rotations 6, 65 and 63 of each material
are measured in the (¥, Z) plane counterclockwise around Z.

In the first test, we have 81 = —f03 = 45° and 6 = 0°. The first three exponents found are
vy = 0.9174569, v, = 0.9812413 and 3 = 1. On Figure 12, the angular singular function is given
for 11 : it looks quite similar to the result presented in [12]. The exponent v3 = 1 has multiplicity
4 and the associated singular functions have no logarithmic terms.

v =0.9174569
1 1 1
0 0 \/ 0
-1 -1 -1
-180 -90 90 180 -180 -90 90 180 -180 -90 90 180
Comp. 1 Comp. 2 Comp. 3
Figure 12

In the second test, 05 is varying from 0° to 90° by step of 1°, while 6; = —63 = 45°. The exponents
are searched with real part in [0.9,0.99] for each value of 65 (1 is still a multiplicity 4 exponent).
One can see the result in Figure 13. The curves, computed in 71 seconds, fully corroborate those
given in [12].

x10°

N W
T
[e]
L

Im(v)

O P

0 10 20 30 40 50 60 70 80 90

0.99- b
0.9+

0.97F 1
ool R
S . .
$0.95F e
o
0.94F E
0.93f .
0.92} 1

0.91- b

Og L L L L L L L L
0 10 20 30 40 50 60 70 80 90
Rotation angle (deg.)

Figure 13
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9.4 Internal crack

We consider here an internal crack defined by the half-plane (O ; —%, ) as shown in Figure 14.

y

Figure 14

ol

The material is orthotropic and is the same as in § 9.3. Neumann boundary conditions are
assumed. The first exponent 1 = 0.5 has multiplicity 3. The associated singular functions have no

logarithmic terms. Their angular parts are presented in Figure 15.

-1
-90 270

-1
-90 270

-1
-90 270
Comp. 1
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9.5 Edge tracking

To illustrate another kind of computations in three dimensions, we consider the cylindrical object
shown in Figure 16, that consists of two parts : a truncated cone (the “cork”) made of material
M1 and its complementary in the cylinder (the “neck”) made of material M2. Boundary conditions
are Neumann on the two bases of the cork and Dirichlet on the exterior of the neck. Between the
two materials, transmission conditions apply.

The exponents of singularities are computed along the three edges defined by this object and
shown in Figure 16. Axes are moved along each edge so that during the rotation around z7, the
axis of revolution of the object, vector x3 is always tangent to the edge.

45°

Figure 16

We consider the following two examples.
e Example 1 : Material M1 isotropic, material M2 orthotropic.

For material M1, Poisson coefficient ¢ and Young modulus E are set to ¢ = 0.35 and E = 1.
With respect to the Lamé coefficients given in § 9.1, the non-zero coefficients of Hooke’s law for
material M1 are then

€11 = Cg2 = €33 = A+ 2/, €44 = C55 = Co6 = fi, C12 = C13 = C23 = A.
For material M2, the non zero coefficients of Hooke’s law are

C11 — 1.27, Coo — 2.27, C33 — 14.5, C44 = C55 — 0485, Cee — 0324,
C12 = 0622, C13 = C23 — 0.672.

Results are given in Figures 17, 19 and 21 respectively corresponding to edges 1, 2 and 3, with
computing times 93 seconds, 32 seconds and 265 seconds.
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e Example 2 : Material M1 orthotropic, material M2 anisotropic without any particular structure.

Material M1 is material M2 of example 1. For material M2, the non zero coefficients of the
Hooke’s law are

C11 = 2.27, Coo — 1627, C33 = 105, C44 = C55 — 0485, Cep — 0324,
Cig = 0522, C13 = 0672, Co3 = 0272, Cor = —0.3, C35 = 1.0, Cog = 0.]., C46 = —0.1.

Results are given in Figures 18, 20 and 22 respectively corresponding to edges 1, 2 and 3, with
computing times 140 seconds, 33 seconds and 282 seconds.

We can make the following remarks :
. every graph is 27-periodic as expected,
. moreover, in example 1, the variation of the exponents is m-periodic due to the nature of the
materials involved, unlike in example 2 where we can see the influence of material M2.
On Figures 18 and 22, rotation angle varies from —20° to 340° to better see what happens near
angle 0°.

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300
T

05 . . . . . . . 05 . . . . . . .
0

50 100 150 200 250 300 350 0 50 100 150 200 250 300
Rotation angle (deg.) Rotation angle (deg.)
Figure 17 Figure 18
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1 1
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Figure 21 Figure 22

We now illustrate the computation of singular functions, by considering the edge 3 of the second
example, with rotation angles 76° and 90°. The first exponents shown by the dashed lines in Figure
22 are :

. for 76° : v; = 0.471024 + 0.0461114%, vo = 0.538880, v = 1.447458, vy = 1.450971 + 0.0988234,
. for 90° : v; = 0.471017 + 0.048029i, v = 0.521243, v3 = 1.443551 + 0.1081774, vy = 1.571289.

The angular singular functions are given in Figure 23 for 76° and in Figure 24 for 90°. We can
make the following remarks :

. the general shape of the angular singular functions has more variations as the modulus of the

exponents grows,

. at the frontier of the two domains, the angular singular functions are continuous but not

differentiable.
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-1
90

Comp. 1

225

270

-1

v = 0.4710241+0.04611114i

1
0
v = 0.5388805
1
0
I —
v = 1.447458
1
0
v = 1.450971+0.09882322i
1 - —
01—
90 225
Comp. 2
Figure 23

real ...imag

-1
90 225
Comp. 3

270

This test is also interesting because it is a good indication of the correctness of the method.
Looking at the Figure 24 for the angle 90°, one can notice that the angular singular functions
associated with v, and vs have zero third components, while the angular singular functions of
vo and v4 have zero first two components. This characteristic behaviour is well known when the
materials are isotropic, which is not the case here. However, introducing the coefficients computed
for this angle in the equations, leads to a system where the third component is uncoupled from the
first two. This explains this behaviour, which is due to the properties of the particular materials

involved.
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v = 0.4710172+0.04802931i __ real ...imag
1/—— 1 1
0 0
-1 -1 -1
90 225 270 v =0.5212433 90 225 270
1 1 1
0 0 0
-1 -1 -1
90 225 270 Vv = 1.443551+0.1081767i 90 225 270
1 1 — 1
O O 0
-1 -1 -1
90 225 270 v = 1.57129 90 225 270
1 1 1
0 0 0
-1 -1 -1
90 225 270 90 225 270 90 225 270
Comp. 1 Comp. 2 Comp. 3
Figure 24

The object considered in this section is rather simple in that the rotation is made around an
axis, 1, which is one of the absolute axes. More complicated situations can be considered easily,
provided we can obtain, in each point of calculation :

. the orientation of the local axes with respect to the absolute axes, given for instance by a

rotation matrix,

. the geometry of the domain (opening of the angular sectors T'y).

As an example, we suppose that the previous object is cut by the plane 1 = —tana xzo, as
shown in Figure 25.

With a = 30°, along the edge 2, which is now an ellipsis, the geometry of the domain is varying
from 60° to 120°. The computation time is 40 seconds and the results are given in Figure 26.

Université de Rennes 1 23



Fast semi-analytic computation of elastic edge singularities

v

Figure 25

0.8

0.6 N

L TN

2,61
24F / |
2.2f . 4

18 b

Re(v)
N

16 N
14r b

121 b

L L L L L L
0 50 100 150 200 250 300 350
Rotation angle (deg.)

Figure 26

10. Conclusion

In this paper, we have presented a method for the computation of singularity exponents in linear
elasticity, which is especially useful in the anisotropic case. The method is based on the construction
of a matrix of low dimension depending on a complex variable v, whose determinant is zero for a
discrete set of values of this variable. These values are the exponents of singularities.

Except during the preliminary step which consists of the computation of the roots of a
certain polynomial associated with the system, the construction of this matrix is analytic. As
a consequence, we get a method which is reliable, rapid and easy to use as the various examples
given show.

In all situations when the singular functions are homogeneous functions r”g(6), we are able to
compute their angular part ¢ and our method proves to be efficient even if there is multiplicity. In
the isotropic case, our results have been successfully compared with those deduced from analytic
formulas given in [4], using only the exponent v. The exceptional cases where logarithmic terms
appear in the singular functions can be detected with our method. The analytic expressions for
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the singular functions in this case differ, however, from the generic case, and are available from [1],
but they are not implemented here.

Finally, due to its data structure, our program is particularly adapted to the study of parameter

dependency and moreover can be coupled with other codes. The geometrical and material input
data could be provided by another code, while the output (exponents and angular functions) can
be post-processed in view of further investigations.
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