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Abstrat: Using a support vetor mahine requires to set two types of hyperparameters:the soft margin parameter C and the parameters of the kernel. To perform this modelseletion task, the method of hoie is ross-validation. Its leave-one-out variant is knownto produe an estimator of the generalization error whih is almost unbiased. Its majordrawbak rests in its time requirement. To overome this di�ulty, several upper boundson the leave-one-out error of the pattern reognition SVM have been derived. Among thosebounds, the most popular one is probably the radius-margin bound. It applies to the hardmargin pattern reognition SVM, and by extension to the 2-norm SVM. In this report,we introdue a quadrati loss M-SVM, the M-SVM2, as a diret extension of the 2-normSVM to the multi-lass ase. For this mahine, a generalized radius-margin bound is thenestablished.Key-words: M-SVMs, model seletion, leave-one-out error, radius-margin bound.
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Une SVM multi-lasse à oût quadratiqueRésumé : La mise en ÷uvre d'une mahine à veteurs support requiert la déterminationdes valeurs de deux types d'hyper-paramètres : le paramètre de �marge doue� C et lesparamètres du noyau. Pour e�etuer ette tâhe de séletion de modèle, la méthode de hoixest la validation roisée. Sa variante �leave-one-out� est onnue pour fournir un estimateurde l'erreur en généralisation presque sans biais. Son défaut premier réside dans le temps dealul qu'elle néessite. A�n de surmonter ette di�ulté, plusieurs majorants de l'erreur�leave-one-out� de la SVM alulant des dihotomies ont été proposés. La plus populaire dees bornes supérieures est probablement la borne �rayon-marge�. Elle s'applique à la versionà marge dure de la mahine, et par extension à la variante dite �de norne 2�. Ce rapportintroduit une M-SVM �à oût quadratique�, la M-SVM2, omme une extension direte dela SVM de norne 2 au as multi-lasse. Pour ette mahine, une borne �rayon-marge�généralisée est ensuite établie.Mots-lés : M-SVM, séletion de modèle, erreur �leave-one-out�, borne �rayon-marge�.



A Quadrati Loss Multi-Class SVM 31 IntrodutionUsing a support vetor mahine (SVM) [2, 4℄ requires to set two types of hyperparameters:the soft margin parameter C and the parameters of the kernel. To perform this modelseletion task, several approahes are available (see for instane [9, 12℄). The solution ofhoie onsists in applying a ross-validation proedure. Among those proedures, the leave-one-out one appears espeially attrative, sine it is known to produe an estimator of thegeneralization error whih is almost unbiased [11℄. The seamy side of things is that it ishighly time onsuming. This is the reason why, in reent years, a number of upper boundson the leave-one-out error of pattern reognition SVMs have been proposed in literature (see[3℄ for a survey). Among those bounds, the tightest one is the span bound [16℄. However,the results of Chapelle and o-workers presented in [3℄ show that another bound, the radius-margin one [15℄, ahieves equivalent performane for model seletion while being far simplerto ompute. This is the reason why it is urrently the most popular bound. It applies to thehard margin mahine and, by extension, to the 2-norm SVM (see for instane Chapter 7 in[13℄).In this report, a multi-lass extension of the 2-norm SVM is introdued. This mahine,named M-SVM2, is a quadrati loss multi-lass SVM, i.e., a multi-lass SVM (M-SVM) inwhih the ℓ1-norm on the vetor of slak variables has been replaed with a quadrati form.The standard M-SVM on whih it is based is the one of Lee, Lin and Wahba [10℄. As the
2-norm SVM, its training algorithm is equivalent to the training algorithm of a hard marginmahine obtained by a simple hange of kernel. We then establish a generalized radius-margin bound on the leave-one-out error of the hard margin version of the M-SVM of Lee,Lin and Wahba.The organization of this paper is as follows. Setion 2 presents the multi-lass SVMs, bydesribing their ommon arhiteture and the general form taken by their di�erent trainingalgorithms. It fouses on the M-SVM of Lee, Lin and Wahba. In Setion 3, the M-SVM2is introdued as a partiular ase of quadrati loss M-SVM. Its onnetion with the hardmargin version of the M-SVM of Lee, Lin and Wahba is highlighted, as well as the fat thatit onstitutes a multi-lass generalization of the 2-norm SVM. Setion 4 is devoted to theformulation and proof of the orresponding multi-lass radius-margin bound. At last, wedraw onlusions and outline our ongoing researh in Setion 5.



4 Monfrini & Guermeur2 Multi-Class SVMs2.1 Formalization of the learning problemWe are interested here in multi-lass pattern reognition problems. Formally, we onsiderthe ase of Q-ategory lassi�ation problems with 3 ≤ Q < ∞, but our results extend tothe ase of dihotomies. Eah objet is represented by its desription x ∈ X and the set
Y of the ategories y an be identi�ed with the set of indexes of the ategories: [[ 1, Q ]].We assume that the link between objets and ategories an be desribed by an unknownprobability measure P on the produt spae X×Y. The aim of the learning problem onsistsin seleting in a set G of funtions g = (gk)1≤k≤Q from X into R

Q a funtion lassifyingdata in an optimal way. The riterion of optimality must be spei�ed. The funtion gassigns x ∈ X to the ategory l if and only if gl(x) > maxk 6=l gk(x). In ase of ex æquo,
x is assigned to a dummy ategory denoted by ∗. Let f be the deision funtion (from Xinto Y

⋃

{∗}) assoiated with g. With these de�nitions at hand, the objetive funtion tobe minimized is the probability of error P (f (X) 6= Y ). The optimization proess, alledtraining, is based on empirial data. More preisely, we assume that there exists a randompair (X, Y ) ∈ X × Y, distributed aording to P , and we are provided with a m-sample
Dm = ((Xi, Yi))1≤i≤m of independent opies of (X, Y ).There are two questions raised by suh problems: how to properly hoose the lass offuntions G and how to determine the best andidate g∗ in this lass, using only Dm. Thisreport addresses the �rst question, named model seletion, in the partiular ase when themodel onsidered is a M-SVM. The seond question, named funtion seletion, is addressedfor instane in [8℄.2.2 Arhiteture and training algorithmsM-SVMs, like all the SVMs, belong to the family of kernel mahines. As suh, they operateon a lass of funtions indued by a positive semide�nite (Merer) kernel. This alls for theformulation of some de�nitions and propositions.De�nition 1 (Positive semide�nite kernel) A positive semide�nite kernel κ on the set
X is a ontinuous and symmetri funtion κ : X 2 → R verifying:

∀n ∈ N
∗, ∀ (xi)1≤i≤n ∈ Xn, ∀ (ai)1≤i≤n ∈ R

n,

n
∑

i=1

n
∑

j=1

aiajκ (xi, xj) ≥ 0.De�nition 2 (Reproduing kernel Hilbert spae [1℄) Let (H, 〈·, ·〉H) be a Hilbert spaeof funtions on X (H ⊂ R
X ). A funtion κ : X 2 → R is a reproduing kernel of H if andonly if:1. ∀x ∈ X , κx = κ (x, ·) ∈ H;2. ∀x ∈ X , ∀h ∈ H, 〈h, κx〉H = h(x) (reproduing property).



A Quadrati Loss Multi-Class SVM 5A Hilbert spae of funtions whih possesses a reproduing kernel is alled a reproduingkernel Hilbert spae (RKHS).Proposition 1 Let (Hκ, 〈·, ·〉Hκ
) be a RKHS of funtions on X with reproduing kernel κ.Then, there exists a map Φ from X into a Hilbert spae (EΦ(X ), 〈·, ·〉

) suh that:
∀ (x, x′) ∈ X 2, κ (x, x′) = 〈Φ (x) , Φ (x′)〉. (1)

Φ is alled a feature map and EΦ(X ) a feature spae.The onnetion between positive semide�nite kernels and RKHS is the following.Proposition 2 If κ is a positive semide�nite kernel on X , then there exists a RKHS
(H, 〈·, ·〉H) of funtions on X suh that κ is a reproduing kernel of H.Let κ be a positive semide�nite kernel on X and let (Hκ, 〈·, ·〉Hκ

) be the RKHS spannedby κ. Let H̄ = (Hκ, 〈·, ·〉Hκ
)
Q and let H = ((Hκ, 〈·, ·〉Hκ

) + {1})
Q. By onstrution, H isthe lass of vetor-valued funtions h = (hk)1≤k≤Q on X suh that

h(·) =

(

mk
∑

i=1

βikκ (xik, ·) + bk

)

1≤k≤Qwhere the xik are elements of X , as well as the limits of these funtions when the sets
{xik : 1 ≤ i ≤ mk} beome dense in X in the norm indued by the dot produt (see forinstane [17℄). Due to Equation 1, H an be seen as a multivariate a�ne model on Φ (X ).Funtions h an then be rewritten as:

h(·) = (〈wk, ·〉 + bk)1≤k≤Qwhere the vetors wk are elements of EΦ(X ). They are thus desribed by the pair (w,b)with w = (wk)1≤k≤Q ∈ E
Q

Φ(X ) and b = (bk)1≤k≤Q ∈ R
Q. As a onsequene, H̄ an be seenas a multivariate linear model on Φ (X ), endowed with a norm ‖.‖H̄ given by:

∀h̄ ∈ H̄,
∥

∥h̄
∥

∥

H̄
=

√

√

√

√

Q
∑

k=1

‖wk‖2 = ‖w‖ ,where ‖wk‖ =
√

〈wk, wk〉. With these de�nitions and propositions at hand, a generide�nition of the M-SVMs an be formulated as follows.De�nition 3 (M-SVM, De�nition 42 in [8℄) Let ((xi, yi))1≤i≤m ∈ (X × [[ 1, Q ]])m and
λ ∈ R

∗
+. A Q-ategory M-SVM is a large margin disriminant model obtained by minimizingover the hyperplane ∑Q

k=1 hk = 0 of H a penalized risk JM-SVM of the form:
JM-SVM (h) =

m
∑

i=1

ℓM-SVM (yi, h (xi)) + λ
∥

∥h̄
∥

∥

2

H̄where the data �t omponent involves a loss funtion ℓM-SVM whih is onvex.



6 Monfrini & GuermeurThree main models of M-SVMs an be found in literature. The oldest one is the modelof Weston and Watkins [19℄, whih orresponds to the loss funtion ℓWW given by:
ℓWW(y, h(x)) =

∑

k 6=y

(1 − hy(x) + hk(x))+ ,where the hinge loss funtion (·)+ is the funtion max(0, ·). The seond one is due toCrammer and Singer [5℄ and orresponds to the loss funtion ℓCS given by:
ℓCS(y, h̄(x)) =

(

1 − h̄y(x) + max
k 6=y

h̄k(x)

)

+

.The most reent model is the one of Lee, Lin and Wahba [10℄ whih orresponds to the lossfuntion ℓLLW given by:
ℓLLW (y, h(x)) =

∑

k 6=y

(

hk(x) +
1

Q − 1

)

+

. (2)Among the three models, the M-SVM of Lee, Lin and Wahba is the only one that implementsasymptotially the Bayes deision rule. It is Fisher onsistent [20, 14℄.2.3 The M-SVM of Lee, Lin and WahbaThe substitution in De�nition 3 of ℓM-SVM with the expression of the loss funtion ℓLLW givenby Equation 2 provides us with the expressions of the quadrati programming (QP) problemsorresponding to the training algorithms of the hard margin and soft margin versions of theM-SVM of Lee, Lin and Wahba.Problem 1 (Hard margin M-SVM)
min
w,b

JHM (w,b)

s.t.











〈wk, Φ(xi)〉 + bk ≤ − 1
Q−1 , (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)

∑Q
k=1 wk = 0

∑Q

k=1 bk = 0where
JHM (w,b) =

1

2

Q
∑

k=1

‖wk‖
2
.Problem 2 (Soft margin M-SVM)

min
w,b

JSM (w,b)
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s.t.



















〈wk, Φ(xi)〉 + bk ≤ − 1
Q−1 + ξik, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)

ξik ≥ 0, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)
∑Q

k=1 wk = 0
∑Q

k=1 bk = 0where
JSM (w,b) =

1

2

Q
∑

k=1

‖wk‖
2
+ C

m
∑

i=1

∑

k 6=yi

ξik.In Problem 2, the ξik are slak variables introdued in order to relax the onstraints oforret lassi�ation. The oe�ient C, whih haraterizes the trade-o� between preditionauray on the training set and smoothness of the solution, an be expressed in terms of theregularization oe�ient λ as follows: C = (2λ)−1. It is alled the soft margin parameter.Instead of diretly solving Problems 1 and 2, one usually solves their Wolfe dual [6℄. Wenow derive the dual problem of Problem 1. Giving the details of the implementation of theLagrangian duality will provide us with partial results whih will prove useful in the sequel.Let α = (αik)1≤i≤m,1≤k≤Q ∈ R
Qm
+ be the vetor of Lagrange multipliers assoiatedwith the onstraints of good lassi�ation. It is for onveniene of notation that this ve-tor is expressed with double subsript and that the dummy variables αiyi

, all equal to 0,are introdued. Let δ ∈ EΦ(X ) be the Lagrange multiplier assoiated with the onstraint
∑Q

k=1 wk = 0 and β ∈ R the Lagrange multiplier assoiated with the onstraint∑Q

k=1 bk = 0.The Lagrangian funtion of Problem 1 is given by:
L (w,b, α, β, δ) =

1

2

Q
∑

k=1

‖wk‖
2 − 〈δ,

Q
∑

k=1

wk〉 − β

Q
∑

k=1

bk +

m
∑

i=1

Q
∑

k=1

αik

(

〈wk, Φ(xi)〉 + bk +
1

Q − 1

)

. (3)Setting the gradient of the Lagrangian funtion with respet to wk equal to the null vetorprovides us with Q alternative expressions for the optimal value of vetor δ:
δ∗ = w∗

k +

m
∑

i=1

α∗
ikΦ(xi), (1 ≤ k ≤ Q). (4)Sine by hypothesis,∑Q

k=1 w∗
k = 0, summing over the index k provides us with the expressionof δ∗ as a funtion of dual variables only:

δ∗ =
1

Q

m
∑

i=1

Q
∑

k=1

α∗
ikΦ(xi). (5)



8 Monfrini & GuermeurBy substitution into (4), we get the expression of the vetors wk at the optimum:
w∗

k =
1

Q

m
∑

i=1

Q
∑

l=1

α∗
ilΦ(xi) −

m
∑

i=1

α∗
ikΦ(xi), (1 ≤ k ≤ Q)whih an also be written as

w∗
k =

m
∑

i=1

Q
∑

l=1

α∗
il

(

1

Q
− δk,l

)

Φ(xi), (1 ≤ k ≤ Q) (6)where δ is the Kroneker symbol.Let us now set the gradient of (3) with respet to b equal to the null vetor. It omes:
β∗ =

m
∑

i=1

α∗
ik, (1 ≤ k ≤ Q)and thus

m
∑

i=1

Q
∑

l=1

α∗
il

(

1

Q
− δk,l

)

= 0, (1 ≤ k ≤ Q).Given the onstraint∑Q
k=1 bk = 0, this implies that:

m
∑

i=1

Q
∑

k=1

α∗
ikb∗k = β∗

Q
∑

k=1

b∗k = 0. (7)By appliation of (6),
Q
∑

k=1

‖w∗
k‖

2
=

Q
∑

k=1

〈

m
∑

i=1

Q
∑

l=1

α∗
il

(

1

Q
− δk,l

)

Φ(xi),

m
∑

j=1

Q
∑

n=1

α∗
jn

(

1

Q
− δk,n

)

Φ(xj)〉

=

m
∑

i=1

m
∑

j=1

Q
∑

l=1

Q
∑

n=1

α∗
ilα

∗
jn〈Φ(xi), Φ(xj)〉

Q
∑

k=1

(

1

Q
− δk,l

)(

1

Q
− δk,n

)

=
m
∑

i=1

m
∑

j=1

Q
∑

l=1

Q
∑

n=1

α∗
ilα

∗
jn

(

δl,n −
1

Q

)

κ(xi, xj). (8)Still by appliation of (6),
m
∑

i=1

Q
∑

k=1

α∗
ik〈w

∗
k, Φ(xi)〉 =

m
∑

i=1

Q
∑

k=1

α∗
ik〈

m
∑

j=1

Q
∑

l=1

α∗
jl

(

1

Q
− δk,l

)

Φ(xj), Φ(xi)〉
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=

m
∑

i=1

m
∑

j=1

Q
∑

k=1

Q
∑

l=1

α∗
ikα∗

jl

(

1

Q
− δk,l

)

κ(xi, xj). (9)Combining (8) and (9) gives:
1

2

Q
∑

k=1

‖w∗
k‖

2
+

m
∑

i=1

Q
∑

k=1

α∗
ik〈w

∗
k, Φ(xi)〉 = −

1

2

Q
∑

k=1

‖w∗
k‖

2

= −
1

2

m
∑

i=1

m
∑

j=1

Q
∑

k=1

Q
∑

l=1

α∗
ikα∗

jl

(

δk,l −
1

Q

)

κ(xi, xj). (10)In what follows, we use the notation en to designate the vetor of R
n suh that all itsomponents are equal to e. Let H be the matrix of MQm,Qm (R) of general term:

hik,jl =

(

δk,l −
1

Q

)

κ(xi, xj).With these notations at hand, reporting (7) and (10) in (3) provides us with the algebraiexpression of the Lagrangian funtion at the optimum:
L (α∗) = −

1

2
α∗T

Hα∗ +
1

Q − 1
1T

Qmα∗.This eventually provides us with the Wolfe dual formulation of Problem 1:Problem 3 (Hard margin M-SVM, dual formulation)
max

α
JLLW,d(α)

s.t.

{

αik ≥ 0, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)
∑m

i=1

∑Q

l=1 αil

(

1
Q
− δk,l

)

= 0, (1 ≤ k ≤ Q)where
JLLW,d(α) = −

1

2
αT Hα +

1

Q − 1
1T

Qmα,with the general term of the Hessian matrix H being
hik,jl =

(

δk,l −
1

Q

)

κ(xi, xj).Let the ouple (w0,b0
) denote the optimal solution of Problem 1 and equivalently, let

α0 =
(

α0
ik

)

1≤i≤m,1≤k≤Q
∈ R

Qm
+ be the optimal solution of Problem 3. Aording to (6), theexpression of w0

k is then:
w0

k =
m
∑

i=1

Q
∑

l=1

α0
il

(

1

Q
− δk,l

)

Φ(xi).



10 Monfrini & Guermeur2.4 Geometrial marginsFrom a geometrial point of view, the algorithms desribed above tend to onstrut a setof hyperplanes {(wk, bk) : 1 ≤ k ≤ Q} that maximize globally the C2
Q margins between thedi�erents ategories. If these margins are de�ned as in the bi-lass ase, their analytialexpression is more omplex.De�nition 4 (Geometrial margins, De�nition 7 in [7℄) Let us onsider a Q-ategoryM-SVM (a funtion of H) lassifying the examples of its training set {(xi, yi) : 1 ≤ i ≤ m}without error. γkl, its margin between ategories k and l, is de�ned as the smallest distaneof a point either in k or l to the hyperplane separating those ategories. Let us denote

dM-SVM = min
1≤k<l≤Q

{

min

[

min
i:yi=k

(hk(xi) − hl(xi)) , min
j:yj=l

(hl(xj) − hk(xj))

]}and for 1 ≤ k < l ≤ Q, let dM-SVM,kl be:
dM-SVM,kl =

1

dM-SVM min

[

min
i:yi=k

(hk(xi) − hl(xi) − dM-SVM) , min
j:yj=l

(hl(xj) − hk(xj) − dM-SVM)

]

.Then we have:
γkl = dM-SVM 1 + dM-SVM,kl

‖wk − wl‖
.Given the onstraints of Problem 1, the expression of dM-SVM orresponding to the M-SVMof Lee, Lin and Wahba is:

dLLW =
Q

Q − 1
.Remark 1 The values of the parameters dM-SVM,kl (or dLLW,kl in the ase of interest) areknown as soon as the pair (w0,b0

) is known.The onnetion between the geometrial margins and the penalizer of JM-SVM is givenby the following equation:
∑

k<l

‖wk − wl‖
2

= Q

Q
∑

k=1

‖wk‖
2, (11)the proof of whih an for instane be found in Chapter 2 of [7℄. We introdue now a resultneeded in the proof of the master theorem of this report.Proposition 3 For the hard margin M-SVM of Lee, Lin and Wahba, we have:

Q

(Q − 1)2

∑

k<l

(

1 + dLLW,kl

γkl

)2

=

Q
∑

k=1

‖w0
k‖

2 = α0T
Hα0 =

1

Q − 1
1T

Qmα0.
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• Q

(Q−1)2

∑

k<l

(

1+dLLW,kl

γkl

)2

=
∑Q

k=1 ‖w
0
k‖

2This equation is a diret onsequene of De�nition 4 and Equation 11.
•
∑Q

k=1 ‖w
0
k‖

2 = α0T
Hα0This is a diret onsequene of Equation 10 and the de�nition of matrix H .� α0T

Hα0 = 1
Q−11T

Qmα0One of the Kuhn-Tuker optimality onditions is:
α0

ik

(

〈w0
k, Φ(xi)〉 + b0

k +
1

Q − 1

)

= 0, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q),and thus:
m
∑

i=1

Q
∑

k=1

α0
ik

(

〈w0
k, Φ(xi)〉 + b0

k +
1

Q − 1

)

= 0.By appliation of (7), this simpli�es into
m
∑

i=1

Q
∑

k=1

α0
ik〈w

0
k, Φ(xi)〉 +

1

Q − 1
1T

Qmα0 = 0.Sine
m
∑

i=1

Q
∑

k=1

α0
ik〈w

0
k, Φ(xi)〉 = −α0T

Hα0is a diret onsequene of (10), this onludes the proof.



12 Monfrini & Guermeur3 The M-SVM23.1 Quadrati loss multi-lass SVMs: motivation and prinipleThe M-SVMs presented in Setion 2.2 share a ommon feature with the standard patternreognition SVM: the ontribution of the slak variables to their objetive funtions is linear.Let ξ be the vetor of these variables. In the ases of the M-SVMs of Weston and Watkinsand Lee, Lin and Wahba, we have ξ = (ξik)1≤i≤m,1≤k≤Q with (ξiyi
)1≤i≤m

= 0m, and in thease of the model of Crammer and Singer, it is simply ξ = (ξi)1≤i≤m. In both ases, theontribution to the objetive funtion is C‖ξ‖1.In the bi-lass ase, there exists a variant of the standard SVM whih is known as the
2-norm SVM sine for this mahine, the empirial ontribution to the objetive funtionis C‖ξ‖2

2. Its main advantage, underlined for instane in the Chapter 7 of [13℄, is that itstraining algorithm an be expressed, after an appropriate hange of kernel, as the trainingalgorithm of a hard margin mahine. As a onsequene, its leave-one-out error an be upperbounded thanks to the radius-margin bound.Unfortunately, a naive extension of the 2-norm SVM to the multi-lass ase, resultingfrom substituting in the objetive funtion of either of the three M-SVMs ‖ξ‖1 with ‖ξ‖2
2,does not preserve this property. Setion 2.4.1.4 of [7℄ gives detailed explanations about thatpoint. The strategy that we propose to exhibit interesting multi-lass generalizations ofthe 2-norm SVM onsists in studying the lass of quadrati loss M-SVMs, i.e., the lass ofextensions of the M-SVMs suh that the ontribution of the slak variables is a quadratiform:

CξT Mξ = C

m
∑

i=1

m
∑

j=1

Q
∑

k=1

Q
∑

l=1

mik,jlξikξjlwhere M = (mik,jl)1≤i,j≤m,1≤k,l≤Q
is a symmetri positive semide�nite matrix.3.2 The M-SVM2 as a multi-lass generalization of the 2-norm SVMIn this setion, we establish that the idea introdued above provides us with a solution tothe problem of interest when the M-SVM used is the one of Lee, Lin and Wahba and thegeneral term of the matrix M is mik,jl =

(

δk,l −
1
Q

)

δi,j . The orresponding mahine, namedM-SVM2, generalizes the 2-norm SVM to an arbitrary (but �nite) number of ategories.Problem 4 (M-SVM2)
min
w,b

JM-SVM2(w,b)

s.t.











〈wk, Φ(xi)〉 + bk ≤ − 1
Q−1 + ξik, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)

∑Q

k=1 wk = 0
∑Q

k=1 bk = 0
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JM-SVM2(w,b) =

1

2

Q
∑

k=1

‖wk‖
2 + C

m
∑

i=1

m
∑

j=1

Q
∑

k=1

Q
∑

l=1

(

δk,l −
1

Q

)

δi,jξikξjl.Note that as in the bi-lass ase, it is useless to introdue nonnegativity onstraints for theslak variables. The Lagrangian funtion assoiated with Problem 4 is thus
L (w,b, ξ, α, β, δ) =

1

2

Q
∑

k=1

‖wk‖
2 + CξT Mξ − 〈δ,

Q
∑

k=1

wk〉 − β

Q
∑

k=1

bk

+

m
∑

i=1

Q
∑

k=1

αik

(

〈wk, Φ(xi)〉 + bk +
1

Q − 1
− ξik

)

. (12)Setting the gradient of L with respet to ξ equal to the null vetor gives
2CMξ∗ = α∗ (13)whih has for immediate onsequene that

Cξ∗
T
Mξ∗ − α∗T

ξ∗ = −Cξ∗
T
Mξ∗. (14)Using the same reasoning that we used to derive the objetive funtion of Problem 3 and(14), at the optimum, (12) simpli�es into:

L (ξ∗, α∗) = −
1

2
α∗T

Hα∗ − Cξ∗
T
Mξ∗ +

1

Q − 1
1T

Qmα∗. (15)Besides, using (13),
α∗

inα∗
ip = 4C2

Q
∑

k=1

(

δk,n −
1

Q

)

ξ∗ik

Q
∑

l=1

(

δl,p −
1

Q

)

ξ∗iland thus
α∗

inα∗
ip = 4C2

Q
∑

k=1

Q
∑

l=1

(

δk,nδl,p − (δk,n + δl,p)
1

Q
+

1

Q2

)

ξ∗ikξ∗il.By a double summation over n and p, we have:
Q
∑

n=1

Q
∑

p=1

α∗
inα∗

ip

(

δn,p −
1

Q

)

= 4C2

Q
∑

k=1

Q
∑

l=1

ξ∗ikξ∗il

Q
∑

n=1

Q
∑

p=1

(

δk,nδl,p − (δk,n + δl,p)
1

Q
+

1

Q2

)(

δn,p −
1

Q

)

.
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Q
∑

n=1

Q
∑

p=1

(

δk,nδl,p − (δk,n + δl,p)
1

Q
+

1

Q2

)(

δn,p −
1

Q

)

= δk,l −
1

Q
,this simpli�es into

Q
∑

n=1

Q
∑

p=1

α∗
inα∗

ip

(

δn,p −
1

Q

)

= 4C2

Q
∑

k=1

Q
∑

l=1

(

δk,l −
1

Q

)

ξ∗ikξ∗il.Finally, a double summation over i and j implies that
α∗T

Mα∗ = 4C2ξ∗
T
Mξ∗.A substitution into (15) provides us with:

L (α∗) = −
1

2
α∗T

(

H +
1

2C
M

)

α∗ +
1

Q − 1
1T

Qmα∗.As in the ase of the hard margin version of the M-SVM of Lee, Lin and Wahba, setting thegradient of (12) with respet to b equal to the null vetor gives:
m
∑

i=1

Q
∑

l=1

α∗
il

(

1

Q
− δk,l

)

= 0, (1 ≤ k ≤ Q).Putting things together, we obtain the following expression for the dual problem of Prob-lem 4:Problem 5 (M-SVM2, dual formulation)
max

α
JM-SVM2,d(α)

s.t.

{

αik ≥ 0, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)
∑m

i=1

∑Q
l=1 αil

(

1
Q
− δk,l

)

= 0, (1 ≤ k ≤ Q)where
JM-SVM2,d(α) = −

1

2
αT

(

H +
1

2C
M

)

α +
1

Q − 1
1T

Qmα.Due to the de�nitions of the matries H and M , this is preisely Problem 3 with thekernel κ replaed by a kernel κ′ suh that:
κ′(xi, xj) = κ(xi, xj) +

1

2C
δi,j , (1 ≤ i, j ≤ m).When Q = 2, the M-SVM of Lee, Lin and Wahba, like the two other ones, is equivalentto the standard bi-lass SVM (see for instane [7℄). Furthermore, in that ase, we get

ξT Mξ = 1
2‖ξ‖

2
2. The M-SVM2 is thus equivalent to the 2-norm SVM.



A Quadrati Loss Multi-Class SVM 154 Multi-Class Radius-Margin Bound on the Leave-One-Out Error of the M-SVM2To begin with, we must reall Vapnik's initial bi-lass theorem (see Chapter 10 of [15℄),whih is based on an intermediate result of entral importane known as the �key lemma�.4.1 Bi-lass radius-margin boundLemma 1 (Bi-lass key lemma) Let us onsider a hard margin bi-lass SVM on a do-main X . Suppose that it is trained on a set dm = {(xi, yi) : 1 ≤ i ≤ m} of m ouples of
X × {−1, 1} (the points of whih it separates without error). Consider now the same ma-hine, trained on dm \ {(xp, yp)}. If it makes an error on (xp, yp), then the inequality

α0
p ≥

1

D2
mholds, where Dm is the diameter of the smallest sphere ontaining the images by the featuremap of the support vetors of the initial mahine.Theorem 1 (Bi-lass radius-margin bound) Let γ be the geometrial margin of thehard margin SVM de�ned in Lemma 1, when trained on dm. Let also Lm be the numberof errors resulting from applying a leave-one-out ross-validation proedure to this mahine.We have:

Lm ≤
D2

m

γ2
.The multi-lass radius-margin bound that we propose in this report is a diret general-ization of the one proposed by Vapnik. The �rst step of the proof onsists in establishing a�multi-lass key lemma�. This is the subjet of the following subsetion.4.2 Multi-lass key lemmaLemma 2 (Multi-lass key lemma) Let us onsider a Q-ategory hard margin M-SVMof Lee, Lin and Wahba on a domain X . Let dm = {(xi, yi) : 1 ≤ i ≤ m} be its training set.Consider now the same mahine trained on dm \{(xp, yp)}. If it makes an error on (xp, yp),then the inequality

max
k∈[[ 1,Q ]]

α0
pk ≥

1

Q(Q − 1)D2
mholds, where Dm is the diameter of the smallest sphere of the feature spae ontaining theset {Φ(xi) : 1 ≤ i ≤ m}.Proof Let (wp,bp) be the ouple haraterizing the optimal hyperplanes when the mahineis trained on dm \ {(xp, yp)}. Let

αp = (αp
11, . . . , α

p

(p−1)Q, 0, . . . , 0, α
p

(p+1)1, . . . , α
p
mQ)T



16 Monfrini & Guermeurbe the orresponding vetor of dual variables. αp belongs to R
Qm
+ , with (αp

pk

)

1≤k≤Q
= 0Q.This representation is used to haraterize diretly the seond M-SVM with respet to the�rst one. Indeed, αp is an optimal solution of Problem 3 under the additional onstraint

(αpk)1≤k≤Q
= 0Q. Let us de�ne two more vetors in R

Qm
+ , λp = (λp

ik)1≤i≤m,1≤k≤Q and
µp = (µp

ik)1≤i≤m,1≤k≤Q. λp satis�es additional properties so that the vetor α0 − λp is afeasible solution of Problem 3 under the additional onstraint that (α0
pk − λ

p
pk

)

1≤k≤Q
= 0Q,i.e., α0 − λp satis�es the same onstraints as αp. We have

∀i 6= p, ∀k 6= yi, α0
ik − λ

p
ik ≥ 0 ⇐⇒ λ

p
ik ≤ α0

ik.We dedue from the equality onstraints of Problem 3 that:
∀k,

m
∑

i=1

Q
∑

l=1

(

α0
il − λ

p
il

)

(

1

Q
− δk,l

)

= 0 ⇐⇒

m
∑

i=1

Q
∑

l=1

λ
p
il

(

1

Q
− δk,l

)

= 0.To sum up, vetor λp satis�es the following onstraints:














∀k, λ
p
pk = α0

pk

∀i 6= p, ∀k, 0 ≤ λ
p
ik ≤ α0

ik
∑m

i=1

∑Q
l=1 λ

p
il

(

1
Q
− δk,l

)

= 0, (1 ≤ k ≤ Q)

. (16)The properties of vetor µp are suh that αp + K1µ
p satis�es the onstraints of the sameproblem, where K1 is a positive salar the value of whih will be spei�ed in the sequel. Wehave thus:

∀i, α
p
iyi

+ K1µ
p
iyi

= 0 ⇐⇒ µ
p
iyi

= 0.Moreover, we have
∀i, ∀k 6= yi, µ

p
ik ≥ 0 =⇒ α

p
ik + K1µ

p
ik ≥ 0.Finally,

m
∑

i=1

Q
∑

l=1

(αp
il + cµ

p
il)

(

1

Q
− δk,l

)

= 0 ⇐⇒

m
∑

i=1

Q
∑

l=1

µ
p
il

(

1

Q
− δk,l

)

= 0.To sum up, vetor µp satis�es the following onstraints:














∀i, µ
p
iyi

= 0

∀i, ∀k 6= yi, µ
p
ik ≥ 0

∑m
i=1

∑Q
l=1 µ

p
il

(

1
Q
− δk,l

)

= 0, (1 ≤ k ≤ Q)

. (17)In the sequel, for the sake of simpliity, we write J in plae of JLLW,d. By onstrution ofvetors λp and µp, we have J(α0 − λp) ≤ J(αp) and J (αp + K1µ
p) ≤ J(α0), and by way ofonsequene,

J(α0) − J(α0 − λp) ≥ J(α0) − J(αp) ≥ J (αp + K1µ
p) − J(αp). (18)



A Quadrati Loss Multi-Class SVM 17The expression of the �rst term is
J(α0) − J(α0 − λp) =

1

2
λpT

Hλp +

(

−Hα0 +
1

Q − 1
1Qm

)T

λp. (19)Given (6) and the de�nition of matrix H ,
(

−Hα0 +
1

Q − 1
1Qm

)T

λp =

m
∑

i=1

∑

k 6=yi

(

〈w0
k, Φ(xi)〉 +

1

Q − 1

)

λ
p
ik

=

m
∑

i=1

∑

k 6=yi

(

h0
k (xi) +

1

Q − 1

)

λ
p
ik −

m
∑

i=1

∑

k 6=yi

b0
kλ

p
ik. (20)Due to the onstraints of orret lassi�ation and the nonnegativity of the omponents ofvetor λp, the �rst double sum of the right-hand side of (20) is nonpositive. Furthermore,making use of the equality onstraints of (16) and ∑Q

k=1 b0
k = 0 gives:

m
∑

i=1

Q
∑

k=1

b0
kλ

p
ik =

Q
∑

k=1

b0
k

m
∑

i=1

λ
p
ik =

(

Q
∑

k=1

b0
k

)(

m
∑

i=1

Q
∑

l=1

1

Q
λ

p
il

)

= 0.Thus,
(

−Hα0 +
1

Q − 1
1Qm

)T

λp ≤ 0.A substitution into (19) provides us with the following upper bound on J(α0)−J(α0 −λp):
J(α0) − J(α0 − λp) ≤

1

2
λpT Hλp,and equivalently, by de�nition of H ,

J(α0) − J(α0 − λp) ≤
1

2

Q
∑

k=1

∥

∥

∥

∥

∥

m
∑

i=1

Q
∑

l=1

λ
p
il

(

1

Q
− δk,l

)

Φ(xi)

∥

∥

∥

∥

∥

2

. (21)We now turn to the right-hand side of (18). The line of reasoning already used for theleft-hand side gives:
J (αp + K1µ

p) − J(αp) =

K1

(

−Hαp +
1

Q − 1
1Qm

)T

µp −
K2

1

2

Q
∑

k=1

∥

∥

∥

∥

∥

m
∑

i=1

Q
∑

l=1

µ
p
il

(

1

Q
− δk,l

)

Φ(xi)

∥

∥

∥

∥

∥

2 (22)with
(

−Hαp +
1

Q − 1
1Qm

)T

µp =

m
∑

i=1

∑

k 6=yi

(

h
p
k (xi) +

1

Q − 1

)

µ
p
ik. (23)



18 Monfrini & GuermeurBy hypothesis, the M-SVM trained on dm \ {(xp, yp)} does not lassify xp orretly. Thismeans that there exists n ∈ [[ 1, Q ]] \ {yp} suh that hp
n (xp) ≥ 0. Let I be a mapping from

[[ 1, Q ]] \ {n} to [[ 1, m ]] \ {p} suh that
∀k ∈ [[ 1, Q ]] \ {n} , α

p

I(k)n > 0.We know that suh a mapping exists, otherwise, given the equality onstraints of Problem 3,vetor αp would be equal to the null vetor. For K2 ∈ R
∗
+, let µp be the vetor of R

Qm thatonly di�ers from the null vetor in the following way:
{

µp
pn = K2

∀k ∈ [[ 1, Q ]] \ {n} , µ
p

I(k)k = K2
.Obviously, this solution is feasible (satis�es the onstraints 17). Indeed, 1

Q

∑m

i=1

∑Q

k=1 µ
p
ik =

K2 and ∑m

i=1 µ
p
ik = K2, (1 ≤ k ≤ Q). With this de�nition of vetor µp, the right-hand sideof (23) simpli�es into:

K2



hp
n (xp) +

∑

k 6=n

h
p
k

(

xI(k)

)

+
Q

Q − 1



 .Vetor µp has been spei�ed so as to make it possible to exhibit a nontrivial lower boundon this last expression. By de�nition of n, hp
n (xp) ≥ 0. Furthermore, the Kuhn-Tukeroptimality onditions:

α
p
ik

(

〈wp
k, Φ(xi)〉 + b

p
k +

1

Q − 1

)

= 0, (1 ≤ i 6= p ≤ m), (1 ≤ k 6= yi ≤ Q)imply that (hp
k

(

xI(k)

))

1≤k 6=n≤Q
= − 1

Q−11Q−1. As a onsequene, a lower bound on theright-hand side of (23) is provided by:
m
∑

i=1

∑

k 6=yi

(

h
p
k (xi) +

1

Q − 1

)

µ
p
ik ≥

K2

Q − 1
.It springs from this bound and (22) that

J (αp + K1µ
p) − J(αp) ≥

K1K2

Q − 1
−

K2
1

2

Q
∑

k=1

∥

∥

∥

∥

∥

m
∑

i=1

Q
∑

l=1

µ
p
il

(

1

Q
− δk,l

)

Φ(xi)

∥

∥

∥

∥

∥

2

. (24)Combining (18), (21) and (24) �nally gives:
1

2

Q
∑

k=1

∥

∥

∥

∥

∥

m
∑

i=1

Q
∑

l=1

λ
p
il

(

1

Q
− δk,l

)

Φ(xi)

∥

∥

∥

∥

∥

2

≥
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K1K2

Q − 1
−

K2
1

2

Q
∑

k=1

∥

∥

∥

∥

∥

m
∑

i=1

Q
∑

l=1

µ
p
il

(

1

Q
− δk,l

)

Φ(xi)

∥

∥

∥

∥

∥

2

. (25)Let νp = (νp
ik)1≤i≤m,1≤k≤Q be the vetor of R

Qm
+ suh that µp = K2ν

p. The value of thesalar K3 = K1K2 maximizing the right-hand side of (25) is:
K∗

3 =

1
Q−1

∑Q

k=1

∥

∥

∥

∑m

i=1

∑Q

l=1 ν
p
il

(

1
Q
− δk,l

)

Φ(xi)
∥

∥

∥

2 .By substitution in (25), this means that:
(Q − 1)2

Q
∑

k=1

∥

∥

∥

∥

∥

m
∑

i=1

Q
∑

l=1

λ
p
il

(

1

Q
− δk,l

)

Φ(xi)

∥

∥

∥

∥

∥

2
Q
∑

k=1

∥

∥

∥

∥

∥

m
∑

i=1

Q
∑

l=1

ν
p
il

(

1

Q
− δk,l

)

Φ(xi)

∥

∥

∥

∥

∥

2

≥ 1.For η in R
Qm, let K(η) = 1

Q

∑m

i=1

∑Q

k=1 η
p
ik. We have:

∥

∥

∥

∥

∥

1

Q

m
∑

i=1

Q
∑

l=1

λ
p
ilΦ(xi) −

m
∑

i=1

λ
p
ikΦ(xi)

∥

∥

∥

∥

∥

2

= K (λp)
2
‖onv1(Φ(xi)) − onv2(Φ(xi))‖

2where onv1(Φ(xi)) and onv2(Φ(xi)) are two onvex ombinations of the Φ(xi). As aonsequene, ‖onv1(Φ(xi)) − onv2(Φ(xi))‖
2 an be bounded from above by D2

m. Sine thesame reasoning applies to νp, we get:
(Q − 1)2Q2K (λp)

2
K (νp)

2
D4

m ≥ 1. (26)By onstrution, K (νp) = 1. We now onstrut a vetor λp minimizing the objetivefuntion K. First, note that due to the equality onstraints satis�ed by this vetor,
∀k ∈ [[ 1, Q ]] ,

m
∑

i=1

λ
p
ik =

1

Q

m
∑

i=1

Q
∑

l=1

λ
p
il.As a onsequene,

∀(k, l) ∈ [[ 1, Q ]]
2
,

m
∑

i=1

λ
p
ik =

m
∑

i=1

λ
p
il.This implies that:

∀k ∈ [[ 1, Q ]] ,

m
∑

i=1

λ
p
ik ≥ max

l∈[[ 1,Q ]]
α0

pl.



20 Monfrini & GuermeurObviously, both the box onstraints in (16) and the nature of K all for the hoie of smallvalues for the omponents λ
p
ik. Thus, there is a feasible solution λp∗ suh that:
∀k ∈ [[ 1, Q ]] ,

m
∑

i=1

λ
p
ik

∗
= max

l∈[[ 1,Q ]]
α0

pl.This solution is suh that K (λp∗) = maxk∈[[ 1,Q ]] α
0
pk. The substitution of the values of K (νp)and K (λp∗) in (26) provides us with:

(

max
k∈[[ 1,Q ]]

α0
pk

)2

≥
1

(Q − 1)2Q2D4
m

.Taking the square root of both sides onludes the proof of the lemma.4.3 Multi-lass radius-margin boundTheorem 2 (Multi-lass radius-margin bound) Let us onsider a Q-ategory hard mar-gin M-SVM of Lee, Lin and Wahba on a domain X . Let dm = {(xi, yi) : 1 ≤ i ≤ m} be itstraining set, Lm the number of errors resulting from applying a leave-one-out ross-validationproedure to this mahine, and Dm the diameter of the smallest sphere of the feature spaeontaining the set {Φ(xi) : 1 ≤ i ≤ m}. Then the following upper bound holds true:
Lm ≤ Q2D2

m

∑

k<l

(

1 + dLLW,kl

γkl

)2

.Proof Lemma 2 exhibits a non trivial lower bound on maxk∈[[ 1,Q ]] α
0
pk when the mahinetrained on the set dm \ {(xp, yp)} makes an error on (xp, yp), i.e., when (xp, yp) ontributesto Lm. As a onsequene,

1T
Qmα0 ≥

m
∑

i=1

max
k∈[[ 1,Q ]]

α0
ik ≥

Lm

Q(Q − 1)D2
m

. (27)Aording to Proposition 3, 1T
Qmα0 = Q

Q−1

∑

k<l

(

1+dLLW,kl

γkl

)2. A substitution in (27) thusprovides us with the result announed.



A Quadrati Loss Multi-Class SVM 215 Conlusions and Future WorkIn this report, we have introdued a variant of the M-SVM of Lee, Lin and Wahba thatstritly generalizes to the multi-lass ase the 2-norm SVM. For this quadrati loss M-SVM,named M-SVM2, we have then established a generalization of Vapnik's radius-margin bound.We onjeture that this bound ould be improved by a Q2 fator. As it is, it an alreadybe ompared with those proposed in [18℄ for model seletion. This, with a general study ofthe quadrati loss M-SVMs, is the subjet of an ongoing researh.AknowledgementsThe work of E. Monfrini was supported by the Derypthon program of the �AssoiationFrançaise ontre les Myopathies� (AFM), the CNRS and IBM.
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