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ABSTRACT

If modern computers are sometimes superior to cognition in some specialized tasks such as playing chess or
browsing a large database, they can’t beat the efficiency of biological vision for such simple tasks as recognizing
a relative or following an object in a complex background. We present in this paper our attempt at outlining the
dynamical, parallel and event-based representation for vision in the architecture of the central nervous system.
We will illustrate this by showing that in a signal matching framework, a L/LN (linear/non-linear) cascade
may efficiently transform a sensory signal into a neural spiking signal and we apply this framework to a model
retina. However, this code gets redundant when using an over-complete basis as is necessary for modeling the
primary visual cortex: we therefore optimize the efficiency cost by increasing the sparseness of the code. This
is implemented by propagating and canceling redundant information using lateral interactions. We compare the
efficiency of this representation in terms of compression as the reconstruction quality as a function of the coding
length. This will correspond to a modification of the Matching Pursuit algorithm where the ArgMax function is
optimized for competition, or Competition Optimized Matching Pursuit (COMP). We will particularly focus on
bridging neuroscience and image processing and on the advantages of such an interdisciplinary approach.

Keywords: Neural population coding, decorrelation, spike-event computation, correlation-based inhibition,
Sparse Spike Coding, Competition Optimized Matching Pursuit (COMP)

1. INTRODUCTION: EFFICIENT NEURAL REPRESENTATIONS

The architecture of modern day computers illustrate how we understand intelligence. But, if they are good at
playing chess or at browsing databases, it is clear that computers are far from rivaling with what appears to be
more simple aspects of intelligence such as the ones demonstrated in vision. Think for instance as something
as simple as recognizing an object in natural conditions, such as while walking in the street. This necessarily
involves a network of processes from segmenting its outline, perceiving its global motion, matching its different
patterns invariantly to the shading, contrast, angle of view or to occlusions. Actually, while this seems obvious
to us, computers cannot perform this task and it is a common practical ”Turing Test” to authenticate humans
versus spamming robots by challenging the login upon recognizing for instance warped letters on a noisy back-
ground (the so-called CapTchas).
As the seat of this processing, the Central Nervous System (CNS) is therefore by its efficiency clearly different
from a classical von Neumann1 computer defined as a sequential Turing-like machine with a few, very rapid
Central Processing Units and a finite, adressable memory. Computational Neuroscience is a branch of neuro-
science studying specifically the structure and function of computations in the CNS such as the more complex
architectures imagined by von Neumann2. Numerous successful theories exist to explain the complex dynamics
of modern Artificial Neural Networks and how we may use neuro-physiological constraints to build up efficient
systems3 that are ecologically adapted to the statistics of the input4. However, a main challenge involving both
neuroscience and computer science is to understand how and for what class of problems the CNS outperforms
traditional computers. I am interested in this paper in extracting general principles from the structure of the
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CNS to derive a better understanding of the neural functions but also to apply these algorithms to signal pro-
cessing applications.
A fundamental difference of the CNS is the fact that 1) information is distributed in parallel on the different
neurons, 2) processes are dynamical and interruptible, 3) information is carried by elementary events, called
spikes which may be transmitted over long distances. This is well illustrated for the large class of pyramidal
neurons of the neocortex. In a simplistic way the more a neuron is excited, the quicker and the more often it
will emit spikes, with a typical latency of some milliseconds and a maximum firing frequency of the order of
200ms. Concentrating on local cortical areas (that is in human to the order of some squared centimeters and to
a billion neurons), it means that the complexity of some operation will be different on a computer (a few but very
rapid CPUs) and a population of neurons (a huge number of slow dynamical event generators). For instance,
the complexity of the ArgMax operator (finding the sorted indices from a vector) will increase as O(Nlog(N))
with the dimension N of the vector, while if we apply the vector as the activation of a neuronal population, the
complexity will not increase with the number N of neurons∗. In addition, the result is given by the generated
spike list and is interruptible.
In this paper, we will explore how we may apply this class of operators to the processing of natural images by
presenting an adaptive Linear/Non-Linear framework and then optimize its efficiency. We will in a first step draw
a rationale for using a linear representation by linking it to a probabilistic representaiton under the condition
of decorrelation. Then we will derive a linear transform adapted to natural images by constructing a simple
pyramidal architecture similar to5 and extend it to a Laplacian and Log-Gabor pyramids6. We will then in a
third section propose that this linear information may be optimally coded by a spike list if we apply a point
non-linear operation. At least, we will define an improvment over Matching Pursuit7 by optimizing the efficiency
of the ArgMax operator and which finally defines Sparse Spike Coding8;9;10.

2. LINEAR FILTERING AND WHITENING

A first step in the definition of this algorithm is to explicit the linear operations which are used to transform
the input vector into a value representative of the quality of a match. Let’s define an image as a set of scalar
values x̃i on a set of positions P , i being the index of the positions, so that it defines a vector x̃ ∈ R

M , with
M = card(P). As we saw in previous works8, the quality of a match between the raw data x̃ with a known
image may be linked in a probabilistic framework to the correlation coefficient. In fact, the probability of the
signal x̃ knowing the “shape” h̃ of the signal to find (see the table Tab. 2 for the chosen notation) is:

P (h̃|x̃) =
1

P (x̃)
.P (x̃|h̃).P (h̃)

=
1

P (x̃)

1

(2π)M/2
exp(−

(x̃− h̃)Σ−T (x̃− h̃)T

2
).P (h̃)

(1)

This is based on the assumption of centered data (that is E(x) = 0), a Linear Generative Model and a gaussian
noise of covariance matrix Σ = E(x̃x̃T ) (See Chapter 2.1.4 of 9). In the case where the noise is white (that is
that the covariance matrix is a diagonal matrix) and assuming an uniform prior for the scalar value of h, this
may be simply computed with the correlation coefficient defined by:

ρ =<
h

‖h‖
,

x

‖x‖
>

def
=

∑

1≤i≤M xi.hi
√

∑

1≤i≤M h2
i .

√

∑

1≤i≤M x2
i

(2)

It should be noted that ρj is the M th-dimensional cosinus and that its absolute value is therefore bounded by 1.
The value of ArcCos(ρj) would therefore give the angle of x with the pattern h and in particular, the angle would
be equal (modulo 2π) to zero if and only if ρj = 1 (full correlation), π if and only if ρj = −1 (full anti-correlation)
and ±π/2 if ρj = 0 (both vectors are orthogonal, there is no correlation). Also, it is independent to the norm

∗Note that in a noisy environment, the output will be given with a certain temporal precision and that this precision
may decrease with N .



Figure 1. Spatial decorrelation. (Top-Left) Sample raw natural image (M = 2562). (Bottom-Left) Mean pairwise spatial
correlation in a set of 1000 natural images (Red is 1, blue is zero). It shows the typical decrease in 1

f2 of the power

spectrum but also an anisotropy along the vertical and horizontal axis. (Middle) decorrelation filter computed from the
methods of4 (see text). This profile is similar to the interaction profile of bipolar and horizontal cells in the retina. (Top-
Right) Whitening of the sample image. (Bottom-Right) The mean pairwise spatial correlations of 1000 filtered natural
images is highly peaked at the origin and inferior to 0.05. As is observed in the LGN, the power spectrum is relatively
whitened by our pre-processing12.

of the filters and we assume without loss of generality in the rest that these are normalized to unity. To achieve
this condition, the raw data x̃ has to be preprocessed with a decorrelation filter to achieve a signal x with no
mean point-wise correlation†. To define this, we may use for instance the eigenvalue decomposition (EVD) of
the covariance matrix:

Σ = VDVT

(3)

where V is a rotation (and thus V−1 = VT ) and D is a diagonal matrix. This decomposition is similar to that
achieved by PCA and may be computed for instance by averaging linear correlations such as is done with the
linear Hebbian rule11. In particular, the columns of matrix V contain the eigenvectors and D is a diagonal
matrix of the corresponding eigenvalues. If we set W = D− 1

2 VT and x = Wx̃, then

E(xxT ) = E(Wx̃(Wx̃)T )

= D− 1

2 VT E(x̃x̃T )(D− 1

2 VT )T

= D− 1

2 VT ΣVD− 1

2

= D− 1

2 VT VDVT VD− 1

2

= 1M×M

†Of course, this does not achieve necessarily independence as is often stated.



We therefore proved that this linear transforms allows to de-correlate on average the input data. In practice, we
used the power spectrum and its relation to the covariance in translation invariant data such as natural images to
compute the whitening filter4. This corresponds then to a filter with a gain proportional to the spatial frequency
but with an anisotropy on the vertical and horizontal axis (see Fig. 1).
Thanks to this processing, and only when these hypothesis have been fullfilled, we may in general use the
correlation coefficient (see Eq. 2) as a measure related to the probability of a match of the image with a given
pattern. The next step is now to define the best patterns to represent images.

Table 1. Matrix notation and denoising Variables

Name Symbol Description

Pixel positions P ~p ∈ P , card(P) = M
Raw image x̃ x̃ ∈ R

M , E(x̃) = 0
Covariance matrix Σ Σ ∈ R

M×M

Whitening matrix W W ∈ R
M×M

Decorrelated image x x = Wx̃ ∈ R
N

Pattern image h̃j hj ∈ R
M , j ∈ D

Overcomplete dictionary D card(D) = M ≫ N

Decorrelated pattern image hj hj = Wh̃j ∈ R
N

Transform matrix H H ∈ R
M×N

Correlation coefficient ρj ρj =
<hj ,x>
‖hj‖‖x‖ ∈ [−1, 1]

3. MULTISCALE REPRESENTATIONS: THE (GOLDEN) LAPLACIAN PYRAMID

Multi-scale representations are a popular method to allow for a scale invariant representation. This correspond to
repeating basic shapes at different scales and it thus allows that one may easily compute the representation of a
scaled image by a simple transformation in the representation space instead of recomputing the whole transform.
As a consequence, this representation makes it for instance easier to compute the match of a feature at different
scales. It is classically implemented in wavelet transforms but we present here a simple implementation using
a recurrent scheme, the Laplacian Pyramid5. This transform has indeed the advantage of being computed by
simple down-scaling and up-scaling operations and is easily inverted for the reconstruction of the image. It
transforms an image in a list of down-scaled images, or image pyramid. Let’s define the list {Mk} with 0 ≤ k ≤ s
of the sizes of the down-scaled images (k = 0 corresponds to the “base” and M0 = M while s is the level
of the smallest image, that is the summit of the pyramid). Typically, such as in wavelets, the size decreases
geometrically with an exponent γ. The most used exponent in image processing is 2, the pyramid is then called
dyadic. The corresponding down-scale and up-scale transform from level k to k+1 may be defined as Dk and Uk

respectively. We may therefore define the gaussian pyramid as the recursive transform from the “base” of the
pyramid to the top as the list of transforms:

G = {Dk} with Dk = D0 ◦ · · · ◦ Dk (4)

This means that a down-scaled version of the image Dkx may be obtained by applying all down-scaling trans-
forms sequentially from the base to level k. If the elementary operators are linear, the G transform is linear.
The corresponding filters correspond approximately to gaussians with increasing radiuses5 and the images in the
pyramid thus correspond to progressively more blurred versions of the “base” image. This transform is usually
very fast and is very likely to be implemented by the extended dendritic arbor of neurons‡.
The Laplacian Pyramid is defined from the Gaussian Pyramid as the pyramid of images constituted by the resid-
ual between the image at one scale and the up-scaled image from the upper level. It is therefore mathematically
defined as:

L = {Dk − (Uk ◦ D
k+1)} with 0 ≤ k ≤ s (5)

‡Note however that in vertebrates, the retinal representation the preferred spatial frequency grows with eccentricity.



Figure 2. The Golden Laplacian Pyramid. To represent the edges of the image at different levels, we may use a simple
recursive approach constructing progressively a set of images of decreasing sizes , from a base to the summit of a “pyramid”.
Using simple down-scaling and up-scaling operators we may approximate well a Laplacian operator. This is represented

here by stacking images on a “Golden Rectangle”, that is where the aspect ratio is the golden section φ
def
= 1+

√
5

2
. We

present here the base image on the left and the successive levels of the pyramid in a clockwise fashion (for clarity, we
stopped at level 8). Note that here we also use φ2 (that is φ + 1) as the down-scaling factor so that the resolution of
the pyramid images correspond across scales. Note at last that coefficient are very kurtotic: most are near zero, the
distribution of coefficients has “long tails”.

by defining for clarity that D0 = 1 and Ds+1 = 0. This transform is still linear that is that ∀x, ∀y, ∀λ, L(x+y) =
Lx +Ly and L(λx) = λLx. Since every level corresponds to the residual, it is easy to invert. In fact, if we write
as Lkx the image at level k and Uk = U0 ◦ · · · ◦ Uk, then ∀x,

∑

0≤k≤s

UkLkx =
∑

0≤k≤s

Uk(Dk − (Uk ◦ D
k+1))x

=
∑

0≤k≤s

UkDkx−
∑

0≤k≤s

UkUk ◦ D
k+1x

=
∑

0≤k≤s

UkDkx−
∑

1≤k≤s+1

Uk ◦ Dkx = x (6)

Therefore the inverse of the Laplacian Pyramid transform is defined as:

L−1 =
∑

0≤k≤s

UkLk (7)

The filters corresponding to the different levels of the pyramid (and which are the inverse image of a Dirac
pyramid by L−1) are similar to difference of gaussians (because they are the difference of two successive levels of
the Gaussian Pyramid). The exponent γ will therefore play the important role of the ratio of the the radiuses of

the Gaussians. We choose here the exponent to be equal to the golden number γ = φ
def
= 1+

√
5

2 ≈ 1.618033 for two



reasons. First, it corresponds to a value which approximates well a Laplacian-of-Gaussians with a Difference of
Gaussians as is implemented here. Second, it allows to construct a natural representation of the whole pyramid
in a full Golden Rectangle (see Fig. 2) where the resolution of each image will be constant.
Note the following properties of the pyramid:

• the over-completeness is equal to
∑

0≤k≤s
1

γ2k ≈
1

1−γ−2 so that it is equal to 1
1−φ−2 = φ

φ−φ−1 = φ which is
indeed the area of the Golden Rectangle compared to the area of the image. It is slightly higher than for
a dyadic pyramid (indeed 1

1−2−2 = 4
3 ≈ 1.333 < φ).

• since this linear transform is over-complete, there may exist non zero pyramids which inverse image is null
(that is ∃L 6= 0 such that L−1L = 0) but this pyramids are not accessible from any non-null image.

• one may also implement a simple “Golden Pyramid” using the Fourier transform, and one may observe that
in both cases, the filters corresponds to localized filters in the frequency space. The whitening (see Sec. 2)
has an approximately scalar effect that corresponds to an equalization of the variances of the coefficients
to natural images at the different spatial frequencies.

• Finally, once the obtained filters are normalized, the coefficients will correspond to the correlation coeffi-
cients of the image with edge detectors at different scales as defined in Eq. 2. The coefficients will therefore
as in wavelet analysis correspond to the local Lipschitz coefficients of the image13. When ordered by de-
creasing absolute values they will correspond to features of decreasing singularities, from a pure singularity,
to a smooth transition (as a ramp of luminosity).

Table 2. Notations used for the Laplacian Pyramid

Name Symbol Description

sizes of the down-scaled images {Mk} 0 ≤ k ≤ s
Down-scale operator Dk from level k to k + 1
Up-scale operator Uk from level k to k + 1
Full Down-scale operator Dk D0 = 1 and Ds+1 = 0
Full Up-scale operator Uk

Gaussian Pyramid G
Laplacian Pyramid L L = {Lk} with 0 ≤ k ≤ s

4. SPIKE CODING

Now that we defined a linear transform which is suitable for natural images by associating the whitening filters
and the Laplacian Pyramid, we wish to transmit this information efficiently using neurons. As we saw in the
previous section, the higher coefficients correspond to more singular features and therefore to more informative
content. By using Integrate-and-Fire neurons14, it is therefore natural that we may associate to every coefficient
of the pyramid applied to the image a single neuron. For the linear Leaky-IF, if we associate a driving current
to each value ρj (with 0 ≤ j ≤ N , as noted in Tab. 2) it will will elicit spikes with latencies13:

λj = −τ log(1− θ.gj(ρj)) (8)

where τ is the characteristic time constant, θ is the neuron’s threshold and gj is a monotonously increasing func-
tion of ρj corresponding to the transformation of the linear value into the driving current. By this architecture,
since the relation in Eq. 8 is monotonously increasing, one implements a simple ArgMax operator where the
output is the index of the neurons corresponding to the ordered list of output spikes.
However, one may observe that for some linear transforms, the distribution of correlation coefficients may be
not similar for all j. This is contradictory with the fact that spikes are similar across the CNS since it would
mean that the probability of the coefficient underlying the emission of a spike is not uniform. To optimize the
efficiency of the ArgMax operator, one has therefore to ensure that one optimizes the entropy of the index of
output spikes and therefore of the driving current. This may be ensured by modifying the functions gj so that:



1. for all j, the distributions of gj(ρj) are similar,

2. allow that this overall distribution has a shape adapted to the spiking mechanism (for instance by using
Eq. 8).

The second point —finding a global non-linearity g— will be out of scope of this paper, and we will for the sake
of generality only ensure that we find functions fj (with gj = g ◦ fj) such that the variables zj = fj(ρj) are
uniformly distributed.
This condition is easily performed by operating a point non-linearity on the different variables ρj based on the
statistics of natural images4. This method is similar to histogram equalization in image processing and provides
an output with maximum entropy for a bounded output: it therefore optimizes the coding efficiency of the
representation in terms of compression15 or dually the minimization of intrinsic noise16. It may be easily derived
from the probability P of variable ρj (bounded in absolute value by 1) by choosing the non-linearity as the
cumulative function

fj(ρj) =

∫ ρj

−1

dP (ρ) (9)

where the symbol dP (x) = PX(x)dx will here denote in general the probability distribution function (pdf) for
the random variable X . This process has been observed in a variety of species and is for instance perfectly
illustrated in the salamander17. It may evolve dynamically to slowly adapt to varying changes in luminances,
such as when the light diminishes at dawn but also to some more elaborated schemes within a map18. As in “ideal
democracies” where all neurons are “equal”, this process has to be dynamically updated over some characteristic
period so as to achieve optimum balance. As a consequence, since for all j, the pdf of zj = fj(ρj) is uniform and
that sources are independent, it may be considered as a random vector drawn from an uniform distribution in
[0, 1]. Knowing the different spike generation mechanisms which are similar in that class of neurons, every vector
{ρj} will thus generate a list of spikes {j(1), j(2), . . .} (with corresponding latencies) where no information is
carried a priori in the latency pattern but all is in the relative timing across neurons.
We coded the signal in a spike volley, but how can this spike list be “decoded”, especially if it is conducted over
some distance and therefore with an additional latency? In the case of transient signals, since we coded the
vector {ρj} using the homeostatic constraint from Eq. 9, we may retrieve the analog values from the order of
firing neurons in the spike list. In fact, knowing the “address” of the fiber j(1) corresponding to the first spike to
arrive at the receiver end, we may infer that it has been produced by a value in the highest quantile of P (ρj(1))

on the emitting side. We may therefore decode the corresponding value with the best estimate ρ̂j(1) = f−1
j(1)(

1
N )

where N is the total number of neurons. This is also true for the following spikes and if we write as zj(k) = k
N

the relative rank of the spike (that is neuron j(k) fired at rank k), we can reconstruct the corresponding value as

ρ̂j(k) = f−1
j(k)(1− zj(k)) (10)

This corresponds to a generalized rank coding scheme19;20. First, it loses the information on the absolute latency
of the spike train which is giving the maximal value of the input vector. This has the particular advantage of
making this code invariant to contrast (up to a fixed delay due to the precision loss induced by noise). Second,
when normalized by the maximal value, it is a first order approximation of the vector which is especially relevant
for over-complete representations where the information contained in the rank vector (which is thanks to Stir-
ling’s approximation of order log2(N !) = O(N. log(N)), that is more than 2000bits for 256 neurons) is greater
than the information contained in the particular quantization of the image§. On a practical note, we may use the
fact that the inverse of fj may be computed from the mean over trials of the function of the absolute functions
as a function of the rank.
This code therefore focuses on the particular sequence of neurons that were chosen and loses the particular infor-
mation that may be coded in the pattern of individual inter-spike intervals in the assembly. A model accounting
for the exact spiking mechanism would correct this information loss, but this would be at the cost of introducing
new parameters (hence new information), while it seems that this information would have a low impact relative
to the total information21. More generally, one could use different mappings for the transformation of the z

§We are generally unable to detect quantization errors on an image consisting of more 256 gray levels, that is for 8 bits.



Figure 3. Spike Coding of natural images. We did build here a simple framework of pyramidal neurons illustrating the
efficiency of neural architectures compared to classical computer architectures. We show here how a bundle of L-NL
neurons26;27 tuned by a simple homeostatic mechanism allow to transfer a transient information, such as an image, using
spikes. (L) The signal to be coded, for instance the match ρj of an image patch (the tiger on the left bottom) with a
set of filters (edge-like images), may be considered as a stochastic vector defined by the probability distribution function
(pdf) of the values ρj to be represented. (NL) By using the cumulative function as a point non-linearity fj , one ensures
that the probability of zj = fj(ρj) is uniform, that is that the entropy is maximal. This non-linearity in the L-NL neuron
implements a homeostasis that is controlled only by the time constant with which the cumulative probability function fj

is computed (typically 104 image patches in our case). (S) Any instance of the signal may then be coded by a volley of
spikes: a higher value corresponds to a shorter latency and a higher frequency. (D) Inversely, for any spike events vector,
one may estimate the value from the firing frequency, the latency. We may simply use the ordering of the spikes since
the rank provides an estimate of the quantile in the probability distribution function thanks to the equalization. Using
the inverse of fj one retrieves the value in feature space so that this volley of spikes is decoded (or directly transformed)
thanks to the relative timing of the spikes using the modulation (see Eq. 10). This builds a robust information channel
where information is solely carried by spikes as binary events. Given this model, the goal of this work is to find the most
efficient architecture to code natural images and in particular to define a coding cost and to derive efficient compression
algorithms. Note that this scheme is similar to the N-NL scheme but that instead of generating a Poisson point process,
we use the the exact timing. This is allowed by the point non-linearity which permits to code the value by the timing
and not the firing frequency.



value into the a spike volley which can be more adapted to continuous flows, but this scheme corresponds to an
extreme case (a transient signal) which is useful to stress on the dynamical part of the coding22 and is mathe-
matically more tractable. In particular, one may show that the coding error is proportional to the variability of
the sorted coefficients13, the rest of the information being the information coded in the time intervals between
two successive spikes. Thus, the efficiency of information transmission will directly depend on the validity of
the hypothesis of independence of the choice of components and therefore on the statistical model build by the
LGM.
It should be also noted that no explicit reconstruction is necessary (in the mathematical sense of the term) on the
receiver side as we do here, since the goal of the receiver could only be to manipulate information on for instance
some subset on the spike list (that is on some receptive field covering a subpart of the population). In simple
terms, there is no reason to have a reconstruction of the image in the CNS. In particular one may imagine that
we may add some arbitrary global point linearity to the z values in order to threshold low values or to quantize
values (for instance set all values to 1 only for the first 10% of the spikes). However, this full reconstruction
scheme is a general framework for information transmission, and we may then imagine that if for instance we
pool information over a limited receptive field, the information needed (the ranks in the sub-spikelist) will still
be available to the receiver directly without having to compute the full set (in fact, since the pdf of z is uniform,
the pdf of a subset of components of z is also uniform).

5. SPARSE SPIKE CODING

However, as we described before8;9;10, if we use over-complete dictionaries of filters, the resulting spiking code
gets redundant. In fact, unless the dictionary is orthogonal, when choosing one component over an other, any
choice may modify the choice of the other components. If we chose the successive neurons with maximum
correlation values, the resulting representation will be proportionally more redundant when the dictionary gets
more over-complete. Also, we saw that optimizing the choice leads then to a combinatorial explosion23. To solve
this NP-complete problem to model realistic representations such as when modeling the primary visual cortex,
one may implement a solution designed after the richly laterally connected architecture of cortical layers6;24;25. In
fact, an important part of cortical areas consists of a lateral network propagating information in parallel between
neurons. We will here propose that the NP-problem can be approximately solved by using a cross-correlation
based inhibition between neurons.
In fact, as was first proposed in the Sparse Spike Coding (SSC) algorithm10, one could use a greedy algorithm
on the L0-norm cost and that these led to use of Matching Pursuit algorithm7. More generally, let’s first define
Weighted Matching Pursuit (WMP) by introducing a non-linearity in the choice step. Like Matching Pursuit,
it is based on two repetitive steps. First, given the signal x, we are searching for the single source s∗j∗ .hj∗ that
corresponds to the maximum a posteriori (MAP) realization for x (see Eq. 2) transformed by a point non-linearity
fj . This Matching step is defined by:

j∗ = ArgMaxj [fj(ρj)] (11)

where fj(.) is some gain function that we will describe below and which may be set initially to strictly increasing
functions and ρj is initialized by Eq. 2. In a second step (Pursuit), the information is fed-back to correlated
sources through :

x← x− s∗j∗ .hj∗ (12)

where s∗j∗ is the scalar projection < x, hj∗ >. Equivalently, from the linearity of the scalar product, we may
propagate laterally:

< x, hj >←< x, hj > − < x, hj∗ >< hj∗ , hj > (13)

that is from Eq. 2:
ρj ← ρj − ρj∗ < hj∗ , hj > (14)

For any set of monotonously increasing functions fj , WMP shares many properties with MP, such as the
monotonous decrease of the error or the exponential convergence of the coding. The algorithm is then iter-
ated with Eq. 11 until some stopping criteria is reached. The signal may be reconstructed from the spike list as
x =

∑

ρ̂j(k)hj(k), where ρ̂j(k) is the value reconstructed using Eq. 10. We then define Competition Optimized
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Figure 4. Efficiency of Competition Optimized Matching Pursuit (COMP). Spike Coding and Sparse Spike Coding (using
COMP) produce flows of spikes representing the image. By representing the the distance of the original image with a
reconstruction, one may quantify the dynamical efficiency of this solution as a function of the number of spikes. (Left)
When applying the algorithm on a set of natural images, the coefficients exhibited differences in their probability density
functions. We show this by plotting the cumulative density functions of the coefficients for different levels in the pyramid.
Using these cumulative pdf, one could transform the pyramids of coefficients in pyramids for which all coefficients where
a priori equiprobable. This optimizes the ArgMax operator which is at the heart of the Sparse Spike Coding scheme.
(Right) The resulting COMP solution gives a similar result than MP in terms of residual energy as a function of pure L0

sparseness (see inset). In fact, in MP, by taking the maximum absolute, and since the decrease of energy is proportional
to the square of the coefficient (see Chapter 3.1.2 of 9) one ensures that the decrease of MSE per coefficient is optimal
for MP. These are both better for that purpose than conjugate gradient. However, when defining the efficiency in terms
of the residual energy as a function of the description length of the spiking code word, then the proposed COMP model
is more efficient than MP because of the quantization errors inherent to the higher variability of coded coefficients. Thus,
including homeostasis improved the efficiency of adaptive Sparse Spike Coding by ensuring that the decrease of MSE per
bit of code is optimal. It should be noted that the homeostasis mechanism is important during “learning” but that it is
not useful for “pure” coding (see Sec. 5).



Matching Pursuit (COMP) as WMP where the point non-linearities are defined by Eq. 9 and Sparse Spike Cod-
ing (SSC) is then defined as the spike coding/decoding algorithm which uses COMP as the coder. As described
in8, while the Matching step is efficiently performed by the LIF neurons driven by the NL input, the pursuit
step could be implemented in a cortical area by a correlation-based inhibition. This type of inhibition is typical
of fast-spiking interneurons though there is no direct evidence of this activity-based synaptic topology. It will
correspond to a lateral interaction within the linear (L) neuronal population. In practice, the fj functions are
initialized for all neurons to the identity function (that is to a MP algorithm) and then evaluated using an online
stochastic algorithm with a “learning” parameter corresponding to a smooth average which effect was controlled.
As a matter of fact, this algorithm is circular since the choice of s is non-linear and depends on the choice of
fj . However, thanks to the exponential convergence of MP, for any set of components, the fj will converge to
the correct non-linear functions as defined by Eq. 9. This scheme extends the Matching Pursuit (MP) algorithm
by linking it to a statistical model which tunes optimally the matching step (in the sense that all choices are
statistically equally probable) thanks to the adaptive point linearity. In fact, as stated before, thanks to the
uniform distribution of the choice of a component, one maximizes the entropy of every match and therefore of
the computational power of the ArgMax operator. Think a contrario to a totally unbalanced network where the
match will be always a given neuron: the spikes are totally predictable and the information carried by the spike
list then drops to zero. It therefore optimizes the efficiency of MP for the Sparse Spike Coding problem (see
Fig. 3).
Extensions of this type of event-based algorithms are multiple. First, It extends naturally to the temporal do-
main. In fact, we restricted us ourselves here to static flashed images, but is easily extendable to causal filters
(see Ch. 3.4.1 in 9). It however raises the unsolved problem of a dynamical compromise between precision and
rapidity of the code which is still unanswered. It may also be extended in a adaptive code, showing the emer-
gence of V1-like receptive fields23. At last, using in these sparse representations of long-range interactions such
as those present in the primary visual cortex should prove to be very helpful to resolve generic image processing
problems such as denoising.
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