
HAL Id: hal-00276435
https://hal.science/hal-00276435v1

Submitted on 15 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The GMRES method applied to the BEM extrapolation
of solar free-force magnetic fields

Y. Li, Y. Yan, Michel Devel, R. Langlet, G. Song

To cite this version:
Y. Li, Y. Yan, Michel Devel, R. Langlet, G. Song. The GMRES method applied to the BEM extrapo-
lation of solar free-force magnetic fields. Astronomy & Astrophysics - A&A, 2007, 470, pp.1185-1191.
�10.1051/0004-6361:20065231�. �hal-00276435�

https://hal.science/hal-00276435v1
https://hal.archives-ouvertes.fr


A&A 470, 1185–1191 (2007)
DOI: 10.1051/0004-6361:20065231
c© ESO 2007

Astronomy
&

Astrophysics

The GMRES method applied to the BEM extrapolation
of solar force-free magnetic fields

I. Constant α force-free field

Y. Li1,2,5, Y. Yan2, M. Devel3, R. Langlet4, and G. Song1

1 School of Science, Xidian University, Xi’an, Shaanxi, PR China
e-mail: ywli27@163.com

2 National Astronomical Observatories, Chinese Academy of Sciences, Beijing, PR China
e-mail: yyh@bao.ac.cn

3 Institut UTINAM, UMR CNRS 6213, 16 route de GRAY, 25030 Besançon Cedex, France
e-mail: michel.devel@univ-fcomte.fr

4 Laboratoire de Physique du Solide, FUNDP, Rue de Bruxelles 61, 5000 Namur, Belgium
e-mail: rachel.langlet@fundp.ac.be

5 School of Applied Science, Taiyuan University of Science and Technology, Taiyuan, Shanxi, PR China

Received 18 March 2006 / Accepted 17 April 2007

ABSTRACT

Context. Since the 1990’s, Yan and colleagues have formulated a kind of boundary integral formulation for the linear or non-linear
solar force-free magnetic fields with finite energy in semi-infinite space, and developed a computational procedure by virtue of the
boundary element method (BEM) to extrapolate the magnetic fields above the photosphere.
Aims. In this paper, the generalized minimal residual method (GMRES) is introduced into the BEM extrapolation of the solar force-
free magnetic fields, in order to efficiently solve the associated BEM system of linear equations, which was previously solved by the
Gauss elimination method with full pivoting.
Methods. Being a modern iterative method for non-symmetric linear systems, the GMRES method reduces the computational cost
for the BEM system from O(N3) to O(N2), where N is the number of unknowns in the linear system. Intensive numerical experiments
are conducted on a well-known analytical model of the force-free magnetic field to reveal the convergence behaviour of the GMRES
method subjected to the BEM systems. The impacts of the relevant parameters on the convergence speed are investigated in detail.
Results. Taking the Krylov dimension to be 50 and the relative residual bound to be 10−6 (or 10−2), the GMRES method is at least
1000 (or 9000) times faster than the full pivoting Gauss elimination method used in the original BEM extrapolation code, when N is
greater than 12 321, according to the CPU timing information measured on a common desktop computer (CPU speed 2.8 GHz; RAM
1 GB) for the model problem.

Key words. Sun: magnetic fields – Sun: corona – methods: numerical

1. Introduction

Magnetic fields play an important role in many physical events
occurring in the solar atmosphere. So far, reliable magnetic field
measurements have been realized at the photosphere or chromo-
sphere levels, which is however not the case for the coronal ob-
servations (Yan 2003; Valori et al. 2005). For many years, vari-
ous extrapolation methods based on the force-free magnetic field
assumption have been developed as a major tool to reconstruct
the structures and configurations of the magnetic fields in the
corona, using the magnetogram data as the boundary condition
(see, e.g., Schmidt 1964; Altschuler & Newkirk 1969; Nakagawa
et al. 1973; Chiu & Hilton 1977; Seehafer 1978; Alissandrakis
1981; Sakurai 1981; Wu et al. 1985, 1990; Yan 1995; Amari
et al. 1998, 1999, 2006; Yan & Sakurai 1997, 2000; Wheatland
1999, 2004; Valori et al. 2005; Yan & Li 2006). The force-free
magnetic field satisfies (See, e.g., Amari et al. 1998)

∇ × B = α(r)B in Ω, (1)

∇ · B = 0 in Ω, (2)

where both α(r) and B are unknowns in general. Although the
force-free magnetic field equations take a disarmingly simple
form, the nature of their solutions has not yet been understood
(Priest 1994). Nevertheless, significant progress has been made
in tackling this problem during the past half century (see review
papers by, e.g., Aly 1989; Gary 1989; Sakurai 1989; McClymont
et al. 1997; Wang 1999; Yan 2003; Aschwanden 2004; see also
the brief review on the linear force-free field in Démoulin &
Priest 1992; Schmieder & Aulanier 2003; see Seehafer 1978 and
Aly 1992, for some important properties of the linear force-free
field associated to the different geometry of the photosphere).
Besides theoretical approaches, computational methods play an
important role among these studies.

Since the 1990’s, Yan and colleagues have formulated a kind
of boundary integral representations for the linear or non-linear
solar force-free magnetic field with finite energy content in the
semi-infinite space above the Sun, and applied a well established
numerical method – boundary element method (BEM) – to com-
pute the magnetic field above the active regions on the Sun (Yan
et al. 1991; Yan 1995; Yan & Sakurai 1997, 2000). The BEM
extrapolation has found wide applications in the study of the
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coronal magnetic fields since its advent (see, e.g., Yan & Wang
1995; Yan et al. 1995, 2001a,b; Wang et al. 2001, 2002; Liu et al.
2002; Zhang & Wang 2002).

In the BEM extrapolation, however, one needs to compute
the normal derivative of the magnetic field at the boundary re-
gion as an intermediate step, which amounts to solving a non-
symmetric, dense linear system of equations. In the original
BEM extrapolation code, a Gauss solver with full pivoting,
found in Liu et al. (1980), was used for the solution of the BEM
system, which is a fairly time-consuming process for a large
scale problem. This well known difficulty has made the routine
use of the BEM extrapolation code prohibitive on common com-
puters. Although the difficulty can be reduced by exploiting a
supercomputer, it is more desirable to seek faster substitutive al-
gorithms in the long run.

In this paper, we use the generalized minimal residual
method (usually called GMRES method), originally presented
by Saad & Schult (1986), to efficiently solve the linear systems
arising from the BEM extrapolation. Compared with other iter-
ative algorithms for non-symmetric linear systems such as the
generalized conjugate residual method, the GMRES method is
more economical in memory requirements and arithmetic op-
erations, and can terminate in at most N steps (where N is
the number of unknowns of the linear system under consid-
eration), which is desirable for large scale problems (Huang
& Vorst 1989, 1990). There are some practical variants of
the original GMRES algorithm, among which the restarted
GMRES algorithm, called GMRES(m) in short, and the in-
complete GMRES algorithm are the most popular ones (Saad
& Wu 1996; Quarteroni & Valli 1997). Recent applications of
the GMRES method and its relatives alike can be found, e.g.,
in Patton & Holloway (2002); Ravindra & Muddun (2004),
Spyropoulos et al. (2004) and Ronald (2005). Like other itera-
tive methods for linear systems, the efficiency of the GMRES
method is dependent on the nature of the coefficient matrix of
the linear system under consideration. Fortunately, the GMRES
solver we used converges very fast to the solution of our prob-
lem with a desired accuracy. This is understandable since the
linear systems arising from integral equations are usually well-
conditioned.

The paper is divided as follows. In Sect. 2, we briefly re-
call the boundary integral representation of the constant α force-
free magnetic field proposed by Yan (1995), and make some
notation conventions. In Sect. 3, we introduce the main ideas
of the GMRES method while the numerical results are reported
in Sect. 4. Finally, we discuss some important points and draw
conclusions in Sect. 5.

2. The boundary integral representation
of the constant α force-free magnetic field

We recall the boundary integral representation of the constant α
force-free magnetic field proposed by Yan (1995) as follows. Let
Ω be the outer space above the Sun, Γ the photosphere surface,
and ΓD the magnetogram area, i.e. Ω = {(x, y, z)|z > 0}, Γ =
{(x, y, z)|z = 0}, and ΓD = {(x, y, z)|z = 0, a ≤ x ≤ b, c ≤ y ≤
d}. The governing Eqs. (1) and (2) together with the boundary
condition

B(x, y, z) =

{
B0, (x, y, z) ∈ ΓD,
0, (x, y, z) ∈ Γ∞ := Γ − ΓD,

(3)

and the asymptotic condition

B = O(r−2), r→ +∞, (4)

form an exterior boundary value problem, where B0 can be ob-
tained from the observed vector magnetograms while its three
components are assumed to satisfy the governing equations con-
sistently. Note that, B(x, y, z) has been artificially imposed to be
0 on Γ∞, beginning from Schmidt (1964), due to the realistic re-
striction of the observational instruments. The asymptotic con-
dition is applied to make the solution unique and have a finite
energy content.

By applying the Green’s second identity to the above exterior
boundary value problem, one can obtain an integral representa-
tion of the constant α force-free magnetic field as follows:

ci Bi =

∫
Γ

(
Y
∂B
∂n
− B
∂Y
∂n

)
dΓ, (5)

where ci is a constant determined by the location of the point
i, of coordinates (x′, y′, z′), i.e., ci = 1/2 for (x′, y′, z′) ∈ Γ or
ci = 1 for (x′, y′, z′) ∈ Ω; Y is the fundamental solution of the
Helmholtz’s equation, chosen as

Y := Y(x, y, z; x′, y′, z′) =
cos (αr)

4πr
, (6)

where α is the force-free parameter and r =√
(x − x′)2 + (y − y′)2 + (z − z′)2.

One may observe from (5) that the value of B at any point i ∈
Ω can be determined by the boundary value of B and Y together
with the boundary value of their normal derivatives. However,
the normal derivative of the magnetic field at the boundary, i.e.
∂B(x,y,z)
∂n |z=0, is unknown.
To evaluate the normal derivative of the magnetic field at the

boundary, we let i ∈ Γ. Then, one can verify that ∂Y∂n = 0 always
holds at the boundary, which makes (5) take the form of

1
2

Bi =

�

ΓD

Y(x, y, 0; x′, y′, 0)
∂B(x, y, 0)
∂n

dx dy, (7)

where values of Bi and Y(x, y, 0; x′, y′, 0) are known, and ∂B(x,y,0)
∂n

is an unknown function of two variables; (x′, y′) is the coordinate
of the point i on ΓD. In Yan (1995), Eq. (7) is discretized by the
boundary element method, which amounts to solving a dense lin-
ear system with three right-hand sides (called 3D right-hand side
hereafter), whose solutions provide an approximation of ∂B(x,y,0)

∂n

on ΓD. Then, with the computed ∂B(x,y,0)
∂n and the boundary con-

dition (3), we compute the magnetic field over ΓD with Eq. (5).
The details of the boundary element method can be found in Yan
(1995) and the reference therein.

3. The GMRES method

Most of the iterative methods for linear equations are subjected
to a general framework of projection methods. Here, we sum-
marize the basic ideas of the GMRES method from this point of
view. The details of the method can be found in (Saad & Schultz
1986; Saad 1996).

Consider the linear equations

Ax = b, (8)

where A is an N × N real matrix. The idea of projec-
tion methods is to extract an approximate solution to the
above problem from a subspace of RN , called projection sub-
space. In particular, the Krylov subspace Kl := Kl(A, r0) :=
span{r0, Ar0, A2r0, . . . , Al−1r0} can be taken as the projection
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subspace, where r0 := b−Ax0 is the initial residual while x0 is an
initial guess solution. The GMRES method is a kind of Krylov
subspace method. Two problems are involved in the projection
methods: one is how to compute the basis of the projection space
and another is how to obtain the approximate solution. In the
GMRES method, Arnoldi’s iteration algorithm (Arnoldi 1951)
is used to obtain an orthonormal basis of the Krylov projection
subspace. In addition, the following relation can be derived from
Arnoldi’s algorithm:

AVl = Vl+1Hl, (9)

where Vl is the matrix formed by the orthonormal basis of the
Krylov subspace Kl and Hl is a Hessenberg matrix of order
(l + 1) × l (Saad & Schultz 1986). The approximate solution x̃
is then sought in x0 + Kl, such that the corresponding residual
is minimized. More precisely, one can express the approximate
solution x̃ in x0 + Kl as

x̃ = x0 + Vlỹ, (10)

where ỹ is an l dimensional vector to be determined. By virtue
of (9) and (10), the residual can be expressed as

b − Ax̃ = Vl+1(‖r0‖e1 − Hlỹ), (11)

where e1 denotes the first column of the unit matrix, and r0 is the
initial residual. As Vl+1 is orthonormal, the norm of the residual
simply is:

‖βe1 − Hlỹ‖, (β := ‖r0‖). (12)

Thus, the components of ỹ can be determined by minimizing
‖βe1 − Hlỹ‖.

In the GMRES algorithm, one needs to store the matrices Vl

and Hl in the memory. Since the Krylov dimension l keeps in-
creasing with iterations until an approximate solution with a pre-
scribed accuracy is obtained (or until reaching N), the GMRES
algorithm may encounter storage issues for large scale problems,
in case the algorithm can not satisfy the accuracy criterion in
a small number of iterations for the specific problem. To over-
come this difficulty, a variant algorithm called GMRES(m), also
proposed by Saad & Schultz (1986), is widely used in practical
applications. Here, the Krylov subspace dimension m is a fixed
number that should be properly determined to obtain a good per-
formance (the algorithm is restarted every m steps, hence the
name). Numerical results for m = 2, 3, 4, 5, 20 have been re-
ported in Saad & Schultz (1986) on a pure mathematical test
problem, but usually no theoretical conclusion is available on
the optimal choice of m for a specific problem at hand (Barrett
et al. 1994). For this reason, experimental efforts for determin-
ing a proper m for the given problem are in principle needed (see,
e.g., Spyropoulos et al. 2004).

The GMRES algorithm and a few of its variants, together
with some other popular Krylov-type iterative solvers, have
been implemented in several well-known packages, such as
SPARSKIT (Saad 1994), Templates (Barrett et al. 1994), and
Aztec (Tuminaro et al. 1999). We have adapted most of the
SPARSKIT package to our recently rebuilt BEM extrapolation
code. Considerable efforts have been made in our new code to
hide as many technical details as possible from the users, so they
just need to configure a few external parameter files for their own
problems, escaping from the potential dangers of modifying a
huge source code or providing inconsistent inputs.

4. Numerical experiments

In this section, we investigate the asymptotic convergence be-
haviour of the GMRES(m) solver in the context of the BEM
extrapolation of the solar force-free magnetic fields. In partic-
ular, we study the impact of some relevant parameters on the
convergence speed of the GMRES(m) solver. For a given sys-
tem of linear equations, this convergence speed is mainly deter-
mined by the dimension m of the Krylov subspace and the stop
criterion. A common stop criterion for iterative solvers is to ver-
ify whether the relative residual error ‖b − Ax̃‖/‖b‖ is less than
a prescribed positive number ε, called relative residual bound
hereafter, which at the same time controls the accuracy of the
solution. Therefore, for a given test problem, we sought a near
optimal configuration of these two parameters such that the
amount of computation is minimized, while keeping the accu-
racy of the solution satisfactory in the context of the field ex-
trapolation.

4.1. Setting up the test problem

Our numerical experiments are conducted by using the well-
known analytical force-free magnetic field constructed by Low
(1982), which takes a form of:

Bx = −B0a
r

cosϕ(r), (13)

By =
B0axy

r[y2 + (z + a)2]
cosϕ(r) − B0a(z + a)

y2 + (z + a)2
sin ϕ(r), (14)

Bz =
B0ax(z + a)

r[y2 + (z + a)2]
cosϕ(r) +

B0ay
y2 + (z + a)2

sin ϕ(r), (15)

where r =
√

x2 + y2 + (z + a)2; ϕ(r) is a free function called
generating function; B0 and a(>0) are constants. The force-free
parameter α of this analytical force-free magnetic field satisfies

α =
dϕ(r)

dr
· (16)

In particular, we take a generating function ϕ(r) of the form (cf.
Low 1982)

ϕ(r) = ϕ0 + (ϕ1 − ϕ0)(r − a)/(r0 − a), (17)

where ϕ0, ϕ1 and r0 are constants. Unlike Low’s configuration of
the function ϕ(r), which generates a ball of constant α force-free
magnetic field centred at (0, 0,−a) with radius r0, surrounded by
a potential field for the purpose there, our configuration of the
function ϕ(r) generates a constant α force-free magnetic field in
the whole space, which is more suitable for the purpose of this
paper (see also Yan et al. 1993; Amari et al. 1998). Specifically,
we set ϕ0 = π/4, ϕ1 = π/2, a = 1.0, B0 = 1000, and r0 =
9.2736. These parameters are taken from Low (1982) and Yan
et al. (1993), except for r0, which is chosen to let α small. Here,
we have α = (ϕ1 − ϕ0)/(r0 − a) ≈ 0.0949. We note that small
α is not an intrinsic requirement of the BEM extrapolation, but
a condition to maintain a faster decay of the analytical solution
(see Amari et al. 1998, 1999, for discussions on the problems
of slow decay of the analytical solution when simulating a finite
magnetogram).

Now, we take a square region ΓD = {(x, y) : |x| ≤ Lx, |y| ≤ Ly}
with Lx = Ly = 5 on the XOY plane, acting as the magnetogram
region, on which the “magnetogram data” is supplied by the ana-
lytical force-free magnetic field. The scheme is first to discretize
the region with a uniform grid, then the BEM method is applied
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Table 1. CPU timing information for assembling the BEM matrices, for solving the linear systems of equations with the Gauss solver, the LU
solver, or the GMRES(50) solver with various settings of ε, and for extrapolating the fields for 15 layers (CPU time in seconds).

Degrees of freedom (N) 1023 1443 1935 2499 3135 3843 4623 5475 6399 7395
Gauss 12.53 34.64 163.67 850.44 2524.63 5938.27 12 783.19 21 886.44 38 032.91 61 239.19
LU 0.86 3.66 10.34 23.22 46.44 85.94 149.66 248.36 395.78 611.64
GMRES(50, 10−16) 2.97 6.39 12.48 22.95 37.41 59.41 88.83 137.97 191.08 271.03
GMRES(50, 10−6) 0.89 1.86 3.50 6.06 10.08 16.06 24.41 35.44 49.54 69.69
GMRES(50, 10−2) 0.19 0.41 0.73 1.23 1.84 2.80 4.03 5.66 7.70 10.75
Assembling 0.88 1.78 3.27 5.50 9.33 15.48 22.88 32.39 44.55 59.14
Extrapolation 15.72 31.59 56.81 95.47 151.05 227.31 330.59 478.05 644.13 863.23

to compute the boundary normal derivative of the magnetic field
on the grid, and finally the extrapolation is conducted on sev-
eral levels of height, with a vertical step zh = 0.2. In the inter-
mediate step of computing the boundary normal derivative by
the BEM, one normally just needs to discretize the region only
once with a properly determined resolution, resulting in a linear
system with a 3D right-hand side. Here, in order to investigate
the asymptotic convergence behaviour of the GMRES(m) solver,
we take 10 grids with higher and higher resolution, i.e. grids de-
fined by Gk = {(xi, y j) : xi = −Lx + 2Lx(i − 1)/(mk − 1), y j =
−Ly + 2Ly( j − 1)/(nk − 1); i = 1, . . . ,mk; j = 1, . . . , nk}, where
mk = 33 + 6(k − 1), nk = mk − 2, k = 1, 2, . . . , 10. Thus, we
obtain 10 linear systems with 3D right-hand sides, whose sizes
are Nk = mk × nk, k = 1, 2, . . . , 10. Note that these sizes are de-
signed such that they increase in a “near” linear manner, which
is desirable for proper representation of the results.

4.2. Efficiency and accuracy

These 10 linear systems of equations with 3D right-hand sides
are solved by the GMRES(m) solver with various settings of m
and ε on an Intel Pentium IV computer (CPU speed 2.8 GHz;
RAM 1 GB). The same set of problems is also solved by the
Gauss solver found in the original BEM extrapolation code for
the constant α force-free magnetic field and an LU solver found
in the Linear Algebra Package, i.e. LAPACK (Anderson et al.
1999) for comparative purpose. The respective CPU times of the
Gauss solver, LU solver, and GMRES(m) solver with m = 50
and ε = 10−16, ε = 10−6 or ε = 10−2 are listed in Table 1
(CPU times for assembling the BEM matrices and for extrap-
olating the fields for 15 layers are also included in the table for
reference purpose; CPU times for these two stages of the BEM
extrapolation are independent of the choice of the linear system
solvers). Here, the setting of ε = 10−6 is quite typical for the
GMRES(m) solver or other iterative solvers (see, e.g., Saad &
Schultz 1986; Spyropoulos et al. 2004). This is understandable
since too much accuracy is not necessary in their context of ap-
plications. Actually, it is quite safe to increase ε to be 10−2 in
our case, as will be discussed below. Nevertheless, we also in-
cluded ε = 10−16 for the GMRES(m) solver in our experiments
to maintain a fair comparison against the Gauss solver and the
LU solver, since the accuracy level of the solutions obtained by
the two direct solvers stays around 10−14 while the actual level of
accuracy of the solutions obtained by the GMRES(m) solver is
about one or two orders lower than the prescribed ε. The Krylov
dimension m is set to be 50 (see discussion below).

One may observe in Table 1. that the CPU time for the Gauss
solver increases very quickly, ranging from about 12.5 s to about
17 h, when N increases from 1023 to 7395, and that it is almost
always dominant compared to the assembling and extrapolation
times (even much bigger for the bigger sizes). One can also see
that the ratio of the CPU time taken by the LU solver to the CPU

time taken by the Gauss solver is considerably reduced when N
increases from 1023 to 7395, i.e. by a factor ranging from 9 to
100! Still, we have verified that both of the solvers are O(N3)
procedures. The large disparities of the CPU time concerning
the two direct solvers should be due to the fact that the Gauss
solver we tested is implemented using the Gaussian elimination
method with full pivoting while the LU solver we tested is im-
plemented using Crout’ s method with partial pivoting and heav-
ily optimized for all target processor architectures including the
one we used. The fact that both of the direct solvers provide so-
lutions with almost the same accuracy makes it a pity that the
slowest solver has been in use for so many years. We note that
the Gauss solver with full pivoting was chosen during the design
of the original BEM extrapolation code because it was believed
more accurate (see Liu et al. 1980), but no systematic numerical
tests were conducted then to reveal the asymptotic performance
behaviour of the two kinds of direct solvers applied to the BEM
extrapolation code, since it was not intended for large scale prob-
lems at that moment.

Next, we see in Table 1 and Fig. 1a that the GMRES(50)
solver with ε = 10−16 becomes faster than the LU solver when
N is greater than 2499, but the relative difference remains small
over the range of N tested here. As the iterative solver is an
O(N2) procedure, it may have advantages over the LU solver for
even bigger problems. However, in both cases, it can be seen that
the CPU time needed to solve the linear systems and extrapolate
the fields becomes relatively dominant compared to the assem-
bly time so that differences will not be very noticeable.

By lifting ε to be 10−6 (or 10−2), the GMRES(50) solver is
accelerated by a factor ranging from 3 (or 15) to 4 (or 25) when
N increases from 1023 to 7395, relatively to the GMRES(m)
solver with ε = 10−16. We see that the extrapolating stage
becomes relatively dominant in the BEM extrapolation if the
GMRES(50) solver with ε = 10−6 or ε = 10−2 is used for
solving the BEM systems. In addition, we observe that the CPU
time needed by the assembling stage is just slightly less than that
needed by the GMRES(50) solver with ε = 10−6.

The above timing data are further illustrated in Fig. 1a. Note
that, we have taken the natural logarithm values of the timing
data to represent them properly. One can observe there are in-
tersections between the performance curves of the LU solver
and the GMRES(50) solver with ε = 10−6 or 10−16 around
N = 1023 or N = 2499, which demonstrate that the investiga-
tion on the asymptotic performance behaviour of these solvers
is indeed necessary for acquiring a more complete knowledge
on their performance. Since the trends of variation of these per-
formance curves are rather regular in the current coordinates,
we can extrapolate them to predict the solution time of the cor-
responding solvers for problems with more degrees of freedom
(see also Bucher et al. 2002). We estimate that, for a problem
with N = 20 000 degrees of freedom, the Gauss solver requires
about 22.9 days to get the solution, and the LU solver needs
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for assembling the BEM matrices and extrapolating the fields for 15 layers are also plotted for reference purpose. b) Impact of the setting of ε
of the GMRES(50) solver on the accuracy of the extrapolated field. c) Impact of the Krylov dimension m on the convergence behaviour of the
GMRES(m) solver for ε = 10−6. d) Impact of the Krylov dimension m on the convergence behaviour of the GMRES(m) solver for ε = 10−2.

Table 2. Iteration information of the GMRES(m) solver with m = 50
and various settings of ε (ε1 = 10−16, ε2 = 10−6, ε3 = 10−2).

DOF (N) GMRES(50, ε1) GMRES(50, ε2) GMRES(50, ε3)
1023 (129, 134, 137) (35, 41, 42) (6, 11, 11)
1443 (140, 145, 148) (38, 43, 45) (6, 11, 11)
1935 (149, 151, 173) (40, 45, 47) (6, 11, 11)
2499 (172, 175, 176) (42, 47, 49) (6, 11, 11)
3135 (178, 183, 182) (43, 50, 53) (5, 11, 11)
3843 (186, 194, 194) (45, 51, 59) (5, 11, 11)
4623 (193, 200, 201) (46, 56, 61) (5, 11, 11)
5475 (200, 228, 230) (47, 59, 63) (5, 11, 11)
6399 (204, 230, 233) (48, 60, 65) (5, 11, 11)
7395 (230, 236, 238) (49, 64, 67) (5, 11, 11)

about 3.36 h for the same thing, while the GMRES(50) solver
can bring out its solution in about 50 min for ε = 10−16, about
11 min for ε = 10−6, or less than 2 min for ε = 10−2. To verify
our prediction, we have executed an additional experiment by
solving a problem with a degree of freedom N = 12 321 with
the Gauss solver and the GMRES(50) solver with ε = 10−6 or
ε = 10−2 respectively, as individually indicated by the symbols
“�” in Fig. 1a.

The above timing data, of course, is associated to the
machine architectures and compiler options, but the relative

relations among these data should be less dependent on the
computational environment. To this point, we have collected
in Table 2 the iteration information of the GMRES(50) solver
(which is independent on the computing environment) for the
three concerned values of ε. Note that, we have represented the
iteration information with 3-component vectors since each of
the linear systems has three right-hand sides. We see that, for
each of the cases of ε, the iteration steps for the second and
third right-hand sides for each degree of freedom are close to (or
same) each other, and greater than those of the first ones. This is
understandable since there is a symmetrical relation between the
later two components of the boundary data (see (14) and (15)),
while the first component of the boundary data is rather different
from the other two. In addition, we point out that, for the cases of
ε = 10−16 or ε = 10−6, the number of iteration steps for each of
the right-hand sides increases with N. Furthermore, the larger ε
is, the slower the convergence rate of the GMRES(50) solver. On
the contrary, for ε = 10−2 the number of iteration steps for each
of the right-hand sides remains constant or even decreases when
N increases. Finally, we verified, for each problem size, that
the ratios of CPU times corresponding to the three variants of
the iterative solver in Table 1 are nearly exactly proportional
to the corresponding ratios of numbers of iterations from Table 2.

The above analysis shows that the GMRES(50) solver holds
great promise in efficiency compared with the Gauss solver or
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the LU solver, especially when the relative residual bound ε is
increased up to 10−2. One may ask, however, whether it is rea-
sonable to increase ε up to a value as big as 10−2! To answer this
question, we fix m = 50 and discretize the problem with a grid
of 75 × 73, and solve the resulting linear system of size 5475
by the GMRES(m) solver with ε = 10−6, ε = 10−4, ε = 10−2,
ε = 10−1, and ε = 2×10−1 respectively. Thus, we obtain five sets
of 3D boundary derivatives of the magnetic fields of differing ac-
curacies, resulting in five sets of numerical 3D fields of differing
accuracies after the extrapolation process. Note that, all five sets
of numerical 3D fields are computed on a cubic grid, so that we
can use the method in Amari et al. (1998) to measure the accu-
racy of these computed fields against the analytical one. More
precisely, one computes the Euclidean field relative error of the
extrapolated magnetic fields vs the analytical magnetic field on
each extrapolation level (or height) by the formula (cf. Amari
et al. 1998):

RE j
field =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
N j∑

k=1
‖B̃ j

k − B j
k‖2

N j∑
k=1
‖B j

k‖2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2

, (18)

where B̃
j
k denotes the extrapolated magnetic field at the kth node

of the jth level ( j = 1, . . . ,Nz); B j
k denotes the analytical mag-

netic field at the kth node of the jth level; ‖ · ‖ denotes the
Euclidean 2-norm; Nj is the number of valid nodes on the jth
level. Here, the “valid nodes” refer to those whose transverse
coordinates belong to a subregion ΓσD of ΓD, called valid region
(or concerned region) hereafter. Such a treatment is necessary to
exclude the errors due to the truncation of the boundary data out-
side the magnetogram region ΓD (cf. Amari et al. 1998, p. 256).
Here, we take ΓσD = {(x, y) : |x| ≤ σLx, |y| ≤ σLy} with σ = 0.33,
a value commonly accepted. Clearly, the field relative error de-
fined by (18) is a function of height z and can be represented by
a curve, called FRE − z curve for short hereafter. This curve was
used as a quantitative overall evaluation on the quality of the ex-
trapolated 3D magnetic fields by different approaches for com-
parison purpose in Amari et al. (1998). Figure 1b shows FRE−z
curves for the five sets of BEM-extrapolated 3D magnetic fields
corresponding to the five different settings of the relative resid-
ual bound ε for the GMRES(m) solver. One can see that the field
relative errors at a given height are almost the same when ε is set
to be 10−6, 10−4 or 10−2, but become bigger at the lower heights
(say z < 1) when ε is increased up to 10−1 or 2×10−1. Therefore,
we may take ε = 10−2 as a near optimal choice for the relative
residual bound of the GMRES(m) solver, in order to obtain a
near optimal balance between the convergence speed and the so-
lution accuracy. Still, we do not exclude the case of ε = 10−6 in
the subsequent analysis for comparative purpose.

Now, let us consider the choice of the Krylov dimension m of
the GMRES(m) solver. The scheme is to solve each of the 10 lin-
ear systems of 3D right-hand sides above by the GMRES(m)
solver, taking m = 5, 10, 20, 30, 40, 50, 100, and 500 respectively
while fixing ε = 10−6 or ε = 10−2. Figure 1c shows the impact
of the value of m on the convergence speed of the GMRES(m)
solver for ε = 10−6. We see that the GMRES(m) solver is ac-
celerated by a factor of 2 or 3 when the value of m is increased
from 5 to 20 and upwards. Meanwhile, the speed-up becomes
less significant (or even null) when m is greater than 20 (or
100). It appears to us that m = 50 can be an optimal choice
for the Krylov dimension of the GMRES(m) solver while fix-
ing ε = 10−6, since it does not increase too much workspace

compared with m = 100, and may save more time compared
with m = 20 when N becomes even bigger. The situation is
somewhat changed when ε is increased to 10−2, as shown in
Fig. 1d (note that we have zoomed in 10 times in Fig. 1d com-
pared to Fig. 1c for proper representation of the results). We see
that the convergence speed of the GMRES(m) solver is almost
not changed when m is set to be 10 and upwards. In addition, we
observe some subtle phenomena of mathematical interest when
further zooming in the figure. For example, for all N, the set-
ting of m = 500 is even slightly worse than that of m = 10,
concerning the convergence speed of the GMRES(m) solver for
ε = 10−2. However, detailed analysis of these phenomena is out
of the scope of this paper. Similar phenomena for “DGMRES
algorithm” have recently been reported in (Zhou & Wei 2006).
Generally speaking, we may take around 20, 30, 40, or 50 as
a proper choice of the Krylov dimension m of the GMRES(m)
solver for both cases of ε = 10−6 and ε = 10−2, while m = 50
is our preference since relatively bigger m can make the itera-
tive solver more stable, and it appears more fair to set m = 50
when comparing the convergence speed of GMRES(m, 10−6)
and GMRES(m, 10−2).

5. Conclusion and discussion

We have successfully applied the GMRES(m) method to the
BEM extrapolation of the solar force-free magnetic field on a
well known test problem, and made an effort on the optimal
choice of the Krylov dimension m and the relative residual bound
ε1. By investigating the asymptotic convergence behaviour of the
GMRES(m) solver applied to the BEM systems of linear equa-
tions, we reveal that the GMRES(m) solver, with properly de-
termined m and ε, is much more efficient than the Gauss solver
or the LU solver when the size of the problem becomes very
large, while the accuracy of the extrapolated field can still be
satisfactory within some height. Thus, the BEM extrapolation
has taken a significant step forward towards the routine task
of extrapolating the daily observed photospheric magnetogram
data. In the future, we will apply the GMRES(m) algorithm to
the non-linear case of the BEM extrapolation proposed by Yan
& Sakurai (2000). Finally, we note that it is possible to ap-
ply the GMRES(m) algorithm to other field extrapolation meth-
ods containing large scale linear system of equations, such as
the method for “a better linear force-free field” proposed by
Wheatland (1999) or the calculation method for the non-linear
force-free field proposed by Sakurai (1981).

Despite the encouraging progress on the efficiency, there are
still problems to be dealt with when applying the rebuilt BEM
extrapolation code to the real data. (i) The BEM matrix requires
considerable amount of memory for storage when N becomes
very large (see, e.g., Wheatland 1999; Sakurai 1981 for sim-
ilar problems). For example, for a magnetogram with 1024 ×
1024 pixels, that amount could be as large as 8192 GB, which
would be challenging even for a supercomputer. Fortunately, this
problem has been widely recognized in many research fields,
and some promising methods, such as multipole expansions
(Greengard & Rokhlin 1987), panel clustering (Hackbusch &
Nowak 1989), and wavelet compression method (Beylkin et al.
1991) have been proposed. We have already begun to study
the adaptation of the wavelet approach to the solution of in-
tegral equation (Li et al. 2005) and will apply it to tackle the

1 We mention that the optimum ranges for the parameters m and ε of
the GMRES(m) solver may differ somewhat from the values obtained
here if different test fields and higher values of α are considered.
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storage problem in the BEM extrapolation in a forthcoming pa-
per (Li et al. in preparation). (ii) Since two dimensional numeri-
cal quadrature is involved both in the procedure of generating the
BEM matrix and in the stage of computing the magnetic field in
Ω in the BEM extrapolation, computational cost of numerical
quadrature can be considerable in the case that high space reso-
lution is desirable. Therefore, it is necessary to seek more effec-
tive quadrature methods. We have also started to work on this as-
pect. (iii) The convergence behaviour of the GMRES(m) method
subjected to the BEM extrapolation with real magnetogram data
remains to be investigated. However, it can be expected that the
noise in the observed data, the distribution of α, the size and res-
olution of the magnetogram region may affect the convergence
behaviour of the GMRES(m) method so that slow convergence
may be encountered due to these factors. In that case, we sug-
gest trying a bigger m, but the ε should not be bigger than 10−2,
according to the numerical experiments done in this paper. In ad-
dition, since we have implemented most of SPARSKIT (which
contains, among other things, 10 iterative solvers) in our rebuilt
BEM extrapolation code, the users of our code can consider
using other solvers of SPARSKIT, such as DQGMRES, BCG,
etc., in case the GMRES(m) solver converges slowly for the spe-
cific problem under consideration or to check the accuracy by
comparing results provided by different kinds of (fast) solvers.
Furthermore, we have implemented our new code in a modu-
lar way such that the users usually need not modify the source
code but simply change parameters in input files to change algo-
rithms or set parameters and may adopt new standard packages
if more advanced method, known as “preconditioning”, have to
be considered. Alternatively the users may just use the LU solver
from LAPACK for comparison purposes on small size problems.
Finally, we note that further numerical experiments will be done
in Li (in preparation) to compare the convergence behaviour of
some other iterative solvers in the SPARSKIT, in the context of
the BEM extrapolation.
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