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Locomotion of deformable bodies in an ideal fluid:

Newtonian versus Lagrangian formalisms

Alexandre Munnier∗

February 17, 2009

Abstract

This paper is concerned with comparing Newtonian and Lagrangian meth-
ods in Mechanics for determining the governing equations of motion (usually
called Euler-Lagrange equations) for a collection of deformable bodies im-
mersed in an incompressible, inviscid fluid whose flow is irrotational. The
bodies can modify their shapes under the action of inner forces and torques
and are endowed with thrusters, what means that they can generate fluid jets
by sucking and blowing out fluid through some localized parts of their bound-
aries. These capabilities may allow them to propel and steer themselves.

Our first contribution is to prove that under smoothness assumptions on
the fluid-bodies interface, Newtonian and Lagrangian formalisms yield the
same equations of motion. However and rather surprisingly this is no longer
true for nonsmooth shaped bodies.

The second novelty brought in in this paper is to treat for the first time
a broad spectrum of problems in which several bodies undergoing any kind
of deformation can be involved and to display the Euler-Lagrange equations
under a form convenient to study locomotion and to perform numerical simu-
lations.

These equations have been used to develop a Matlab toolbox (Biohydrody-
namics Toolbox) that allows to study animal locomotion in a fluid or merely
the motion of submerged rigid solids. Examples of such simulations are given
in this paper.

Keywords and Phrases: Biodynamics, ideal fluid, Lagrangian and Newtonian
Mechanics, PDE-ODE coupled system, shape sensitivity analysis.
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1 Introduction

1.1 History

In the last decade, significant efforts have been done by mathematicians in studying
problems relating to the general theme of locomotion in a fluid by shape-changing
bodies [20, 5, 8, 19, 13, 16, 33, 17, 28, 15, 25, 27]; see also [30] for an interesting survey
on this topic and further references. The underlying motivation of these works is
to better understand the impressive swimming capabilities evolved by fishes and
aquatic mammals.

Experiments have shown that the vortices generated by the tail of fishes play a
crucial role to understand their locomotion and some models incorporate artificially
vortices [24, 34, 31]. If we do not neglect the viscosity effects, the relevant model
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consists in the non stationary Navier-Stokes equations for the fluid coupled with
Newton’s laws for the fish-like swimming object. This perspective is the one adopted
in [4, 22, 7, 29].

Nevertheless, among numerous mathematical articles studying fish locomotion,
most of them address the case of a potential flow which is by definition vortex-free.
It is the point of view we have chosen in what follows and on which we focus from
now on.

1.2 Newtonian versus Lagrangian formalims

Among all of the papers referenced above, one can essentially find two methods to
derive the governing equations of motion for the fish-like swimming bodies: either
authors invoke Newton’s laws (and use Newtonian formalism) or they apply Hamil-
ton’s principle (and use Lagrangian formalism). Let us describe succinctly these
two approaches.

Classical Mechanics

With Newtonian formalism, the dynamics of the fluid and the dynamics of the
bodies are in a first time treated separately and next coupled.

Each body is handled as an independent mechanical system subject to exterior
hydrodynamic forces and torques expressed by means of the fluid stress tensor.
Newton’s laws for linear and angular momenta apply and yield a system of ordinary
differential equations (ODE’s) whose unknowns are the degrees of freedom of the
bodies. The dynamics of the perfect fluid, for its part, is driven by Euler’s equations.

The coupling between bodies and fluid is realized not only through the hydrody-
namic forces but also through kinematic constraints. Indeed, the region occupied by
the fluid as well as its velocity along the bodies’ boundaries depend on the locations
and velocities of the bodies.

With this approach and in term of complexity, it does not matter whether the
fluid is confined or not or how many the submerged bodies are.

Analytic Mechanics

Governing equations of motion can also be obtained by applying Hamilton’s prin-
ciple to the system fluid-bodies in its entirety. This idea goes back to the works of
Thomson, Tait and Kirchhoff. In the book [18, chap. VI, page 160], Sir H. Lamb
explains that: The cardinal feature of the methods followed by these writers consists
in this, that the solids and the fluid are treated as forming together one dynamical
system, and thus the troublesome calculation of the effect of the fluid pressures on
the surfaces of the solids is avoided.

With this approach, on the contrary to what happens with Newtonian formalism,
the more bodies are involved, the more involved is the problem.

Indeed, once the Lagrangian function of the system has been set, the derivation
of the equations of motion requires it to be differentiated with respect to the so-
called generalized coordinates corresponding to the degrees of freedom of the system.
Obviously, more bodies means also more degrees of freedom. Within this process,
one usually needs to differentiate the solution of an initial/boundary value problem
(namely, equations of Fluid Dynamics) with respect to parameters relating to the
geometry of the fluid’s domain (i.e. to compute shape derivatives). Although quite
involved, this task can be carried out using classical tools of shape optimization
[26, 27].

Notice however that this difficulty can be overcame when the following restrictive
hypotheses hold, what is assumed in most of the papers:
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(H1) There is only one body in the fluid.

(H2) The overall system body-fluid fills the whole space.

(H3) The body is neutrally buoyant.

(H4) The system body-fluid is at rest at time t = 0.

The method to obtain the Euler-Lagrange equations in this case is sketched in
Subsection 1.6. An other way to avoid the shape-derivative difficulty consists in
replacing (H1) by:

(H1′) The dynamics of the immersed bodies are hydrodynamically decoupled,

which means that each body is handled as if being alone in the fluid. It can be
relevant when the immersed bodies are very far one from the others but is not any
longer when they are close as shown in Section 7.

Equivalence between both formalisms?

It is classical for monogenic mechanical systems (i.e. systems having forces which
derive from a potential) involving both holonomic and nonholonomic constraints,
that either Newton’s laws or D’Alembert’s (or Hamilton’s) principle suffice in pro-
viding Euler-Lagrange governing equations of motion [3, §13 pages 64-67] (or [11,
§2.3 pages 44-45]). More recently, the equivalence has been also shown for multibody
systems in [32]. However, to our knowledge, this problem has not be investigated so
far for more complex systems like the coupled fluid-structure systems we are dealing
with.

1.3 Main results

In this article, we consider a set of submerged deformable bodies, not necessarily
neutrally buoyant, self-propelled partly by shape-changes and partly by thrusters,
inside a potential fluid flow. The system fluid-bodies occupies either a bounded,
partially bounded or unbounded domain of RN (N = 2, 3). Shape-changes as well
as the running of the thrusters are assigned as functions of time and generically
termed controls. We denote by F the domain of the fluid, by B the domain of the
n bodies and we denote:

• (SN) the system of coupled equations in which the dynamic of the fluid is
governed by Euler’s equations and the dynamics of the bodies by Newton’s
laws.

• (SL) the system of equations obtained by applying Hamilton’s principle to the
Lagrangian function of the overall system fluid-bodies.

We say that both systems are equivalent if each one can be deduced from the other.
We shall prove:

Theorem 1.1 If the boundary of the fluid domain is smooth enough and the thrusters
inactive then (SN) and (SL) are equivalent.

The smoothness assumption is fundamental. Indeed, consider the simplest case in
which a rigid solid is alone in a fluid of infinite extend. Denoting by T the stress
tensor of the fluid and by n the unitary vector normal to ∂B directed toward the
interior of the solid, then the net hydrodynamic forces exerted by the fluid on the
solid is: ∫

∂B
Tn dσ.

We claim that:
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Theorem 1.2 There exists a nonsmooth-shaped rigid solid for which:

• The Lagrangian function of the system fluid-solid and next (SL) are well de-
fined and lead to d’Alembert’s paradox (the solid moves along a straight line
with constant velocity).

• For the motion obtained above |Tn| /∈ L1(∂B). Therefore, Newton’s law for
the solid’s linear momentum fails to apply and (SN) cannot be written.

Going back to the general smooth case, we denote by c the controls variable (i.e.
the variable controlling the shapes of the bodies and the running of the thrusters)
and by q the generalized variable (which corresponds to the degrees of freedom of
the system fluid-bodies, the unknowns of our problem). We will show that for any
given smooth function t 7→ c(t), the Euler-Lagrange equation of motion takes the
form:

d

dt

∂L

∂q̇
− ∂L

∂q
= Ft, (1.1)

where L = L(q, q̇, c, ċ) is the Lagrangian function and Ft a generalized force due to
the work of the trusters. We will show that, once expanded, equation (1.1) turns
into a second order non-linear ODE in q:

Mq̈ = Γ(q, q̇, c, ċ, c̈), (1.2)

and we will compute explicitly the mass matrix M and the Christoffel symbol Γ to
end up with an expression which involves only data of the problem on ∂B.

1.4 Numerical simulations

Equation (1.2) is the core of the Biohydrodynamics Matlab Toolbox (BhT). BhT is
free, distributed under licence GNU GPL. A complete description of the toolbox is
available on its home page:

http://bht.gforge.inria.fr/

In Section 7 we use it to perform numerical simulations. We show how two rigid
moving solids deeply interact in a fluid when they are close what proves that the
hydrodynamically decoupled bodies assumption is not always relevant. Further, we
illustrate how BhT allows to study in terms of power and torques the forward motion
of a pair of fish-like swimming articulated rigid bodies.

1.5 Organization of the paper

In the next subsection, we recall the method described for instance in [15] to derive
the Euler-Lagrange equations of motion under hypotheses (H1-4) listed in Subsec-
tion 1.2.

Section 2 is devoted to the setting of the general problem: topological and geo-
metrical data are made precise, shape-changes and thrusters actuations are properly
described as well as the configuration and phase spaces.

In Section 3, we use Lagrangian formalism to obtain formally the Euler-Lagrange
equations. For this purpose, we compute the energy of the system and introduce
the definitions of allowable controls and Lagrangian solution for the self-propelled
motion problem.

In Section 4, we use Newton’s laws to get the Euler-Lagrange equations. We
end up with a system of coupled equations (some of them being PDE’s and other
ODE’s). We define symmetrically to what has been done in the preceding section
what is a Newtonian solution for the self-propelled motion problem.
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Newtonian and Lagrangian solutions are next compared in Section 5, distin-
guishing between models with and without thrusters. The section ends up with a
counterexample of a nonsmooth-shaped solid for which Newtonian formalism fails
in providing the equations of motion whereas they can be obtained with Lagrangian
approach.

In Section 6, we consider back the formal equations obtained at the end of
Section 3 and we expand it in the form of a system of second order ODE’s whose
unknowns are the degrees of freedom of the system fluid-bodies.

These ODE’s are used in the core of BhT which is used in Section 7 to perform
numerical simulations: in a first subsection, we illustrate how distant moving rigid
solids interact in a fluid and a in the second subsection we study a pair of fish-like
swimming articulated rigid bodies.

The appendix contains technical results.

1.6 A particular case

In this section only, let us assume that:

(H1) There is only one body in the fluid.

(H2) The overall system body-fluid fills the whole space (identified with R3).

(H3) The body is neutrally buoyant.

(H4) The system body-fluid is at rest at time t = 0.

The shape of the body is described in a moving frame RM attached to the body by
a so-called shape variable s.

The location of RM with respect to a Galilean fixed frame is given by g ∈ G :=
SE(3) (the Euclidian group) and its velocity (expressed in RM ) by a pair (Ω,v),
where v is the translational velocity and Ω the angular velocity (we use the same
notation as in [23, chap 15] we refer to for details).

Because of (H3), the Lagrangian of the system fluid-body is merely equal to the
kinetic energy:

L :=
1
2

(Ω,v, ṡ)M(s)

Ω
v
ṡ

 ,

where M(s) is the mass matrix of the system (see e.g. [24, 15, 27]).
The fundamental point is that under assumptions (H1-3), the mass matrix de-

pends on s only. It is a consequence of the isotropy of the configuration (as seen by
an observer attached to the body, all of the positions and directions in the fluid are
equivalent). In [15], this idea is expressed by saying that the Lagrangian is invariant
under superimposed rigid motion.

The mass matrix is symmetric (as being the polarization of a quadratic form)
and can be displayed into the following bloc form:

M(s) =
[
Mr(s) N(s)
NT (s) P(s)

]
,

so that the Lagrangian can be expanded:

L =
1
2

(Ω,v)Mr(s)
(

Ω
v

)
+ (Ω,v)N(s)ṡ +

1
2
ṡTP(s)ṡ.

Following [18], we introduce the angular and translational impulses:(
Π
P

)
:= Mr(s)

(
Ω
v

)
,

6



as well as the impulses related to the deformations:(
Λ
L

)
:= N(s)ṡ.

For any pair (g, ġ) of TG (the tangent bundle of G), we denote (q, q̇) its coordinates
in a chart U×E and (Ω,v) stand for the related angular and translational velocities.
We compute that:

d

dt

∂

∂q̇

(
Ω
v

)
· q̇∗ − ∂

∂q

(
Ω
v

)
· q̇∗ =

(
Ω∗ ×Ω

Ω∗ × v −Ω× v∗

)
, ∀ q̇∗ ∈ E,

where the pair (Ω∗,v∗) corresponds to the coordinates (q, q̇∗). We next easily
obtain that:

d

dt

∂L

∂q̇
· q̇∗ − ∂L

∂q
· q̇∗ =

d

dt

(
Π + Λ
P + L

)
·
(

Ω∗

v∗

)
+
(

Π + Λ
P + L

)
·
(

Ω∗ ×Ω
Ω∗ × v −Ω× v∗

)
, ∀ q̇∗ ∈ E.

Since the Euler-Lagrange equations of motion are (see e.g. [23, Theorem 7.3.3 page
187]):

d

dt

∂L

∂q̇
· q̇∗ − ∂L

∂q
· q̇∗ = 0, ∀ q̇∗ ∈ E,

we get:

d

dt
(Π + Λ) = (Π + Λ)×Ω + (P + L)× v,

d

dt
(P + L) = (P + L)×Ω.

Under assumption (H4), this system can be integrated to obtain:(
Π + Λ
P + L

)
= 0,

what leads to: (
Ω
v

)
= −(Mr(s))−1N(s)ṡ.

This expression is the one obtained in [15]. It is very convenient to study the motion
of the shape-changing body since it gives the velocity with respect to the shape
variable. Nevertheless getting the Euler-Lagrange equations under such a simple
form rests deeply on assumptions (H1-4) which ensure the isotropy (or symmetry
using formalism of [23]) of the configuration. This isotropy is broken when either:

• the fluid is partially or totally bounded,

• there is several bodies in the fluid,

• or the body is not neutrally buoyant.

In such cases, the mass matrix depends also on q turning out the problem in a much
more involved one. All of these cases are addressed in this article.
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2 Setting of the problem

2.1 Topological and geometrical data

Let (e1, . . . , eN ) denote a reference Galilean frame by which we identify the physical
space to RN (N = 2 or 3). At any time t > 0 we denote by B := ∪n

i=1Bi the open
region of RN occupied by the n deformable bodies (n ∈ N, n ≥ 1) and by F the
domain of the surrounding fluid which is assumed to be also open and connected.
The set M, independent of time, is next defined as the disjoint union:

M := B1 ∪ . . . ∪ Bn ∪ F̄ .

The boundary ∂F of the fluid is assumed to be a lipschitz continuous surface (N = 3)
or curve (N = 2). This regularity allows one to define almost everywhere on ∂F
the unitary normal directed towards the exterior of the fluid:

n : ∂F → SN−1,

where SN−1 stands for the unitary sphere of RN .
In the sequel, the exterior boundary ∂F \ ∂B is assumed to be bounded (so the

fluid domain is either bounded or an exterior domain).

2.2 Kinematics of the shape-changing bodies

Systems of coordinates

The coordinates in the frame (ej) are denoted with lowercase letters x = (x1, . . . , xN )
and are commonly called the spatial coordinates (see [23, chap 15]).

The material coordinates of the i-th body, denoted X = (X1, . . . , XN ), are given
relatively to an orthogonal frame (Ei

1, . . . ,E
i
N ) whose origin is chosen to be at the

center of mass of the body at time t = 0. In this frame and at time t = 0, the i-th
body occupies the domain B0

i (usually termed reference configuration).
Attached to the i-th body, we define also a moving frame (ei∗1 , . . . , e

i∗
N ). We

choose it such that its origin coincides at any time with the center of mass of the
body and we denote by x∗ = (x∗1, . . . , x

∗
N ) the related so-called body coordinates. In

this frame and at any time the body occupies the region B∗i .
We can assume in addition that at time t = 0, (Ei

j) = (ei∗j ) and hence that
B∗i = B0

i (see figure 2).

Shape space

The deformation of the i-th body is described with respect to the body-fixed frame
(ei∗j ) by a diffeomorphism φi : B0

i → B∗i of class Cm (m ∈ N, m ≥ 1) equal to the
identity outside a large ball Bi (see figure 1). We denote by Di the set consisting of
all such diffeomorphisms. It is thoroughly described in Apppendix, Section A. We
have therefore with our notation:

x∗ = φi(X).

Let Dφi stands for the Jacobian matrix of φi and denote Jφi := |detDφi|. Then
the related volume elements satisfy the identity:

dx∗ = Jφi(X)dX.

Likewise, the surface elements dσ∗ and dσ0 of ∂B∗ and ∂B0 respectively are linked
by the formula:

dσ∗(x∗) = Jσφi(X)dσ0(X),
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Bi

φi

B0
i

ei∗
3

Ei
1

Ei
3

Ei
2

Bi

ei∗
2

B∗i

ei∗
1

X
x∗ := φi(X)

Figure 1: Reference configuration B0
i and domain of the deformed body B∗i :=

φi(B0
i ).

where Jσφi := |(Dφi)−1Tn|Jφi is the tangential Jacobian.
The density ρ∗i of the deformed i-th body is deduced from the given density ρ0

i

of the body at time t = 0 by the conservation-of-mass principle:

ρ∗i = ρ0
i (φ
−1
i )Jφ−1

i . (2.1)

We denote then
dm0

i := ρ0
idX,

the element of mass in B0
i and likewise:

dm∗i := ρ∗i dx∗,

is the element of mass in B∗i . Since we assume that the deformations are due to
inner forces and torques only, Newton’s laws ensure that the center of mass and
the angular momentum of the body with respect to its attached frame (ei∗j )
remain unchanged when it undergoes shape-changes. We get:∫

B∗i
x∗ dm∗i =

∫
B0
i

X dm0
i = 0,

which can be rewritten, upon a change of variables and taking into account (2.1):∫
B0
i

φi(X) dm0
i = 0. (2.2a)

Differentiating with respect to time, we get:∫
B0
i

φ̇i dm0
i = 0, (2.2b)

or equivalently: ∫
B∗i
φ̇i(φ−1

i ) dm∗i = 0.

The same arguments yield for the angular momentum:
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ri

B0
i

Bi

e3

Ei
3

e2

F

ei∗3

Ei
2

Ei
1

ei∗1

e1

X

ei∗2

x := giφi(X)

Figure 2: The fixed frame (ej) and the moving frame (ei∗j ) with ei∗j = RiEi
j . The

domain of the body is Bi := Riφi(B0
i ) + ri.

• When N = 3: ∫
B0
i

φ̇i × φi dm0
i = 0, (2.2c)

or equivalently: ∫
B∗i
φ̇i(φ−1

i )× x∗ dm∗i = 0.

• When N = 2: ∫
B0
i

φ̇i · φ⊥i dm0
i = 0, (2.2d)

or equivalently: ∫
B∗i
φ̇i(φ−1

i ) · x∗⊥ dm∗i = 0,

where x⊥ := (−x2, x1) for all x = (x1, x2) ∈ R2.

It will be made clear later on that in the following cases:

(C1) when N = 2, for bounded and unbounded domains F ,

(C2) for bounded F only when N = 3,

we must have in addition:∫
B∗i
∇ · φ̇i dx∗ =

∫
∂B∗i

φ̇i(φ−1
i ) · n dσ∗ = 0, (2.2e)

expressing the conservation of the overall volume of the fluid.
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Rigid motion

As already mentioned, G := SE(N) stands for the rigid body group (or Euclidian
group). The elements g ∈ G consists of pairs (R, r) where R ∈ SO(N) is a rotation
matrix and r ∈ RN . They would sometimes be identified with the matrix:

g =
(
R r
0 1

)
,

and for any vector x = (x1, . . . , xN )T ∈ RN , we denote(
gx
1

)
:=
(
R r
0 1

)(
x
1

)
. (2.3)

In particular we will made no difference in the notation between the pair (R, r) and
the associated isometry of RN defined by (2.3). At any time and for any i = 1, . . . , n,
there exists gi = (Ri, ri) ∈ SE(N) such that

ei∗j = RiEi
j ,

and ri gives the location of the center of mass of the i-th body (see figure 2). With
our notation:

x = gix∗,

and Bi = gi(B∗i ). We deduce, since Jgi = 1 and Jσgi = 1, that:

dx = dx∗,

and
dσ = dσ∗.

With evident notation we can define the density of the i-th body by:

ρi(x) := ρ∗i (x
∗),

and the element of mass by:
dmi = ρidx.

Velocities of the bodies

According to the relation:
x = giφi(X),

we deduce that the Eulerian velocity at a point x of Bi is:

vi(x) = ġig
−1
i x +Riφ̇i(φ−1

i (g−1
i x)),

where ġi := (Ṙi, ṙi), (gi, ġi) ∈ TG and (φi, φ̇i) ∈ Si. Classically, we define the vector
ωi (when N = 3) or the scalar ωi (when N = 2) by:

ṘiR
T
i x =

{
ωi × x when N = 3,
ωi x⊥ when N = 2,

and we get for all x ∈ Bi:

ġig
−1
i x =

{
ωi × (x− ri) + ṙi when N = 3,
ωi (x− ri)⊥ + ṙi when N = 2.

(2.4a)
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We can rewrite the Eulerian velocity:

vi(x) =

{
(ωi × (x− ri) + ṙi) +Riφ̇i(φ−1

i (g−1
i x)) when N = 3,

(ωi (x− ri)⊥ + ṙi) +Riφ̇i(φ−1
i (g−1

i x)) when N = 2.
(2.5)

The body (or convective) velocity reads, for all x∗ ∈ B∗i :

v∗i (x
∗) =

{
(Ωi × x∗ +RTi ṙi) + φ̇i(φ−1

i (x∗)) when N = 3,
(Ωi x∗⊥ +RTi ṙi) + φ̇i(φ−1

i (x∗)) when N = 2,

where

Ωi := RTi ωi when N = 3,
Ωi := ωi when N = 2.

Observe that vi is given in the fixed basis (ej) whereas v∗ is given in the body-
attached basis (ei∗j ).

2.3 Thrusters

The running of the thrusters of the i-th body is described by a function νi ∈
H−1/2(∂B0

i ) (the dual of the Sobolev space H1/2(∂B0
i ) defined for instance in [21,

§7.3 pages 38-42]). The function νi stands for the normal component of the velocity
of the fluid blown out by the thrusters. It must satisfies in cases (C1-2) only:

〈νi, 1〉H−1/2(∂Bi)×H1/2(∂Bi) = 0. (2.6)

When νi is more regular, namely in L2(∂Bi), this condition turns into:∫
∂Bi
νi dσ = 0. (2.7)

The running of the thrusters can equivalently be defined by a function ν0
i ∈ H−1/2(∂B0

i )
such that, in the cases (C1-2) mentioned above only:

〈ν0
i Jσφi, 1〉H−1/2(∂B0

i )×H1/2(∂B0
i ) = 0.

Both functions νi and ν0
i are linked through the identity:

νi(x) = ν0
i (X).

2.4 Configuration and phase spaces

The configuration space

The fluid is assumed to be incompressible and inviscid. We denote ρf > 0 its
constant density and we set:

dmf := ρfdx,

the element of mass.
The classical configuration space for such a fluid is the set Diffvol(F0,F) of

the smooth, volume-preserving diffeormorphisms from F0 onto F . Notice that this
space depends on F and hence on all of the elements φi and gi. Thus, the fluid
cannot be described independently of the shapes and positions of the bodies.

We deduce that the configuration space Q of the system fluid-bodies is the set
of all the triplets (φ,g, η) such that:

12



1. φ := (φ1, . . . , φn) ∈ D1×. . .×Dn, g := (g1, . . . , gn) ∈ Gn and η ∈ Diffvol(F0,F).

2. For any pair of indices (i, j) such that i 6= j:

B̄i ∩ B̄j := giφi(B̄0
i ) ∩ gjφj(B̄0

j ) = ∅,

B̄i ∩ (RN \M) := giφi(B
0

i ) ∩ (RN \M) = ∅.

The latter condition means that the bodies are not allowed to touch or overlap each
other or to go out of M.

The phase space

For any (φ,g, η, φ̇, ġ, η̇) ∈ TQ, we denote

u := η̇ ◦ η−1, (2.8a)

the Eulerian velocity of the fluid. The slip boundary condition for inviscid fluid
yields:

u · n = vi · n + νi on ∂Bi, (2.8b)
u · n = 0 on ∂F \ ∂B, (2.8c)

where vi is defined by (2.5).

Definition 1 The phase space P consists of all the septuplets (φ,g, η, φ̇, ġ, η̇,ν)
such that:

1. (φ,g, η, φ̇, ġ, η̇) ∈ TQ.

2. ν := (ν1, . . . , νn) ∈ H−1/2(∂B1)× . . .×H−1/2(∂Bn).

3. For any index i, conditions (2.2) hold.

4. For any index i, condition (2.6) holds.

5. Identities (2.8) hold.

The phase space is a vector bundle whose base space is Q and related projection
πQ is defined by:

πQ(φ,g, η, φ̇, ġ, η̇,ν) := (φ,g, η).

Potential flow, modified configuration and phase space

We seek the Eulerian velocity of the fluid as the gradient of a potential function ψ:

u := ∇ψ in F . (2.9)

The incompressibility of the fluid entails ∇ · u = 0 and hence:

∆ψ = 0 in F . (2.10a)

The boundary conditions (2.8) lead to Neumann boundary conditions for ψ, which
read:

∂nψ = vi · n + νi on ∂Bi, (2.10b)

with the convention that ∂nψ = 0 on unspecified boundaries. When (C1-2) hold,
we have to add a condition to ensure the uniqueness of ψ, namely:∫

∂F\∂B
ψ dσ = 0. (2.10c)
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Boundary value problem (2.10) is well-posed, as detailed in Appendix, Section D.
Therein, it is also explained where conditions (C1-2) come from.

The fluid has no own degree of freedom left because ψ is completely determined
by System (2.10). The element η can be canceled in the definition of the configu-
ration space Q and the definition of the phase space can be simplified as follows:

Definition 2 The phase space P in the case of a potential flow consists of all the
quintuplets p := (φ,g, φ̇, ġ,ν) such that:

1. (φ,g, φ̇, ġ) ∈ TQ.

2. ν := (ν1, . . . , νn) ∈ H−1/2(∂B1)× . . .×H−1/2(∂Bn).

3. For any index i, conditions (2.2) hold.

4. For any index i, condition (2.6) holds.

The projection πQ must be modified accordingly.

3 Lagrangian description

3.1 Mass and inertia tensors

We denote by mi > 0 the mass of the i-th body while its inertia tensor in the
moving basis (ei∗j ) reads, when N = 3:

I∗i :=
∫
B∗i
|x∗|2Id− x∗ ⊗ x∗ dm∗i ,

or equivalently upon a change of variables:

I∗i :=
∫
B0
i

|φi(X)|2Id− φi(X)⊗ φi(X) dm0
i .

It can also be expressed with respect to the fixed frame (ej):

Ii = RiI∗iRTi .

When N = 2 it is a scalar:
Ii :=

∫
B∗i
|x∗|2 dm∗i ,

or equivalently:

Ii :=
∫
B0
i

|φi(X)|2 dm0
i .

3.2 Kinetic and potential energies

Due to relations (2.2), the kinetic energy of the i-th body is, when N = 3:

Kb
i :=

1
2
mi|ṙi|2 +

1
2
Ωi · I∗iΩi +

1
2

∫
Bi
|Riφ̇i(φ−1

i (g−1
i x))|2 dmi,

and when N = 2:

Kb
i :=

1
2
mi|ṙi|2 +

1
2
|Ωi|2Ii +

1
2

∫
Bi
|Riφ̇i(φ−1

i (g−1
i x))|2 dmi,
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the last term being the kinetic energy of deformation. It can be rewritten:

1
2

∫
Bi
|Riφ̇i(φ−1

i (g−1
i x))|2 dmi =

1
2

∫
B0
i

|φ̇i(X)|2 dm0
i .

We denote
Kb :=

∑
i

Kb
i ,

the overall kinetic energy of the bodies. Setting the potential gravity function

G(x) := −gxN ,

(where g stands here for the standard gravity), and by virtue of Archimedes’ prin-
ciple, the potential energy associated with the buoyant force is, for the i-th body:

Pi := −
∫
Bi
G(x)(ρi − ρf ) dx, (3.1a)

or, upon a change of variables:

Pi := −
∫
B∗i
G(gix∗)(ρ∗i − ρf ) dx∗. (3.1b)

The overall potential energy related to the buoyant force is:

P :=
∑
i

Pi.

At last, the kinetic energy of the fluid is:

Kf :=
1
2

∫
F
|u|2 dmf =

1
2

∫
F
|∇ψ|2 dmf ,

and the Lagrangian function, defined on the phase space P reads:

L := Kf +Kb − P. (3.2)

3.3 Euler-Lagrange equations of motion of the self-propelled
motion problem

As already mentioned, shape-changes and thrusters actuation are referred to as
controls.

Definition 3 (Allowable controls) We call allowable controls, any pair (φ(t),ν(t))
of smooth functions that satisfy, for all t:

1. φ(t) := (φ1(t), . . . , φn(t)) ∈ D1 × . . .×Dn,

2. ν(t) := (ν1(t), . . . , νn(t)) ∈ H−1/2(∂B1)× . . .×H−1/2(∂Bn),

3. For any index i, conditions (2.2) hold with φ̇ =
dφ

dt
,

4. For any index i, condition (2.6) holds.

A compatibility condition for the initial positions and velocities of the bodies is also
needed for the problem to be well-posed.
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Definition 4 A pair (g0, ġ0) ∈ TGn is said satisfying the compatibility condition
at a given time t0 relatively to a pair of allowable controls (φ(t),ν(t)) when

(φ(t0),g0,
dφ

dt
(t0), ġ0,ν(t0)) ∈ P. (3.3)

Consider now the projection πTGn : P → TGn, defined by:

πTGn(p) := (g, ġ).

Let U × E be:

• a local chart of TGn in a neighborhood of (g0, ġ0),

• included in the image by πTGn of a local chart of the phase space P nearby
an element p0 := (φ0,g0, φ̇0, ġ0,ν0).

We denote (q, q̇) the variables in U × E and ∂L/∂q and ∂L/∂q̇ are the related
partial derivatives of L.

Definition 5 (Lagrangian solution) We call Lagrangian solution of the self-
propelled motion problem with given allowable controls (φ(t),ν(t)) and initial data
(g0, ġ0) satisfying the compatibility condition (3.3), any twice continuously differ-
entiable function t 7→ g(t) ∈ Gn defined in a neighborhood of t0 and such that:

1. g(t0) = g0 and
dg
dt

(t0) = ġ0.

2. The coordinates of (g, ġ) are (q, q̇).

3. For all t nearby t0, (q, q̇) solve the EDO:

d

dt

∂L

∂q̇
(p(t)) · q̇∗ − ∂L

∂q
(p(t)) · q̇∗ = Ft(p(t)) · q̇∗, ∀ q̇∗ ∈ E, (3.4)

where
p(t) := (φ(t),g(t),

∂φ

∂t
(t),

dg
dt

(t),ν(t)),

and Ft stands for generalized forces induced by the thrusters actuation.

Since the actuation of the thrusters has been modeled as non-holonomic constraints
(namely as constraints on the velocity of the fluid), the Lagangian formulation
required the use of generalized forces (see for instance [11, §2.4 pages 45-50]). The
expression of these forces will be given later on, in Proposition 5.1.

4 Newtonian description

We assume that the fluid flow is driven by Euler’s equations. In such a fluid, the
stress tensor is

T := (−p+ ρfG)Id, (4.1a)

where p stands for the pressure of the fluid. Remind that we have denoted by u
the Eulerian velocity of the fluid and by ρf its constant density. The equations of
motion read:

ρf
d

dt
u = ∇ · T in F , (4.1b)

∇ · u = 0 in F , (4.1c)
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where
d

dt
u := ∂tu + (u · ∇)u, (4.1d)

is the particular derivative. We add the already mentioned slip boundary condition
for inviscid fluid:

u · n = vi · n + νi on ∂Bi, (4.1e)
u · n = 0 on ∂F \ ∂B, (4.1f)

where vi is the velocity of the i-th body defined by (2.5).
Newton’s laws apply to the bodies and yield:

d

dt
(miṙi) = −

∫
∂Bi

Tn dσ − g(mi −mi
f )e3, (4.2a)

d

dt
(Iiωi) = −

∫
∂Bi

(x− ri)× Tn dσ + gmi
f (rif − ri)× e3 when N = 3, (4.2b)

d

dt
(Iiωi) = −

∫
∂Bi

(x− ri)⊥ · Tn dσ + gmi
f (rif − ri)⊥ · e2 when N = 2, (4.2c)

where

mi
f :=

∫
Bi

dmf , (4.2d)

rif :=
1
mi
f

∫
Bi

x dmf . (4.2e)

We add initial conditions for the bodies and the fluid:

u(0) = u0, g(0) = g0, ġ(0) = ġ0, (4.3)

with (g0, ġ0) satisfying the compatibility condition (3.3). The system of equations
(4.1), (4.2) and (4.3) allows to described thoroughly the self-propelled motion of
the bodies.

Potential flow

Seeking now the Eulerian velocity of the fluid as the gradient of a potential function,

u = ∇ψ,

System (4.1) must be replaced by (2.10). The pressure (and hence also the stress
tensor T) is obtained by means of Bernoulli’s formula:

p = p0 − ρf
(
∂tψ +

|∇ψ|2

2

)
, (4.4)

where p0 is constant in F (but depends on time). As with the Lagrangian approach,
the fluid has no own degree of freedom left. In particular, the initial data for the
fluid in (4.3) must be canceled.

Definition 6 (Newtonian solution) We call Newtonian solution of the self-propelled
problem with allowable given controls (φ(t),ν(t)) and compatible initial data (g0, ġ0),
any continuously differentiable function t 7→ g(t) = (g1(t), . . . , gn(t)) ∈ Gn defined
in a neighborhood of t0 and such that:

1. g(t0) = g0 and
dg
dt

(t0) = ġ0.

2. All of the pairs (ωi, ṙi) associated with (gi, ġi) := (gi, dgi/dt) by relations
(2.4) solve the system of coupled equations made up of (2.10), (4.1a), (2.5),
(4.2) and (4.4).
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5 Newtonian versus Lagrangian modeling

This section is concerned with comparing Lagrangian solutions of Definition 5 with
Newtonian solutions of Definition 6. Remind that the thrusters have been modeled
as non-holonomic constraints on the system fluid-bodies (more precisely as con-
straints on the velocity of the fluid). For such constraints and within Lagrangian
formalism, the use of generalized forces is required. Generally, the expression of such
forces is not easy to determine. To avoid this difficulty, we shall assume in a first
time that there is no thruster and show that Lagrangian solutions and Newtonian
solutions match. In a second time, we will use the Newtonian approach to derive
the expression of the generalized forces induced by the thrusters in the Lagrangian
model.

5.1 Equivalence for the model without thruster

In this subsection only, we assume that ν = 0.

Theorem 5.1 Assume that ∂F is of class C1,1. Then Newtonian solutions of
Definition 6 and Lagrangian solutions of Definition 5 (with Ft = 0) match.

The proof of this theorem rests on a set of lemma. Remind that ψ is the potential
of the fluid defined by (2.10) and define, for all p ∈ P the mapping Λp ∈ H1(RN )′

(the dual of the Sobolev space H1(RN )) by:

Λp(ϕ) :=
∫
F
∇ϕ · ∇ψ dmf , ∀ϕ ∈ H1(RN ). (5.1)

Let U × E be the chart of TGn already defined earlier, above Definition 5. Using
the same notation as therein we claim:

Lemma 5.1 Under the hypothesis of Theorem 5.1 and for any smooth function

t 7→ p(t) := (φ,g,
dφ

dt
,
dg
dt
,ν) ∈ P,

we have:
d

dt

∂Λp

∂q̇
· q̇∗ − ∂Λp

∂q
· q̇∗ = 0 in H1(RN )′, ∀ q̇∗ ∈ E.

Proof: We give the proof for N = 3, the case N = 2 being similar.
We denote (g, ġ) and (g, ġ∗) the elements of TGn of coordinates (q, q̇) and

(q, q̇∗) respectively. We associate to (g, ġ) and (g, ġ∗) the pairs (ωi, ṙi) and (ω∗i , ṙi
∗)

like in (2.4). Likewise, to any p := (φ,g, φ̇, ġ) ∈ P , we associate the velocity fields
vi defined on ∂Bi by (2.5).

All of the coordinates being fixed but q̇, the mapping q̇ ∈ E 7→ ψ ∈ H1(F) is
linear (because q̇ 7→ ∂nψ is). We deduce that the function ψ∗ := (∂ψ/∂q̇)·q̇∗ is har-
monic in F and satisfies the following Neumann boundary conditions (homogeneous
on unspecified boundaries):

∂nψ
∗ = (ω∗i × (x− ri) + ṙ∗i ) · n on ∂Bi.

Invoking Reynolds’s formula and next Green’s formula (see (E.8) in the Appendix),
we deduce that:(

∂Λp

∂q̇
· q̇∗
)

(ϕ) =
∫
F
∇ϕ · ∇ψ∗ dmf (5.2a)

=
∑
i

∫
∂Bi
ϕ(ω∗i × (x− ri) + ṙ∗i ) · n dσf . (5.2b)
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On the other hand, we have also, according to Reynolds’s formula again:

∂

∂q

(∫
F
ϕdmf

)
· q̇∗ =

∑
i

∫
∂Bi

ϕ(ω∗i × (x− ri) + ṙ∗i ) · n dσf ,

which leads to: (
∂Λp

∂q̇
· q̇∗
)

(ϕ) =
∂

∂q

(∫
F
ϕdmf

)
· q̇∗.

Differentiating with respect to t this identity and exchanging both derivatives in
the right hand side, it comes:

d

dt

(
∂Λp

∂q̇
· q̇∗
)

(ϕ) =
∂

∂q
d

dt

(∫
F
ϕdmf

)
· q̇∗.

Reynolds’s formula yields:

d

dt

(∫
F
ϕdmf

)
=
∑
i

∫
∂Bi

ϕ(vi · n) dσf

=
∫
∂F

ϕ∂nψ dσf . (5.3)

It remains to apply Green’s formula once more time to the right hand side:

d

dt

(∫
F
ϕdmf

)
=
∫
F
∇ϕ · ∇ψ dmf = Λp(ϕ),

and we get the conclusion of the lemma. �

The proof is based on the extensive use of both Green’s and Reynolds’s formula.
These formula required the domain F to be smooth enough (Lipschitz continuous for
Green’s formula and C1,1 i.e. continuously differentiable with Lipschitz continuous
derivative for Reynolds’s formula).

We use this lemma to prove:

Lemma 5.2 Under the hypotheses of Lemma 5.1, we have, for all q̇∗ ∈ E:

d

dt

∂Kf

∂q̇
· q̇∗ − ∂Kf

∂q
· q̇∗ =

∑
i

∫
∂Bi

(
∂tψ +

|∇ψ|2

2

)
(ω∗i × (x− ri) + ṙ∗i ) · n dσf .

Proof: From the identity:

Kf =
1
2

Λp(ψ),

we deduce that, for all q̇∗ ∈ E:

∂Λp(ψ)
∂q̇

· q̇∗ =
1
2

(
∂Λp

∂q̇
· q̇∗
)

(ψ) +
1
2

Λp(ψ∗).

According to (5.2a), both terms in the right hand side are equal. We obtain therefore
after some algebra:

d

dt

∂Kf

∂q̇
· q̇∗ − ∂Kf

∂q
· q̇∗ =

(
d

dt

∂Λp

∂q̇
· q̇∗ − ∂Λp

∂q
· q̇∗
)

(ψ) +
(
∂Λp

∂q̇
· q̇∗
)

(∂tψ)

+
1
2

(
∂Λp

∂q
· q̇∗
)

(ψ)− 1
2

Λp(ψ†),
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where we have defined:
ψ† :=

∂ψ

∂q
· q̇∗.

Lemma 5.1 tells us that the first term in the right hand side vanishes and according
to (5.2b) the second one can be rewritten as:(

∂Λp

∂q̇
· q̇∗
)

(∂tψ) =
∑
i

∫
∂Bi
∂tψ(ω∗i × (x− ri) + ṙ∗i ) · n dσf .

Going back to the definition of Λp and applying Reynolds’s formula, we get:(
∂Λp

∂q
· q̇∗
)

(ψ) =
∑
i

∫
∂Bi
|∇ψ|2(ω∗i × (x− ri) + ṙ∗i ) · n dσf + Λp(ψ†),

and the proof is completed. �

Concerning the buoyant force, we use the same notations as in the proof of Lemma 5.1
and Lemma 5.2 and we deduce easily from the expressions (3.1):

Lemma 5.3 For any i ∈ {1, . . . , n}:

d

dt

∂Pi
∂q̇
· q̇∗ − ∂Pi

∂q
· q̇∗ = −∂Pi

∂q
· q̇∗, ∀ q̇∗ ∈ E,

and
−∂Pi
∂q
· q̇∗ = −g(mi −mi

f )e3 · ṙ∗i + gmi
f (rif − ri)× e3 · ω∗i .

The last lemma we need is a straight consequence of Lemma B.2 (in the Appendix):

Lemma 5.4 For all i ∈ {1, . . . , n}:

d

dt

∂Kb
i

∂q̇
· q̇∗ − ∂Kb

i

∂q
· q̇∗ =

d

dt
(miṙi) · ṙ∗i +

d

dt
(Iiωi) · ω∗i , ∀ q̇∗ ∈ E.

We have now all the material for the proof of Theorem 5.1.

Proof of Theorem 5.1: Remind that

L =
∑
i

Kb
i +Kf −

∑
i

Pi,

and apply successively Lemma 5.2, 5.3 and 5.4 to obtain Newton’s laws (4.2). �

The regularity required in the theorem for ∂F is crucial as proven in Subsection 5.3.

5.2 Model with thrusters

Let us define ψt as being the potential of the flow related to the thrusters. It solves:

−∆ψt = 0 in F ,

and satisfies Neumann boundary conditions (homogeneous on unspecified bound-
aries):

∂nψ
t = νi on ∂Bi.

Consider next the mapping Λtp ∈ H1(RN )′ defined like in (5.1) by:

Λtp(ϕ) :=
∫
F
∇ϕ · ∇ψt dmf , ∀ϕ ∈ H1(RN ). (5.4)
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Proposition 5.1 Assume that ∂F is of class C1,1. Then, the generalized force
arising in Definition 5 is defined by:

Ft · q̇∗ = −
(
∂Λtp
∂q
· q̇∗
)

(ψ), ∀ q̇∗ ∈ E. (5.5)

The proof of this proposition is similar to the proof of Theorem 5.1 after Lemma 5.1
has been replaced by:

Lemma 5.5 Under the hypothesis of Proposition 5.1 and for any smooth function

t 7→ p(t) := (φ,g,
dφ

dt
,
dg
dt
,ν) ∈ P,

we have:

d

dt

∂Λp

∂q̇
· q̇∗ − ∂Λp

∂q
· q̇∗ = −

∂Λtp
∂q
· q̇∗ in H1(RN )′, ∀ q̇∗ ∈ E.

Proof: We have no longer
∂nψ = vi · n on Bi,

but rather:
∂nψ = vi · n + νi on Bi,

where the velocity fields vi is defined by (2.5). It entails that identity (5.3) turns
out to be:

d

dt

(∫
F
ϕdmf

)
=
∫
∂F

ϕ(∂nψ − ∂nψt) dσf .

Apart from this modification, the proof is similar to the one of Lemma 5.1. �

5.3 Non equivalence counterexample

In this section, we show that the conclusion of Theorem 5.1 does not hold any longer
when the smoothness assumption on ∂F is missing. We exhibite a two dimensional
nonsmooth solid moving vertically in a fluid and for which Newtonian solution of
Definition 6 does not exist although Lagrangian solution of Definition 5 be well
defined.
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Figure 3: The function f is a conformal mapping from C \D onto F0.

21



Theorem 5.2 Consider the solid pictured on the right of Figure 3 and assume
that the system fluid-solid fills the whole space. Then for suitable initial data, La-
grangian formalism applies and leads to d’Alembert’s paradox (uniform straight mo-
tion). However, with notation of Section 4:

|Tn| /∈ L1(∂B),

and the net hydrodynamic force exerted by the fluid on the solid:∫
∂B

Tn dσ,

is not well defined. Consequently, Newton’s laws (4.2) fail to apply.

Proof: We use complex analysis to compute explicitly the potential function, so
we identify the space with C (the set of the complex numbers). However we will
mix the complex notation ξ = ξ1 + iξ2 (i2 = −1) with the real one ξ = (ξ1, ξ2)T

and even with the polar coordinates (r, θ), r = |ξ| and θ = Arg (ξ) (i.e. ξ = reiθ).
The solid has an axis of symmetry and we assume that at the time t = 0 this axis

coincides with the imaginary axis and that the center of mass of the rigid body lies
at the origin. If we assume in addition that the density of the rigid body is constant,
then, for symmetry reasons, its center of mass will remain on the imaginary axis
for all t > 0 whenever the initial velocity of the solid is vertical. Therefore, within
this configuration, the system has only one degree of freedom.

We denote by ih the position of the center of mass of the solid and iḣ stands for
its velocity. Remind that we denote B0 the domain of the solid at time t = 0 and
F0 is the domain of the surrounding fluid. The boundary ∂B0 is the image of the
unitary circle by the mapping:

f(ξ) :=
3ξ2 − 1

2ξ
+

2ξ
3ξ2 − 1

, (5.6)

which is a conformal mapping from C \D, the exterior of the unitary disk D, onto
F0. We denote w := f(ξ) for all ξ ∈ C \D. Following [9, Chap XIII], we introduce,
for all w ∈ F , ψ(w) := ψ1(w) + iψ2(w) the complex holomorphic potential function.
Commonly, ψ1 is the actual real valued potential function while ψ2 is the stream
function. The potential can be rewritten in the form:

ψ(w) = ḣϕ(w − ih), (5.7)

where ϕ(w) := ϕ1(w) + iϕ2(w), the functions ϕ1 and ϕ2 being both defined and
harmonic in the fixed domain F0 and independent of h. In order to compute ϕ, we
introduce the function:

φ := ϕ ◦ f,
and we denote φ1 := <(φ) and φ2 := =(φ). According to [9, formula (5) page 222],
φ2 solves a Dirichlet boundary value problem:

−∆φ2 = 0 in C \D,
φ2 = −<(f) on ∂D,

|∇φ2| → 0 as |ξ| → +∞.

The last condition tells us that the fluid is quiescent at infinity. We can extend f(ξ)
and f(1/ξ) as Laurent’s series at ξ = 0. We get:

f(ξ) =
3
2
ξ +

1
6
ξ−1 +

∑
k≥1

2
3k+1

ξ−2k−1 ∀ ξ ∈ C, |ξ| > 1/3,

f(1/ξ) =
3
2
ξ−1 +

1
6
ξ +

∑
k≥1

2
3k+1

ξ2k+1 ∀ ξ ∈ C, |ξ| < 3.
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Writing then that φ2(eiθ) = −(f(eiθ) + f(e−iθ))/2 we obtain the expression of
φ2(eiθ) in the form of a Fourier’s series:

φ2(eiθ) = −5
6

cos(θ)−
∑
k≥1

3−k−1 cos((2k + 1)θ), ∀ θ ∈ [−π, π[,

and we deduce that, (using here the polar coordinates (r, θ), due to the geometry
of the domain):

φ2(r, θ) = −5
6

cos(θ)
r
−
∑
k≥1

3−k−1 cos((2k + 1)θ)
r2k+1

, ∀ θ ∈ [−π, π[, ∀ r ≥ 1. (5.8)

Observe that φ2 can actually be extended as an harmonic function outside the disk
of center 0 and radius 1/

√
3.

Lagrangian formalism

Let us compute now the Lagrangian function L(h, ḣ) of the system fluid-solid. We
assume that the density of the solid and the density of the fluid, ρf > 0 are equal.
Hence the solid is neutrally buoyant and the Lagrangian function reduces to the
kinematic energy of the system, namely:

L(h, ḣ) =
1
2

(
m|ḣ|2 +

∫
F

ρF |∇ψ2|2dw

)
,

where m > 0 stands for the mass of the solid. Notice that |∇ψ2| = |∇ψ1| for ψ
is an holomorphic function. This expression can be turned into, upon a change of
variables and applying Green’s formula:

L(h, ḣ) =
1
2
|ḣ|2

(
m+

∫
∂D

φ2∂nφ2 dσf

)
,

and we deduce that the Lagrangian function does actually not depend on h. Euler-
Lagrange’s equation of motion is merely:

d

dt

∂L

∂ḣ
(ḣ) =

(
m+

∫
∂D

φ2∂nφ2 dσf

)
ḧ = 0, (5.9)

what, after integrating, leads to so-called D’Alembert’s paradox:

ḣ(t) = ḣ0, ∀ t > 0.

The solid has a straight uniform velocity.

Newtonian formalism

Let us now invoke Newton’s laws with the same configuration. Making use of
Bernoulli’s formula, we get:

mḧ = −
∫
∂B

(
∂tψ1 +

1
2
|∇ψ1|2

)
n2dσf , (5.10)

where n = (n1, n2)T is the unitary normal to ∂B directed toward the interior of B.
According to (5.7), we obtain that:

∂tψ1(w) = ḧϕ1(w − ih)− |ḣ|2 ∂ϕ1

∂w2
(w − ih).

23



Plugging this expression into (5.10), and upon a change of variables, we get:(
m+

∫
∂D

φ2∂nφ2dσf

)
ḧ = −|ḣ|2

∫
∂B

(
1
2
|∇ϕ2|2 −

∂ϕ1

∂w2

)
n2dσf , (5.11)

where we are use again that |∇φ1| = |∇φ2| and |∇ϕ1| = |∇ϕ2| for φ and ϕ are both
holomorphic functions. This equation fits with (5.9) if and only if the right hand
side term vanishes. We are going to show that it is actually undetermined, in the
sense that the amount inside the integral does not belong to L1(∂B). We have, on
the one hand: ∫

∂B

∣∣∣∣∂ϕ1

∂w2
n2

∣∣∣∣ dσf ≤ ∫
∂B
|∇ϕ1|dσf ,

and arguing again that |∇ϕ1| = |∇ϕ2|, it comes, upon a change of variables:∫
Γ

∣∣∣∣∂ϕ1

∂w2
n2

∣∣∣∣dσf ≤ (mes (∂B))1/2

(∫
∂B
|∇ϕ2|2dσf

)1/2

≤ (mes (∂B))1/2

(∫
∂D

|∇φ2|2dσf

)1/2

< +∞.

On the other hand, going back to (5.11), we have, applying the same change of
variables:∫

∂B
|∇ϕ2|2n2dσf = ρf

∫ π

−π
|∇φ2(eiθ)|2|f ′(eiθ)|−2=(−eiθf ′(eiθ))dθ. (5.12)

Let us then compute the behavior of |∇φ2(eiθ)|2|f ′(eiθ)|−2=(−eiθf ′(eiθ)) nearby
θ = 0. By virtue of (5.8), we get:

∂φ2

∂θ
(1, 0) = 0 and

∂φ2

∂r
(1, 0) = γ, (5.13)

where

γ :=
5
6

+
∑
k≥1

(2k + 1)
3k+1

> 0.

In addition, one readily obtains that:

|f ′(eiθ)|−2=(−eiθf ′(eiθ)) = −1
8
θ−1 +O(θ). (5.14)

Summarizing (5.13), (5.14) we get

|∇φ2(eiθ)|2|f ′(eiθ)|−2=(−eiθf ′(eiθ)) = −γ2θ−1 +O(θ),

what proves that (5.12) is undetermined. �

The velocity of the fluid is infinite nearby the singular points of ∂B as well as
the hydrodynamic forces although the energy of the system be always finite.

This phenomenon is well known in airfoils theory (see [9, Chap. XII, §c. pages
211-212]). The problem can be overcame by introducing circulation in the fluid
flow in such a way that the velocity be finite at the singular point. In other words,
circulation is used as a new degree of freedom of the fluid flow and its value is set
according to Kutta-Joukowsky’s law.

However, this method does not apply with our problem since the solid under
consideration has two singular points.
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6 Explicit Euler-Lagrange equations

The aim of this section is to repeat in the general case (i.e. after relaxing hypotheses
(H1-4)) the method carried out in Subsection 1.6. We start from the Euler-Lagrange
equations under their abstract form (3.4)-(5.5) and we expand it into a more explicit
form, convenient for numerical simulations.

6.1 Kirchhoff’s law

For all (φ,g, φ̇, ġ,ν) in the phase space P , we define the elementary potentials
ψr, ψd and ψt as being harmonic functions in F satisfying Neumann boundary
conditions (homogeneous on unspecified boundaries):

∂nψ
r =

{
(ωi × (x− ri) + ṙi) · n on ∂Bi when N = 3,
(ωi (x− ri)⊥ + ṙi) · n on ∂Bi when N = 2,

∂nψ
d = Riφ̇i(φ−1

i (g−1
i x)) · n on ∂Bi,

∂nψ
t = νi on ∂Bi.

According to Kirchhoff’s law, we get the decomposition for the overall potential:

ψ = ψr + ψd + ψt. (6.1)

When N = 3, Euler’s angles, defined in the Appendix, Section B, provide a lo-
cal charts of SO(3) and TSO(3) in which we denote θk = (θ1

k, θ
2
k, θ

3
k) and θ̇k =

(θ̇1
k, θ̇

2
k, θ̇

3
k) the coordinates of the pair (Rk, Ṙk) (remind that Rk is the rotation

associated with the rigid motion of the k-th body). It allows us to introduce for
i = 1, . . . , 6n the functions ψri , also harmonic in F and such that:

∂nψ
r
i = ej · n on ∂Bk for i = 6(k − 1) + j, (6.2a)

∂nψ
r
i = ωej × (x− rk) · n on ∂Bk for i = 6(k − 1) + 3 + j, (6.2b)

for all k ∈ {1, . . . , n}, j ∈ {1, 2, 3} where the rotation vectors ωej are also defined in
the Appendix, Section B. Denoting as well rk = (r1

k, r
2
k, r

3
k) and ṙk = (ṙ1

k, ṙ
2
k, ṙ

3
k) the

coordinates of rk and ṙk in the basis (ej), we get a further decomposition of ψr:

ψr =
∑
k

∑
j

ṙjkψ
r
6(k−1)+j + θ̇jkψ

r
6(k−1)+3+j .

When N = 2, the pair (Rk, Ṙk) is merely parameterized by a pair (θk, ωk) ∈ R2

(actually, we have in this case ωk = Ωk = θ̇k, all of them scalar). We get only 3n
elementary potentials ψri and the boundary conditions (6.3a) turn into:

∂nψ
r
i = ej · n on ∂Bk for i = 3(k − 1) + j, (6.3a)

∂nψ
r
i = (x− rk)⊥ · n on ∂Bk for i = 3k, (6.3b)

for all k ∈ {1, . . . , n}, j ∈ {1, 2}. We deduce that in this case we have:

ψr =
∑
k

∑
j

ṙjkψ
r
3(k−1)+j + ωkψ

r
3k.

6.2 Mass matrices

The symmetric added mass matrix associated to the rigid motion of the bodies is
defined, when N = 3, by:

Mf
r :=


∫
F ∇ψ

r
1 · ∇ψr1 dmf · · ·

∫
F ∇ψ

r
1 · ∇ψr6n dmf

...
...∫

F ∇ψ
r
6n · ∇ψr1 dmf · · ·

∫
F ∇ψ

r
6n · ∇ψr6n dmf

 .
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It is a matrix of size 3n× 3n when N = 2.
The generalized coordinates read:

• When N = 3: q := (r1,θ1, . . . , rn,θn) and q̇ := (ṙ1, θ̇1, . . . , ṙn, θ̇n).

• When N = 2: q := (r1, θ1, . . . , rn, θn) and q̇ := (ṙ1, ω1, . . . , ṙn, ωn),

and we denote from now on:

p := (q,φ, q̇, φ̇,ν),

the elements of P . We get the following expression for the part of the kinetic energy
of the fluid due to the rigid motion of the bodies:

Kf
r :=

1
2
q̇ ·Mf

r q̇.

Observe that Mf
r is a matrix but can also be thought of as a bilinear form in q̇.

To express the overall kinetic energy of the fluid, we introduce:

Kf
r,d :=

∫
F
∇ψr · ∇ψd dmf , Kf

r,t :=
∫
F
∇ψr · ∇ψt dmf ,

Kf
d :=

1
2

∫
F
|∇ψd|2 dmf , Kf

d,t :=
∫
F
∇ψd · ∇ψt dmf ,

Kf
t :=

1
2

∫
F
|∇ψt|2 dmf ,

what leads to the decomposition:

Kf = Kf
r +Kf

r,d +Kf
r,t +Kf

d +Kf
d,t +Kf

t . (6.4)

By analogy with Mf
r , we introduce as well the following bilinear forms on the phase

space P , obtained as the polarization of the different parts of the kinetic energy in
(6.4). For all pa := (q,φ, q̇a, φ̇a,νa) and pb := (q,φ, q̇b, φ̇b,νb), we set:

Mf
r,d(φ̇b)q̇a :=

∑
i

(∫
F
∇ψd(φ̇b) · ∇ψri dmf

)
q̇ia, (6.5a)

Mf
r,t(νb)q̇a :=

∑
i

(∫
F
∇ψt(νb) · ∇ψri dmf

)
q̇ia, (6.5b)

Mf
d(φ̇a, φ̇b) :=

∫
F
∇ψd(φ̇a) · ∇ψd(φ̇b) dmf , (6.5c)

Mf
d,t(φ̇a,νb) :=

∫
F
∇ψd(φ̇a) · ∇ψt(νb) dmf , (6.5d)

Mf
t (νa,νb) :=

∫
F
∇ψt(νa) · ∇ψt(νb) dmf . (6.5e)

In these definitions, we have denoted for instance ψd(φ̇) instead of ψd to emphasize
the dependance of the function with respect to φ̇. As already mentioned, this
dependance is linear (since ∂nψd depends linearly on φ̇).

Rewriting (6.4) by means of the mass matrices we get:

Kf =
1
2
q̇ ·Mf

r q̇ + Mf
r,d(φ̇)q̇ + Mf

r,t(ν)q̇ +
1
2

Mf
d(φ̇, φ̇)

+ Mf
d,t(φ̇,ν) +

1
2

Mf
t (ν,ν). (6.6)
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At last, we define the bloc-diagonal matrix:

Mb
k := diag(mkId, Ω̂Tk I∗kΩ̂k), (6.7a)

where Ω̂k := ṘkR
T
k and:

Mb := diag(Mb
1, . . . ,Mb

n). (6.7b)

The kinetic energy of the bodies reads:

Kb =
1
2
q̇ ·Mbq̇. (6.7c)

6.3 Explicit computation of the Christoffel symbols

The expression of the Lagrangian function is, according to (3.2):

L := Kb +Kf − P, (6.8)

and the Euler-Lagrange equations of motion are:

d

dt

∂L

∂q̇
− ∂L

∂q
= Ft, (6.9)

where Ft is the generalized force induced by the actuation of the thrusters and
computed in Proposition 5.1. Combining (6.8) and (6.9), it comes:(

d

dt

∂Kb

∂q̇
− ∂Kb

∂q

)
+
(
d

dt

∂Kf

∂q̇
− ∂Kf

∂q

)
=
(
d

dt

∂P

∂q̇
− ∂P

∂q

)
+ Ft. (6.10)

The game consists now in expanding each term in this equality. It is done in a
succession of lemma.

To shorten notation, all of the quantities in what follows are equal to 0 for
unspecified indices.

Lemma 6.1 (Free rigid motion) The following identity holds:

d

dt

∂Kb

∂q̇
− ∂Kb

∂q
=

{
Mbq̈ + Γbr(q̇, q̇) + Γbr,d(φ̇)q̇ when N = 3,
Mbq̈ + Γbr,d(φ̇)q̇ when N = 2.

(6.11)

• The term Γbr (called Christoffel symbol in [23, §7.5 pages 196-197]) is a rank-3
tensor defined by:

(Γbr)
k
ij :=

1
2

[(∂Ωe
k

∂θi
− ∂Ωe

i

∂θk

)
· I∗lΩ

e
j +

(
∂Ωe

k

∂θj
−
∂Ωe

j

∂θk

)
· I∗lΩ

e
i

+
(
∂Ωe

i

∂θj
+
∂Ωe

j

∂θi

)
· I∗lΩ

e
k

]
,

if i, j, k ∈ {6(l − 1) + 3 + i′, 6(l − 1) + 3 + j′, 6(l − 1) + 3 + k′} for some
l ∈ {1, . . . , n} and i′, j′, k′ ∈ {1, 2, 3}.

• The other Christoffel symbol Γbr,d(φ̇) is a rank-2 tensor:

– When N = 3:

(Γbr,d(φ̇))kj := Ωe
k′ ·
(
∂I∗l
∂φl
· φ̇l
)

Ωe
j′ ,

if j, k ∈ {6(l − 1) + 3 + j′, 6(l − 1) + 3 + k′} for some l ∈ {1, . . . , n} and
j′, k′ ∈ {1, 2, 3}.
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– When N = 2:
(Γbr,d(φ̇))kj :=

∂Il
∂φl
· φ̇l,

if j = k = 3l.

Proof: Starting from the definitions (6.7), straight computations together with the
results of Section B yield the expressions of the Christoffel symbols. �

We restate Lemma 5.3 under another form:

Lemma 6.2 (Potential energy) For all k ∈ {1, . . . , n}:

• When N = 3:

(
d

dt

∂P

∂q̇
− ∂P

∂q

)
i

:=


−g(mk −mk

f ) if i = 6(k − 1) + 3,
g mk

f Ωe
i′ · (rkf − rk)× e3 if i = 6(k − 1) + i′,

i′ ∈ {1, 2, 3}.
(6.12a)

• When N = 2:(
d

dt

∂P

∂q̇
− ∂P

∂q

)
i

:=

{
−g(mk −mk

f ) if i = 3(k − 1) + 2,
g mk

f (rkf − rk)⊥ · e2 if i = 3k.
(6.12b)

Both remaining terms in (6.10) are more involved. We need some additional def-
initions to pursue. We set on ∂B elementary rigid velocity fields related to the
generalized coordinates:

• When N = 3:

wi := ej · n on ∂Bk for i = 6(k − 1) + j,

wi := ωej × (x− rk) · n on ∂Bk for i = 6(k − 1) + 3 + j,

for all k ∈ {1, . . . , n}, j ∈ {1, 2, 3}.

• When N = 2:

wi := ej · n on ∂Bk for i = 3(k − 1) + j,

wi := (x− rk)⊥ · n on ∂Bk for i = 3k,

for all k ∈ {1, . . . , n}, j ∈ {1, 2}.

We introduce also the velocity field related to the deformations:

wd := Rkφ̇k(φ−1
k (g−1

k x)) on ∂Bk,

for all k ∈ {1, . . . , n}. Each wi or wd can be decomposed on ∂B into its normal
and tangential components:

wi = wn
i n + wτ

i and wd = wn
dn + wτ

d .

We also need the following quantities, homogeneous to accelerations:

• When N = 3:

– For i = 6(k−1)+3+i′, j = 6(k−1)+3+j′, k ∈ {1, . . . , n}, i′, j′ ∈ {1, 2, 3}:

γij :=
∂ωei′

∂θj′
× (x− rk) + ωei′ × (ωej′ × (x− rk)) on ∂Bk.
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– For i = 6(k − 1) + 3 + i′, k ∈ {1, . . . , n}, i′ ∈ {1, 2, 3}:

γid := ωei′ ×Rkφ̇k(φ−1
k (g−1

k x)) on ∂Bk.

• When N = 2:

– For i = j = 3k, k ∈ {1, . . . , n}:

γij := −(x− rk) on ∂Bk.

– For i = 3k, k ∈ {1, . . . , n}:

γid := Rkφ̇k(φ−1
k (g−1

k x))⊥ on ∂Bk.

As usual, the values of these quantities for unspecified indices or/and on unspecified
boundaries are zero. Like for the velocities, we denote γn

ij and γn
id the normal

components of γij and γid on ∂B.
At last ∇σ stands for the tangential gradient on ∂B, H for the mean curvature

and II for the second fundamental form (see Section C in the Appendix for further
details).

To not overload notation, we display the results for the case N = 3 only (the
case N = 2 being quite similar).

Lemma 6.3 (Euler-Lagrange equation for Kf) Consider a pair of allowable
controls (φ(t),ν(t)), assume furthermore that φ(t) is twice continuously differen-
tiable and ν(t) continuously differentiable and denote:

φ̈ :=
d2φ

dt2
and ν̇ :=

dν

dt
.

Then:

d

dt

∂Kf

∂q̇
− ∂Kf

∂q
= Mf

r q̈ + Mf
r,d(φ̈) + Mf

r,t(ν̇) +
1
2

Γfr (q̇, q̇)

+ Γfr,d(φ̇)q̇ + Γfr,t(ν)q̇ +
1
2

Γfd(φ̇, φ̇) + Γfd,t(φ̇,ν) +
1
2

Γft (ν,ν), (6.13)

where Mf
r,d(φ̈) and Mf

r,t(ν̇) are rank-1 tensors defined in (6.5).
The Christoffel symbol Γfr is a rank-3 tensors that reads:

(Γfr )kij := −
∫
∂B

(∇σψrk·∇σψri )wn
j dσf−

∫
∂B

(∇σψrk·∇σψrj )wn
i dσf+

∫
∂B

(∇σψri ·∇σψrj )wn
k dσf

− 2
∫
∂B

(
H∂nψ

r
i ∂nψ

r
j + II(wτ

i ,w
τ
j )− γn

ij +∇σ∂nψrj ·wτ
i +∇σ∂nψri ·wτ

j

)
ψrk dσf

+
∫
∂B
∂nψ

r
k∂nψ

r
i ∂nψ

r
j dσf ∀ i, j, k ∈ {1, . . . , 6n}.

The term Γfr,d(φ̇) is a rank-2 tensor defined by:

(Γfr,d(φ̇))ki := −
∫
∂B

(∇σψrk·∇σψri )wn
d dσf−

∫
∂B

(∇σψrk·∇σψd)wn
i dσf+

∫
∂B

(∇σψri ·∇σψd)wn
k dσf

− 2
∫
∂B

(
H∂nψ

r
i ∂nψ

d + II(wτ
i ,w

τ
d)− γn

id +∇σ∂nψd ·wτ
i +∇σ∂nψri ·wτ

d

)
ψrk dσf

+
∫
∂B
∂nψ

r
k∂nψ

r
i ∂nψ

d dσf ∀ i, k ∈ {1, . . . , 6n}.
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Γfr,t(ν) is also a rank-2 tensor:

(Γfr,t(ν))ki := −
∫
∂B

(∇σψrk · ∇σψt)wn
i dσf +

∫
∂B

(∇σψri · ∇σψt)wn
k dσf

−
∫
∂B

(
H∂nψ

r
i ∂nψ

t +∇σ∂nψt ·wτ
i )ψrk dσf

+
∫
∂B

(
H∂nψ

r
k∂nψ

t +∇σ∂nψt ·wτ
k)ψri dσf ∀ i, k ∈ {1, . . . , 6n},

Last remaining three terms Γfd(φ̇, φ̇), Γfd,t(φ̇,ν) and Γft (ν,ν) stand for rank-1 ten-
sors:

(Γfd(φ̇, φ̇))k := −2
∫
∂B

(∇σψrk · ∇σψd)wn
d dσf +

∫
∂B
|∇σψd|2wn

k dσf

− 2
∫
∂B

(
H|∂nψd|2 + II(wτ

d ,w
τ
d) + 2∇σ∂nψd ·wτ

d

)
ψrk dσf

+
∫
∂B
∂nψ

r
k|∂nψd|2 dσf ∀ k ∈ {1, . . . , 6n}.

(Γfd,t(φ̇,ν))k := −
∫
∂B

(∇σψrk · ∇σψt)wn
d dσf +

∫
∂B

(∇σψd · ∇σψt)wn
k dσf

−
∫
∂B

(
H∂nψ

d∂nψ
t +∇σ∂nψt ·wτ

d)ψrk dσf

+
∫
∂B

(
H∂nψ

r
k∂nψ

t +∇σ∂nψt ·wτ
k)ψd dσf ∀ k ∈ {1, . . . , 6n},

(Γft (ν,ν))k := −
∫
∂B
|∇σψt|2wn

k dσf −
∫
∂B

(
H∂nψ

r
k∂nψ

t +∇σ∂nψt ·wτ
k)ψt dσf

+
∫
∂B
∂nψ

r
k|∂nψt|2 dσf ∀ k ∈ {1, . . . , 6n},

Remark 6.1 Observe that it suffices to compute the elementary potentials on the
boundaries of the bodies only to evaluate all of the quantities (i.e. mass ma-
trices and Christoffel symbols) of the lemma. It will be useful for numerical simu-
lations.

Proof: Starting from the expression (6.6) of Kf , straight computations of the left
hand side term in (6.13) lead, after some algebra, to the following formal expressions
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for the Christoffel symbols:

Γfr (q̇, q̇)q̇∗ := 2
(
∂Mr

∂q
· q̇
)

(q̇, q̇∗)−
(
∂Mr

∂q
· q̇∗
)

(q̇, q̇), (6.14a)

Γfr,d(φ̇)(q̇, q̇∗) :=
(
∂Mf

r

∂φ
· φ̇
)

(q̇, q̇∗) +

(
∂Mf

r,d(φ̇)
∂q

· q̇

)
q̇∗

−

(
∂Mf

r,d(φ̇)
∂q

· q̇∗
)

q̇, (6.14b)

Γfr,t(ν)(q̇, q̇∗) :=

(
∂Mf

r,t(ν)
∂q

· q̇

)
q̇∗ −

(
∂Mf

r,t(ν)
∂q

· q̇∗
)

q̇, (6.14c)

Γfd(φ̇, φ̇)q̇∗ := 2

(
∂Mf

r,d(φ̇)
∂φ

· φ̇

)
q̇∗ −

(
∂Mf

d(φ̇, φ̇)
∂q

· q̇∗
)
, (6.14d)

Γfd,t(φ̇,ν)q̇∗ :=

(
∂Mf

r,t(ν)
∂φ

· φ̇

)
q̇∗ −

(
∂Mf

d,t(φ̇,ν)
∂q

· q̇∗
)
, (6.14e)

Γft (ν,ν)q̇∗ := −
(
∂Mt(ν,ν)

∂q
· q̇∗
)
, ∀ q̇∗ ∈ R6. (6.14f)

We need then to differentiate the mass matrices with respect to q or φ i.e. with
respect to perturbations of the domain F . The elements of the mass matrices defined
by (6.5) have generically the form:∫

F
∇ψa · ∇ψb dσf ,

where ψa and ψb solve Neumann boundary value problems in F . This problem of
shape differentiation is addressed in Section E in the Appendix. We use formula
(E.9) together with (6.14) and we get the expressions of the lemma. �

It remains only one term to compute in (6.10).

Lemma 6.4 (Generalized force) The generalized force in (6.10) reads:

Ft = Γtr(ν)q̇ + Γtr,d(φ̇,ν) + Γtr,t(ν,ν), (6.15)

where, for all i, k ∈ {1, . . . , 6n} we have:

(Γtr(ν))ki :=
∫
∂B

(H∂nψrk∂nψ
t +∇σ∂nψt ·wn

k )ψri dσf −
∫
∂B
∂nψ

t∂nψ
r
k∂nψ

r
i dσf ,

(Γtr,d(φ̇,ν))k :=
∫
∂B

(H∂nψrk∂nψ
t +∇σ∂nψt ·wn

k )ψd dσf −
∫
∂B
∂nψ

t∂nψ
r
k∂nψ

d dσf ,

(Γtr,t(ν,ν))k :=
∫
∂B

(H∂nψrk∂nψ
t +∇σ∂nψt ·wn

k )ψt dσf −
∫
∂B
|∂nψt|2∂nψrk dσf .

Proof: Use Proposition 5.5 and proceed like in the preceding lemma. �

Plugging (6.11), (6.12), (6.13) and (6.15) into (6.10), we obtain a second order
ODE in q. Thus, we have realized our aim: the ODE yields the net rigid motion of
the bodies with respect to the controls φ and ν (and their derivatives φ̇, φ̈ and ν̇).

7 Numerical simulations

All the simulations displayed in this section have been performed with the Biohy-
drodynamics Matlab Toolbox (BhT) available at
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• http://bht.gforge.inria.fr/ (hosted by INRIA Gforge)

• http://www.mathworks.com/matlabcentral/fileexchange/21872

BhT is free (distributed under licence GNU GPL) and comes with complete html
documentation, including examples and tutorials. It allows to realize numerical
experiments involving a set of rigid bodies or articulated rigid solids in a perfect
fluid. The fluid domain can be partially or totally bounded and the buoyant force
and collisions between bodies are supported. The equations of motion used in BhT
are those obtained in Section 6.3 for the 2d case.

As already mentioned, to solve these equations it is required only to compute the
elementary potential functions on the boundaries of the bodies. For being solutions
of Neumann boundary value problems, these potential functions can be computed
by means of boundary integral formula, that is, only in terms of the boundary data.
As a consequence, from a numerical point of view, the problem can be solved by
meshing the fluid’s boundary only.

7.1 Distant interaction between solids in a fluid

In this subsection we wish to illustrate how submerged bodies interact in a fluid. In
particular, we will show that when the bodies are close, the common hydrodynami-
cally decoupled dynamics assumption is not relevant.

Kissing ellipses

Consider two ellipses neutrally buoyant and set at time t = 0 as shown in fig-
ure 4(a). We choose horizontal translational initial velocities directed to the left
for the upper ellipse and to the right for the other one and null initial rotational
velocity for both of them. We let then the system fluid-ellipses evolve freely. Under
the hydrodynamically decoupled dynamics assumption, according to d’Alembert’s
paradox, both ellipses should have a straight uniform motion. Actually, they kiss
and half-rotate following the trajectories pictured in figure 5(a).

(a) t = 0 (b) t = 6.30

(c) t = 9 (d) t = 16

Figure 4: Screenshots of the motion of the ellipses

All of the movies and data (densities of the solids, of the fluid, initial positions
and velocities...) in this section are available at

http://bht.gforge.inria.fr/Examples/demos.html.
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(a) Trajectories of the centers of mass of the ellipses.
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(b) Orientations (radians) of the ellipses with respect to
time.

Figure 5: Kissing ellipses: trajectories of the center of masses and orientations.

Aspiration phenomenon

This example illustrate an aspiration phenomenon. Two ellipses are set at time
t = 0 as in figure 6(a). The upper one is neutrally buoyant while the density of
the other is slightly greater than the fluid’s. The system fluid-ellipses is at rest at
time t = 0. The lower ellipse falls (see figures 7.1) and drags the other down. One
more time, this phenomenon would not occur under the hydrodynamically decoupled
dynamics assumption.

(a) t = 0 (b) t = 3.4 (c) t = 6 (d) t = 8

Figure 6: The lower ellipse falls and drags the other down.

7.2 Articulated solid bodies

Articulated rigid solids are deformable bodies made up of rigid solids linked together
by hinges. It is a particular simple case of deformable bodies. In the following
example, we consider two articulated fishes swimming one toward the other.

Remind that the deformations and more specifically for articulated bodies, the
relative positions of the solids, are given as functions of time. BhT provides tools
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(a) y-coordinates of the ellipses with respect
to time (dashed line corresponds to the lower
ellipse).
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(b) Vertical velocities of the ellipses with re-
spect to time (dashed line corresponds to the
lower ellipse).

Figure 7: The aspiration phenomenon becomes clear with the graphs of the trajec-
tories of the center of masses and the one of the vertical velocities.

that allow to compute the power and the torques at the joints. Torques are actually
the relevant quantities we are interested in when studying fish locomotion. We refer
to the on-line documentation of BhT for details.

8 Concluding comments

Lagrangian formalism consists in computing first the energy of the fluid flow: it
is obtained by integrating the gradient of the potential (or stream) function over
the fluid domain. This is a smoothing process for the resulting kinetic energy is
more regular with respect to the generalized coordinates than the potential function.
Then, according to the least action principle, Euler-Lagrange equations are obtained
partly by differentiating the fluid’s kinetic energy. Notice that this process is carried
out without difficulties in the example treated in Section 5.3.

Conversely, with Newtonian formalism, forces are computed first, what requires
to differentiate the potential (or the stream) function and yields, in the nonsmooth
case of Section 5.3 an infinite and nonintegrable quantity. Next these forces are
integrated (when it is allowable) along the boundary of the bodies in order to
obtain the hydrodynamic resultant force and next to apply Newton’s laws.

We have proved that both approaches coincide for smooth bodies. Although
Lagrangian formalism is more simple to handle, it does not allow to obtain the
expected governing equations of motion when the bodies are endowed with thrusters.

At last, regarding the problem of existence and uniqueness of solutions for the
self-propelled motion problem, it is precisely the topic the article [27] deals with.

A Shape space

In this section, all the quantities are described in the frame (ei∗j ) attached to the
i-th body. Let Bi ⊂ RN be a large open ball centered at the origin of the frame
(in particular, let choose Bi large enough to contain B0

i ; see figure 1) and denote
Cm0 (Bi,RN ) (1 ≤ m ≤ +∞) the vector space of all the m−times continuously
differentiable functions F := (F1, . . . , FN ) from RN into RN that vanish outside B̄i.
This space, endowed with the norm:

‖F‖m,∞ := max
γ1+...+γN≤m
γ1,...,γN∈N

(
max

1≤i≤N

∥∥∥∥ ∂γ1+···+γNFi
∂γ1x1 . . . ∂γNxN

∥∥∥∥
L∞(B)

)
,

is a Banach space.
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(a) t = 12

(b) t = 35

(c) t = 64

Figure 8: Screenshots of the swimming fishes
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Figure 9: Angles of the joints with respect to time (given functions). Joint 1
correspond the fish’s head and joint 3 to the tail.

We denote Ui the open subset of this space consisting of all the functions such
that ‖F‖1,∞ < 1. Further, Ui := Id + Ui is the open subset of the affine space

Id + Cm0 (Bi,RN ) := {Id + F : F ∈ Cm0 (Bi,RN )},

consisting of the functions Id+F such that F ∈ Ui. A fixed point argument ensures
that for any such function, (Id + F )|Bi is a Cm diffeomorphism from Bi onto Bi.

The set Ui is a manifold, a chart being (Ui,Ui,Λi) where

Λi : F ∈ Ui 7→ φ := Id + F ∈ Ui.

For any φ ∈ Ui, the tangent space TφUi is equal to the Banach space Cm0 (Bi,RN ).
Let us define now Di, the set of all the Cm diffeomorphismes φ of RN such

that φ(B̄i) = B̄i and φ|RN\Bi = Id. The set Di is a manifold as well since for any
φ0 ∈ Di, a compatible system of local charts is (Ui, φ0(Ui), φ0(Λi)).
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Figure 10: Power expanded at the joints
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Figure 11: Torques at the joints

B Rigid motion, Euler’s angles

We introduce the skew-symmetric matrices S1 := e3⊗ e2− e2⊗ e3, S2 := e1⊗ e3−
e3 ⊗ e1 and S3 := e2 ⊗ e1 − e1 ⊗ e2 and the matrix of SO(3):

R(θ1, θ2, θ3) := exp(θ1S1) exp(θ2S2) exp(θ3S3).

We denote θ := (θ1, θ2, θ3) and ωei the vector of R3 such that:

∂R
∂θi

(θ)R(θ)Tx = ωei × x ∀x ∈ R3,

and Ωe
i such that:

R(θ)T
∂R
∂θi

(θ)x = Ωe
i × x ∀x ∈ R3.

One easily check that ωe1 = e1, ωe2 = exp(θ1S1)e2 and ωe3 = exp(θ1S1) exp(θ2S2)e3.
Since we have R(θ)Ωe

i = ωei and exp(θiSi)ei = 0, we deduce that Ωe
1 =

exp(−θ3S3) exp(−θ2S2)e1,Ωe
2 = exp(−θ3S3)e2 and Ωe

3 = e3. These identities en-
tail:

∂Ωe
i

∂θj
−
∂Ωe

j

∂θi
= Ωe

i ×Ωe
j . (B.1)

Let θ(t) be a smooth given function and denote θ̇ = (θ̇1, θ̇1, θ̇1) the first derivative
of θ. Then if Ω is defined by the relation:

R(θ)T
d

dt
R(θ) x = Ω× x ∀x ∈ R3,

it reads also:
Ω =

∑
i

θ̇iΩe
i ,

and we have:
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Lemma B.1 For all i = 1, 2, 3, the following identity holds:

d

dt

∂Ω

∂θ̇i
− ∂Ω
∂θi

= Ωe
i ×Ω. (B.2)

Proof: We have
∂Ω

∂θ̇i
= Ωe

i ,

and then:
d

dt

∂Ω

∂θ̇i
=
∑
j

∂Ωe
i

∂θj
θ̇j .

On the other hand:
∂Ω
∂θi

=
∑
j

∂Ωe
j

∂θi
θ̇j ,

and the conclusion arises with (B.1). �

Let now Je be a symmetric, time-dependent matrix and define J := RJeRT ,
ω := RΩ and K := Ω · JeΩ/2. Then:

Lemma B.2 For any i = 1, 2, 3, the following identity holds:

d

dt
(Jω) · ωei =

d

dt

∂K

∂θ̇i
− ∂K

∂θi
.

Proof: We have:

d

dt

∂K

∂θ̇i
− ∂K

∂θi
=

d

dt
(JeΩ) ·Ωe

i + (JeΩ) ·
(
d

dt

∂Ω

∂θ̇i
− ∂Ω
∂θi

)
,

and, with (B.2):

d

dt

∂K

∂θ̇i
− ∂K

∂θi
=

d

dt
(JeΩ) ·Ωe

i + (JeΩ) · (Ωe
i ×Ω).

On the other hand:

d

dt
(Jω) · ωei = R d

dt
(JeΩ) · RΩe

i + ṘJeΩ · RΩe
i ,

=
d

dt
(JeΩ) ·Ωe

i + (JeΩ) · (Ωe
i ×Ω),

and the proof is completed. �

C Second fundamental form

Let us denote SN−1 the unitary sphere of RN . The second fundamental form of
∂F , denoted by II, is defined from the differential Dn of the function

n : ∂F → SN−1,

by the relation:

〈Dn(x) · u,w〉 = −〈II(x),u,w〉, ∀ (x,u), (x,v) ∈ T∂F .
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The second fundamental form is bilinear and symmetric, so when N = 3 it admits
two real eigenvalues κ1, κ2 called the principal curvatures of ∂F . The associated
eigenvectors τ i (i = 1, 2) are the principal directions of ∂F (see [6, page 129] for a
more precise definition). Therefore, the following relation holds:

〈dn · τ i, τ i〉 = −〈II, τ i, τ i〉 (C.1a)
= −κi, ∀ i = 1, 2. (C.1b)

The signs of κ1 and κ2 are chosen such that {n, τ 1, τ 2} be a right-handed orthogonal
basis of R3. We denote by H := κ1 + κ2 the mean curvature of ∂F . When N = 2,
H coincides with κ, the curvature of F(t) and relation (C.1) turns into:

Dn · τ = −Hτ ,

where τ is a unitary tangent vector to the curve ∂F(t). As for N = 3, the sign of
H is chosen such that {n, τ} be a direct orthogonal basis of R2.

D Neumann boundary value problem

In this section we recall some results about the well-posedness of Neumann boundary
value problems. These results can be found in [1], [2]

in the generically form of which is:

−∆ψ = 0 in F , (D.1a)
∂nψ = g on ∂F . (D.1b)

We assume that ∂F is Lipschitz continuous and g ∈ H−1/2(∂F) is given (H−1/2(∂F)
is the dual space of the Sobolev space H1/2(∂F); see [21, §7.3 pages 38-42]).

D.1 Bounded domain

In this case, the compatibility condition:

〈g, 1〉H−1/2(∂F)×H1/2(∂F) = 0, (D.2)

is required for problem (D.1) to be well posed. We introduce the function space:

X1(F) := {ψ ∈ H1(F) : ∆ψ ∈ L2(F)}.

For any ψ ∈ X1(F), its normal trace ∂nψ exists as an element of H−1/2(∂F).
Lax-Milgram Theorem ensures that there exists a unique weak solution ψ ∈ X1(F)
satisfying: ∫

F
∇ψ · ∇ϕdx =

∫
∂F

gϕdσ, ∀ϕ ∈ H1(F), (D.3a)∫
∂B
ψ dσ = 0. (D.3b)

Moreover, we have an estimate:

‖ψ‖X1(F) ≤ C‖g‖H−1/2(∂F), (D.4)

for some constant C > 0 independent of ψ and g.
Assume now that ∂F is C1,1 (continuously differentiable with first derivative

Lipschitz contiuous) and g ∈ H1/2(∂F), then the solution ψ of (D.3) is in:

X2(F) := {ψ ∈ H2(F) : ∆(∂xiψ) ∈ L2(F), ∀ i = 1, . . . , N}.
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For such function, both quantities ∂2
nψ := n·D2ψ n and ∆σψ (the Laplace-Beltrami

operator) are well defined on ∂F as elements of H−1/2(∂F). We have again an
estimate:

‖ψ‖X2(F) ≤ C‖g‖H1/2(∂F),

for some constant C > 0 independent of ψ and g.

D.2 Unbounded domain

When F is not bounded, the compatibility condition (D.2) is required only when
N = 2. We define the weight functions:

ρ(x) :=
√

1 + |x|2 log(1 + |x|2) if N = 2, (D.5)

ρ(x) :=
√

1 + |x|2 if N = 3, (D.6)

and the Lebesgue space:

L2
N (F) := {ψ ∈ D′(R3) : ρψ ∈ L2(RN )},

whereD′(R3) is the space of distributions. Classical Sobolev spaces must be replaced
by Sobolev spaces:

H1
N (F) : = {ψ ∈ L2

N (F) : ∂xiψ ∈ L2(F), ∀ i = 1, . . . , N},
X1
N (F) : = {ψ ∈ H1

N (F) : ρ−1∆ψ ∈ L2(F)},
H2
N (F) : = {ψ ∈ H1

N (F) : ρ−1∂2
xixjψ ∈ L

2(F), ∀ i, j = 1, . . . , N},

X2
N (F) : = {ψ ∈ H2

N (F) : ρ−2∆ψ ∈ L2(F)}.

When ∂F is Lipschitz continuous and g ∈ H−1/2(∂F):

• Then the solution of (D.3a), replacing H1(F) by H1
N (F), exists and is unique

in the case N = 3. In particular, condition (D.3b) is not needed in this case
to ensure the uniqueness.

• When N = 2, solutions of (D.3a) exist in H1
N (F) but (D.3b) is required to

ensure the uniqueness.

It can be proved that the solutions are in fact in X1
N (F).

As in the case F bounded, if ∂F is C1,1 and g ∈ H1/2(∂F), then the solutions
are in X2

N (F).

E Shape sensitivity analysis

This section is self-contained and independent, including for the notation. We recall
results of shape optimization theory. Most of them have been proved in [27].

Let F0 ⊂ RN and define for all s = (s1, s2, s3) ∈ R3 diffeomorphisms φs of
class Cm (m ≥ 1) in RN and equal to the identity outside a large fixed ball (like in
section A). We denote Dm the Banach space of all such diffeomorphisms.

Denote F := φs(F0), wi := ∂siφs ◦ φ−1
s , γij := ∂2

sisjφs ◦ φ
−1
s and wn

i and wτ
i

the normal and tangential components of wi on ∂F such that:

wi = wn
i n + wτ

i .

Define likewise γn
ij , the normal component of γij .
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For i ∈ {1, 2, 3}, let then ψi be the solution of the Neumann boundary value
problem:

−∆ψi = 0 in F ,
∂nψi = wn

i on ∂F .

Introduce also for all s ∈ R3, ν1, ν2 ∈ H−1/2(∂F) such that

〈νi, 1〉H−1/2(∂F)×H1/2(∂F) = 0,

when N = 2 or when N = 3 and F bounded. Let then ψ4 and ψ5 be defined by:

−∆ψi = 0 in F ,
∂nψi = νi−3 on ∂F ,

for i ∈ {4, 5}.
At last, we introduce the functionals, for all s := (s1, s2, s3) and all i, j ∈

{1, 2, 3, 4, 5}:

Jij(s) :=
∫
F
∇ψi · ∇ψj dx.

The proof of the following lemma can be found in [27].

Lemma E.1 Assume that

• F0 is Lipschitz continuous,

• the mapping s 7→ φs ∈ Dm is of class Ck with k ≥ 2 and m ≥ 1,

• the mappings s 7→ νl ◦ φ−1
s ∈ H−1/2(∂F0) are of class Ck−1 for l = 1, 2.

Then Jij is of class Ck−1.

We can compute the derivation of Jij with respect to s, assuming additional regu-
larity on F0, φs and νl:

Lemma E.2 Assume that:

• F0 is of class C1,1,

• the mapping s 7→ φs ∈ Dm is of class C2 with m ≥ 2,

• the mappings s 7→ νl ◦ φ−1
s ∈ H1/2(∂F0) are of class C1 for l = 1, 2.

Then, for all i = 1, 2, 3 and j = 1, . . . , 5, ∂siψj is well defined in H1(F).
When j = 1, 2, 3 it solves the Neumann boundary value problem

−∆(∂siψj) = 0 in F ,

and on ∂B:

∂n(∂siψj) = ∆σψjw
n
i −H∂nψi∂nψj − II(wτ

i ,w
τ
j ) +∇σψj · ∇σwn

i + γn
ij

−∇σ∂nψi ·wτ
j −∇σ∂nψj ·wτ

i . (E.1a)

When j = 4, 5, the boundary condition on ∂B turns out to be:

∂n(∂siψj) = ∆σψjw
n
i −H∂nψi∂nψj +∇σψj · ∇σwn

i −∇σ∂nψj ·wτ
i . (E.1b)
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Proof: The problem of differentiating with respect to the shape of the domain
the solution of a Neumann boundary value problem is treated in [12, Subsection
5.5 pages 202-206], in [14, Section 4] and in [27, Section 4]. We give here only the
formal computations leading to formula (E.1).

We prove formula (E.1a). Let us fix s and j, specify i = 1 and denote, for
all h ∈ R, φh := φ(s1+h,s2,s3)(φ−1

s ), Fh := φh(F) = φ(s1+h,s2,s3)(F0) and ψh the
solution of the Neumann boundary value problem:

−∆ψh = 0 on Fh, (E.2a)
∂nψh = bh on ∂Fh, (E.2b)

where bh := wn
h with wh := ∂sjφh(φ−1

h ). When h = 0 we have ψh = ψj . We
introduce Bh := bh(φh) and Nh := n(φh), both being defined on ∂Fh. We denote
merely ψ′, B′ and N′ the derivatives of ψh, Bh and Nh with respect to h at h = 0.
On the one hand, we obtain merely:

−∆ψ′ = 0 in F .

The derivation of the boundary conditions are more involved. Differentiating with
respect to h the identity:

∇ψh(φh) ·Nh = Bh on ∂F ,

when h = 0, we obtain:

∂nψ
′ + n ·D2ψj wi +∇ψj ·N′ = B′ on ∂F ,

where D2ψj is the Hessian matrix of ψj . Denoting ∂2
nψj := n · D2ψj n and since

wi = wn
i n + wτ

i , we obtain that:

∂nψ
′ + ∂2

nψjw
n
i + n ·D2ψj wτ

i +∇ψj ·N′ = B′ on ∂F . (E.3)

We use on the one hand, the identity of [12, Proposition 5.4.12 page 196], valid for
any function ψ regular enough in a neighborhood of ∂F :

∆ψ = ∆σψ −H∂nψ + ∂2
nψ on ∂F ,

where ∆σ is the Laplace-Beltrami operator and H the mean curvature. On the
other hand, computing the tangential derivative in the direction wτ

i of the boundary
condition of System (E.2), we get:

n ·D2ψj wτ
i − II(∇σψj ,wτ

i ) = ∇σvni ·wτ
i on ∂F . (E.4)

Proposition 4 in Section 5 of [27] yields:

∇ψj ·N′ = −∇σψj · ∇σwn
i − II(∇σψj ,wτ

i ) on ∂F . (E.5)

We get hence, plugging (E.4) and (E.5) into (E.3):

∂nψ
′ = ∆σψj w

n
i −Hwn

i w
n
j +∇σψj · ∇σwn

i +B′ −∇σwn
j ·wτ

i .

It remains to compute the derivative of Bh with respect to h. Taking into account
its definition, we have:

B′ =
(
∂sjφh(φ−1

h ) ·Nh

)′ |h=0. (E.6)

Invoking again formula (E.5), we obtain:

B′ = γij − II(wτ
i ,w

τ
j )−∇σwn

i ·wτ
j , (E.7)
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which leads to formula (E.1a). We proceed likewise for formula (E.1b). �

Reynolds’s formula reads:

∂

∂si

(∫
F
∇ψj · ∇ψk dx

)
=
∫
∂F

(∇ψj · ∇ψk)wn
i dσ +

∫
F
∇(∂siψj) · ∇ψk dx

+
∫
F
∇ψj · ∇(∂siψk) dx. (E.8)

It is classical for smooth functions (see for instance [10, formula (85) page 46]) and
can be found, in the context of Sobolev spaces in [12, Theorem 5.2.2 page 172]. More
precisely, we apply here [12, Corollary 5.2.2 page 172]. Using, for any i ∈ {1, 2, 3}
and j, k ∈ {1, . . . , 5}, the identities:∫

∂F
∆σψjw

n
i ψk dσ = −

∫
∂F

(∇σψj · ∇σwn
i )ψk + (∇σψj · ∇σ)ψkwn

i dσ,

and
∇ψi · ∇ψj = ∇σψi · ∇σψj + ∂nψi∂nψj on ∂F ,

straight but tedious computations yield:

Lemma E.3 For any i, j, k ∈ {1, 2, 3}, we have:

∂

∂si

(∫
F
∇ψj · ∇ψk dx

)
= −

∫
∂F

(∇ψj · ∇ψk)wn
i dσ

−
∫
∂F

(H∂nψi∂nψj + II(wτ
i ,w

τ
j )− γn

ij +∇σ∂nψi ·wτ
j +∇σ∂nψj ·wτ

i )ψk dσ

−
∫
∂F

(H∂nψi∂nψk + II(wτ
i ,w

τ
k)− γn

ik +∇σ∂nψi ·wτ
k +∇σ∂nψk ·wτ

i )ψj dσ

+ 2
∫
∂F

∂nψi∂nψj∂nψk dσ.

When i, j ∈ {1, 2, 3} and k ∈ {4, 5}, this equality turns into:

∂

∂si

(∫
F
∇ψj · ∇ψk dx

)
= −

∫
∂F

(∇ψj · ∇ψk)wn
i dσ

−
∫
∂F

(H∂nψi∂nψj + II(wτ
i ,w

τ
j )− γn

ij +∇σ∂nψi ·wτ
j +∇σ∂nψj ·wτ

i )ψk dσ

−
∫
∂F

(H∂nψi∂nψk +∇σ∂nψk ·wτ
i )ψj dσ + 2

∫
∂F

∂nψi∂nψj∂nψk dσ.

At last, for any i ∈ {1, 2, 3} and j, k ∈ {4, 5}, we have:

∂

∂si

(∫
F
∇ψj · ∇ψk dx

)
= −

∫
∂F

(∇ψj · ∇ψk)wn
i dσ

−
∫
∂F

(H∂nψi∂nψj +∇σ∂nψj ·wτ
i )ψk dσ −

∫
∂F

(H∂nψi∂nψk +∇σ∂nψk ·wτ
i )ψj dσ

+ 2
∫
∂F

∂nψi∂nψj∂nψk dσ.

Combining results of this lemma and after some tedious algebra, we get:
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Proposition E.1 The following identities holds:

∂

∂s3

(∫
∂F
ψ2∂nψ1 dσ

)
+

∂

∂s2

(∫
∂F
ψ3∂nψ1 dσ

)
− ∂

∂s1

(∫
∂F
ψ2∂nψ3 dσ

)
=

−
∫
∂F

(∇σψ1 · ∇σψ2)wn
3 dσ −

∫
∂F

(∇σψ1 · ∇σψ3)wn
2 dσ +

∫
∂F

(∇σψ2 · ∇σψ3)wn
1 dσ

− 2
∫
∂F

(
H∂nψ2∂nψ3 + II(wτ

2 ,w
τ
3 )− γn

23 +∇σ∂nψ3 ·wτ
2 +∇σ∂nψ2 ·wτ

3

)
ψ1 dσ

+
∫
∂F
∂nψ1∂nψ2∂nψ3 dσ. (E.9a)

∂

∂s2

(∫
∂F
ψ4∂nψ1 dσ

)
− ∂

∂s1

(∫
∂F
ψ2∂nψ4 dσ

)
=

−
∫
∂F

(∇σψ1 · ∇σψ4)wn
2 dσ +

∫
∂F

(∇σψ2 · ∇σψ4)wn
1 dσ

−
∫
∂F

(
H∂nψ2∂nψ4 +∇σ∂nψ4 ·wτ

2 )ψ1 dσ

+
∫
∂F

(
H∂nψ1∂nψ4 +∇σ∂nψ4 ·wτ

1 )ψ2 dσ, (E.9b)

∂

∂s1

(∫
∂F
ψ4∂nψ5 dσ

)
= −

∫
∂F

(∇σψ4 · ∇σψ5)wn
1 dσ

−
∫
∂F

(
H∂nψ1∂nψ4 +∇σ∂nψ4 ·wτ

1 )ψ5 dσ

−
∫
∂F

(
H∂nψ1∂nψ5 +∇σ∂nψ5 ·wτ

1 )ψ4 dσ +
∫
∂F
∂nψ1∂nψ4∂nψ5 dσ. (E.9c)
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