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Locomotion of deformable bodies in an ideal fluid:

Newtonian versus Lagrangian formalisms

Alexandre Munnier∗

April 9, 2008

Abstract

It is commonly admitted in Classical Mechanics that as long as the sys-
tem under consideration is monogenic, Newton’s laws and Hamilton’s (or
D’Alembert’s) principle both are equivalent in the sense that each one suffices
in providing the same governing equations of motion. For more general con-
figurations, in particular when other kind of forces (which do not derive from
a scalar potential) entered the scene, the equivalence between Newtonian and
Lagrangian formalisms has not been proved so far. This paper is concerned
with comparing Newtonian and Lagrangian approaches for determining the
governing equations of motion (usually called Euler-Lagrange’s equations) for
a collection of deformable bodies (also called swimmers) immersed in an in-
compressible fluid whose flow is inviscid and irrotational. The swimmers are
assumed to be able to change their shapes under the action of inner forces
and are endowed with thrusters, what means that they can generate fluid
jets by sucking and blowing out fluid through some localized parts of their
boundaries. These capabilities (called generically controls) may allow them
to propel and steer themselves. Our first contribution is to prove that un-
der smoothness assumptions on the fluid-bodies interface, Newtonian and La-
grangian formalisms yield the same equations of motion. However and quit
surprisingly this is no longer true for nonsmooth shaped swimmers. The sec-
ond novelty brought in in this paper is to treat a broad spectrum of problems
(which may involve one or several swimmers being able to undergo any kind of
deformation) and to display the Euler-Lagrange’s equations as a fully explicit
system of ODE’s, involving only the value of the fluid potential function on the
boundaries of the swimmers and geometric data of these surfaces. Thus, the
resulting equations are very convenient for being used in a numerical scheme
for simulations.

Keywords and Phrases: Biohydrodynamics, ideal fluid, Lagrangian and New-
tonian mechanics, PDE-ODE coupled system, shape sensitivity analysis.

AMS Subject Classification: 74F10, 70S05, 76B03, 49Q10.

1 Introduction

In the last decade, significant efforts have been done by mathematicians in studying
problems relating to the general theme of locomotion in a fluid by shape-changing
bodies [9, 20, 34, 13, 21, 22, 19, 30] ; see also [31] for an interesting survey on
this topic and further references. The underlying motivation of these works is to
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better understand the impressive swimming capabilities evolved by fish and aquatic
mammals. In most of the recent mathematical models of biohydrodynamics, the
shapes of the deformable bodies are assigned as a function of time. By virtue
of Newton’s third law (principle of action-reaction), these shape-changes generate
hydrodynamic forces and torques by which the bodies propel and steer themselves.

Among all of the papers referenced above, one essentially can find two methods
to derive the governing equations of motion for the fish-like swimming bodies: ei-
ther authors invoke Newton’s laws (and use Newtonian formalism) or they apply
Hamilton’s principle (and use Lagrangian formalism). Let us describe succinctly
these two approaches.

With Newtonian formalism, each one of the bodies is handled as an independent
mechanical system subject to exterior hydrodynamic forces and torques expressed
by means of the fluid stress tensor. Then, Newton’s laws for linear and angular
momenta apply and yield a system of ordinary differential equations (ODE’s) whose
unknowns are the degrees of freedom of the bodies. The dynamics of the fluid, for its
part, is commonly driven by Navier-Stokes’ or Stokes’ equations when it is viscous
[8, 24, 30, 12, 13, 1], whereas Euler’s equations are used most of time when it is
perfect [32, 25, 19, 26, 29]. The coupling between bodies and fluid is realized not only
through the hydrodynamic forces but only through kinematics constraints. Indeed,
the region occupied by the fluid as well as its velocity along bodies’ boundaries
depend on the state (position and velocity) of the bodies.

Governing equations of motion can also be obtained by applying Hamilton’s
principle to the system fluid-bodies in its entirety [32, 25, 19, 26, 6]. Thus, the
Lagrangian function is the sum of the kinetic energy of the bodies and the kinetic
energy of the fluid minus the potential energy of the buoyant force. Once the La-
grangian function has been set up, the derivation of the equations of motion requires
to differentiate it with respect to the so-called generalized coordinates corresponding
to the degrees of freedom of the system. Within this process, one usually need to
differentiate the solution of an initial/boundary value problem (namely, the equa-
tions of fluid’s dynamics) with respect to parameters relating to the geometry of the
fluid’s domain. Although quite involved, this task can be carried out using tools of
shape optimization [27, 28]. In the particular case of a potential flow and of a swim-
mer alone in a fluid infinitely extended, this difficulty can be overcame by choosing
the impulse of the body as new unknown of the problem. This momentum-like
amount was first introduced by Kirshoff and Tate in [23, chap. VI]. However, this
method does not apply any longer when several swimmers are involved or when the
fluid is partially or totaly confined.

It is classical for monogenic mechanical systems (which are allowed to involve
both holonomic and nonholonomic constraints), that either Newton’s laws or D’Alem-
bert’s (or Hamilton’s) principle suffice in providing Euler-Lagrange’s governing
equations of motion [4, §13 pages 64-67] (or [16, §2.3 pages 44-45]). More recently,
the equivalence has been also shown for multibody system in [33]. However, to
our knowledge, this equivalence has not be proved so far for more complex coupled
fluid-structure systems like those we are dealing with. Actually, we shall prove later
on by exhibiting a counterexample that there is not equivalence, even for the simple
case of the solid alone in an unbounded fluid.

In this article, we will consider a set of submerged deformable bodies self-
propelled partly by means of shape-changes and partly by use of thrusters, inside
a potential fluid flow. The system fluid-bodies occupies either a bounded, partially
bounded or unbounded domain of R

N (N = 2, 3). Shape-changes as well as the
velocity of the fluid blown out by the thrusters are assigned as functions of time.

We will derive a first system of equations of motion by invoking Newton’s laws
for each body, while classical Euler’s equations are assumed to drive the fluid flow.
As explain earlier, the coupling between fluid and bodies is given through the hy-
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drodynamic forces acting on the swimmers and through kinematics constraints for
the fluid flow. Next, we will consider the system fluid-bodies in its entirety and we
compute the corresponding Lagrangian function. The system being monogenic, for
the only exterior force acting on it is the gravity, we can apply Hamilton’s principle
; that yields a second system of equations of motion (the thrusters inducing non-
holonomic constraints, generalized forces are required). A third mixed approach we
will also consider consists in invoking D’Alembert’s variational principle restricted
to the dynamics of the bodies. This process leads to a third system of equations of
motion.

Our first contribution is to prove that under smoothness assumptions on the
fluid-bodies interface, all of the resulting systems of equations we have obtained
coincide. This assertion does no longer hold true for nonsmooth shaped bodies.
Indeed, we present a counterexample for which Lagrangian approach leads to well
known D’Alembert’s paradox (the body moves uniformly forwards inside the fluid
with null hydrodynamic resultant force) whereas, by direct computation, we prove
that the hydrodynamic forces on the body nearby singular points of its boundary
are in fact of infinite intensity and that the resultant force can not be computed.

The second interest of this paper is to present governing equations of motion
valid for wide class of problems. In particular, any number of bodies swimming to-
gether can be considered, each one being able to undergo any kind of shape-changes.
In addition, the fluid region can be partially or completely bounded or of infinite
extend. Final equations of motion are given under the form of a fully explicit system
of ODE’s whose unknowns are the degrees of freedom of the problem. To solve these
equations, it is required only to compute potential functions on the boundaries of
the swimmers. For being solutions of Neumann boundary value problems, these po-
tential functions can be computed by means of boundary integral formula, that is,
only in terms of boundary data. As a consequence, from a numerical point of view,
the problem can be solved by meshing the fluid’s boundary only. This method has
already been applied successfully and has yielded numerical simulations that can
be downloaded at http://www.iecn.u-nancy.fr/∼munnier/animations.html.

Organization of the paper

Next section is roughly devoted to problem’s modelling: topological and geometrical
data are made precise, shape-changes are properly described as assigned functions
of time and the notion of virtual displacements is introduced, in order to apply
D’Alembert’s principle subsequently. Newton’s laws are stated for the bodies, fluid’s
dynamics and coupling conditions are set up. The Lagrangian function relating to
the dynamics of the swimmers is also computed. This work is summed up and used
and in Section 3, where we display the equations of motion for both Lagrangian and
Newtonian models. We state the main results: the first one discusses the equivalence
between both models. The second consists in giving the fully explicit form of the
equations of motion which are realized as a system of ODE’s. Comparison between
both models is carried out in Section 4 where the computation of shape derivatives
is required to achieve this task. In Section 5, we treat the case of a nonsmooth
shaped solid surrounded by an infinitely extended fluid. We prove that Newtonian
and Lagrangian approaches lead to distinct conclusions. The appendix contains
technical results and definitions.

3



2 Setting of the problem

2.1 Topological and geometrical data

We denote by S(t) := ∪n
i=1S

i(t) the region of R
N (N = 2, 3) occupied by the n

swimmers (n ∈ N, n ≥ 1) at time t and by Ω(t) the domain of the surrounding
fluid. The boundary ∂Ω(t) of the fluid, denoted by Γ(t), is assumed to be a twice
continuously differentiable surface (N = 3) or curve (N = 2). It can be decomposed
into the boundary shared with the swimmers Γ2(t) := ∪n

i=1Γ
i
2(t) := ∪n

i=1∂Si(t) and
the exterior boundary Γ1 := ∂Ω(t) \ Γ2(t). At the time t = 0, we denote merely
Ω := Ω(0), Si

0 := Si(0), S0 := S(0), Γi
2 := Γi

2(0) and Γ2 := Γ2(0). We assume that
Ω is an open and connected set in R

N , that Γ2 is compact and that Γ1 is either
bounded, either an hyperplane. On Γ(t) and for all t ≥ 0, we denote by n(t,x)
the unitary normal at the point x directed towards the exterior of the fluid. When
N = 3, we introduce the second fundamental form of Γ(t), denoted by Π2(t,x). It
is connected to the normal vector n(t,x) and to the principal curvatures κ1(t,x),
κ2(t,x) of Γ(t) at the point x by the formula:

〈[Dxn(t,x)], τ i(t,x), τ i(t,x)〉 = −〈Π2(t,x), τ i(t,x), τ i(t,x)〉 (2.1a)

= −κi(t,x)τ i(t,x), i = 1, 2, (2.1b)

where [Dxn(t,x)] is the Jacobian matrix of n(t,x) at the point x and τ i(t,x) (i =
1, 2) are the so-called principal directions of Γ(t) (see [10, page 129] for precise defini-
tions). The signs of κ1(t,x) and κ2(t,x) are chosen such that {n(t,x), τ 1(t,x), τ 2(t,x)}
be a direct orthogonal basis of R

3. We denote by H(t,x) := κ1(t,x) + κ2(t,x) the
mean curvature of Γ(t). When N = 2, H(t,x) coincides with κ(t,x), the curvature
of Γ(t) and relation (2.1) turns into:

∇Γn(t,x) · τ (t,x) = −H(t,x)τ (t,x),

where ∇Γ is the tangential gradient (or merely the tangential derivative). As for
N = 3, the sign of H(t,x) is chosen such that {n(t,x), τ (t,x)} be a direct orthogonal
basis of R

2.

2.2 Kinematics of the deformable bodies

Let F be an inertial reference frame. In F , the coordinates of the center of mass of
the i−th swimmer are hi(t) := (hi

1(t), . . . , h
i
N (t))T at time t. We fix a frame F i(t)

of origin hi(t) to each swimmer and we write merely hi
0 := hi(0) and F i(0) := F i

0.
Considering M(t) a material point of Si(t) of coordinates x(t) := (x1(t), . . . , xN (t))T

in F and y(t) := (y1(t), . . . , yN (t))T in F i(t), there exists a rotation matrix [Ri(t)] ∈
SO(N) (the rotation group of R

N , N = 2, 3) such that x(t) = [Ri(t)]y(t) + hi(t).
We can assume, without loss of generality, that [Ri(0)] = [Id] (the identity matrix).
We assume that the motion of M(t) in F i(t) is only due to prescribed deformations
of the body Si(t). Introducing then the domain Si

d(t) := [Ri(t)]T (Si(t)−hi(t))+hi
0,

the deformation of the body from its initial state Si
0 into Si

d(t) is described in F i
0

by a given twice continuously differentiable function Xi
d : [0,∞)× (Si

0 − hi
0) → R

N

such that for all t ≥ 0 the mapping:

Xi
d(t, ·) : Si

0 − hi
0 → Si

d(t) − hi
0

y0 := x0 − hi
0 7→ Xi

d(t,y0) := y(t),
(2.2)

be one-to-one. We set then Yi
d(t, ·) := Xi

d(t, ·)−1. The coordinates of M(t) in the
inertial frame F read:

x(t) = [Ri(t)]Xi
d(t,x0 − hi

0) + hi(t), ∀x0 ∈ Si
0. (2.3)
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We define likewise, for all t ≥ 0, the mapping related to the rigid motion by:

Xi
r(t, ·) : Si

d(t) → Si(t)
x 7→ Xi

r(t,y) := [Ri(t)](x − hi
0) + hi(t).

(2.4)

We set then Yi
r(t, ·) := Xi

r(t, ·)−1 and we introduce the composition of both func-
tions (2.2) and (2.4) in F :

Xi : [0,∞) × Si
0 → R

N

(t,x) 7→ Xi
r(t,X

i
d(t,x − hi

0) + hi
0).

(2.5)

As previously done, we define also Yi(t, ·) := Xi(t, ·)−1. Using the partition ∪n
i=1S

i
0

of S0, we set for all x ∈ S0: X(t,x) := Xi(t,x) if x ∈ Si
0. Differentiating (2.3) with

respect to t one obtains: ẋ(t) = [Ṙi(t)]Xi
d(t,x0−hi

0)+[Ri(t)]Ẋi
d(t,x0−hi

0)+ ḣi(t).
Combining again this expression with (2.3), it comes:

ẋ(t) = [Ṙi(t)][Ri(t)]T (x(t) − hi(t)) + ḣi(t) + [Ri(t)]Ẋi
d(t,Y

i(t,x(t)) − hi
0).

The matrix [Ṙi(t)][Ri(t)]T being skew symmetric, there exists a scalar ωi(t) when
N = 2 and a vector ω

i(t) when N = 3 such that, for all x ∈ Si(t):

[Ṙi(t)][Ri(t)]T (x(t) − hi(t)) =

{
ωi(t)(x(t) − hi(t))⊥ (N = 2),

ω
i(t) × (x(t) − hi(t)) (N = 3),

where x⊥ = ((x1, x2)
⊥)T := (−x2, x1)

T for all x ∈ R
2. We can now define, for all

x ∈ S(t), the Eulerian velocity of deformation vi
d(t) and the Eulerian rigid velocity

vi
r(t) by:

vi
d(t,x) :=

{
[Ri(t)]Ẋi

d(t,Y
i(t,x) − hi

0) if x ∈ Si(t),

0 if x ∈ ∪j 6=iS
j(t),

(2.6a)

vi
r(t,x) :=





ωi(t)(x − hi(t))⊥ + ḣi(t) if x ∈ Si(t), N = 2,

ω
i(t) × (x − hi(t)) + ḣi(t) if x ∈ Si(t), N = 3,

0 if x ∈ ∪j 6=iS
j(t).

(2.6b)

The Eulerian velocity in Si(t) is therefore:

vi(t,x) := vi
r(t,x) + vi

d(t,x), ∀x ∈ Si(t), ∀ t ≥ 0. (2.7)

2.3 Generalized coordinates and virtual displacements

Classical results in Solid Mechanics (see for example [16, Chap.4 pages 134-180])
tell us that the location and orientation of the i−th swimmer, considered as a rigid
body, can be described by N i

r := N(N + 1)/2 independent (this term will be made
precise later on) real coordinates qi

r,1, . . . , q
i
r,N i

r
(notice although N i

r actually does

not depend on i, we keep this notation to be consistent with the following). We
denote by qi

r := (qi
r,1, . . . , q

i
r,N i

r
)T and qr := (q1

r, . . . ,q
n
r )T the so-called general-

ized coordinates related to the rigid motion and q̇r := (q̇1
r, . . . , q̇

n
r )T stand for the

generalized velocities.
We assume that all of the controls (that are the shape-changes and the thrusters)

are governed by a finite number of parameters and we denote for all i = 1, . . . , n:

• qi
d,k ∈ R for all k = 1, . . . ,N i

d (N i
d ∈ N), the N i

d parameters related to the
deformation of the i−th swimmer.
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• qi
t,l ∈ R for all l = 1, . . . ,N i

t (N i
t ∈ N), the N i

t parameters related to its
thrusters.

Following our rules of notation, we introduce also the integers Nr :=
∑n

i=1 N i
r ,

Nd :=
∑n

i=1 N i
d and Nt :=

∑n
i=1 N i

t as well as the vectors qi
d := (qi

d,1, . . . , q
i
d,N i

d

)T ,

qd := (q1
d, . . . ,q

n
d )T , qi

t := (qi
t,1, . . . , q

i
t,N i

t

)T , qt := (q1
t , . . . ,q

n
t )T and the associated

velocities q̇i
d, q̇d, q̇

i
t and q̇t. Eventually, we set N := Nr+Nd+Nt, q := (qr,qd,qt)

T

and q̇ := (q̇r, q̇d, q̇t)
T . The components of q and q̇ are hence denoted merely by qi

and q̇i respectively, i = 1, . . . ,N .
At this point, it is worth pointing out that all of the involved domains depend

on time t only through the shape variables qr and qd. Thus, from now on, we
will rather denote Ω(qr,qd) the domain of the fluid, Si(qi

r,q
i
d) the domain of the

i−th swimmer and likewise, we set S(qr,qd) := ∪n
i=1S

i(qi
r,q

i
d), Γ(qr,qd) := Γ(t),

Γi
2(q

i
r,q

i
d) := ∂Si(qi

r,q
i
d) and Γ2(qr,qd) := ∪n

i=1Γ
i
2(q

i
r,q

i
d). We adopt also the no-

tation Xi
d(q

i
d), Xi

r(q
i
r), Xi(qi

r,q
i
d) for the functions (2.2), (2.4) and (2.5) while no-

tation for the Eulerian velocities (2.6) turns respectively into vi
d(q

i
d, q̇

i
d), vi

r(q
i
r, q̇

i
r)

and vi(qi
r,q

i
d, q̇

i
r, q̇

i
d). In order to apply d’Alembert’s principle, in a first time to

Xi(qi
r,q

i
d, · − hi

0)

Xi
d(q

i
d, · − hi

0) + hi
0

Xi
r(q

i
r, ·)

hi
0 hi

0

h(qi
r)

Si
0 Si

d(q
i
d)

Si(qi
r,q

i
d)

Γi
2

Γi
2(q

i
d)

Γi
2(q

i
r,q

i
d)

Figure 1: The mappings Xi
d(q

i
d), Xi

r(q
i
r) and Xi(qi

r,q
i
r) for the i−th fish-like de-

formable body.

the dynamics of the deformable bodies only and later to the full system fluid-bodies,
we introduce, like in [16, §1.4 page 16] or in [4, §B. page 97], the notion of virtual
rigid displacement:

Definition 1 For all i = 1, . . . , n, we call infinitesimal virtual rigid displacement
(and we write i. v. r. d. for short in the sequel) defined in Si(qi

r,q
i
d) any vector

field δx̂r(q
i
r,x) (x ∈ Si(qi

r,q
i
d)) that can be written under the form:

δx̂r(q
i
r,x) =

{
δΩ̂(qi

r) × (x − hi(x)) + δĥ(qi
r) (N = 3),

δΩ̂(qi
r)(x − hi(x))⊥ + δĥ(qi

r) (N = 2),
(2.8)

where δΩ̂(qi
r) and δĥ(qi

r) are two vectors and δΩ̂(qi
r) is a scalar. We denote by

Di
r(q

i
r,q

i
d) the vector space of all the i. v. r. d. defined in Si(qi

r,q
i
d).

Going back to the generalized coordinates, we introduce, for any i = 1, . . . , n and
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any j = 1, . . . ,N i
r , the vector field δxi

r,j(q
i
r) defined by:

δxi
r,j(q

i
r,x) :=

∂Xi

∂qi
r,j

(qi,Yi(qi,x)), ∀x ∈ Si(qi
r,q

i
d), (2.9a)

or equivalently, taking into account definition (2.5) of Xi, by:

δxi
r,j(q

i
r,x) :=

∂Xi
r

∂qi
r,j

(qi
r,Y

i
r(q

i
r,x)), ∀x ∈ Si(qi

r,q
i
d). (2.9b)

Proposition 2.1 For all i = 1, . . . , n and all j = 1, . . . ,N i
r , δxi

r,j(q
i
r) ∈ Di

r(q
i
r,q

i
d).

Before writing out the proof of this proposition, let us introduce a a definition:

Definition 2 According to Definition 1 and Proposition 2.1 and for any i = 1, . . . , n
and any j = 1, . . . ,N i

r , we denote by δΩi
j(q

i
r,j), δΩi

j(q
i
r,j) and δhi

j(q
i
r,j) the vectors

and the scalar such that:

δxi
r,j(q

i
r,x) =

{
δΩi

j(q
i
r) × (x − hi) + δhi

j(q
i
r), (N = 3),

δΩi
j(q

i
r)(x − hi)⊥ + δhi

j(q
i
r), (N = 2).

Proof of Proposition 2.1: Definition (2.4) can be rewritten with generalized
coordinates as:

Xi
r(q

i
r,x) = [Ri(qi

r)](x − hi
0) + hi(qi

r), (2.10)

and then definition (2.9b) leads to:

δxi
r,j(q

i
r) =

∂[Ri(qi
r)]

∂qi
r,j

[Ri(qi
r)]

T (x − hi(qi
r)) +

∂h

∂qi
r,j

(qi
r).

The matrix (∂[Ri(qi
r)]/∂qi

r,j)[R
i(qi

r)]
T being skew symmetric, the expression of

δxi
r(q

i
r) matches the forms given in Definition 2. ¥

We are now in position to make precise what is an allowable choice of generalized
coordinates:

Definition 3 The set of generalized coordinates qi
r,j is allowable (and in particular,

the coordinates are independent) when the set {δxi
r,j(q

i
r), j = 1, . . . ,N i

r} is a basis

of Di
r(q

i
r,q

i
d).

When N = 2, the choice of such of set of coordinates is trivial. When N = 3, Euler’s
angles yield a classical local parametrization for the orientation of the bodies (or,
in other words, a local chart of the manifold SO(3)). We refer for instance to [16,
Chap.4 pages 134-180] or to [28] for examples of generalized coordinates that fit
with what is required in Definition 3.

We can express vi
r(q

i
r, q̇

i
r) defined in (2.6), in terms of δxi

r,j(q
i
r) and q̇i

r as
follows:

vi
r(q

i
r, q̇

i
r,x) =

N i
r∑

j=1

q̇i
r,jδx

i
r,j(q

i
r,x), ∀x ∈ Si(qi

r,q
i
d), (2.11)

and we introduce also, for all i = 1, . . . , n and all j, k = 1, . . . ,N i
r :

δx̃i
r,j(q

i
r,x) :=

∂Xi
r

∂qi
r,j

(qi
r,x), ∀x ∈ Si

d(q
i
d), (2.12)

ṽi
r(q

i
r,x) :=

N i
r∑

j=1

q̇i
r,jδx̃

i
r,j(q

i
r, q̇

i
r,x), ∀x ∈ Si

d(q
i
d). (2.13)
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One readily checks that ∇ · δx̂r(q
i
r) = 0 in Si(qi

r,q
i
d) for any i. v. r. d. and since

Γi
2(q

i
r,q

i
d) is of class C2, we deduce, invoking Stokes’ formula, that:
∫

Γi
2
(qi

r, qi
d)

δx̂r(q
i
r,x) · n(qi

r,q
i
d,x) dx = 0, ∀ δx̂r(q

i
r) ∈ Di

r(q
i
r,q

i
d). (2.14)

This condition implies that the volume of the incompressible fluid (when the fluid
is confined) is not affected by rigid displacements of the bodies.

We proceed similarly for the velocities of deformation. Thus, we define, for
all i = 1, . . . , n and all k = 1, . . . ,N i

d, the infinitesimal virtual displacements of
deformation (abbreviated by i. v. d. d. in the sequel):

δxi
d,k(qi

r,q
i
d,x) := [Ri(qi

r)]
∂Xi

d

∂qi
d,k

(qi
d,Y

i(qi
r,q

i
d,x) − hi

0), ∀x ∈ Si(qi
r,q

i
d),

or equivalently, taking into account definition (2.5), by:

δxi
d,k(qi

r,q
i
d,x) :=

∂Xi

∂qi
d,k

(qi
r,q

i
d,Y

i(qi
r,q

i
d,x)), ∀x ∈ Si(qi

r,q
i
d).

The i. v. d. d. and the generalized velocities q̇i
d are connected to vi

d(q
i
r,q

i
d, q̇

i
d) by

the equality:

vi
d(q

i
r,q

i
d, q̇

i
d,x) =

N i
d∑

k=1

q̇i
d,kδxi

d,k(qi
d,x), ∀x ∈ Si(qi

r,q
i
d). (2.15)

We introduce also, for any k = 1, . . . ,N i
d:

δx̃i
d,k(qi

d,x) :=
∂Xi

d

∂qi
d,k

(qi
d,Y

i
d(q

i
d,x − hi

0)), ∀x ∈ Si
d(q

i
d).

Remind that the functions of deformation Xi
d are given. Hence, δx̃i

d,k(qi
d) is also

a prescribed quantity which coincides with δxi
d,k(qi

r,q
i
d) when expressed in the

moving frame F i(qi
r). To ensure that the volume of the fluid does not depend

on the shape of the swimmers (i.e. on the parameter qd), we assume that, for all
i = 1, . . . , n and all k = 1, . . . ,N i

d, the i. v. d. d. satisfy:
∫

Γi
2
(qi

r, qi
d)

δxi
d,k(qi

r,q
i
d,x) · n(qi

r,q
i
d,x) dx = 0. (2.16)

This equality means also that one imposes the deformations to preserve the volume
of the swimmers.

To model the action of the thrusters, we define on Γi
2 (the boundary of the

bodies at the time t = 0) infinitesimal virtual displacements of blown out fluid (we
will write i. v. d. b. f. for conciseness) denoted by δx̃i

t,l for all l = 1, . . . ,N i
t and

we set, for all x ∈ Γi
2(q

i
r,q

i
d):

δxi
t,l(q

i
r,q

i
d,x) := [DxY

i(qi
r,q

i
d,x)]−1δx̃i

t,l(Y
i(qi

r,q
i
d,x)),

where [DxY
i(qi

r,q
i
d,x)] is the Jacobian matrix of Yi(qi

r,q
i
d). The Eulerian velocity

q̇i
t,lδx

i
t,l(q

i
r,q

i
d,x) is the prescribed velocity of the blown out (or sucked) fluid by the

l−th thruster measured at a point x of the boundary of the i−th body. Summing
over all the thrusters of the i−th body, we define:

vi
t(q

i
r,q

i
d, q̇t

i,x) :=

N i
t∑

l=1

q̇i
t,lδx

i
t,l(q

i
r,q

i
d,x), ∀x ∈ Γi

2(q
i
r,q

i
d), (2.17)
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Notice that the parameters qi
t,l do not actually play any role in the modelling. Once

the i. v. d. b. f. have been set up, the regime of the thrusters is controlled by
the generalized velocities q̇i

t,l only. The balance of fluid volume that runs through
the thrusters being null, we assume in addition that, for all i = 1, . . . , n and all
l = 1, . . . ,N i

t : ∫

Γi
2
(qi

r, qi
d)

δxi
t,l(q

i
r,q

i
d,x) · n(qi

r,q
i
d,x) dx = 0. (2.18)

Let us state a last property entering in this section:

Lemma 2.1 For any i = 1, . . . , n and any j = 1, . . . ,N i
r , the following identities

hold:
d

dt

∂ṽi
r

∂q̇i
r,j

(qi
r, q̇

i
r,x) − ∂ṽi

r

∂qi
r,j

(qi
r, q̇

i
r,x) = 0, ∀x ∈ Si

d(q
i
d), (2.19)

where ṽi
r(q

i
r, q̇

i
r) is given in (2.13) and

d

dt

(
δxi

r,j(q
i
r)

)
=





d

dt

(
δx̃i

rj
(qi

r)
)
◦ Yi

r(q
i
r) − δΩj(q

i
r) × vi

r(q
i
r, q̇

i
r) (N = 3),

d

dt

(
δx̃i

rj
(qi

r)
)
◦ Yi

r(q
i
r) − δΩj(q

i
r)v

i
r(q

i
r, q̇

i
r)

⊥ (N = 2),

(2.20)

the mapping Yi
r(q

i
r) being defined just beneath formula (2.4).

Proof : According to definitions (2.13) of ṽi
r(q

i
r,x) and (2.12) of δx̃i

r,j(q
i
r,x), we

have, on the one hand:

d

dt

∂ṽi
r

∂q̇i
r,j

(qi
r,x) =

d

dt
δx̃i

r,j(q
i
r,x) =

d

dt

∂Xi
r

∂qi
r,j

(qi
r,x), ∀x ∈ Si

d(q
i
d). (2.21)

On the other hand, by virtue of the chain rule, we can compute the time derivative
as follows:

d

dt
Xi

r(q
i
r,x) =

N i
r∑

j=1

q̇i
r,j

∂Xi
r

∂qi
r,j

(qi
r,x) = ṽi

r(q
i
r,x), ∀x ∈ Si

d(q
i
d),

and then
∂ṽi

r

∂qi
r,j

(qi
r,x) =

∂

∂qi
r,j

d

dt
Xi

r(q
i
r,x), ∀x ∈ Si

d(q
i
d). (2.22)

Identity (2.19) follows since both cross derivatives arising in the right hand side of
(2.21) and (2.22) are equal. Concerning the second formula of the lemma, definition
(2.9b) leads to:

d

dt

(
δxi

r,j(q
i
r)

)
=

d

dt

(
∂Xi

r

∂qi
r,j

(qi
r,Y

i(qi
r))

)
,

what reads also, applying again the chain rule:

d

dt

(
δxi

r,j(q
i
r)

)
=

N i
r∑

j1=1

∂2Xi
r

∂qi
r,j1

∂qi
r,j

(qi,Yi
r(q

i
r))q̇

i
j1

+

[
Dx

(
∂Xi

r

∂qi
r,j

)
(qi,Yi

r(q
i
r))

]
∂Yi

r

∂qi
r,j1

(qi
r)q̇

i
j1 . (2.23)

9



Proceeding as well with δx̃i
r,j(q

i
r) defined by (2.12), we get:

d

dt

(
δx̃i

r,j(q
i
r)

)
◦ Yi

r(q
i
r) =

N i
r∑

j1=1

∂2Xi
r

∂qi
r,j1

∂qi
r,j

(qi,Yi
r(q

i
r))q̇

i
j1 , (2.24)

and taking into account identity (2.10), one obtains:

[
Dx

(
∂Xi

r

∂qi
r,j

)
(qi,Yi

r(q
i
r))

]
∂Yi

r

∂qi
r,j1

(qi
r)q̇

i
r,j1 =

− ∂[Ri(qi
r)]

∂qi
r,j

[Ri(qi
r)]

T ∂Xi
r

∂qi
r,j1

(qi
r,Y

i
r(q

i
r))q̇

i
r,j1 . (2.25)

Summing over j1 from 1 to N i
r identities (2.25) and substituting the result and the

right hand side of (2.24) into (2.23), we obtain (2.20). ¥

Further quantities of less importance but required in the statement of the governing
equations of motion are defined in Appendix A.

2.4 Lagrangian function of the shape-changing bodies

We denote by ρS(qr,qd,x) > 0 the density of the bodies at the point x ∈ S(qr,qd)
while ρd

S(qd,x) > 0 is the density in Sd(qd). For all x ∈ S0 we set also ρ0
S(x) :=

ρS(x, 0). The law of conservation of mass leads to the identities:

ρd
S(qi

d,x) = ρ0
S(Yi

d(q
i
d,x − hi

0) + hi
0)|det[DxY

i
d(q

i
d,x − hi

0)]|,
∀x ∈ Si

d(q
i
d), (2.26a)

and

ρS(qi
r,q

i
d,x) = ρ0

S(Yi(qi
r,q

i
d,x))| det[DxY

i(qi
r,q

i
d,x)]|, ∀x ∈ Si(qi

r,q
i
d). (2.26b)

Thus, the density of the deformed body is thoroughly determined by its initial
density and by the prescribed deformation. Since |det[DxXr(qr,x)]| = 1 for all
x ∈ Sd(qd) (see definition (2.4)), we have also:

ρS(qi
r,q

i
d,x) = ρd

S(qi
d,Y

i
r(q

i
r,x)), ∀x ∈ Si(qi

r,q
i
d). (2.26c)

The following amounts are homogeneous to mass and moments of inertia:

Definition 4 For all i = 1, . . . , n, all j1, j2 = 1, . . . ,N i
r and all k1, k2 = 1, . . . ,N i

d,
we define:

M i
r,j1,j2(q

i
r,q

i
d) :=

∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d,x)δxi

r,j1(q
i
r,x) · δxi

r,j2(q
i
r,x) dx,

M i
d,k1,k2

(qi
d) :=

∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d,x)δxi

d,k1
(qi

r,q
i
d,x) · δxi

d,k2
(qi

r,q
i
d,x) dx,

and we denote by [M i
r(q

i
r,q

i
d)] and [M i

d(q
i
d)] the N i

r × N i
r and N i

d × N i
d matrices

whose entries are M i
r,j1,j2

(qi
r,q

i
d) and M i

d,k1,k2
(qi

d) respectively.

Notice that [M i(qi
d)] does actually not depend on qi

r. Indeed, taking into account
(2.26), we can rewrite its entries:

M i
d,k1,k2

(qi
d) =

∫

Si
0

ρ0
S(x)

∂Xi
d

∂qi
d,k1

(qi
d,x − hi

0) ·
∂Xi

d

∂qi
d,k2

(qi
d,x − hi

0) dx.
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We denote by mi > 0 the mass of the i−th bodies and, when N = 3, by [Ii(qi
r,q

i
d)]

its inertia tensor, classically defined by:

[Ii(qi
r,q

i
d)] :=

∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d,x)(|x − hi|2[Id] − (x − hi) ⊗ (x − hi)) dx.

We have, equivalently:

[Ii(qi
r,q

i
d)] := [Ri(qi

r)][I
i
d(q

i
d)][R

i(qi
r)]

T , (2.27)

where [Ri(qi
r)] is the rotation matrix already encountered in (2.10) and:

[Ii
d(q

i
d)] :=

∫

Si
d(qi

d)

ρd
S(qi

d,x)(|x − hi
0|2[Id] − (x − hi

0) ⊗ (x − hi
0)) dx.

One readily checks that mass and inertia tensors are connected to M i
r,j1,j2

(qi
r,q

i
d)

as follows:

M i
r,j1,j2(q

i
r,q

i
d) = δΩi

j1(q
i
r) · [Ii(qi

r,q
i
d)]δΩ

i
j2(q

i
r) + miδhi

j1(q
i
r) · δhi

j2(q
i
r), (2.28)

the vectors δΩi
jk

(qi
r) and δhi

jk
(qi

r) (k = 1, 2) being given in Definition 2. In the
sequel, to write the equations of motion, we shall also require:

[J i(qi
r,q

i
d)] :=

∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d,x)(x − hi) ⊗ (x − hi) dx. (2.29)

When N = 2, the scalar moment of inertia reads:

Ii(qi
d) :=

∫

Si
d(qi

d)

ρd
S(qi

d,x)|x − hi
0|2 dx, (2.30)

and equality (2.28) becomes, with notation of Definition 2:

M i
r,j1,j2(q

i
r,q

i
d) = δΩi

j1(q
i
r)δΩ

i
j2(q

i
r)I

i(qi
d) + miδhi

j1(q
i
r) · δhi

j2(q
i
r). (2.31)

Let us now go back to the general case (i. e. N = 2, 3). We claim that, for all
i = 1, . . . , n, all j = 1, . . . ,N i

r and all k = 1, . . . ,N i
d:

∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d,x)δxi

r,j(q
i
r,x) · δxi

d,k(qi
r,q

i
d,x) dx = 0.

This result is deduced straightforwardly from the following Lemma:

Lemma 2.2 For all i = 1, . . . , n, all k = 1, . . . ,N i
d and all i. v. r. d. δx̂r(q

i
r,x) ∈

Di
r(q

i
r,q

i
d):

∫

Si(qr, qd)

ρS(qr,qd,x)δxi
d,k(qi

r,q
i
d,x) · δx̂r(q

i
r,x) dx = 0. (2.32)

Proof : Shape-changes of the swimmers are assumed to be produced by inner
forces only. Then, consider for the i−th body, being at rest at the time t = 0,
a deformation involving the parameter qi

d,j only (j = 1, . . . ,N i
d being fixed). In

absence of fluid (and hence of hydrodynamic forces) and of gravity, no exterior
force acts on it. Newton’s law of conversation of linear momentum ensures that:

d

dt




∫

Si
d(qi

d)

ρd
S(qi

d,x)δx̃i
d,j(q

i
d,x)dx q̇i

d,j


 = 0, ∀ t ≥ 0.
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The swimmer being quiescent at the time t = 0, we deduce that q̇i
d,j(0) = 0 and

hence that: ∫

Si
d(qi

d)

ρd
S(qi

d,x)δx̃i
d,j(q

i
r,q

i
d,x)dx = 0, ∀ t ≥ 0.

The change of variables x′ := Xi
r(q

i
r,x) together with identities (2.26) yield:

∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d,x

′)δxi
d,j(q

i
r,q

i
d,x

′) dx′ = 0, ∀ t ≥ 0. (2.33)

The location of the center of mass must remain unchanged while the bodies undergo
shape-changes. Thus, the coordinates of the center of mass of Si

d(q
i
d) remain equal

to hi
0 for all t ≥ 0. Newton’s law of conservation of angular momentum leads to:

d

dt




∫

Si
d(qi

d)

ρd
S(qi

d,x)δx̃i
d,j(q

i
d,x) × (x − hi

0)dx q̇i
d,j


 = 0, ∀ t ≥ 0, (N = 3),

d

dt




∫

Si
d(qi

d)

ρd
S(qi

d,x)δx̃i
d,j(q

i
d,x) · (x − hi

0)
⊥dx q̇i

d,j


 = 0, ∀ t ≥ 0, (N = 2).

Assuming again that the swimmer is at rest at the time t = 0, we deduce that,
when N = 3:

∫

Si
d(qi

d)

ρd
S(qi

d,x)δx̃i
d,j(q

i
d,x) × (x − hi

0)dx = 0, ∀ t ≥ 0.

The same change of variables as in (2.33) yields:
∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d,x)[Ri(qi

r)]
T δxi

d,j(q
i
r,q

i
d,x) × [Ri(qi

r)]
T (x − hi) dx = 0,

and then: ∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d,x)δxi

d,j(q
i
r,q

i
d,x) × (x − hi) dx = 0. (2.34a)

When N = 2, this equality turns into:
∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d,x)δxi

d,j(q
i
r,q

i
d,x) · (x − hi)⊥ dx = 0. (2.34b)

Identities (2.33) and (2.34) leads to (2.32) taking into account Definition 1. ¥

We can now figure out the expression of the Lagrangian function of the swimmers.
Bodies’ kinetic energy related to rigid motions and to motions of deformation are
respectively, according to Definition 4:

Ki
r(q

i
r,q

i
d, q̇

i
r) :=

1

2
q̇i

r · [M i
r(q

i
r,q

i
d)]q̇

i
r (2.35a)

=
1

2

∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d,x)|vi

r(q
i
r, q̇

i
r,x)|2 dx, (2.35b)

and

Ki
d(q

i
d, q̇

i
d) :=

1

2
q̇i

d · [M i
d(q

i
d)]q̇

i
d (2.35c)

=
1

2

∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d,x)|vi

d(q
i
r,q

i
d, q̇

i
d,x)|2 dx. (2.35d)
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Notice that, upon a change of variables, one easily checks that Ki
d(q

i
d, q̇

i
d) does actu-

ally not depend on qi
r neither on q̇i

r. Setting the potential function G(x) := −gxN

(g stands for the gravitational constant) and by virtue of Archimedes’ principle, the
buoyant force on the i−th body is:

Fi
b(q

i
r,q

i
d) :=

∫

Si(qi
r, qi

d)

(ρS(qi
r,q

i
d,x) − ρF )∇G(x) dx,

where ρF > 0 is the constant density of the fluid. The associated potential energy
reads:

Pi(qi
r,q

i
d) := −

∫

Si(qi
r, qi

d)

(ρS(qi
r,q

i
d,x) − ρF )G(x) dx. (2.36)

We deduce from Lemma 2.2 that the total kinetics energy of the i−th body reduces
to the sum of Ki

r(q
i
r,q

i
d, q̇

i
r) and Ki

d(q
i
d, q̇

i
d). Thus, the Lagrangian function of the

i−th body is classically defined by:

Li
b(q

i
r,q

i
d, q̇

i
r, q̇

i
d) := Ki

r(q
i
r,q

i
d, q̇

i
r) + Ki

d(q
i
d, q̇d

i) − Pi(qi
r,q

i
d). (2.37)

2.5 Dynamics of the system and coupling conditions

For all t ≥ 0 and all x ∈ Ω(qr,qd), we denote by u(t,x) the Eulerian velocity of the
fluid at the point x and p(t,x) stands for the pressure. The fluid flow is governed
by Euler’s equations:

ρF

(
∂u

∂t
+ (u · ∇)u

)
+ ∇p = ρF∇G in Ω(qr,qd), t > 0, (2.38a)

∇ · u = 0 in Ω(qr,qd), t > 0. (2.38b)

The kinematics coupling conditions between the bodies, the fluid and the thrusters
is partly given by the boundary conditions:

u(t) · n(qi
r,q

i
d) = (vi

r(q
i
r, q̇

i
r) + vi

d(q
i
r,q

i
d, q̇

i
d)

+ vi
t(q

i
r,q

i
d, q̇

i
t)) · n(qi

r,q
i
d) on Γi

2(q
i
r,q

i
d), ∀ i = 1, . . . , n. (2.39a)

This equality means that the normal component of the fluid’s velocity matches the
normal component of the velocity of the bodies’s boundary, along Γ2(qr,qd). On
Γ1, the classical slip condition for non-viscous fluid holds:

u(t) · n = 0 on Γ1. (2.39b)

Taking into account expressions (2.11), (2.15) and (2.17) of the Eulerian velocities
vi

r(q
i
r, q̇

i
r), v

i
d(q

i
r,q

i
d, q̇

i
d) and vi

t(q
i
r,q

i
d, q̇

i
t), we can rewrite the boundary conditions

for the fluid velocity:

u(t) · n(qi
r,q

i
d) =

n∑

i=1




N i
r∑

j=1

q̇i
r,jb

i
r,j(q

i
r) +

N i
d∑

k=1

q̇i
d,kbi

d,k(qi
r,q

i
d)

+

N i
t∑

l=1

q̇i
t,lb

i
t,l(q

i
r,q

i
d))

)
on Γ2(qr,qd), (2.40a)

or in short form, using the relabelling process (A.4) and notation therein:

u(t) · n(qr,qd) = b(qr,qd) · q̇, on Γ2(qr,qd). (2.40b)
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The stress tensor inside the fluid for an inviscid flow reads merely σ = −(p −
ρF G) [Id]. For any swimmer Si(qi

r,q
i
d), Newton’s law for linear momentum yields,

for all i = 1, . . . , n and all t > 0:

d

dt




∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d,x)vi

r(q
i
r, q̇

i
r) dx


 =

∫

Γi
2
(qi

r, qi
d)

p(t)n(qi
r,q

i
d) dΓ +

∫

Si(qi
r, qi

d)

(ρS(qi
r,q

i
d) − ρF )∇G dx, (2.41a)

while Newton’s law for angular momentum leads to, when N = 2:

d

dt




∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r) · (x − hi)⊥ dx


 =

∫

Γi
2
(qi

r, qi
d)

p(t)n(qi
r,q

i
d) · (x − hi)⊥ dΓ. (2.41b)

When N = 3, this equality becomes:

d

dt




∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r) × (x − hi) dx


 =

∫

Γi
2
(qi

r, qi
d)

p(t)n(qi
r,q

i
d) × (x − hi) dΓ. (2.41c)

Thus, latter term on the right of (2.41a) is the buoyant force. Equations (2.38),
(2.39) and (2.41) provide the expected system of governing equations of motion for
the coupled system fluid-bodies. Keep in mind that our main purpose is to compare
these equations with those we will obtain later on with Lagrangian formalism. The
first step in carrying out this task consists in reformulating equations (2.41) in an
equivalent but more convenient form.

3 Statement of the governing equations of motion

In this section, we will display properly both systems of equations of motion, the first
one deriving from Newton’s laws and the second being deduced from D’Alembert’s
variational principle. Beforehand, we focus on the dynamics of the bodies.

3.1 First equivalence results

The proof of the equivalence between Newtonian and Lagrangian approaches, as
long as only monogenic systems are concerned, can be found in many books of
Mechanics (see for instance [16, §2.3 pages 44-45] or [4, §13 pages 64-67]). In [33],
the authors extend this result to multibody systems with constraint forces (like
friction forces). In a first time, we will prove that the same conclusion can be
drawn for the set of deformable bodies we are dealing with.

Lemma 3.1 Newton’s laws (2.41) are equivalent to anyone of the following asser-
tions:
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1. For any i. v. r. d. δx̂r(q
i
r) ∈ Di

r(q
i
r,q

i
d), the identity below holds:

d

dt




∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r) · δx̂r(q

i
r) dx




−
∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r) ·

d

dt

(
δx̂r(q

i
r)

)
dx =

∫

Γi
2
(qi

r, qi
d)

p(t)n(qi
r,q

i
d) · δx̂r(q

i
r) dΓ

+

∫

Si(qi
r, qi

d)

(ρS(qi
r,q

i
d) − ρF )∇G · δx̂r(q

i
r) dx. (3.1)

2. For any i. v. r. d. δx̂r(q
i
r) ∈ {δxi

r,j(q
i
r), j = 1, . . . ,N i

r}, identity (3.1) holds.

The proof is given in Appendix B. We can then state the first equivalence result:

Proposition 3.1 Newton’s laws (2.41) are equivalent to the following system of
Euler-Lagrange’s equations:

d

dt

∂Li
b

∂q̇i
r,j

(qi
r,q

i
d, q̇

i
r, q̇

i
d) −

∂Li
b

∂qi
r,j

(qi
r,q

i
d, q̇

i
r, q̇

i
d) =

∫

Γi
2
(qi

r, qi
d)

p(t) bi
r,j(q

i
r,q

i
d) dΓ,

i = 1, . . . , n, j = 1, . . . ,N i
r . (3.2)

Proof : Actually, we will prove that equalities (3.2) are equivalent to the second
assertion of Lemma 3.1. The potential Pi(qi

r,q
i
d) can be expressed, upon a change

of variables, as:

Pi(qi
r,q

i
d) = −

∫

Si
d(qi

d)

(ρd
S(qi

d,x) − ρF )G(Xi
r(q

i
r,x)) dx.

Under this form, it is easy to prove that:

d

dt

∂Pi

∂q̇i
r,j

(qi
r,q

i
d) −

∂Pi

∂qi
r,j

(qi
r,q

i
d) =

∫

Si(qi
r, qi

d)

(ρS(qi
r,q

i
d) − ρF )∇G · δxi

r,j(q
i
r) dx. (3.3)

Concerning now the kinetic energy Ki(qi
r,q

i
d, q̇

i
r, q̇

i
d) := Ki

r(q
i
r,q

i
d, q̇

i
r)+Ki

d(q
i
d, q̇

i
d)

we have, on the one hand:

d

dt

(
∂Ki

∂q̇i
r,j

(qi
r,q

i
d, q̇

i
r, q̇

i
d)

)
=

d

dt

(
∂Ki

r

∂q̇i
r,j

(qi
r,q

i
d, q̇

i
r, q̇

i
d)

)
,

because Ki
d(q

i
d, q̇

i
d) does not depend on q̇i

r. It comes, taking into account definitions
(2.35) and since δxi

r,j(q
i
r) = ∂vi

r(q
i
r)/∂q̇i

r,j :

d

dt

(
∂Ki

∂q̇i
r,j

(qi
r,q

i
d, q̇

i
r, q̇

i
d)

)
=

d

dt




∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r) · δxi

r,j(q
i
r) dx


 . (3.4)

On the other hand, the same arguments lead to:

∂Ki

∂qi
r,j

(qi
r,q

i
d, q̇

i
r, q̇

i
d) =

1

2

∂

∂qi
r,j




∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d)|vi

r(q
i
r, q̇

i
r)|2 dx




=

∫

Si
d(qi

d)

ρd
S(qi

d)ṽ
i
r(q

i
r, q̇

i
r) ·

∂ṽi
r

qi
r,j

(qi
r, q̇

i
r) dx.
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Making use of formula (2.19) of Lemma 2.1, we obtain:

∂Ki

∂qi
r,j

(qi
r,q

i
d, q̇

i
r, q̇

i
d) =

∫

Si
d(qi

d)

ρd
S(qi

d)ṽ
i
r(q

i
r, q̇

i
r) ·

d

dt

(
δx̃i

r(q
i
r)

)
dx.

Latter formula (2.20) of Lemma 2.1 yields eventually:

∂Ki

∂qi
r,j

(qi
r,q

i
d, q̇

i
r, q̇

i
d) =

∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r) ·

d

dt

(
δxi

r,j(q
i
r)

)
dx. (3.5)

Plugging together (3.3), (3.4) and (3.5) we obtain (3.2) by virtue of (3.1). ¥

In (3.2), the left hand side term can be explicitly computed.

Proposition 3.2 For all i = 1, . . . , n and all j0 = 1, . . . ,N i
r :

d

dt

∂Li
b

∂q̇i
r,j0

(qi
r,q

i
d, q̇

i
r, q̇

i
d) −

∂Li
b

∂qi
r,j0

(qi
r,q

i
d, q̇

i
r, q̇

i
d) =




N i
r∑

j=1

M i
r,j0,j(q

i
r,q

i
d)q̈

i
r,j




+




N i
r∑

j1=1

N i
r∑

j2=1

Ai
j0,j1,j2(q

i
r,q

i
d)q̇

i
r,j1 q̇

i
r,j2


 +




N i
r∑

j=1

N i
d∑

k=1

Bi
j0,j,k(qi

r,q
i
d)q̇

i
r,j q̇

i
d,k




+

∫

Si(qi
r, qi

d)

(ρS(qi
r,q

i
d) − ρF )∇G · δxi

r,j0(q
i
r) dx. (3.6)

In this identity, M i
r,j0,j(q

i
r,q

i
d) is given in Definition 4 (or equivalently by (2.28)

and (2.31)) and the matrices [Ii(qi
r,q

i
d)] and [J i(qi

r,q
i
d)] in (2.27) and (2.29). Fur-

thermore, we have with notation of Definition 2 and when N = 3:

Ai
j0,j1,j2(q

i
r,q

i
d) := δΩi

j1(q
i
r) · [J i(qi

r,q
i
d)](δΩ

i
j2(q

i
r) × δΩi

j0(q
i
r))

+
∂δΩi

j1

∂qi
j2

(qi
r) · [Ii(qi

r,q
i
d)]δΩ

i
j0(q

i
r) + mi

∂δhi
j1

∂qi
j2

(qi
r) · δhi

j0(q
i
r), (3.7)

and

Bi
j0,j,k(qi

r,q
i
d) := δΩi

j0(q
i
r) ·

∂[Ii(qi
r,q

i
d)]

∂qi
d,k

δΩi
j(q

i
r). (3.8)

When N = 2, expressions (3.7) and (3.8) simplify as follows (keeping notation of
Definition 2):

Ai
j0,j1,j2(q

i
r,q

i
d) :=

∂δΩi
j1

∂qi
j2

(qi
r)I

i(qi
d)δΩ

i
j0(q

i
r) + mi

∂δhi
j1

∂qi
j2

(qi
r) · δhi

j0(q
i
r), (3.9)

and

Bi
j0,j,k(qi

r,q
i
d) := δΩi

j0(q
i
r)

∂Ii(qi
d)

∂qi
d,k

δΩi
j(q

i
r), (3.10)

where Ii(qi
d) is defined by (2.30).

The proof of this proposition is performed in Appendix B. About motion of solid,
one is more familiar with the classical so-called Euler equations written down for
example in [16, §5.5 pages 198-200] and which are expressed in the moving frame
attached to the body. However, under this form, the trajectories are only obtained
upon a reconstruction process. The form taken by the equations in the proposition
above is not new. A similar Lagrangian approach is used in [11] and more recently
in [28].
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3.2 Statement of the governing equations of motion derived

from Newton’s Laws

Summing up (2.38), (2.40) and (3.2) and adding initial data (namely initial positions
qi
r,j,0 ∈ R and initial velocities q̇i

r,j,0 ∈ R for the bodies and also initial velocity u0

for the fluid), we get the full coupled system of equations governing the system
fluid-bodies, deduced from Newton’s laws. Let us redisplay it properly:

ρF

(
∂u

∂t
(t) + (u(t) · ∇)u(t)

)
+ ∇p(t) = ρF∇G in Ω(qr,qd), t > 0, (3.11a)

∇ · u(t) = 0 in Ω(qr,qd), t > 0, (3.11b)

u(t) · n = 0 on Γ1, t > 0, (3.11c)

u(t) · n(qr,qd) − b(qr,qd) · q̇ = 0 on Γ2(qr,qd), t > 0, (3.11d)

d

dt

∂Li
b

∂q̇i
r,j

(qi
r,q

i
d, q̇

i
r, q̇

i
d) −

∂Li
b

∂qi
r,j

(qi
r,q

i
d,q̇

i
r, q̇

i
d)

= −
∫

Γi
2
(qi

r, qi
d)

p(t)bi
r,j(q

i
r,q

i
d) dΓ, t > 0, (3.11e)

1 ≤ j ≤ N i
r , 1 ≤ i ≤ n,

u(0) = u0, q̇i
r,j(0) = q̇i

r,j,0, qi
r,j(0) = qi

r,j,0, 1 ≤ j ≤ N i
r , 1 ≤ i ≤ n. (3.11f)

It is worth recalling that in this system, u, p and qr are the unknowns whereas qd

and qt are assigned as functions of t and used to control the motion of the bodies.
The coupling between the initial and boundary value problem (3.11a-3.11b) driving
the fluid flow and the ODE’s (3.11e) governing the rigid motions of the swimmers
arises not only through the boundary condition (3.11d) but also through the moving
domain Ω(qr,qd). Indeed, since Ω(qr,qd) depends on the position of the swimmers,
it is somehow also an unknown of the problem.

Up to now we have only assumed the fluid to be perfect. Indeed, System (3.11)
is valid for nonzero vorticity flow. We seek now the fluid’s velocity u as the gradient
of a potential function ψ(t):

u(t) = ∇ψ(t) in Ω(qr,qd), t > 0. (3.12)

We can rewrite equations (3.11a-3.11d) of System (3.11) with Bernoulli’s formula
(p0(t) > 0 stands for a real valued function of time only):

ρF

(
∂ψ

∂t
(t) +

|∇ψ|2
2

(t)

)
+ p(t) − p0(t) = ρF G in Ω(qr,qd), t > 0, (3.13a)

−∆ψ(q, q̇) = 0 in Ω(qr,qd), t > 0, (3.13b)

∂ψ

∂n
(q, q̇) = 0 on Γ1, t > 0, (3.13c)

∂ψ

∂n
(q, q̇) − b(qr,qd) · q̇ = 0 on Γ2(qr,qd), t > 0, (3.13d)

d

dt

∂Li
b

∂q̇i
r,j

(qi
r,q

i
d, q̇

i
r, q̇

i
d) −

∂Li
b

∂qi
r,j

(qi
r,q

i
d,q̇

i
r, q̇

i
d)

= −
∫

Γi
2
(qi

r, qi
d)

p(t)bi
r,j(q

i
r,q

i
d) dΓ, t > 0, (3.13e)

1 ≤ j ≤ N i
r , 1 ≤i ≤ n,

q̇i
r,j(0) = q̇i

r,j,0, qi
r,j(0) = qi

r,j,0, 1 ≤ j ≤ N i
r , 1 ≤i ≤ n. (3.13f)

Conditions (2.14), (2.16) and (2.18) ensure that the compatibility condition required
for the Neumann boundary value problem to admit a solution and that is:

∫

Γ(qr,qd)

∂ψ

∂n
(t) dΓ = 0, ∀ t ≥ 0,
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is satisfied. Since, for all i = 1, . . . , n, Γi(qi
r,q

i
d) is of class C2, the unitary normal

n(qi
r,q

i
d) is continuously differentiable and the functions bi

r,j(q
i
r,q

i
d), bi

r,k(qi
r,q

i
d)

and bi
t,l(q

i
r,q

i
d) defined by (A.1) are, at least, also continuously differentiable. We

deduce, referring to [7, Section IX.5], that when Ω is bounded, ψ(t) is well defined
for all t ≥ 0 and belongs to the classical Sobolev space H2(Ω(qr,qd)). When Ω is
not bounded, results in [2, 3, 5] allow us to draw the same conclusion in suitable
weighted Sobolev spaces. The important point is that ψ(t) is always regular enough
nearby the boundaries of the bodies. The potential function is defined only up to an
additive constant (because Ω(qr,qd) is a connected set by hypothesis). To remove
this indetermination, we add for instance the condition:

∫

Γ2(qr, qd)

ψ(t,x) dΓ = 0, ∀ t ≥ 0. (3.14)

Observe that within this model, the state of the fluid is completely determined
by the potential function ψ(t) through identity (3.12). In addition, ψ(t) itself is
uniquely determined by the generalized coordinates q, q̇, for it is the solution of
a Neumann boundary value problem. We shall denote it ψ(q, q̇) from now on.
System (3.11) above can formally be reduced to a system of ODE’s of unknowns
qi

r, i = 1, . . . , n and its time derivatives.

3.3 Euler-Lagrange’s equations of motion

Let us now tackle the same problem of modelling but with a different point of view.
We consider the system fluid-bodies in its entirety and we compute its Lagrangian
function. It is obtained by adding the kinetic energy of the fluid to the Lagrangian
function of the bodies, defined earlier by (2.37). It comes:

L(q, q̇) =

n∑

i=1

Li
b(q, q̇) +

1

2

∫

Ω(qr, qd)

ρF |∇ψ(q, q̇)|2 dx. (3.15)

The full system of coupled equations is next obtained by replacing (3.11e) and
(3.13a) by Euler-Lagrange’s equations for the system bodies-fluid:

−∆ψ(q, q̇) = 0 in Ω(qr,qd), t > 0, (3.16a)

∂ψ

∂n
(q, q̇) = 0 on Γ1, t > 0, (3.16b)

∂ψ

∂n
(q, q̇) = bi(qi

r,q
i
d) · q̇i on Γi

2(q
i
r,q

i
d), t > 0, (3.16c)

1 ≤ i ≤ n,
d

dt

∂L
∂q̇i

r,j

(q, q̇) − ∂L
∂qi

r,j

(q, q̇) = F i
j (q, q̇), 1 ≤ j ≤ N i

r t > 0, (3.16d)

1 ≤ i ≤ n

q̇i
r,j(0) = q̇i

r,j,0, qi
r,j(0) = qi

r,j,0, 1 ≤ j ≤ N i
r , 1 ≤ i ≤ n. (3.16e)

In (3.16d), Fi(qi, q̇i) := (F i
1(q

i, q̇i), . . . , F i
N i

r
(qi, q̇i))T stand for generalized forces

that remain to be determined. They are due to the presence of nonholonomic
constraints resulting from the way we have modelled the action of the thrusters.
Indeed, the velocity of the fluid blown out by the thrusters is prescribed.

As for System (3.13), within this latter model, ψ(q, q̇) can be expressed in terms
of q and q̇ (for being uniquely determined by the data q and q̇) and the resulting
system can be reduced to a system of ODE’s in the variables qi

r, i = 1, . . . , n and
its time derivatives.

The natural question arising now is: does the reduced system of ODE’s obtained
with Euler-Lagrange’s equations fits with the one obtained with Newton’s laws ?
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3.4 Main equivalence result

The first one of the main results brought in in this paper is:

Theorem 3.1 Let us assume that Γ0 (the boundary of the fluid at the time t = 0)
is twice continuously differentiable as well as the functions of deformation (2.2) and
that the thrusters remain inactive (what means that q̇i

t = 0) for all t > 0. Then,
F i

j (q
i, q̇i) = 0 in (3.16d) for all i = 1, . . . , n, all j = 1, . . . ,N i

r and all t > 0. In
this case, System (3.13) is equivalent (i.e. yield the same system of ODE’s) than
System (3.16).

When thrusters work, Fi(qi, q̇i) 6= 0 and we are not able to determine their ex-
pressions with Lagrangian approach only. We argue that under the smoothness
assumption of Theorem 3.1, both systems of governing equations (3.13) and (3.16)
must yield the same systems of ODE’s, what allow us to deduce the expression of
these generalized forces.

The smoothness assumption on Γ0 is certainly not optimal. For instance, the
proof of Theorem 3.1 above can be carried out assuming that Γ0 is of class C1,1

(continuously differentiable with derivative lipschitz continuous) only. The point
is that when Γ0 is not smooth enough (with singular points like cuspid points for
instance), both models do not fit any longer as proved in Section 5 by exhibiting a
counterexample.

In this paper, we are not concerned with studying whether Systems (3.13) or
(3.16) admit solutions. Nevertheless, existence and regularity results for similarly
systems are given in [28].

The proof of Theorem 3.1 deduces straightforwardly from the explicit computa-
tions of the governing ODE’s of motion that will be done in the following subsection.

3.5 Fully explicit statement of the equations of motion

According to Kirchhoff’s principle, we can decompose the potential ψ(q, q̇) into the
form:

ψ(q, q̇) =

n∑

i=1




N i
r∑

j=1

q̇i
r,jϕ

i
r,j(qr,qd) +

N i
d∑

k=1

q̇i
d,kϕi

d,k(qr,qd) +

N i
t∑

l=1

q̇i
t,lϕ

i
t,l(qr,qd)


 , (3.17)

where the functions ϕi
r,j(q

i
r,q

i
d), ϕi

d,k(qi
r,q

i
d) and ϕi

t,l(q
i
r,q

i
d) are harmonic in Ω(qr,qd)

and satisfy the boundary conditions for all i = 1, . . . , n:

∂ϕi
r,j

∂n
(qr,qd) = bi

r,j(qr) on Γ(qr,qd), j = 1, . . . ,N i
r ,

∂ϕi
d,k

∂n
(qr,qd) = bi

d,k(qr,qd) on Γ(qr,qd), k = 1, . . . ,N i
d,

∂ϕi
t,l

∂n
(qr,qd) = bi

t,l(qr,qd) on Γ(qr,qd), l = 1, . . . ,N i
t .

Arguing as for the function ψ(t), at the end of Subsection 3.2, we claim that the
functions ϕi

r,j(q
i
r,q

i
d), ϕi

d,k(qi
r,q

i
d) and ϕi

t,l(q
i
r,q

i
d) are well defined and belong to

suitable Sobolev spaces. In particular, they are smooth enough in a neighborhood
of Γi

2(q
i
r,q

i
d).

We can now give the expression of the generalized forces due to the action of the
thrusters. The following proposition will be restated (see Corollary 4.1) and proved
later on.
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Proposition 3.3 Under the same smoothness assumptions as in Theorem 3.1. For
all i0 = 1, . . . , n and all j0 = 1, . . . ,N i0

r , the expressions of the generalized forces in
(3.16d), are:

F i0
j0

(q, q̇) =

n∑

i=1

N i
r∑

j=1

N
i0
t∑

l=1

U
i0,i
j0,j,l(q)q̇i

r,j q̇
i0
t,l +

n∑

i=1

N i
d∑

k=1

N
i0
t∑

l=1

V
i0,i
j0,k,l(q)q̇i

d,k q̇i0
t,l

+

n∑

i=1

N
i0
t∑

l1=1

N i
t∑

l2=1

W
i0,i
j0,l1,l2

(q)q̇i0
t,l1

q̇i
t,l2 ,

where:

U
i0,i
j0,j,l(q) := −

∫

Γ
i0
2

(q)

ρF (Hbi0
r,j0

bi0
t,l + ∇Γbi0

t,l · δxi0
r,j0

)ϕi
r,j dΓ

+ δi,i0

∫

Γ
i0
2

(q)

ρF bi0
r,j0

bi
r,jb

i0
t,l dΓ,

and

V
i0,i
j0,k,l(q) := −

∫

Γ
i0
2

(q)

ρF (Hbi0
r,j0

bi0
t,l + ∇Γbi0

t,l · δxi0
r,j0

)ϕi
d,k dΓ

+ δi,i0

∫

Γ
i0
2

(q)

ρF bi0
r,j0

bi
d,kbi0

t,l dΓ,

and

W
i0,i
j0,l1,l2

(q) := −
∫

Γ
i0
2

(q)

ρF (Hbi0
r,j0

bi0
t,l1

+ ∇Γbi0
t,l1

· δxi0
r,j0

)ϕi
t,l2 dΓ

+ δi,i0

∫

Γ
i0
2

(q)

ρF bi0
r,j0

bi0
t,l1

bi
t,l2 dΓ.

In these identities, δi0,i1 is the Kronecker’s symbol that takes the value 1 when
i0 = i1 and 0 otherwise. We recall that H is defined in Subsection 2.1 and stands
for the mean curvature of the surface Γi0

2 (q) (N = 3) or the curvature of the curve
Γi0

2 (q) (N = 2) and ∇Γ is the tangential gradient (N = 3) or merely the tangential
derivative when N = 2.

Next, we give the second main result of this article:

Theorem 3.2 The nN(N − 1)/2 ODE’s in qi
r,j driving the motion of the bodies

under the action of the prescribed controls qd and qt are, for all i0 = 1, . . . , n and
all j0 = 1, . . . ,N i0

r :

n∑

i=1

N i
r∑

j=1

M
i0,i
j0,j(q)q̈i

r,j +
1

2

n∑

i1=1

n∑

i2=1

N i1
r∑

j1=1

N i2
r∑

j2=1

A
i0,i1,i2
j0,j1,j2

(q)q̇i1
r,j1

q̇i2
r,j2

+

n∑

i1=1

n∑

i2=1

N i1
r∑

j=1

N
i2
d∑

k=1

B
i0,i1,i2
j0,j,k (q)q̇i1

r,j q̇
i2
d,k +

n∑

i1=1

n∑

i2=1

N i1
r∑

j=1

N
i2
t∑

l=1

C
i0,i1,i2
j0,j,l (q)q̇i1

r,j q̇
i2
t,l =

1

2

n∑

i1=1

n∑

i2=1

N
i1
d∑

k1=1

N
i2
d∑

k2=1

D
i0,i1,i2
j0,k1,k2

(q)q̇i1
d,k1

q̇i2
d,k2

+
n∑

i1=1

n∑

i2=1

N
i1
d∑

k=1

N
i2
t∑

l=1

E
i0,i1,i2
j0,k,l (q)q̇i1

d,k q̇i2
t,l

+
1

2

n∑

i1=1

n∑

i2=1

N
i1
t∑

l1=1

N
i2
t∑

l2=1

F
i0,i1,i2
j0,l1,l2

(q)q̇i1
t,l1

q̇i2
t,l2

+

n∑

i=1

N i
d∑

k=1

G
i0,i
j0,k(q)q̈i

d,k

+

n∑

i=1

N i
t∑

l=1

H
i0,i
j0,l(q)q̈i

t,l + I
i0
j0

(q).
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All of the amounts involved in these equations can be expressed only in terms of the
values of the functions ϕi

r,j(qr,qd), ϕi
d,k(qr,qd) and ϕi

t,l(qr,qd) on the boundaries
of the bodies and of geometric data (namely the second fundamental form) related
to these boundaries. We get the following expressions (we drop qr and qd most of
time to shorten notation and use notation of Proposition 3.3):

M
i0,i
j0,j(q) :=

∫

Γ
i0
2

(q)

ρF ϕi
r,jb

i0
r,j0

dΓ + δi0,iM
i0
r,j0,j , (3.18a)

are the entries of the mass matrix of the system bodies-fluid, M i0
r,j0,j being given in

Definition 4. Furthermore, we have:

A
i0,i1,i2
j0,j1,j2

(q) := −
∫

Γ
i1
2

(q)

ρF (∇Γϕi0
r,j0

· ∇Γϕi2
r,j2

)bi1
r,j1

dΓ

−
∫

Γ
i2
2

(q)

ρF (∇Γϕi0
r,j0

· ∇Γϕi1
r,j1

)bi2
r,j2

dΓ +

∫

Γ
i0
2

(q)

ρF (∇Γϕi1
r,j1

· ∇Γϕi2
r,j2

)bi0
r,j0

dΓ

− 2δi1,i2

∫

Γ
i1
2

(q)

ρF (H bi1
r,j1

bi2
r,j2

+ 〈Π2, δΓx
i1
r,j1

, δΓx
i2
r,j2

〉 − βi1
rr,j1,j2

+ ∇Γbi1
r,j1

· δΓx
i2
r,j2

+ ∇Γbi2
r,j2

· δΓx
i1
r,j1

)ϕi0
r,j0

dΓ

+ δi1,i0δi2,i0


Ai0

j0,j1,j2
(q) + Ai0

j0,j2,j1
(q) +

∫

Γ
i0
2

(q)

ρF bi0
r,j0

bi1
r,j1

bi2
r,j2

dΓ


 , (3.18b)

where Ai0
j0,j1,j2

(q) is given in (3.7) and βi
rr,j1,j2

, βi
rd,j,k, βi

dd,k1,k2
and in (A.3). We

have, next:

B
i0,i1,i2
j0,j,k (q) := −

∫

Γ
i1
2

(q)

ρF (∇Γϕi0
r,j0

· ∇Γϕi2
d,k)bi1

r,j dΓ

−
∫

Γ
i2
2

(q)

ρF (∇Γϕi0
r,j0

· ∇Γϕi1
r,j)b

i2
d,k dΓ +

∫

Γ
i0
2

(q)

ρF (∇Γϕi1
r,j · ∇Γϕi2

d,k)bi0
r,j0

dΓ

− 2δi1,i2

∫

Γ
i1
2

(q)

ρF (H bi1
r,jb

i2
d,k + 〈Π2, δΓx

i1
r,j , δΓx

i2
d,k〉 − βi1

rd,j,k

+ ∇Γbi1
r,j · δΓx

i2
d,k + ∇Γbi2

d,k · δΓx
i1
r,j)ϕ

i0
r,j0

dΓ

+ δi1,i0δi2,i0


Bi0

j0,j,k(q) +

∫

Γ
i0
2

(q)

ρF bi0
r,j0

bi1
r,jb

i2
d,k dΓ


 , (3.18c)

where Bi0
j0,j,k(q) is given in (3.8). Other terms read:

C
i0,i1,i2
j0,j,l (q) := −

∫

Γ
i1
2

(q)

ρF (∇Γϕi0
r,j0

· ∇Γϕi2
t,l)b

i1
r,j dΓ

+

∫

Γ
i0
2

(q)

ρF (∇Γϕi1
r,j · ∇Γϕi2

t,l)b
i0
r,j0

dΓ

− δi1,i2

∫

Γ
i1
2

(q)

ρF (Hbi1
r,jb

i2
t,l + ∇Γbi2

t,l · δΓx
i1
r,j)ϕ

i0
r,j0

dΓ

δi1,i0δi2,i0

∫

Γ
i0
2

(q)

ρF bi0
r,j0

bi1
r,jb

i2
t,l dΓ, (3.18d)
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and

D
i0,i1,i2
j0,k1,k2

(q) :=

∫

Γ
i1
2

(q)

ρF (∇Γϕi0
r,j0

· ∇Γϕi2
d,k2

)bi1
d,k1

dΓ

+

∫

Γ
i2
2

(q)

ρF (∇Γϕi0
r,j0

· ∇Γϕi1
d,k1

)bi2
d,k2

dΓ −
∫

Γ
i0
2

(q)

ρF (∇Γϕi1
d,k1

· ∇Γϕi2
d,k2

)bi0
r,j0

dΓ

+ 2δi1,i2

∫

Γ
i1
2

(q)

ρF (H bi1
d,k1

bi2
d,k2

+ 〈Π2, δΓx
i1
d,k1

, δΓx
i2
d,k2

〉 − βi1
dd,k1,k2

+ ∇Γbi1
d,k1

· δΓx
i2
d,k2

+ ∇Γbi2
d,k2

· δΓx
i1
d,k1

)ϕi0
r,j0

dΓ

− δi1,i0δi2,i0

∫

Γ
i0
2

(q)

ρF bi0
r,j0

bi1
d,k1

bi2
d,k2

dΓ, (3.18e)

and

E
i0,i1,i2
j0,k,l (q) :=

∫

Γ
i1
2

(q)

ρF (∇Γϕi0
r,j0

· ∇Γϕi2
t,l)b

i1
d,k dΓ

−
∫

Γ
i0
2

(q)

ρF (∇Γϕi1
d,k · ∇Γϕi2

t,l)b
i0
r,j0

dΓ

+ δi1,i2

∫

Γ
i1
2

(q)

ρF (Hbi1
d,kbi2

t,l + ∇Γbi2
t,l · δΓx

i1
d,k)ϕi0

r,j0
dΓ

− δi1,i0δi2,i0

∫

Γ
i0
2

(q)

ρF bi0
r,j0

bi1
d,kbi2

t,l dΓ, (3.18f)

and

F
i0,i1,i2
j0,l1,l2

(q) := −
∫

Γ
i0
2

(q)

ρF (∇Γϕi1
t,l1

· ∇Γϕi2
t,l2

)bi0
r,j0

dΓ

− δi1,i0δi2,i0

∫

Γ
i0
2

(q)

ρF bi0
r,j0

bi1
t,l1

bi2
t,l2

dΓ, (3.18g)

and, at last:

G
i0,i
j0,k(q) := −

∫

Γ
i0
2

(q)

ρF ϕi
d,kbi0

r,j0
dΓ, (3.18h)

H
i0,i
j0,l(q) := −

∫

Γ
i0
2

(q)

ρF ϕi
t,lb

i0
r,j0

dΓ, (3.18i)

I
i0
j0

(q) :=

∫

Si0 (q)

(ρS − ρF )∇G · δxi0
r,j0

dx. (3.18j)

These equations fit with those given in [28] in a more abstract form and for de-
formable bodies without thrusters.

Observe that the equations are deeply coupled, what means in particular that
the presence of any additional swimmer impacts the motion of the others. When
the converse is assumed, one commonly says that the dynamics of the bodies are
hydrodynamically decoupled. This assumption yields massive simplifications. Al-
though pertinent when the bodies are far one from the others, it is not any longer
true for closed bodies as shown in [18]. Indeed, in this article, we show that the
velocity damping of a ball getting close to a wall in a perfect fluid, is roughly thirty
percents of its initial velocity and hence that D’Alembert’s paradox does not hold
in this case.

Let us now explain how expressions (3.18) are obtained.
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4 Comparison between both formalisms

In this section we perform the proof of Theorem 3.2.

4.1 Governing equations of motion derived from System (3.13)

The functions ϕi
r,j(qr,qd), ϕi

d,k(qr,qd) and ϕi
t,l(qr,qd) will play, most of time,

symmetric roles in the subsequent computations, hence we apply the relabelling
process described at the end of Appendix A by (A.4). It leads to the definition of
the functions ψj(q) for all j = 1, . . . ,N and identity (3.17) can hence be rewritten
in the short form:

ψ(q, q̇) =

N∑

i=1

q̇iψi(q).

The same relabelling process is applied to define δxj(q) and βj,k(q), j, k = 1, . . . ,N
from the quantities defined in (A.3). We introduce the Lagrangian function for the
set of bodies: Lb(q, q̇) :=

∑n
i=1 Li

b(q, q̇) and since, for all i1, i2 = 1, . . . , n such that
i1 6= i2 we have:

∂Li1
b

∂qi2
r,j2

(q, q̇) = 0 and
∂Li1

b

∂q̇i2
j2

(q, q̇) = 0,

for all j1 = 1, . . . ,N i1
r and all j2 = 1, . . . ,N i2

r , we can rewrite the Nr ODE’s (3.11e)
under the form, for all i = 1, . . . ,Nr:

d

dt

∂Lb

∂q̇i
(q, q̇) − ∂Lb

∂qi
(q, q̇) +

N∑

j=1

(∫

Γ2(q)

ρF ψj(q) bi(q) dΓ

)
q̈j =

−
N∑

j=1

(∫

Γ2(q)

ρF

(
d

dt

(
ψj(q)

)
+

1

2

N∑

k=1

∇ψj(q) · ∇ψk(q)q̇k

)
bi(q) dΓ

)
q̇j ,

where we have use Bernoulli’s formula (3.13a). But, remarking again that each
function ψj(q) depends on t only through the variable q, we get, applying the chain
rule:

d

dt

(
ψj(q)

)
=

N∑

k=1

∂ψj

∂qk
(q)q̇k, ∀ j = 1, . . . ,N , ∀ t > 0,

and hence, we obtain that, for all i = 1, . . . ,Nr:

d

dt

∂Lb

∂q̇i
(q, q̇) − ∂Lb

∂qi
(q, q̇) +

N∑

j=1

(∫

Γ2(q)

ρF ψj(q) bi(q) dΓ

)
q̈j

= −
N∑

k=1

N∑

j=1

(∫

Γ2(q)

ρF

(
∂ψj

∂qk
(q) +

1

2
∇ψj(q) · ∇ψk(q)

)
bi(q) dΓ

)
q̇j q̇k.

The quadratic form on the right can be symmetrized in order to obtain the equi-
valent formulation:

d

dt

∂Lb

∂q̇i
(q, q̇) − ∂Lb

∂qi
(q, q̇) +

N∑

j=1

(∫

Γ2(q)

ρF ψj(q) bi(q) dΓ

)
q̈j

= −1

2

N∑

k=1

N∑

j=1

(∫

Γ2(q)

ρF

(
∂ψj

∂qk
(q) +

∂ψk

∂qj
(q)

+ ∇ψj(q) · ∇ψk(q)
)
bi(q) dΓ

)
q̇j q̇k. (4.1)
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4.2 Governing equations of motion derived from System (3.16)

Plugging the expression (3.17) of the potential function into (3.15) and applying the
relabelling process described in Appendix A, we get, by virtue of Green’s formula:

L(q, q̇) = Lb(q, q̇) +
1

2

N∑

j=1

N∑

k=1

(∫

Γ2(q)

ρF ψj(q) bk(q) dΓ

)
q̇j q̇k.

Differentiating with respect to q̇i (i = 1, . . . ,Nr) and since (invoking again Green’s
formula)

∫
Γ2(q)

ρF ψjbi dΓ =
∫
Γ2(q)

ρF ψibj dΓ, one obtains:

∂L
∂q̇i

(q, q̇) =
∂Lb

∂q̇i
(q, q̇) +

N∑

j=1

(∫

Γ2(q)

ρF ψj(q) bi(q) dΓ

)
q̇j . (4.2)

Differentiating again with respect to t this equality, it comes:

d

dt

∂L
∂q̇i

(q, q̇) =
d

dt

∂Lb

∂q̇i
(q, q̇) +

N∑

j=1

(∫

Γ2(q)

ρF ψj(q) bi(q) dΓ

)
q̈j

+

N∑

j=1

d

dt

(∫

Γ2(q)

ρF ψj(q) bi(q) dΓ

)
q̇j .

But according to a still used argument, we get on the one hand:

d

dt

(∫

Γ2(q)

ρF ψj(q) bi(q) dΓ

)
=

N∑

k=1

∂

∂qk

(∫

Γ2(q)

ρF ψj(q) bi(q) dΓ

)
q̇k, (4.3)

while on the other hand we have, for all i = 1, . . . ,Nr:

∂L
∂qi

(q, q̇) =
∂Lb

∂qi
(q, q̇) +

1

2

N∑

j=1

N∑

k=1

∂

∂qi

(∫

Γ2(q)

ρF ψj(q) bk(q) dΓ

)
q̇j q̇k. (4.4)

Eventually, summarizing (4.3) and (4.4), we get, for all i = 1, . . . ,Nr:

d

dt

∂L
∂q̇i

(q, q̇) − ∂L
∂qi

(q, q̇) =
d

dt

∂Lb

∂q̇i
(q, q̇) − ∂Lb

∂qi
(q, q̇)

+

N∑

j=1

(∫

Γ2(q)

ρF ψj(q) bi(q) dΓ

)
q̈j +

N∑

j=1

N∑

k=1

[
∂

∂qk

(∫

Γ2(q)

ρF ψj(q) bi(q) dΓ

)

−1

2

∂

∂qi

(∫

Γ2(q)

ρF ψj(q) bk(q) dΓ

)]
q̇j q̇k.

We symmetrize the quadratic form on the right, and substitute the identity above
into (3.16d) to obtain:

d

dt

∂Lb

∂q̇i
(q, q̇) − ∂Lb

∂qi
(q, q̇) +

N∑

j=1

(∫

Γ2(q)

ρF ψj(q) bi(q) dΓ

)
q̈j = Fi(q, q̇)

− 1

2

N∑

j=1

N∑

k=1

[
∂

∂qk

(∫

Γ2(q)

ρF ψj(q) bi(q) dΓ

)
+

∂

∂qj

(∫

Γ2(q)

ρF ψk(q) bi(q) dΓ

)

− ∂

∂qi

(∫

Γ2(q)

ρF ψj(q) bk(q) dΓ

)]
q̇j q̇k, (4.5)
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where the expressions of Fi(q, q̇) for all i = 1, . . . ,N i
r are obtained from those of

the generalized forces F i
k(q, q̇) via the relabelling process. The game consists now

in comparing both ODE’s (4.1) and (4.5). It is clear that we will need to compute
the derivatives ∂ψi(q)/∂qk, that are the derivatives of a Neumann boundary value
problem with respect to variables relating to the shape of the PDE’s domain. This
task will be achieved by using methods of shape optimization theory.

4.3 Explicit computation of both quadratic forms

In this section, due to the length of the formula we will handle, we will drop q most
of time to shorten notation.

Lemma 4.1 Assume that Γ0 is of class C2 as well as the functions of deformation
(2.2). Then, for any i = 1, . . . ,N and any k = 1, . . . ,Nr+Nd, the function ∂ψi/∂qk

is well defined. It is the variational solution, in the Sobolev space H1(Ω(q)) when
Ω is bounded or in suitable weighted Sobolev spaces when Ω is not, of the Neumann
boundary value problem:

−∆

(
∂ψi

∂qk

)
= 0 in Ω(q),

∂

∂n

(
∂ψi

∂qk

)
=

{
gi,k on Γ2(q),

0 on Γ1.
(4.6a)

In this system, gi,k ∈ H−1/2(Γ2(q)) and reads, when i = 1, . . . ,Nr + Nd:

gi,k := ∆Γψi bk −Hbi bk − 〈Π2, δΓxk, δΓxi〉 + ∇Γψi · ∇Γbk + βi,k

−∇Γbk · δΓxi −∇Γbi · δΓxk, (4.6b)

where ∆Γ is the Laplace-Beltrami operator on Γ2(q) defined for instance in [17,
Definition 5.4.11 page 196]. When i = Nr +Nd +1, . . . ,N , some terms vanish and
expression (4.6b) turns into:

gi,k := ∆Γψi bk −Hbi bk + ∇Γψi · ∇Γbk −∇Γbi · δΓxk. (4.6c)

Moreover we have, for all i, j = 1, . . . ,N and k = 1, . . . ,Nr + Nd:

∂

∂qk

(∫

Ω(q)

ρF (∇ψi · ∇ψj) dx

)
=

∫

Γ2(q)

ρF (∇ψi · ∇ψj)bk dΓ

+

∫

Ω(q)

ρF∇
(

∂ψi

∂qk

)
· ∇ψj dx +

∫

Ω(q)

ρF∇
(

∂ψj

∂qk

)
· ∇ψi dx. (4.7)

Notice that when k ≥ Nr + Nd + 1, then ∂ψ/∂qk ≡ 0 since none of the terms
depends on qk. The proof of this lemma is given in Appendix B.

We can now realize our aim, that is to compar both quadratic forms in (4.1)
and in (4.5). Theorem 3.2 is a straight consequence of the following lemma:

Lemma 4.2 Under the assumptions of Lemma 4.1 and for all i = 1, . . . ,Nr, all
j = 1, . . . ,Nr + Nd and all k = 1, . . . ,Nr + Nd, we have the equalities:

∫

Γ2(q)

ρF

(
∂ψj

∂qk
+

∂ψk

∂qj
+ ∇ψj · ∇ψk

)
bi dΓ =

∂

∂qk

(∫

Γ2(q)

ρF ψj bi dΓ

)
+

∂

∂qj

(∫

Γ2(q)

ρF ψk bi dΓ

)
− ∂

∂qi

(∫

Γ2(q)

ρF ψj bk dΓ

)
. (4.8)
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Both, left and right hand side terms, are equal to:

−
∫

Γ2(q)

ρF (∇Γψi · ∇Γψj)bk dΓ −
∫

Γ2(q)

ρF (∇Γψi · ∇Γψk)bj dΓ

+

∫

Γ2(q)

ρF (∇Γψj · ∇Γψk)bi dΓ − 2

∫

Γ2(q)

ρF

(
Hbjbk + 〈Π2, δΓxj , δΓxk〉

− βj,k + ∇Γbk · δΓxj + ∇Γbj · δΓxk

)
ψi dΓ +

∫

Γ2(q)

ρF bibjbk dΓ. (4.9)

For all i = 1, . . . ,Nr and all j = 1, . . . ,Nr + Nd and all k = Nr + Nd + 1, . . . ,N ,
equality (4.8) does not hold any longer. Expression above turns into:

∫

Γ2(q)

ρF

(
∂ψj

∂qk
+

∂ψk

∂qj
+ ∇ψj · ∇ψk

)
bi dΓ =

−
∫

Γ2(q)

ρF (∇Γψi · ∇Γψk)bj dΓ +

∫

Γ2(q)

ρF (∇Γψj · ∇Γψk)bi dΓ

−
∫

Γ2(q)

ρF (Hbjbk + ∇Γbk · δΓxj)ψi dΓ +

∫

Γ2(q)

ρF bibjbk dΓ,

whereas:

∂

∂qk

(∫

Γ2(q)

ρF ψj bi dΓ

)
+

∂

∂qj

(∫

Γ2(q)

ρF ψk bi dΓ

)
− ∂

∂qi

(∫

Γ2(q)

ρF ψj bk dΓ

)
=

−
∫

Γ2(q)

ρF (∇Γψi · ∇Γψk)bj dΓ +

∫

Γ2(q)

ρF (∇Γψj · ∇Γψk)bi dΓ

−
∫

Γ2(q)

ρF (Hbjbk + ∇Γbk · δΓxj)ψi dΓ

+

∫

Γ2(q)

ρF (Hbibk + ∇Γbk · δΓxi)ψj dΓ.

At last, for all i = 1, . . . ,Nr, all j = Nr + Nd + 1, . . . ,N and all k = Nr + Nd +
1, . . . ,N :

∫

Γ2(q)

ρF

(
∂ψj

∂qk
+

∂ψk

∂qj
+ ∇ψj · ∇ψk

)
bi dΓ =

∫

Γ2(q)

ρF (∇Γψj · ∇Γψk)bi dΓ +

∫

Γ2(q)

ρF bibjbk dΓ,

while

∂

∂qk

(∫

Γ2(q)

ρF ψj bi dΓ

)
+

∂

∂qj

(∫

Γ2(q)

ρF ψk bi dΓ

)
− ∂

∂qi

(∫

Γ2(q)

ρF ψj bk dΓ

)
=

∫

Γ2(q)

ρF (∇Γψj · ∇Γψk)bi dΓ +

∫

Γ2(q)

ρF (Hbibj + ∇Γbj · δΓxi)ψk dΓ

+

∫

Γ2(q)

ρF (Hbibk + ∇Γbk · δΓxi)ψj dΓ −
∫

Γ2(q)

ρF bibjbk dΓ.
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Proof : Taking into account (4.6a) and applying twice Green’s formula, we can
rewrite the left hand side of (4.8) as follows:

∫

Γ2(q)

ρF

(
∂ψj

∂qk
+

∂ψk

∂qj
+ ∇ψj · ∇ψk

)
bi dΓ =

∫

Γ2(q)

ρF
∂

∂n

(
∂ψj

∂qk

)
ψi dΓ +

∫

Γ2(q)

ρF
∂

∂n

(
∂ψk

∂qj

)
ψi dΓ

+

∫

Γ2(q)

ρF (∇Γψj · ∇Γψk)bi dΓ +

∫

Γ2(q)

ρF bibjbk dΓ. (4.10)

Concerning the right hand side terms in (4.8), we use formula (4.7) combined with
Green’s formula to obtain, after simplifying:

∂

∂qk

(∫

Γ2(q)

ρF ψj bi dΓ

)
+

∂

∂qj

(∫

Γ2(q)

ρF ψk bi dΓ

)
− ∂

∂qi

(∫

Γ2(q)

ρF ψj bk dΓ

)
=

∫

Γ2(q)

ρF
∂

∂n

(
∂ψj

∂qk

)
ψi dΓ +

∫

Γ2(q)

ρF
∂

∂n

(
∂ψi

∂qk

)
ψj dΓ

+

∫

Γ2(q)

ρF (∇Γψj · ∇Γψi)bk dΓ +

∫

Γ2(q)

ρF
∂

∂n

(
∂ψk

∂qj

)
ψi dΓ

+

∫

Γ2(q)

ρF
∂

∂n

(
∂ψi

∂qj

)
ψk dΓ +

∫

Γ2(q)

ρF (∇Γψk · ∇Γψi)bj dΓ

−
∫

Γ2(q)

ρF
∂

∂n

(
∂ψj

∂qi

)
ψk dΓ −

∫

Γ2(q)

ρF
∂

∂n

(
∂ψk

∂qi

)
ψj dΓ

−
∫

Γ2(q)

ρF (∇Γψj · ∇Γψk)bi dΓ +

∫

Γ2(q)

ρF bibjbk dΓ. (4.11)

Green-like formula [17, Theorem 5.4.13, formula (5.59) pages 196-197] yields:

∫

Γ2(q)

ρF ∆Γψibkψj dΓ = −
∫

Γ2(q)

ρF (∇Γψi · ∇Γψj)bk dΓ −
∫

Γ2(q)

ρF (∇Γψi · ∇Γbk)ψj dΓ,

and then, taking into account (4.6a) and (4.6b), we obtain, for all i, k = 1, . . . ,Nr +
Nd:

∫

Γ2(q)

ρF
∂

∂n

(
∂ψi

∂qk

)
ψj dΓ = −

∫

Γ2(q)

ρF (∇Γψi · ∇Γψj)bk dΓ

−
∫

Γ2(q)

ρF

(
H bi bk + 〈Π2, δΓxk, δΓxi〉 − βi,k

+ ∇Γbk · δΓxi + ∇Γbi · δΓxk

)
ψj dΓ. (4.12a)

When i = Nr + Nd + 1, . . . ,N , this identity becomes, according yo (4.6c):

∫

Γ2(q)

ρF
∂

∂n

(
∂ψi

∂qk

)
ψj dΓ = −

∫

Γ2(q)

ρF (∇Γψi · ∇Γψj)bk dΓ

−
∫

Γ2(q)

ρF (H bi bk + ∇Γbi · δΓxk)ψj dΓ. (4.12b)
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Of course, ∂ψi/∂qk ≡ 0 for all k = Nr + Nd + 1, . . . ,N . Next, plugging (4.12)
into (4.10) and (4.11), we obtain the equalities of the lemma and the proof is then
complete. ¥

Since, obviously, there is only one set of governing equations of motion valid for
our problem, we deduce from the previous lemma the expressions of the generalized
forces given in Proposition 3.3, by equalizing (4.1) and (4.5) and taking into account
the results of Lemma 4.2. We display them with the notation used in this section:

Corollary 4.1 The expression of the generalized force Fi is, for any i = 1, . . . ,Nr:

Fi(q) :=
1

2

N∑

j=1

N∑

k=1

fi,j,k(q)q̇j q̇k,

where fi,j,k(q) = fi,k,j(q) for all j, k = 1, . . . ,Nr + Nd. Moreover, for all j, k =
1, . . . ,Nr + Nd:

fi,j,k(q) := 0. (4.13a)

For all j = 1, . . . ,Nr+Nd and all k = Nr+Nd+1, . . . ,N , the expression of fi,j,k(q)
becomes:

fi,j,k(q) := −
∫

Γ2(q)

ρF (Hbibk + ∇Γbk · δΓxi)ψj dΓ +

∫

Γ2(q)

ρF bibjbk dΓ. (4.13b)

At last, for all j, k = Nr + Nd + 1, . . . ,N , we have:

fi,j,k(q) := −
∫

Γ2(q)

ρF (Hbibj + ∇Γbj · δΓxi)ψk dΓ

−
∫

Γ2(q)

ρF (Hbibk + ∇Γbk · δΓxi)ψj dΓ + 2

∫

Γ2(q)

ρF bibjbk dΓ. (4.13c)

5 On the vertical motion of a nonsmooth shaped

solid

In this section, we will provide a counterexample to Theorem 3.1 by exhibiting a two
dimensional nonsmooth solid moving vertically in a fluid and for which Newtonian
and Lagrangian approaches lead to distinct results. The solid is the one pictured on
the right of Figure 2, and we assume that the system fluid-solid fills the whole two
dimensional space. We will use complex analysis to compute explicitly the potential
function of the fluid flow, so we identify the space with C (the set of the complex
numbers). However, when there is no confusion possible, we will mix the complex
notation ξ = ξ1 + iξ2 (i2 = −1) with the real one ξ = (ξ1, ξ2)

T and even with the
polar coordinates (r, θ), r = |ξ| and θ = Arg (ξ) (i.e. ξ = reiθ). The solid has an
axis of symmetry and we assume that at the time t = 0 this axis coincides with the
imaginary axis and that the center of mass of the rigid body lies at the origin of
the frame. If we assume in addition that the density of the rigid body is constant,
then, for symmetry reasons, its center of mass will remain on the imaginary axis
for all t > 0 whenever the initial velocity of the solid is vertical. Therefore, within
this configuration, the system has only one degree of freedom. We denote by ih the
position of the center of mass of the solid and iḣ stands for its velocity. The domain
occupied by the solid is S(h) while Γ(h) stands for its boundary and Ω(h) := C\S(h)
is the domain of the surrounded fluid. We denote merely S := S(0), Γ := Γ(0) and
Ω := Ω(0). The boundary Γ is the image of the unitary circle by the mapping:

f(ξ) :=
3ξ2 − 1

2ξ
+

2ξ

3ξ2 − 1
, ξ := ξ1 + iξ2 ∈ C, (5.1)
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Figure 2: Function f is a conformal mapping from Dc := C \ D onto Ω.

which is a conformal mapping from Dc, the exterior of the unitary disk D, onto
Ω. We denote w := f(ξ) for all ξ ∈ Dc. Following [14, Chap XIII], we introduce,
for all w ∈ Ω(h), ψ(h, ḣ, w) := ψ1(h, ḣ, w) + iψ2(h, ḣ, w) the complex holomorphic
potential function relating to the fluid flow. Commonly, ψ1(h, ḣ, w) is the actual real
valued potential function while ψ2(h, ḣ, w) is the stream function. The potential
can be rewritten under the form:

ψ(h, ḣ, w) = ḣϕ(w − ih), (5.2)

where ϕ(w) := ϕ1(w) + iϕ2(w). The functions ϕ1 and ϕ2 are both defined and
harmonic in the fixed domain Ω, and do not depend on h. In order to compute ϕ,
we introduce the function:

φ(ξ) := ϕ(f(ξ)), ∀ ξ ∈ Dc,

and we denote φ1 := ℜ(φ) and φ2 := ℑ(φ). According to [14, formula (5) page 222],
φ2(h) solves a Dirichlet boundary value problem:

−∆φ2(ξ) = 0 in Dc, φ2(ξ) = −ℜ(f(ξ)) on C,

|∇φ2(ξ)| → 0 as |ξ| → +∞.

The last assertion tells us that the fluid is quiescent at infinity. We can extend f(ξ)
and f(1/ξ) as Laurent’s series at ξ = 0. We get:

f(ξ) =
3

2
ξ +

1

6
ξ−1 +

∑

k≥1

2

3k+1
ξ−2k−1 ∀ ξ ∈ C, |ξ| > 1/3,

f(1/ξ) =
3

2
ξ−1 +

1

6
ξ +

∑

k≥1

2

3k+1
ξ2k+1 ∀ ξ ∈ C, |ξ| < 3.

Writing then that φ2(e
iθ) = −(f(eiθ) + f(e−iθ))/2 we obtain the expression of

φ2(e
iθ) under the form of a Fourier’s series:

φ2(e
iθ) = −5

6
cos(θ) −

∑

k≥1

3−k−1 cos((2k + 1)θ), ∀ θ ∈ [−π, π[,

and we deduce that, (using here the polar coordinates (r, θ), due to the geometry
of the domain):

φ2(r, θ) = −5

6

cos(θ)

r
−

∑

k≥1

3−k−1 cos((2k + 1)θ)

r2k+1
, ∀ θ ∈ [−π, π[, ∀ r ≥ 1. (5.3)
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Observe that φ2 can actually be extended as an harmonic function outside the disk
of center 0 and radius 1/

√
3. Let us compute now the Lagrangian function L(h, ḣ)

of the system fluid-solid. We assume that the density of the solid and the density of
the fluid, ρF > 0 are equal. Hence the solid is neutrally buoyant and the Lagrangian
function reduces to the kinematic energy of the system, namely:

L(h, ḣ) =
1

2

(
m|ḣ|2 +

∫

Ω(h)

ρF |∇ψ2(h, ḣ, w)|2dw

)
,

where m > 0 stands for the mass of the solid. Notice that |∇ψ2(h, ḣ, w)| =
|∇ψ1(h, ḣ, w)| for ψ(h, ḣ) is an holomorphic function. This expression can be turned
into, upon a change of variables and applying Green’s formula:

L(h, ḣ) =
1

2
|ḣ|2

(
m + ρF

∫

C

φ2
∂φ2

∂n
dΓ

)
,

and we deduce that the Lagrangian function does actually not depend on h. Euler-
Lagrange’s equation of motion is merely:

d

dt

∂L
∂ḣ

(ḣ) =

(
m + ρF

∫

C

φ2
∂φ2

∂n
dΓ

)
ḧ = 0, (5.4)

what, after integrating, leads to so-called D’Alembert’s paradox: ḣ(t) = ḣ0 for
all t > 0. The solid has a straight uniform velocity and hence the hydrodynamic
resultant force is null.

Let us now invoke Newton’s laws with the same configuration. Making use of
Bernoulli’s formula, we get:

mḧ = −
∫

Γ(h)

ρF

(
∂ψ1

∂t
(h, ḣ) +

1

2
|∇ψ1(h, ḣ)|2

)
n2 dΓ, (5.5)

where n = (n1, n2)
T is the unitary normal to C directed toward the interior of D.

According to (5.2), we obtain that:

∂ψ1

∂t
(h, ḣ, w) = ḧϕ1(w − ih) − |ḣ|2 ∂ϕ1

∂w2
(w − ih), ∀w ∈ Ω(h).

Plugging this expression into (5.5), and upon a change of variables, we get:
(

m + ρF

∫

C

φ2
∂φ2

∂n
dΓ

)
ḧ = −|ḣ|2ρF

∫

Γ

(
1

2
|∇ϕ2|2 −

∂ϕ1

∂w2

)
n2 dΓ, (5.6)

where we are use again that |∇φ1| = |∇φ2| and |∇ϕ1| = |∇ϕ2| for φ and ϕ are both
holomorphic functions. This equation fits with (5.4) if and only if the right hand
side term vanishes. We are going to show that it is actually undetermined, in the
sense that the amount inside the integral does not belong to L1(Γ). We have, on
the one hand: ∫

Γ

∣∣∣∣
∂ϕ1

∂w2
n2

∣∣∣∣ dΓ ≤
∫

Γ

|∇ϕ1|dΓ,

and arguing again that |∇ϕ1| = |∇ϕ2|, it comes, upon a change of variables:

∫

Γ

∣∣∣∣
∂ϕ1

∂w2
n2

∣∣∣∣ dΓ ≤ (mes (Γ))1/2

(∫

Γ

|∇ϕ2|2 dΓ

)1/2

≤ (mes (Γ))1/2

(∫

C

|∇φ2|2 dΓ

)1/2

< +∞.
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On the other hand, going back to (5.6), we have, applying the same change of
variables:

∫

Γ

|∇ϕ2|2n2 dΓ =

∫ π

−π

|∇φ2(e
iθ)|2|f ′(eiθ)|−2ℑ(−eiθf ′(eiθ))dθ. (5.7)

Let us then compute the behavior of |∇φ2(e
iθ)|2|f ′(eiθ)|−2ℑ(−eiθf ′(eiθ)) nearby

θ = 0. By virtue of (5.3), we get:

∂φ2

∂θ
(1, 0) = 0 and

∂φ2

∂r
(1, 0) = γ, (5.8)

where

γ :=
5

6
+

∑

k≥1

(2k + 1)

3k+1
> 0.

In addition, one readily obtains that:

|f ′(eiθ)|−2ℑ(−eiθf ′(eiθ)) = −1

8
θ−1 + O(θ). (5.9)

Summarizing (5.8), (5.9) we get

|∇φ2(e
iθ)|2|f ′(eiθ)|−2ℑ(−eiθf ′(eiθ)) = −γ2θ−1 + O(θ),

what proves that (5.7) is undetermined.
To sum up, Newton’s approach fails in providing the equation of motion for the

solid. The problem is that the velocity of the fluid is infinite nearby the singular
points of Γ(h) as well as the hydrodynamic forces although the energy of the system
be always finite.

This phenomena is well known in airfoils theory (see [14, Chap. XII, §c. pages
211-212]). This problem can be overcame by introducing, for any time t ≥ 0, circu-
lation in the fluid flow in such a way that the velocity be finite at the singular point.
In other words, circulation is used as a new degree of freedom of the fluid flow and
its value is set according to the so-called Kutta-Joukowsky’s law. However, notice
that this method does not apply with our problem since the solid we are handled
has two singular points. Furthermore, to our knowledge, it has not been proved so
far that the solution agreeing with Kutta-Joukowsky’s law solves System 3.11.

6 Concluding comments

Lagrangian formalism consists in computing first the energy of the fluid flow: it
is obtained by integrating the gradient of the potential (or stream) function over
the fluid domain. This is a smoothing process for the resulting kinetic energy is
more regular with respect to the generalized coordinates than the potential func-
tion. Then, according to the least action principle, Euler-Lagrange’s equations are
obtained partly by differentiating the fluid’s kinetic energy. Notice that this process
is carried out without difficulties in the example treated in Section 5.

Conversely, with Newtonian formalism, forces are computed first, what requires
to differentiate the potential (or the stream) function and yields, in the nonsmooth
case of Section 5 an infinite and nonintegrable quantity. Next these forces are
integrated (when it is allowable) along the boundary of the bodies in order to
obtain the hydrodynamic resultant force and next to apply Newton’s laws.

We have proved that both approaches coincide for smooth bodies. Although
Lagrangian formalism is more simple to handle, it does not allow to obtain the
expected governing equations of motion when the bodies are endowed with thrusters.
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At last, we guess that the underlying question relating to the phenomena en-
countered in the example of Section 5 is: does it actually exists a solution to System
(3.11) that remains free of vortex for all time, even in the presence of a nonsmooth
shaped solid inside the fluid ? Indeed, it is known that vortices are only carried by
the fluid flow along the stream lines and hence, assuming that the fluid is quiescent
at the initial time, they can only appear on the fluid boundary. What could explain
the paradoxical results of Section 5 is that vortices actually do appear at singular
points and therefore that there does not exist any potential function solving Euler’s
equations in this case.

A Additional technical definitions

The vectors δxi
r,j(q

i
r), δxi

d,k(qi
r,q

i
d) and δxi

t,l(q
i
r,q

i
d) defined in Subsection 2.3 can

be decomposed into their tangential and normal components on Γi
2(q

i
r,q

i
d). They

are next extended by 0 on Γ(q) \ Γi
2(q

i
r,q

i
d).

Definition 5 We introduce, for all i = 1, . . . , n and all j = 1, . . . ,N i
r :

bi
r,j(q

i
r) :=

{
δxi

r,j(q
i
r) · n(qi

r,q
i
d) on Γi

2(q
i
r,q

i
d),

0 on Γ(qr,qd) \ Γi
2(q

i
r,q

i
d),

(A.1a)

and for all k = 1, . . . ,N i
d:

bi
d,k(qi

r,q
i
d) :=

{
δxi

d,k(qi
r,q

i
d) · n(qi

r,q
i
d) on Γi

2(q
i
r,q

i
d),

0 on Γ(qr,qd) \ Γi
2(q

i
r,q

i
d),

(A.1b)

and for all l = 1, . . . ,N i
t :

bi
t,l(q

i
r,q

i
d) :=

{
δxi

t,l(q
i
r,q

i
d) · n(qi

r,q
i
d) on Γi

2(q
i
r,q

i
d),

0 on Γ(qr,qd) \ Γi
2(q

i
r,q

i
d),

(A.1c)

while the tangential components are defined by:

δΓx
i
r,j(q

i
r) := δxi

r,j(q
i
r) − bi

r,j(q
i
r,q

i
d)n(qi

r,q
i
d) on Γi

2(q
i
r,q

i
d),

δΓx
i
d,k(qi

r,q
i
d) := δxi

d,k(qi
r,q

i
d) − bi

d,k(qi
r,q

i
d)n(qi

r,q
i
d) on Γi

2(q
i
r,q

i
d),

δΓx
i
t,l(q

i
r,q

i
d) := δxi

t,l(q
i
r,q

i
d) − bi

t,l(q
i
r,q

i
d)n(qi

r,q
i
d) on Γi

2(q
i
r,q

i
d),

all of them being extended by 0 on Γ(qr,qd)\Γi
2(q

i
r,q

i
d). Statement of the governing

equations of motion will also involve the quantities:

δ2xi
rr,j1,j2(q

i
r,x) :=

∂2Xi

∂qi
r,j1

∂qi
r,j2

(qi
r,q

i
d,Y

i(qi
r,q

i
d,x)), (A.2a)

δ2xi
rd,j,k(qi

r,q
i
d,x) :=

∂2Xi

∂qi
r,j∂qi

d,k

(qi
r,q

i
d,Y

i(qi
r,q

i
d,x)), (A.2b)

δ2xi
dd,k1,k2

(qi
r,q

i
d,x) :=

∂2Xi

∂qi
d,k1

∂qi
d,k2

(qi
r,q

i
d,Y

i(qi
r,q

i
d,x)), (A.2c)

for all i = 1, . . . , n, all j, j1, j2 = 1, . . . ,N i
r , all k, k1, k2 = 1, . . . ,N i

d and all x ∈
Si(qi

r,q
i
d). Their normal components are denoted by:

βi
rr,j1,j2(q

i
r,x) := δ2xi

rr,j1,j2(q
i
r,x) · n(qi

r,q
i
d,x), (A.3a)

βi
rd,j,k(qi

r,q
i
d,x) := δ2xi

rd,j,k(qi
r,q

i
d,x) · n(qi

r,q
i
d,x), (A.3b)

βi
dd,k1,k2

(qi
r,q

i
d,x) := δ2xi

dd,k1,k2
(qi

r,q
i
d,x) · n(qi

r,q
i
d,x), (A.3c)

also extended by 0 to the whole boundary Γ(qr,qd).
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All the quantities defined above can be explicitly computed once the generalized co-
ordinates have been set up. The expressions of δ2xi

rr,j1,j2
(qi

r,x) and δ2xi
rd,j,k(qi

r,q
i
d,x)

are connected to those of δxi
r,j(q

i
r,x) and δxi

d,k(qi
r,q

i
d,x). Such formula are given

in Lemma B.1 in Appendix B.

Relabelling process

In the subsequent computations, some quantities defined in this Section will play
symmetric roles. It would be then convenient when necessary to relabel them. We
proceed as follows, for instance with bi

r,j(q
i
r), bi

d,k(qi
r,q

i
d) and bi

t,l(q
i
r,q

id):

1 ≤ i ≤ n, 1 ≤ j ≤ N i
r , bN i

r(i−1)+j(q) := bi
r,j(q

i
r), (A.4a)

1 ≤ i ≤ n, 1 ≤ k ≤ N i
d, bNr+N 1

d
+...+N i−1

d
+k(q) := bi

d,k(qi
r,q

i
d), (A.4b)

1 ≤ i ≤ n, 1 ≤ l ≤ N i
t , bNr+Nd+N 1

t +...+N i−1

t +l(q) := bi
t,l(q

i
r,q

i
d). (A.4c)

We define then b(q) := (b1(q), . . . , bN (q))T . For quantities carrying double sub-
scripts, like βi

rr,j1,j2
(qi

r), βi
rd,j,k(qi

r,q
i
d) and βi

dd,k1,k2
(qi

r,q
i
d), the relabelling process

yields without confusion possible, the expressions of βj,k(q), j, k = 1, . . . ,N .

B Technical results and proofs

Lemma B.1 When N = 3 and for all i = 1, . . . , n and all j1, j2 = 1, . . . ,N i
r ,

δ2xi
rr,j1,j2

(qi
r,x) is equal to anyone of the expressions on the right of the following

equality:

δ2xi
rr,j1,j2(q

i
r,x) =





δΩi
j1(q

i
r) × (δΩi

j2(q
i
r) × (x − hi)) +

∂δΩi
j1

∂qi
r,j2

(qi
r) × (x − hi) +

∂δhi
j1

∂qi
r,j2

(qi
r),

δΩi
j2(q

i
r) × (δΩi

j1(q
i
r) × (x − hi)) +

∂δΩi
j2

∂qi
r,j1

(qi
r) × (x − hi) +

∂δhi
j2

∂qi
r,j1

(qi
r),

whereas, for all j = 1, . . . ,N i
r and all k = 1, . . . ,N i

d, we have merely:

δ2xi
rd,j,k(qi,x) = δΩi

j(q
i
r) × δxi

d,k(qi
r,x). (B.1)

When N = 2 and for all j1, j2 = 1, . . . ,N i
r , the equalities above turn into:

δ2xi
rr,j1,j2(q

i
r,x) =





−δΩi
j1(q

i
r)δΩ

i
j2(q

i
r)(x − hi) +

∂δΩi
j1

∂qi
r,j2

(qi
r)(x − hi)⊥ +

∂δhi
j1

∂qi
r,j2

(qi
r),

−δΩi
j1(q

i
r)δΩ

i
j2(q

i
r)(x − hi) +

∂δΩi
j2

∂qi
r,j1

(qi
r)(x − hi)⊥ +

∂δhi
j2

∂qi
r,j1

(qi
r),

(B.2)

and for all j = 1, . . . ,N i
r and all k = 1, . . . ,N i

d:

δ2xi
rd,j,k(qi,x) = δΩi

j(q
i
r)δx

i
d,k(qi

r,x)⊥. (B.3)
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Moreover, we have, for all j1, j2 = 1, . . . ,N i
r :

∂δhi
j1

∂qi
r,j2

(qi
r) =

∂δhi
j2

∂qi
r,j1

(qi
r), (B.4)

∂δΩi
j1

∂qi
r,j2

(qi
r) −

∂δΩi
j2

∂qi
r,j1

(qi
r) = δΩi

j2(q
i
r) × δΩi

j1(q
i
r), (N = 3), (B.5)

∂Ωi
j1

∂qi
r,j2

(qi
r) =

∂Ωi
j2

∂qi
r,j1

(qi
r), (N = 2). (B.6)

Proof : Differentiating with respect to qi
r,j1

equality (2.10), we get, for all i =

1, . . . , n and all j1 = 1, . . . ,N i
r :

∂Xi
r

∂qi
r,j1

(qi
r,x) =

∂[Ri(qi
r)]

∂qi
r,j1

(x − hi
0) +

∂hi

∂qi
r,j1

(qi
r). (B.7)

Next, differentiating likewise the identity Xi
r(q

i
r,Y

i
r(q

i
r),x) = x with respect to

qi
r,j2

, it comes:

∂Xi
r

∂qi
r,j2

(qi
r,Y

i
r(q

i
r,x)) + [DxX

i
r(q

i
r,x)]

∂Yi
r

∂qi
r,j2

(qi
r,x) = 0, (B.8)

whence we deduce, invoking again (2.10), that:

∂Yi
r

∂qi
r,j2

(qi
r,x) = −[Ri(qi

r)]
T δxi

r,j2(q
i
r,x). (B.9)

Eventually, we compute that, for all j2 = 1, . . . ,N i
r :

∂δxi
r,j1

∂qi
r,j2

(qi
r,x) =

∂2Xi
r

∂qi
r,j1

∂qi
r,j2

(qi
r,Y

i
r(q

i
r,x))

+

[
Dx

(
∂Xi

r

∂qi
r,j1

)
(qi

r,Y
i
r(q

i
r,x))

]
∂Yi

r

∂qi
r,j2

(qi
r,x). (B.10)

Summarizing (B.7), (B.9) and (B.10) and taking into account Definition 2, we ob-
tain the expressions of δ2xi

rr,j1,j2
(qi

r) given in the lemma. We proceed likewise to
obtain the other expressions. ¥

Proof of Proposition 3.2: Last term on the right of identity (3.6) has been ob-
tained in (3.3), so we focus on the kinematic energy Ki(qi

r,q
i
d, q̇

i
r, q̇

i
d) := Ki

r(q
i
r,q

i
d, q̇

i
r)+

Ki
d(q

i
d, q̇

i
d), which reads:

Ki(qi
r,q

i
d, q̇

i
r, q̇

i
d) :=

1

2

N i
r∑

j1=1

N i
r∑

j2=1

M i
r,j1,j2(q

i
r,q

i
d)q̇

i
r,j1 q̇

i
r,j2

+
1

2

N i
d∑

k1=1

N i
d∑

k2=1

M i
d,k1,k2

(qi
r,q

i
d)q̇

i
d,k1

q̇i
d,k2

. (B.11)
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After some algebra, we get:

d

dt

∂Ki

∂q̇i
r,j0

(qi
r,q

i
d, q̇

i
r, q̇

i
d) −

∂Ki

∂qi
r,j0

(qi
r,q

i
d, q̇

i
r, q̇

i
d) =

N i
r∑

j=1

M i
r,j0,j(q

i
r,q

i
d)q̈

i
r,j +

1

2

N i
r∑

j1=1

N i
r∑

j2=1

(
∂M i

r,j0,j1

∂qi
r,j2

(qi
r,q

i
d) +

∂M i
r,j0,j2

∂qi
r,j1

(qi
r,q

i
d)

−
∂M i

r,j1,j2

∂qi
r,j0

(qi
r,q

i
d)

)
q̇i
r,j1 q̇

i
r,j2 +

N i
r∑

j=1

N i
d∑

k=1

∂M i
r,j0,j

∂qi
d,k

(qi
r,q

i
d)q̇

i
r,j q̇

i
d,k. (B.12)

Computation of the derivatives arising in the right hand side can be carried out as
follows: going back to Definition 4, we obtain:

∂Mr,j0,j1

∂qi
r,j2

(qi
r,q

i
d) =

∫

Si
d(qi

d)

ρd
S(qi

d)
∂2Xi

r

∂qi
r,j0

∂qi
r,j2

(qi
r,q

i
d) ·

∂Xi
r

∂qi
r,j1

(qi
r,q

i
d) dx

+

∫

Si
d(qi

d)

ρd
S(qi

d)
∂Xi

r

∂qi
r,j0

(qi
r,q

i
d) ·

∂2Xi
r

∂qi
r,j1

∂qi
r,j2

(qi
r,q

i
d) dx. (B.13)

Therefore, with notation of Definition 2 and (A.2), we get:

1

2

N i
r∑

j1=1

N i
r∑

j2=1

(
∂M i

r,j0,j1

∂qi
r,j2

(qi
r,q

i
d) +

∂M i
r,j0,j2

∂qi
r,j1

(qi
r,q

i
d)

−
∂M i

r,j1,j2

∂qi
r,j0

(qi
r,q

i
d)

)
q̇i
r,j1 q̇

i
r,j2 =

N i
r∑

j1=1

N i
r∑

j2=1

∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d)δx

i
r,j0(q

i
r) · δ2xi

rr,j1,j2(q
i
r) dx. (B.14)

Expressions given in Lemma B.1 leads to (3.7) and (3.9). Concerning the identities
(3.8) and (3.10), they derive straightforwardly from the last term on the right of
(B.13), together with (2.28) and (2.31). ¥

Proof of Lemma 3.1: Introducing e1 := (1, 0)T , e2 := (0, 1)T when N = 2
and e1 := (1, 0, 0)T , e2 := (0, 1, 0)T and e3 := (0, 0, 1)T when N = 3, we can specify
either δx̂r(q

i
r) = ej or δx̂r(q

i
r) = ej × (x − hi(qir)) in (3.1) and we obtain (2.41).

Conversely, assume that the velocities vi
r(q

i
r, q̇

i
r) satisfies (2.41). Invoking for-

mula [15, formula (85) page 46], we get, on the one hand:

d

dt




∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r) dx


 =

∫

Γi
2
(qi

r, qi
d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r)(v

i(qi, q̇i) · n(qi
r,q

i
d)) dΓ

+

∫

Si(qi
r,qi

d
)

d

dt
(ρS(qi

r,q
i
d)v

i
r(q

i
r, q̇

i
r)) dx, (B.15a)
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and also, when N = 3:

d

dt




∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r) × (x − hi(qi

r)) dx


 =

∫

Γi
2
(qi

r, qi
d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r) × (x − hi)(vi(qi, q̇i) · n(qi

r,q
i
d)) dΓ

+

∫

Si(qi
r,qi

d
)

d

dt
(ρS(qi

r,q
i
d)v

i
r(q

i
r, q̇

i
r)) × (x − hi(qi

r)) dx, (B.15b)

since, by definition of the center of mass:

∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r) ×

d

dt
(x − hi(qi

r)) dx =

−




∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r) dx


 × ḣi(qi

r) = 0. (B.16)

On the other hand, the same formula [15, formula (85) page 46] yields also, for any
δx̂r(q

i
r) ∈ Di

r(q
i
r,q

i
d):

d

dt




∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r) · δx̂r(q

i
r) dx




−
∫

Si(qi
r, qi

d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r) ·

d

dt

(
δx̂r(q

i
r)

)
dx =

∫

Γi
2
(qi

r, qi
d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r) · δx̂r(q

i
r)(v

i(qi, q̇i) · n(qi
r,q

i
d)) dΓ

+

∫

Si(qi
r,qi

d
)

d

dt
(ρS(qi

r,q
i
d)v

i
r(q

i
r, q̇

i
r)) · δx̂r(q

i
r) dx. (B.17)

But according to Definition 1 and when N = 3, we have:

δx̂r(q
i
r) = δĥ(qi

r) + δΩ̂(qir) × (x − hi(qi
r)),

for some vectors δĥ(qi
r) and δΩ̂(qi

r). Therefore, we can write that:

∫

Γi
2
(qi

r, qi
d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r) · δx̂r(q

i
r)(v

i(qi, q̇i) · n(qi
r,q

i
d)) dΓ =

δĥ(qi
r) ·




∫

Γi
2
(qi

r, qi
d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r)(v

i(qi, q̇i) · n(qi
r,q

i
d)) dΓ




− δΩ̂(qi
r) ·




∫

Γi
2
(qi

r, qi
d)

ρS(qi
r,q

i
d)v

i
r(q

i
r, q̇

i
r) × (x − hi(qi

r))(v
i(qi, q̇i) · n(qi

r,q
i
d)) dΓ


 ,

(B.18)

36



and

∫

Si(qi
r,qi

d
)

d

dt
(ρS(qi

r,q
i
d)v

i
r(q

i
r, q̇

i
r)) · δx̂r(q

i
r) dx =

δĥ(qi
r) ·




∫

Si(qi
r,qi

d
)

d

dt
(ρS(qi

r,q
i
d)v

i
r(q

i
r, q̇

i
r)) dx




− δΩ̂(qi
r) ·




∫

Si(qi
r,qi

d
)

d

dt
(ρS(qi

r,q
i
d)v

i
r(q

i
r, q̇

i
r)) × (x − hi(qi

r)) dx


 . (B.19)

We have thus proved the second point of the lemma when N = 3 by substituting
(B.18) and (B.19) into (B.17) and taking into account (B.15). We proceed similarly
when N = 2.

At last, second and third assertions of the lemma are equivalent by virtue of
Definition 3. ¥

Proof of Lemma 4.1: One wishes to differentiate, with respect to qk, at a given
point q0, the boundary value problem:

−∆ψi = 0 in Ω(q),
∂ψi

∂n
= bi(q) on Γ(q). (B.20)

This problem is the one treated in [17, Subsection 5.5 pages 202-206], in [18, Section
4] and in [28, Section 4]. In these references, it is shown that ∂ψi/∂qk is well defined
and belongs to the Sobolev space H1(Ω(q)) when Ω is bounded or corresponding
weighted Sobolev spaces when Ω is not bounded. For the sake of completeness, we
give here the formal approach leading to formula (4.6). As regards the first equation
of System (B.20), we obtain merely, by differentiating with respect to qk:

−∆
∂ψi

∂qk
= 0 in Ω(q).

The derivation of the boundary conditions for ∂ψi/∂qk are more involved. First, we

introduce the mapping X̃(q, ·) := X(q0 + q,Y(q0, ·)) and the functions Bi(q, ·) :=

bi(q0 +q, X̃(q, ·)) and N(q, ·) := n(q0 +q, X̃(q, ·)). Differentiating with respect to
qk the identity:

∇ψi(q, X̃(q,x)) · N(q,x) = Bi(q,x), ∀x ∈ Γ(q0),

when q = 0, we obtain:

∂

∂n

(
∂ψi

∂qk

)
(q0, ·) + 〈[D2

x
ψi(q0, ·)], δxk(q0, ·),n(q0, ·)〉

+ ∇ψi(q0, ·) ·
∂N

∂qk
(0, ·) =

∂Bi

∂qk
(0, ·) on Γ(q0),

where [D2
x
ψi(q0)] is the Hessian matrix of ψ(q0). We can decompose δxk(q0, ·)

into its normal and tangential components (we drop q0 subsequently to shorten
notation): δxk = bkn + δΓxk and we obtain that:

∂

∂n

(
∂ψi

∂qk

)
+

∂2ψi

∂n2
bk + 〈[D2

x
ψi], δΓxk,n〉 + ∇ψi ·

∂N

∂qk
=

∂Bi

∂qk
on Γ(q0). (B.21)
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We use on the one hand, the identity of [17, Proposition 5.4.12 page 196], valid for
any function ψ regular enough in a neighborhood of Γ(q0):

∆ψ = ∆Γψ −H∂ψ

∂n
+

∂2ψ

∂n2
, on Γ(q0),

where ∆Γ is the Laplace-Beltrami operator on Γ(q0) and H the mean curvature
of Γ(q0). On the other hand, computing the tangential derivative in the direction
δΓxk of the boundary condition of System (B.20), we get:

〈[D2
x
ψi], δΓxk,n〉 − 〈Π2,∇Γψi, δΓxk〉 = ∇Γbi · δΓxk, on Γ(q0). (B.22)

Proposition 4 in Section 5 of [28] yields:

∇ψi ·
∂N

∂qk
= −∇Γψi · ∇Γbk − 〈Π2,∇Γψi, δΓxk〉 on Γ(q0). (B.23)

We get hence, plugging (B.22) and (B.23) into (B.21):

∂

∂n

(
∂ψi

∂qk

)
= ∆Γψi bk −Hbi bk + ∇Γψi · ∇Γbk +

∂Bi

∂qk
−∇Γbi · δΓxk.

It remains to compute the derivative of Bi(q) with respect to qk. Taking into
account its definition, we have, for all i = 1, . . . ,Nr + Nd:

∂Bi

∂qk
(q, ·) =

∂

∂qk

(
∂X

∂qi
(q0 + q,Y(q0, ·)) · N(q, ·)

)
on Γ(q). (B.24)

Introducing the amount:

βi,k(q) :=
∂2X

∂qi∂qk
(q,Y(q)) · n(q),

and making use again of formula (B.23), we obtain, when q = 0:

∂Bi

∂qk
= βi,k − 〈Π2, δΓxk, δΓxi〉 − ∇Γbk · δΓxi on Γ(q0). (B.25)

The last identity (4.7), classical for smooth functions (see for instance [15, formula
(85) page 46]), can be found, in the context of Sobolev spaces, in [17, Theorem 5.2.2
page 172]. More precisely, we apply here [17, Corollary 5.2.2 page 172]. The proof
is then complete. ¥
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