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Double scale analysis of a Schrödinger-Poisson system with
quantum wells and macroscopic nonlinearities in dimensions

2 and 3.

A. Faraj�, A. Mantiley, F. Nierz

Abstract

We consider the stationary Schrödinger-Poisson model with a background potential de-
scribing a quantum well. The Hamiltonian of this system composes of contributions � the
background potential well plus a nonlinear repulsive term �which extends on di¤erent length
scales with ratio parametrized by the small parameter h. With a partition function which
forces the particles to remain in the quantum well, the limit h ! 0 in the nonlinear system
leads to di¤erent asymptotic behaviours, including spectral renormalization, depending on the
dimensions 1, 2 or 3.

1 Introduction

The quantum state of a gas of charged particles is described, in the mean �eld approximation,
by a nonlinear one-particle Schrödinger equation where the electrostatic repulsion is modeled by
a non linear potential term depending on the charge density through a Poisson equation. This
class of models is usually referred to as Schrödinger-Poisson systems. In this work we consider a
stationary Schrödinger-Poisson system in a bounded region of Rd, d = 2; 3, for which a background
potential models a quantum well, while the nonlinear potential extends on a wider scale. After
introducing a rescaling for which the small parameter h > 0 represents an inverse length scale,
the support of the potential well squeezes asymptotically to a single point in the limit h! 0. An
equilibrium state of a gas of charged particles con�ned in the quantum well will be considered,
while the nonlinear electrostatic potential created by such a concentrated charge extends to whole
domain with di¤erent behaviour far from the well according to the dimension 1, 2 or 3.
Such a Schrödinger-Poisson problem has recently been considered in [2], [3] and [12] in a more

complex �although 1 dimensional �setting involving far from equilibrium steady states. This one-
dimensional analysis leads to a reduced model which happens to be very e¢ cient in the numerical
simulation of the electronic transport through semiconductor heterostructures, like resonant tun-
neling diodes [4]. In particular this technique allows to forecast with high precision the nonlinear
phenomenology �like hysteresis phenomena (e.g. in [10] and [16]) and steady oscillating currents
(e.g. in [11]) �observed in such devices. A �rst step in the extension of this analysis to the multi-
dimensional case consists in a good understanding of the thermodynamical equilibrium where the
occupation numbers of the quantum states are given by a decreasing function of the energy.
For the sake of simplicity we shall use a low energy-�lter in the de�nition of the partition

function f (see equation (1.5) below), that is the quantum states with an energy larger than the
threshold "S are not occupied. With such an assumption only the quantum states con�ned in the
well have an e¤ect on the nonlinearity. This provides asymptotically a strict separation of the
quantum and macroscopic scales with some nonlinear spectral renormalization which depends on
the dimension d = 2 or d = 3.
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Like in [2], [3] and [13] the analysis will be a mixture of nonlinear apriori estimates combined
with accurate semiclassical and spectral techniques (we refer to: [17], [8], [9] and [6]) adapted for
potentials with limited regularity. The outline of this analysis is the following. We end this section
by introducing the model � both at the macroscopic and quantum scales � and by stating our
results. In Section 2, apriori estimates for the nonlinear problem are given. The Section 3 studies
the possible asymptotic nonlinear system in dimension d = 3 and ends the proof of the main result
in this case. The analysis of the bidimensional problem is completed in Section 4, with a di¤erent
renormalization process. Some standard results are adapted to our case in the appendices.

1.1 The model

Let 
 be an open bounded set of Rd, d � 3, and U a non positive function in C10 (Rd) supported
in the ball of radius one centered in the origin of Rd. The open set 
 is supposed smooth enough
(for example C2 or piecewise C1 and convex) so that the domain of the Dirichlet Laplacian is
H2 \H1

0 (
).
For x0 2 
, we de�ne the potential with center x0 and radius of order h > 0

Uh(x) = U

�
x� x0
h

�
; x 2 
 :

Being our analysis concerned with the limit h ! 0, we can choose, without loss of generality, h
small enough so that the support of Uh is included in 
. In particular, de�ning with ! and !h

the supports of U and Uh respectively, we assume that !h � 
 for all values of h below a suitable
positive constant: h � h0.
Next we assign the function f 2 C1(R), with a threshold at "S < 0 and ful�lling the conditions

f(x) > 0; 8x < "S ; (1.1)

f(x) = 0; 8x � "S ; (1.2)

f 0(x) � 0; 8x 2 R ; (1.3)

and address, for h 2 (0; h0], the following problem: �nd V h solving the non-linear Poisson equation�
��V h = n[V h] in 

V h
��
@

= 0

(1.4)

where the source term is
n[V h] =

X
i2N

f("hi )j	hi j2 ; (1.5)

with
�
"hi
	
i2N given by the eigenvalues of the nonlinear Hamiltonian

Hh = �h2�+ Uh + V h (1.6)

numerated from inf �(Hh) counting multiplicities, while
�
	hi
	
i2N are the corresponding eigenvec-

tors �
Hh	hi = "hi 	

h
i ; in 
 ;

	hi
��
@

= 0 :

(1.7)

The equations (1.4), (1.5) and (1.7) de�ne the stationary Schrödinger-Poisson system associated
with the potential well Uh and the function f . In practical applications, where these equations
are used for the description of the charge distribution in electronic devices, n[V h] describes the
density of the charge careers of the system, while f is a response function which depends on the
characteristics of the device and has to be considered as a data item of the problem.
The small parameter h > 0 arises from a rescaling after considering two length scales, the

macroscopic one where the particles behave like classical particles and the microscopic one where
the quantum e¤ects have to be taken into account. From this point of view it should be noticed
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that on Rd, the Schrödinger operator �h2�+U(x�x0h ) is unitarily equivalent to ��+U(x) through
the unitary map: L2(
)! L2(
h)

~	h(x) = h
d
2	h(hx+ x0); x 2 
h ; (1.8)

with

h =

�
x 2 Rd jhx+ x0 2 


	
: (1.9)

It is easy to show that, under this transformation, the system of equations (1.4) - (1.7) reads as8>>>><>>>>:

�
��+ U + ~V h

�
~	hi = "hi

~	hi in 
h ;

��~V h = h2�d
P

i2N f("
h
i )j~	hi j2 in 
h ;

~V h
���
@
h

= 0 ; ~	hi

���
@
h

= 0 ;

(1.10)

where the Poisson term is related to V h by

~V h(x) = V h(hx+ x0); x 2 
h : (1.11)

In this picture, the parameter h de�nes an isotropic dilation of the domain 
h such that, in the
limit h ! 0, 
h covers the whole space Rd. We will refer to (1.10) as the Schrödinger-Poisson
problem at the quantum scale, while the equations (1.4) - (1.7) describe the problem at the classical
scale. In both settings, the stationary states form a set of real normalized functions

Im	hi = 0;
	hi L2(
) = 1 ; (1.12)

Im ~	hi = 0;
~	hi 

L2(
h)
= 1 : (1.13)

The analysis of our Schrödinger-Poisson system, will involve the operator

H0 = ��+ U ; D(H0) = H2(Rd) ; (1.14)

whose point spectrum, �p(H0), contains a �nite number of points embedded in [�kUkL1 ; 0). In
particular, we make the following assumptions

�p(H0) 6= ? (1.15)

and
e1 := inf � (H0) < "S : (1.16)

The reader may refer to Proposition 7.4 in [18] to see that (1.15) is always true for d = 1; 2 and
U < 0. On the other hand, for d = 3, potentials ful�lling this condition can be obtained by possibly
replacing U � 0 with �U � 0, � > 1 large enough. The hypothesis (1.16) �which prevents the
solution to (1.4) - (1.7) to be trivial �will be extensively used in this work.

1.2 Results

The aim of this analysis is to understand the asymptotic behaviour of the unitarily equivalent
systems (1.4) - (1.7) and (1.10) as h ! 0. This in order to provide a simpli�ed modelling for the
nonlinearities produced by charged particles con�ned in quantum wells (d = 3), wires (d = 2) or
layers (d = 1). Such a program has been carried out in [2], [3] and [13] with e¢ cient numerical
applications in [4] for out-of equilibrium 1D problem. A variation of it (actually simpler than the
analysis in [2][3][13] for no scattering nor resonant states have to be considered here) provides the
result for the present 1D-Dirichlet problem with 
 = (0; L): the Poisson potential V h is uniformly
bounded in W 1;1(
) and converges in C0;�(
), � 2 (0; 1), to V0 de�ned by

V0(x) =

�
(
P

i�1 f(ei + �))(1�
x0
L )x; 0 < x � x0 ;

(
P

i�1 f(ei + �))
x0
L (L� x); x0 < x < L ;
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where fei; i � 1g is the point spectrum of H0 and � is the unique solution to the nonlinear equation
� = x0(1� x0

L )
P

i�1 f(ei + �) .
Hence for the 1D problem, the nonlinear e¤ect produced at the quantum scale remain visible

at the macroscopic scale in the limit h ! 0. This is no more the case in dimension d > 1.
Indeed, due to the di¤erent behaviour of the Green function of the Laplace operator in dimension
d = 2 and d = 3, the potential at the classical scale V h is expected to converge to 0 as h ! 0,
although a simple ad absurdum argument shows that some nonlinearity still a¤ects asymptotically
the spectrum of the quantum Hamiltonian. The complete description of this requires the analysis
of the asymptotic behaviour of both V h and ~V h. Again the di¤erences of the Green functions of
the Laplace operator in dimension d = 2 and d = 3 require di¤erent kind of arguments and lead to
di¤erent results: a renormalization of the logarithmic divergence has to be introduced in dimension
2, not in dimension 3.
Our main results, whose proofs are given in Sections 3 and 4, gather the asymptotic information

for the 3D and 2D cases.

Theorem 1.1 Let d = 3 and let V h (resp. ~V h) solve (1.4)(1.5)(1.7) (resp. (1.10))

1. The potential at the classical scale, V h, converges strongly to 0 in H1
0 (
):V h

H1
0 (
)

= O(h1=2) :

2. By �xing the threshold "S associated with f , there exists a unique (A;W ) 2 (0;+1) �
_H1(R3;R) such that "S = inf �(��+ U +W ) and�

[��+ U +W ] � = "S � ; with � 2 H2(R3); k�kL2(R3) = 1 ;
��W = A j�j2 : (1.17)

3. With above notations, the potential at the quantum scale ~V h satis�es

lim
h!0

1
h ~V h �W
L1(R3)

= 0 :

4. There exists h1 > 0 such that the eigenvalues "hi are larger than "S and f("
h
i ) = 0 for all

i � 2 and all h � h1 . The particle density at the quantum scale, h�1
P

i2N f("
h
i )j~	hi j2 =

h�1f("h1 )
���~	h1 ���2 for h � h1, satis�es

lim
h!0

1
hh�1f("h1 )j~	h1 j2 �Aj�j2L1\L2(R3) = 0 :
Remark 1.2 The third statement prevents V h(x) = ~V h(x�x0h ) from converging to 0 in the L1-
norm.

Theorem 1.3 Let d = 2 and let V h (resp. ~V h) solve (1.4)(1.5)(1.7) (resp. (1.10))

1. The potential at the classical scale, V h, converges strongly to 0 in H1
0 (
)V h

H1
0 (
)

= O
�

1

jlnhj

�
:

2. Take the threshold "S associated with f and e1 = inf �(��+ U) and set � = "S � e1. Then
the potential ~V h at the quantum scale satis�es

lim
h!0

 ~V h � �
L1(fjxj��� lnhg)

= 0

for any �xed � > 0.
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3. There exists h1 > 0 such that the eigenvalues "hi are larger than "S and f("
h
i ) = 0 for all i � 2

and all h � h1 . The particle density at the quantum scale,
P

i2N f("
h
i )j~	hi j2 = f("h1 )

���~	h1 ���2
for h � h1, satis�es1
hf("h1 ) ���~	h1 ���2

L2(R2)
= O(jlnhj�1) ;

lim
h!0

jlnhj
1
hf("h1 ) ���~	h1 ���2

L1(R2)
= lim

h!0
jlnhj f("h1 ) = 2�� :

Remark 1.4 Contrarily to the 3D case, the total charge in the quantum well converges to 0 but
still has a spectral e¤ect due to the logarithmic divergence of the Green function of the Laplace
operator.

2 Asymptotic estimates in dimension d = 2; 3

In this Section our investigation is con�ned to the 2D and the 3D case. We give some preliminary
results related to the asymptotic behaviour for h ! 0 of the charge density and the eigenvalues
related to the Schrödinger-Poisson problem. The classical or the quantum scale pictures will be
alternatively adopted depending on the strategies of the proofs. From the lower bounds

��V h � 0 in 
, and ��~V h � 0 in 
h ; (2.1)

with homogeneous Dirichlet boundary condition, the maximum principle implies

V h � 0 in 
 and ~V h � 0 in 
h : (2.2)

Thus, V h and ~V h de�ne positive perturbations of the unitarily equivalent Hamiltonians

Hh
0 = �h2�+ Uh ; D(Hh

0 ) = H2 \H1
0 (
) (2.3)

and
~Hh
0 = ��+ U ; D( ~Hh

0 ) = H2 \H1
0 (


h) (2.4)

respectively. The spectra of Hh
0 and ~Hh

0 are bounded from below by the norm kUkL1(Rd) and we
can state

inf
�
"hi
	
i2N � �kUkL1 : (2.5)

Due to the de�nition of the source term (1.5), V h and ~V h are generated by those energy levels "hi
placed below the cut o¤ "S of the characteristic function f . In order to study the semiclassical
behaviour of our system, we are interested into the spectral properties of the Hamiltonians

Hh = �h2�+ Uh + V h ; D(Hh) = H2 \H1
0 (
) (2.6)

and
~Hh = ��+ U + ~V h ; D( ~Hh) = H2 \H1

0 (

h) (2.7)

in the spectral interval [�kUkL1 ; "S), as h ! 0. In particular, a uniform bound for the number
of eigenvalues "hi 2 [�kUkL1 ; "S) as h ! 0 is required. Let us denote with

�
ehi
	
i2N the point

spectrum of the unitarily equivalent Hamiltonians Hh
0 and ~Hh

0 . As noticed above, the operators
Hh and ~Hh are obtained as positive perturbations of Hh

0 and ~Hh
0 through the Poisson potentials

V h and ~V h respectively. Then, the minimax principle implies that

ehi � "hi 8i 2 N : (2.8)

On the other hand, the eigenvalues ehi 2 [�kUkL1 ; "S) converge to eigenvalues of the operator
H0 = �� + U on Rd as h ! 0. Such a standard result is a consequence of exponential decay
estimates in classically forbidden region (the reader may refer to [8] for a general presentation and
to Lemma 4.5 for a variation of those arguments in our nonlinear framework). Previous remarks
lead to the following result.
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Lemma 2.1 There exists a �nite natural N0 such that 8h 2 (0; h0]

#
�
�(Hh

0 ) \ [�kUkL1 ; "S)
�
� N0 (2.9)

#
�
�(Hh) \ [�kUkL1 ; "S)

�
� N0 (2.10)

where �(H) denotes the spectrum of H.

Next we focus our attention on the Schrödinger-Poisson problem at the classical scale. To this
concern we recall the variational formulation of this problem given in [12] for dimensions d � 3.
Rephrasing the results of this work for our system, we can state that the solution to the equation
(1.4)(1.5)(1.7) is equivalent to the minimization problem

inf
V 2H1

0 (
)
J(V ); J(V ) =

1

2

Z



jrV (x)j2dx+ Tr
�
F
�
Hh(V )

��
; (2.11)

where F is the positive function

F (x) =

Z +1

x

f(s)ds ; (2.12)

while the Hamiltonian Hh(V ) is given by

Hh(V ) = �h2�+ Uh + V ; D(Hh(V )) = H2 \H1
0 (
) : (2.13)

Moreover, the function J(V ) is Fréchet-C1 w.r.t. V , strictly convex and coercive, that is �-convex,
on H1

0 (
) and (2.11) admits a unique solution in this space. The following Proposition is a direct
consequence of this result.

Proposition 2.2 The solutions to the Schrödinger-Poisson problem (1.4)(1.5)(1.7) are bounded
in H1

0 (
) uniformly with respect to h.

Proof. From the variational formulation recalled above, the solution V h is the minimum of the
convex map J(V ), therefore we have

1

2

Z



jrV h(x)j2dx+ Tr
�
F
�
Hh(V h)

��
� J(0) = Tr

�
F
�
Hh(0)

��
;

where Hh(V h) simply coincides with the Hamiltonian Hh, while Hh(0) can be identi�ed with Hh
0

de�ned in (2.3). The relation

Tr
�
F
�
Hh(V h)

��
=
X
i�N0

F ("hi ) � 0 ;

with N0 given in Lemma 2.1, impliesV h2
H1
0 (
)

� 2Tr
�
F
�
Hh
0

��
: (2.14)

The explicit expression of the r.h.s. here is

Tr
�
F
�
Hh
0

��
=
X
i�N0

F (ehi ) :

The result easily follows by combining (2.14) with the inequalityX
i�N0

F (ehi ) � N0 sup
x2[�kUkL1 ;"S)

F <1 :

From equation (1.4) we have n[V h]
H�1(
)

�
V h

H1
0 (
)

: (2.15)

The forthcoming Corollary is a straightforward consequence of (2.15) and Proposition 2.2.
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Corollary 2.3 The charge density n[V h] is bounded in H�1(
) uniformly with respect to h.

Next we use the assumption (1.16) and the estimates in Lemma A.1 of Appendix A to get
uniform upper and lower bounds for the spectral points of Hh as h! 0.

Lemma 2.4 For h0 small enough, the condition

"h1 < "S (2.16)

holds for all h 2 (0; h0].

Proof. We use a reductio ad absurdum argument. Let �h 2 (0; h0] be such that "�h1 � "S . It follows

from (1.2) and from the de�nition (1.5) that the corresponding charge density, n
h
V
�h
i
, and, then,

the Poisson potential V �h are null in 
. In these conditions the Hamiltonians H�h and H�h
0 coincide

and we have
"
�h
1 = e

�h
1 � "S : (2.17)

On the other hand, we already noticed that eh1 �! inf � (H0) as h! 0. Then from the assumption
(1.16), the condition

e
�h
1 < "S (2.18)

de�nitely holds for �h! 0, which is in contradiction with (2.17).

Theorem 2.5 The spectral points "hi�N0
ful�ll the condition

lim inf
h!0

"hi � "S : (2.19)

In particular, for i = 1 we have
lim
h!0

"h1 = "S : (2.20)

Proof. We work in the classical scale. Since (
��	h1 ��2)h2(0;h0] is a family of probability measures it

is weakly relatively compact in the set of bounded non negative Radon measures on 
 with total
mass � 1. We �rst check that it converges to �x0 with the help of exponential decay estimates.
From Lemma 2.4, it is known that: "h1 < "S for all h 2 (0; h0]. Thus we can apply the estimates
(A.5) to write����Z




��	h1 ��2 ' dx

���� � Z
supp'

j'j e�2�=h
���e�=h	h1 ���2 dx

� k'kL1
e�=h	h1

L2(
)
sup

x2supp'
e�2�=h � C k'kL1 sup

x2supp'
e��=h

for any ' 2 L1(
), while �(x) is the Agmon distance from x0 related to the potential
�
Uh � "S

�
and de�ned by the relation (A.7) of the Appendix. When supp' is a compact set in 
n fx0g, the
inequality (A.15) says that there exists c' > 0 such that����Z




��	h1 ��2 ' dx

���� � C k'kL1 e�c'=h; (2.21)

holds for h > 0 small enough. By taking the limit as h! 0, we get

lim
h!0

����Z



��	h1 ��2 ' dx

���� = 0
for all continuous function ' 2 C0(
) with supp' � 
 n fx0g. Hence the probability measure
j	h1 j2 converges in the narrow sense to �x0Z




j	h1 j2' dx �!
h!0

'(x0) ; 8' 2 C0(
) : (2.22)
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As a consequence of Corollary 2.3, the charge density: n[V h] =
P

i�N0
f("hi )j	hi j2 is uniformly

bounded in H�1(
) as h! 0. Let " 2 (0; "0] with "0 small enough, and consider the test function

'"(x) = �(x)�"

�
jx� x0j
2R

�
; x 2 
 ;

where R = supx2
 jx� x0j, � 2 C10 (
) such that �(x0) = 1, and

�"(u) =

�
ln
1

"

��
1[0;"](u) +

�
ln
1

u

��
1("; 12 ](u) ;

with 0 < � < d�1
2 . This function is continuous on 
 and in dimension d = 2 or 3 there exists

C
 > 0 such that
8" 2 (0; "0] ; k'"kH1

0 (
)
� C
 :

We get

f("h1 )

Z



j	h1 j2'" dx �
n[V h]

H�1(
)
k'"kH1

0 (
)
� C 0
 :

Taking into account the boundary condition: '"(x0) =
�
ln 1"

��
, the previous relation leads us to:

lim suph!0 f("
h
1 ) � C 0
 jln "j

��, for any " > 0, which implies

lim
h!0

f("h1 ) = 0 :

Finally, making use of "hi � "h1 and f
0 � 0, we get

lim
h!0

f("hi ) = 0 : (2.23)

Remark 2.6 The informations given in the previous Theorem can be used to obtain some insight
about the singularity of the Poisson potential V h in the limit h! 0. Indeed, due to relation (2.23),
the charge density converges to zero in the weak* topology of H�1(
). Moreover, we know from
Proposition 2.2 that the sequence of Poisson potentials V h is uniformly bounded in H1

0 (
) and, up
to extraction, weakly convergent in this space. From the equation

��V h = n
�
V h
�
;

and the continuity of �� on the space of distributions D0, we obtain that V h is weakly convergent
to zero in H1

0 (
). Fixing p 2 [1; 6) in dimension d = 3 or p 2 [1;+1) in dimension d = 2, the
previous result and the compact injection H1(
) ,!,! Lp(
) (e.g. in [5]), give the convergence
V h ! 0 in the strong Lp-norm sense. However, the asymptotic condition (2.20) implies that,
in the limit h ! 0, the Poisson potential produces a non null spectral perturbation of the limit
Hamiltonian �given by H0 (1.14) at the quantum scale. For this reason we expect that V h 9 0 in
L1(
).
Furthermore, we have some strong convergence for the density: using the normalization (1.12) of
the eigenfunctions, we can write n[V h]

L1(
)
�
X
i�N0

f("hi )

and, applying (2.23), we obtain that n[V h] �!
h!0

0 strongly in L1(
) (and therefore strongly in the

space of bounded measuresMb(
)).

We now return to the quantum scale setting. Let us denote with Ahi

Ahi = h2�d f("hi ) : (2.24)
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With this notations, the charge density at the quantum scale is described by

�h =
X
i�N0

Ahi

���~	hi ���2 ; h 2 (0; h0] ; (2.25)

and our system writes as8>><>>:
�
��+ U + ~V h

�
~	hi = "hi

~	hi ; in 
h

��~V h = �h; in 
h

~V h
���
@
h

= 0 ; ~	hi

���
@
h

= 0

; h 2 (0; h0] : (2.26)

Lemma 2.7 The coe¢ cients Ahi�N0
show the following properties:

� In dimension d = 3: the set
�
Ahi�N0

; h 2 (0; h0]
	
is uniformly bounded w.r.t. h.

� In dimension d = 2: the set
�
Ahi�N0

ln 1
h ; h 2 (0; h0]

	
is uniformly bounded w.r.t. h.

where (0; h0] is a suitable right neighbourhood of the origin.

Proof. First notice that, if "hi � "S , we have: Ahi = 0 and the statement is trivial. Thus, we can
assume in what follows: "hi < "S . This allows us to apply the estimates (A.17) and (A.18) to the
eigenvectors ~	hi�N0

in the limit h ! 0. Let Br denotes the ball of radius r centered in the origin
of Rd; for h! 0, the condition: Br � 
h de�nitely holds, and we can write

1 =
~	hi 2

L2(
h)
=

Z
Br

j~	hi j2dx+
Z

hnBr

e�2c0jxjjec0jxj ~	hi j2dx :

Corollary A.4 gives an estimate for the r.h.s. of this expressionZ
Br

j~	hi j2dx+
Z

hnBr

e�2c0jxjjec0jxj ~	hi j2dx �
Z
Br

j~	hi j2dx+ Ce�2c0r :

Fixing r such that: Ce�2c0r � 1
2 , which is always possible for h0 close enough to the origin, the

previous relations implies Z
Br

j~	hi j2dx �
1

2
; 8h 2 (0; h0] : (2.27)

This relation can be used to get an estimate for the potential ~V h inside Br. Indeed, from Lemma
2.4, we have

"S > "h1 ; 8h 2 (0; h0] :

Moreover, it follows from the relation

"h1 =
�
~	h1 ; ~H

h ~	h1

�
L2(
h)

;

that

"S > "h1 � �kUkL1 +
�
inf
x2Br

~V h
�Z

Br

j~	hi j2dx � �kUkL1 +
1

2
inf
x2Br

~V h ;

which implies
inf
x2Br

~V h � C ; (2.28)

with C > 0.
Let us denote with IBr the characteristic function of the ball Br and with W

h the solution to
the following problem �

��Wh = �r in 
h

Wh
��
@
h

= 0

9



with
�r = IBr

X
i�N0

Ahi j~	hi (x)j2 :

Notice that
�h � �r on 
h :

Therefore, by applying the maximum principle to the equation8<: ��
�
~V h �Wh

�
= �h � �r in 
h ;�

~V h �Wh
����
@
h

= 0 ;

we get ~V h �Wh in 
h. The strategy of our proof is to show that the lower bound on Br for Wh

depends on the sum
P

i�N0
Ahi in the 3-D case, or ln

1
h

P
i�N0

Ahi in the 2-D case. We will consider
the 3-D and the 2-D cases separately.
Let d = 3. In order to obtain a lower bound for the function Wh, we compare Wh with G � �r,

where G = 1
4�jxj is the Green kernel of the Laplacian in R

3 while ��� denotes the convolution
operation. The di¤erence Wh �G � �r solves the problem�

��u = 0 in 
h ;
uj@
h = �G � �r :

(2.29)

Recalling that G � �r is a positive function, the maximum principle applied to (2.29) leads to

(Wh �G � �r) � � sup
x2@
h

(G � �r) in 
h ;

from which we have
Wh � G � �r � sup

x2@
h
(G � �r) in 
h : (2.30)

� For x 2 @
h we have: jxj � O( 1h ) as h! 0. Take R = d(B(x0; R); @
) in the classical scale.
Then at the quantum scale, the inequality

jx� yj � R

h
; 8 y 2 Br ; (2.31)

holds for any h 2 (0; h0]. Using (2.31) we get

G � �rj@
h =
1

4�

X
i�N0

Ahi

Z
Br

1

jx� yj j
~	hi (y)j2dy

����
@
h

� h

4�R

X
i�N0

Ahi

Z
Br

j~	hi (y)j2dy �
h

4�R
(
X
i�N0

Ahi ) : (2.32)

� For x; y 2 Br ! 1
jx�yj �

1
2r . From this condition and (2.27) it follows

G � �rjBr
� 1

8�r

X
i�N0

Ahi

Z
Br

j~	hi (y)j2dy �
1

16�r
(
X
i�N0

Ahi ) : (2.33)

Making use of (2.30), (2.32) and (2.33), and assuming h! 0, we get

Wh
��
Br
� 1

16�r
(
X
i�N0

Ahi )�
h

4�R
(
X
i�N0

Ahi ) =
1

16�r
(
X
i�N0

Ahi )(1�
4r

R
h)

� 1

32�r
(
X
i�N0

Ahi ) : (2.34)
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Recalling that ~V h �Wh on 
h, it follows from the last inequality that

~V h
���
Br

� 1

32�r
(
X
i�N0

Ahi ) ; 8h 2 (0; h0] : (2.35)

Combining this condition with (2.28) we get a uniform bound for
P

i�N0
Ahi as h 2 (0; h0]. This

concludes the proof in the 3-D case.
The 2-D case follows essentially the same line. Nevertheless, it is worthwhile to notice that

the Green kernel of the 2-D Laplacian, G(x) = � 1
2� ln jxj, does not have a �xed sign. Therefore,

relation (2.30) will be replaced by

Wh � G � �r + inf
x2
h

(�G � �r) in 
h ;

while (2.32) and (2.33) respectively by

� G � �rj@
h =
1

2�

X
i�N0

Ahi

Z
Br

ln jx� yjj~	hi (y)j2dy

������
@
h

� 1

2�
ln
R

h

X
i�N0

Ahi

Z
Br

j~	hi (y)j2dy

� 1

4�
(
X
i�N0

Ahi )(lnR+ ln
1

h
) ;

and

G � �rjBr
� 1

2�
ln
1

2r

X
i�N0

Ahi

Z
Br

j~	hi (y)j2dy �
1

4�
(
X
i�N0

Ahi ) ln
1

2r
:

Remark 2.8 The previous result con�rms the relation (2.23) obtained in the proof of Theorem
2.5. Moreover, it allows to establish a precise asymptotic order for f("hi�N0

) when h! 0

� In dimension 3: f("hi�N0
) = O (h) :

� In dimension 2: f("hi�N0
) = O

��
ln 1

h

��1�
:

The next Lemma characterizes the compactness of the family ~	hi�N0
as h! 0. In what follows

" denotes a negative constant and I
h;" denotes the characteristic function

I
h; "(x; �) =
�
1 for x 2 
h and � < " ;
0 otherwise .

(2.36)

Lemma 2.9 For i � N0, " 2 (�kUkL1 ; 0) and h 2 (0; h0], with h0 > 0 small enough, the
following properties hold:

� In dimension d = 3, the family
�
I
h; "(�; "hi ) ~	hi

�
h2(0;h0]

is relatively compact in Lp(R3) with

p 2 [1; 6) .

� In dimension d = 2, the family
�
I
h; "(�; "hi ) ~	hi

�
h2(0;h0]

is relatively compact in Lp(R2) with

p 2 [1;+1) .

� Hence in both cases
����I
h; "(�; "hi ) ~	hi ���2�

h2(0;h0]
is relatively compact in L1 \ L2(Rd) .
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Proof. Fix p as follows: p 2 [1; 6) in dimension d = 3, p 2 [1;+1) in dimension d = 2. Due to
de�nition (2.36), we can restrict our investigation to the case "hi < ". From Corollary A.4, we have~	hi 

Lp(
h)
� jjec0jxj ~	hi jjLp(
h) � C ; 8h 2 (0; h0] :

Thus, the family
�
I
h; "(�; "hi ) ~	hi

�
h2(0;h0]

is uniformly bounded in Lp(Rd). Moreover, for any

bounded domain B � Rd, it follows, again from Corollary A.4, thatI
h; "(�; "hi ) ~	hi 
H1(B)

�
~	hi 

H1(
h)

�
ec0j�jr~	hi 

L2(
h)
+
ec0j�j ~	hi 

L2(
h)
� C

for all h 2 (0; h0]. By the compactness of the injection ofH1(B) ,! Lp(B),
n
I
h; "(�; "hi ) ~	hi

o
h2(0;h0]

is relatively compact in Lp(B). Next, consider the Lp-norm of I
h; "(�; "hi ) ~	hi on RdnBI
h; "(�; "hi ) ~	hi p
Lp(RdnB)

=

Z

hnB

e�p c0jxj
���ec0jxj ~	hi ���p dx

�
�Z


h

���ec0jxj ~	hi ���p dx� sup
x2RdnB

e�p c0jxj � C 0 sup
x2RdnB

e�p c0jxj :

For any � > 0, there exists a bounded domain B� such that

8h 2 (0; h0];
I
h; "(�; "hi ) ~	hi 

Lp(RdnB�)
< � :

This and the relative compactness on any bounded B due to Sobolev imbeddings provide the
relative compactness on the whole space Rd (see Corollary IV.26 in [5]).
The third point follows from the Hölder inequalityjf j2 � jgj2

Lp(Rd)
� kf � gkL2p(Rd)

�
kfkL2p(Rd) + kgkL2p(Rd)

�
with p = 1 or p = 2.

3 The asymptotic problem in the 3-D case

3.1 Asymptotic behaviour of the Poisson potential and the limit Poisson
problem

As already noticed in Remark 2.6, the role played by the Poisson potential at the classical scale,
V h, presents an ambiguous interpretation. Indeed, it strongly converges to zero in Lp, p < 6, as
h ! 0, producing, at the same time, a non null spectral perturbation of the limit Hamiltonian,
corresponding to the spectral shift: "S � e1 (see the condition (2.20)). This ambiguity disappear
when the problem is considered at the quantum scale. In this Section we will show that, in the 3-D
case, the Poisson potential at the quantum scale has a non trivial asymptotic behaviour described
by a limit equation of Schrödinger-Poisson kind. The strategy of our proof consists in exploiting
the boundedness of the coe¢ cients Ahi and the relative compactness properties of the eigenvectors
~	hi , with "

h
i < 0, to extract a converging sequence of charge densities. Then, as an intermediate

result, a limit Schrödinger-Poisson equation is obtained, modulo an extraction, by using standard
estimates (see (3.3) and (3.4) below) and the elliptic regularity of the limit Hamiltonian. In the
end, a uniqueness result for this asymptotic problem will ensure the convergence of the whole
family as h! 0. The intermediate arguments will often be written with the notation

lim
h!0
h2D

g(h) = 

12



where D denotes a well chosen, countable or not, subset D � (0; h0] such that 0 2 D. For example
the relative compactness stated in Lemma 2.7 and Lemma 2.9 can be used as follows: out of any
in�nite subset S � (0; h0] with 0 2 S, such a countable subset D can be extracted so that

lim
h!0
h2D

1
h�h � �L1\L2(R3) = 0 ; (3.1)

with � =
X
i�N0

Ai j�ij2 ; Ai = lim
h!0
h2D

Ahi � 0 and lim
h!0
h2D

I
h; "(�; "hi ) ~	hi � �i
L2\L4(R3)

= 0 :

(3.2)

where " is a constant in ["S ; 0).

Proposition 3.1 Let G be the Green function of the Laplace operator in R3. For a set D such
that the conditions (3.2)-(3.1) are veri�ed, the potential at the quantum scale 1
h ~V h satis�es

lim
h!0
h2D

1
h ~V h �G � %
L1(R3)

= 0 :

Proof. We start recalling a standard estimate. Let f 2 L1 \L2(R3) and consider the convolution
G � f , whose Fourier Transform is

F (G � f) (k) = Ff(k)
k2

Ff denoting the Transform of f . From the Young-Housdor¤ inequality, we know that Ff 2
L2 \ L1(R3), which implies, using standard estimates, thatFf(k)k2


L1(R3)

� C
�
kfkL1(R3) + kfkL2(R3)

�
:

Then, we get

kG � fkL1(R3) � C
�
kfkL1(R3) + kfkL2(R3)

�
: (3.3)

Moreover, from the above condition Ff(k)
k2 2 L1(R3) and the Riemann-Lebesgue Lemma, we also

obtain that the convolution G � f belongs to the space C1(R3) of continuous functions vanishing
at 1

G � f 2 C1(R3) : (3.4)

The Poisson potential can be expressed by the action of the inverse Dirichlet-Laplacian on �h:
~V h =

�
��D
h

��1
�h, and the di¤erence ~V h �G � � is bounded in 
h by ~V h �G � �

L1(
h)
�
G � �� ���D
h��1 �

L1(
h)
+

+
G � ��� 1
h�h�� ���D
h��1 ��� �h�

L1(
h)
+
G � ��� 1
h�h�L1(
h) : (3.5)

The maximum principle, applied to the equation�
��u = 0 in 
h

uj@
h = G � f j@
h

with f 2 L1 \ L2(R3), leads us to the estimate

kukL1(
h) � sup
x2@
h

jG � f j :

13



If u is identi�ed with the functions G � ��
�
��D
h

��1
� and G �

�
�� 1
h�h

�
�
�
��D
h

��1 �
�� �h

�
appearing at the r.h.s of (3.5), the previous estimates gives ~V h �G � �

L1(
h)
� sup

x2@
h
jG � �j+ sup

x2@
h

��G � ��� 1
h�h���+ G � ��� 1
h�h�L1(
h)
� sup

x2@
h
jG � �j+ 2

G � ��� 1
h�h�L1(R3) :
Applying the properties (3.4) to G � � and (3.3) to G �

�
�� 1
h�h

�
, it follows from the conditions


h ! R3 and (3.1) that
lim
h!0
h2D

 ~V h �G � �
L1(
h)

= 0 : (3.6)

In the exterior domain R3n
h, we have1
h ~V h �G � �
L1(R3n
h)

= kG � �kL1(R3n
h) �!
h!0

0 ; (3.7)

where (3.4) has been once more implemented.
From (3.6) and (3.7) it �nally follows that1
h ~V h �G � �

L1(R3)
= max

�
kG � �kL1(R3n
h) ;

 ~V h �G � �
L1(
h)

�
�!

h!0; h2D
0

which concludes the proof.
Concerning the problem at the classical scale, we can actually strengthen the result referred in

Remark 2.6.

Corollary 3.2 Under the assumptions of Proposition 3.1, the solution of the Schrödinger-Poisson
problem at the classical scale, (1.4)(1.5)(1.7), strongly converges to 0 in H1

0 (
) as h! 0 withV h
H1
0 (
)

= O(h 1
2 ) :

Proof. The Poisson potentials at the classical and quantum scales are related by the change of
variables: 
! 
h and the relation (1.11). In 3D, we haveV h

H1
0 (
)

= h1=2
 ~V h

H1
0 (


h)
: (3.8)

Projecting the Poisson equation for ~V h (the second one in (2.26)) over ~V h itself, the norm ~V h2
H1
0 (


h)
is estimated by

 ~V h2
H1
0 (


h)
=
X
i�N0

Ahi

Z

h
j~	hi j2 ~V h dx �

 ~V h
L1(R3)

X
i�N0

Ahi :

As it follows from Lemma 2.7 and Proposition 3.1, the coe¢ cients Ahi are bounded and the family

of potentials
�
1
h ~V

h
�
h2D

converges in L1(R3) as h! 0. Therefore we have ~V h
H1
0 (


h)
� C ; h 2 D (3.9)

and, combining (3.8) and (3.9), V h
H1
0 (
)

= O(h 1
2 ) ; h 2 D :

This concludes the proof.
Next we investigate the limit shape of the family of Schrödinger-Poisson problems when h

belongs to a subset D verifying the conditions (3.2) and (3.1).
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Proposition 3.3 Under the assumptions of Proposition 3.1, the following limits hold

lim
h!0

inf "hi > "S for i > 1 ; (3.10)

lim
h!0
h2D

Ah1 = A ; lim
h!0
h2D

1
h ~	h1 � �
L2\L4(R3)

= 0 ; lim
h!0
h2D

1
h ~V h �G �A j�j2
L1(R3)

= 0 ; (3.11)

where A and � solve the problem8<:
[��+ U +W ] � = "S �; k�kL2(R3) = 1 ;
"S = inf � (��+ U +W ) ;
��W = A j�j2 :

(3.12)

Proof. Let N1 be de�ned by

N1 = max

�
i

���� limh!0
inf "hi = "S

�
: (3.13)

Due to the result of Theorem 2.5, we know that N1 � 1. Rephrasing the argument used at the
beginning of this Section, it is possible to �nd a set D � (0; h0], 0 2 �D, such that the conditions
(3.1) - (3.2) are veri�ed and

lim
h!0
h2D

"hi�N1
= "S : (3.14)

In what follows, the constant ", appearing in (3.2), is strictly greater that "S . If we choose h0
small enough, this condition and the previous limit imply: "hi < ", for all h 2 D. Set i � N1,
' 2 C10 (R3). According to (3.14), and to the results of Lemma 2.9 and Proposition 3.1, the
following limit holds

lim
h!0
h2D

�h
��+ U + ~V h � "hi

i
'; 1
h ~	

h
i

�
L2(R3)

= ([��+ U +G � �� "S ]'; �i)L2(R3) ;

with

� =
X
i�N0

Ai j�ij2 ; Ai = lim
h!0
h2D

Ahi � 0 and lim
h!0
h2D

I
h; "(�; "hi ) ~	hi � �i
L2\L4(R3)

= 0 :

Moreover, in this limit, the support of the test function ' is de�nitely included in 
h and the
scalar product at the l.h.s. can be written as�h

��+ U + ~V h � "hi
i
'; 1
h ~	

h
i

�
L2(R3)

=
�
';
h
��+ U + ~V h � "hi

i
~	hi

�
L2(
h)

= 0 ;

where (1.10) has been taken into account. Previous relations and the elliptic regularity of the
problem lead us to the following equation

[��+ U +G � �] �i = "S �i with i = 1; :::; N1 (3.15)

in L2(R3). The normalization and orthogonality properties of the eigenvectors 1
h ~	hi�N1
are

preserved for h! 0 and, in this limit, we have

k�ikL2(R3) = 1 ; (3.16)

(�i; �j)L2(R3) = �ij : (3.17)

The equations (3.15)-(3.16) de�ne �i as an eigenvector related to the eigenvalue "S of the limit
Hamiltonian H = �� + U + G � �. Let us focus our attention on the case i = 1. Due to the
characterization

~	h1 � 0 a.e. on 
h
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of the fundamental mode of ~Hh, and using the convergence of 1
h ~	h1 ! �1 in L2(R3), it follows
that: �1 � 0 a.e. in R3. Recalling that the unique non negative eigenvector coincides with
the fundamental mode, we can identify �1with the fundamental mode of H and "S with its �rst
eigenvalue. Then, the non degeneracy of the �rst energy level "S and the linear independence of the
vectors �i (see relation (3.17)) forces N1 = 1. We conclude that the energy levels "hi>1 de�nitely
overcome the threshold "S as h ! 0; therefore, the unique contribution to the charge density in

the limit h ! 0, comes from the term: Ah1
���~	h1 ���2 and, for a set D verifying (3.2)-(3.1), the limit

problem writes as (3.12).

3.2 The limit equation

The limit Schrödinger-Poisson equation obtained above essentially depends from the convergence
of the charge density expressed by the conditions (3.1)-(3.2). The purpose, in what follows, is
to analyze the uniqueness of this limit. In particular we will prove that any family of densities�
�h
�
h2D, ful�lling the convergence conditions (3.1)-(3.2), lead to the same limit equation (3.12)

which will be shown to have a unique solution verifying (3.11). Our strategy consists in proving
that the fundamental energy of the nonlinear limit Hamiltonian

��+ U +AG � j�j2

can be determined as an implicit function of the coupling parameter A. Then, making use of its
monotonicity properties, we are able to prove that there exists a unique setting fA;�;Wg given
by (3.11).
Let us denote with H(W ) the selfadjoint operator

H(W ) = ��+ U +W; D(H(W )) = H2(R3) : (3.18)

We consider the functional Ka : _H
1(R3;R)! R

Ka(W ) =
1

2

Z
R3
(rW )2 dx� a "(W ) ; a � 0 ; (3.19)

"(W ) = inf �(H(W )) ; (3.20)

where _H1(R3;R) is the homogeneous Sobolev space of real functions de�ned as the completion of
C10 (R3) with respect to the scalar norm

kWk _H1(R3;R) =

�Z
R3
jrW j2 dx

� 1
2

:

This is an Hilbert space for the scalar product (u; v) _H1 =
R
R3 ru � rv dx and it is included in

L6(R3). A simple Fourier decomposition Ŵ (�) = Ŵ (�)1j�j�1(�) + Ŵ (�)1j�j>1(�) = Ŵ1(�) + Ŵ2(�)
leads to

W =W1 +W2 ; Ŵ1 2 L1(R3) ; W2 2 L2(R3) ; (3.21)

with
Ŵ1


L1
+ kW2kL2 � C kWk _H1 : (3.22)

A direct application of Lemma B.1 implies

Lemma 3.4 The map "(W ) de�ned by (3.20) belongs to C0
�
_H1(R3;R); (�1; 0]

�
and is analytic

in the open set

S =
n
W 2 _H1(R3;R) ; "(W ) < 0

o
: (3.23)
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Proof. First note that the potential U , involved in the de�nition of H(W ) = ��+ U +W and
"(W ) = inf �(H(W )), belongs to _H1(R). Hence Lemma B.1 can be used either with H0 = ��+U
or H0 = �� while replacing W with W 0 = U + W . For W 2 _H1(R3), the decomposition
(3.21)(3.22) allows to write for any  2 H2(R3)

kW1 kL2 � kW1kL1 k kL2 � C kWk _H1 k kL2
kW2 kL2 � kW2kL2 k kL1 � kWk _H1 [� k� kL2 + C� k kL2 ]

where the last inequality is a consequence of the interpolation inequality k kL1 � C k� kaL2 k k
1�a

for a = d
4 < 1, in dimension d � 3. The function W1 is bounded with limx!1W1(x) = 0 while

(1��)�1W2 belongs to the space L2(L2(R3)) of Hilbert-Schmidt operator according to [18]. Hence
W =W1+W2 is a relatively compact perturbation of (��) in R3. All the conditions of Lemma B.1
are satis�ed.

Corollary 3.5 Let  (W ) denote the �rst normalized eigenvector of the Hamiltonian H(W ). The
H2(R3)-valued map W 7!  (W ) is real analytic on S.

Proof. As in Lemma 3.4, the conditions of Lemma B.1 are satis�ed. Then, the L2-analyticity
is a consequence of the Kato-Rellich theorem (see [17]-Theorem XII.8) applied there. The H2-
analyticity comes from the eigenvalue equation �� (W ) = "(W ) (W )� (U +W ) (W ).
We will use the previous result to investigate the minimization problem

inf
W2 _H1(R3;R)

Ka(W ) (3.24)

with Ka given by (3.19)-(3.20).

Proposition 3.6 The map (3.19)-(3.20) admits a unique global minimum in _H1(R3;R) notedWa.
In particular, if Wa 2 S, it is the unique solution of the Schrödinger-Poisson problem�

��Wa = a j aj2
H(Wa) a = "a a

in R3 (3.25)

with "a = "(Wa),  a =  (Wa).

Proof. The map Ka(W ) can be explicitly written as

Ka(W ) =
1

2
kWk2_H1(R3;R) � a "(W ); a � 0 : (3.26)

It follows from Lemma 3.4 that Ka(W ) is continuous on _H1(R3;R). Moreover �"(W ), de�ned as
the supremum of a¢ ne maps, is convex. Therefore the sum: Ka(W ) =

1
2 kWk

2
_H1(R3;R) � a "(W )

de�nes an �-convex (with � = 1) continuous map on _H1(R3;R). Hence the minimization problem
admits a unique solution Wa 2 _H1(R3;R).
In particular, if the minimum Wa is attained in the set S �where Ka(W ) is di¤erentiable �then
(3.24) is equivalent to the Euler equation dWKa(Wa) = 0 explicitly given byZ

R3
rWa � rV � a dW "(Wa) � V = 0 8V 2 _H1(R3;R) ; (3.27)

with dW "(Wa) � V denoting the action on V of the di¤erential map dW " evaluated in Wa. This
term can be expressed as

dW "(Wa) � V =
Z
R3
j aj2 V : (3.28)

Equation (3.25) is a direct consequence of (3.27), (3.28) and the density of C10 (R3) in _H1(R3;R).

In what follows we consider the regularity properties, w.r.t. the variable a, of the maps Wa, "a
and  a introduced in the above Proposition.
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Lemma 3.7 Let Wa denotes the minimum of the functional Ka(W ). With the notation of the
Proposition 3.6, the maps a 7! Wa and a 7! "a are continuous in R+, and the maps a 7! Wa,
a 7!  a and a 7! "a are analytic in the domain a 2 �

� =
�
a 2 R+ j "a < 0

	
: (3.29)

Proof. Let us consider the continuity problem at �rst. As already noticed in the proof of Propo-
sition 3.6, Ka is a continuous �-convex map with � = 1. This implies

Ka(W )�Ka(Wa) �
1

4
kW �Wak2_H1(R3;R) ; 8W 2 _H1(R3;R) : (3.30)

Let us now �x a0 2 R+ and consider the di¤erence Wa �Wa0 when a belongs to a small neigh-
bourhood of a0. From the above estimate, we have

1

4
kWa �Wa0k

2
_H1(R3;R) � Ka0(Wa)�Ka0(Wa0) � jKa(Wa)�Ka0(Wa0)j+ ja0 � aj j"aj : (3.31)

Here we notice that forW = 0, the value Ka(0) is de�ned by the �rst eigenvalue of the Hamiltonian
��+U and belongs to the bounded interval (0; a kUkL1 ]. Therefore, for any a 2 R+, the in�mum
value of the map Ka is bounded by a kUkL1 . This circumstance implies

a j"aj � Ka(Wa) � a kUkL1 : (3.32)

The map a 7! Ka(Wa) is non negative and concave as the in�mum of non negative a¢ ne maps,
Ka(Wa) = infW2 _H1(R3;R)�"(W )a + 1

2 kWk
2
_H1 . Therefore, it is continuous and previous relations

lead us to
lim
a!a0

kWa �Wa0k
2
_H1(R3;R) = 0 : (3.33)

The continuity of the map a 7! "a is a direct consequence of this result and the continuity of "(W )
(Lemma 3.4).
Next we investigate the analyticity problem. Owing to the continuity of "a, � is an open and

non empty set, with 0 2 � as a consequence of the condition (1.16). Let a 2 �; as remarked in the
proof of Proposition 3.6, the corresponding minimum Wa 2 S satis�es the Euler equation

dWKa(Wa) = 0 : (3.34)

Let Ia and IWa
denote two open neighbourhoods of a and Wa in � and S respectively. For a

di¤erentiable function f from _H1(R3;R) to R and for W 2 _H1(R3;R), r _H1f(W ) 2 _H1(R3;R)
denotes the gradient of f which represents the scalar product on _H1(R3;R) of the di¤erential
df(W ) : _H1(R3;R)! R. Due to Lemma 3.4, the mapK� : Ia ! IWa

is analytic andr _H1K�(W ) =
W � �r _H1"(W ) is well de�ned and analytic on IWa . We introduce the map F : Ia � IWa !
_H1(R3;R)

F (�;W ) =W � �r _H1"(W ) :

From (3.34), we have
F (a;Wa) = 0 ;

moreover
dWF (a;Wa) = I � ar2_H1"(Wa) 2 L( _H1; _H1) :

The convexity of �"(W ) implies

�
�
r2_H1"(Wa)V; V

�
_H1 � 0

This ensures the coercivity of the continuous symmetric bilinear form (V; V 0) 7! (dWF (a;Wa)V; V
0) _H1 .

Therefore, from Lax-Milgram Theorem, we know that dWF (a;Wa) is invertible and an implicit
function technique (e.g. in [15]) can be implemented to state that there exists an open neighbour-
hood of a, Ua, and an analytic map � 7!W� from Ua to IWa

such that

F (�;W�) = 0 ; 8� 2 Ua :
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The function W� 2 _H1(R3;R) solves the Euler equation (3.34) and, by Proposition 3.6, is the
unique minimum of K�; moreover it is real analytic w.r.t. � 2 Ua. The analyticity of the maps
a 7! "a and a 7!  a easily follows from this result and those obtained in Lemma 3.4 and Corollary
3.5.

Lemma 3.8 The analytic function "a, a 2 �, de�ned in Lemma 3.7, is strictly increasing.

Proof. We recall that "a is de�ned as the composite map "(Wa) where Wa is the minimum of the
functional Ka(W ). We can apply the rule of derivation of composite maps (e.g. in [1]) and the
relation (3.28) to write

"0a = dW "(Wa) �W
0

a =

Z
R3
j aj2W 0

a ; (3.35)

W 0
a denoting the variation of Wa. Di¤erentiating the minimum condition (3.27) w.r.t. a and using

(3.28) we obtain the equationZ
R3
rW 0

a � rV �
Z
R3
j aj2 V � a

d

da

Z
R3
j aj2 V = 0 8V 2 _H1(R3) ; (3.36)

where the last term at the l.h.s. can be rewritten as

d

da

Z
R3
j aj2 V =

d

da
dW "(Wa) � V = d2W "(Wa) � (V;W 0

a) : (3.37)

Setting V = W 0
a in (3.36) and using the relations (3.35)-(3.37), we obtain the following represen-

tation of "0a

"0a =

Z
R3
rW 0

a � rW 0
a � ad2W "(Wa) � (W 0

a;W
0
a) :

The r.h.s. of this expression de�nes the second di¤erential of Ka(W ) evaluated in the point Wa

and acting on the couple (W 0
a;W

0
a). From the convexity of this map, we know that

d2WKa(Wa) � (V; V ) � 0 8V 2 _H1(R3;R)

and the condition "0a � 0 follows. This condition, together with the analyticity of "a lead us to the
statement of the Lemma.
We conclude this Section giving the proof of Theorem 1.1.

Proof of Theorem 1.1. We start considering the second statement of the Theorem. Making use
of the notations introduced above, the solution to (1.17) identi�es with a couple (A;WA) ful�lling
the minimization problem

inf
W2 _H1(R3;R)

KA(W ) ; (3.38)

and the condition
"A = "S ; (3.39)

where "S is the �xed datum. In Proposition 3.3, it has been shown that there exists at least one

setting
�
A; G �A j�j2

�
�where A and � are de�ned as a limit in (3.11) �solving this problem.

Due to the Lemmas 3.7 and 3.8, the function a 7�! "a is continuous on R+, strictly increasing on
the subset � � R+ and null outside � (since Wa is a H0-relatively compact)

"ajR+n� = 0 :

Moreover, from the de�nition (1.14) and the assumption (1.16), it is known that: "0 = e1 < "S .
The previous characterization of "a forces the solution, A, to the equation

"A = "S

to be unique and strictly positive. Then, the uniqueness of the couple (A;WA) follows from the
uniqueness of the minimum of KA(W ).
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The third statement relies on an ad absurdum argument. If 1
h ~V h does not converge to the
potential W determined by the unique solution to (1.17), then we can �nd a set S � (0; h0], 0 2 �S,
such that 1
h ~V h �W

L1(R3)
> c ; 8h 2 S :

for some positive constant c. On the other hand, it is possible to extract a subset D � S, 0 2 �D,
such that (3.1) and (3.2) are veri�ed. According to Proposition 3.1, Proposition 3.3 and the
previous uniqueness result, the following limit holds

lim
h!0
h2D

1
h ~V h �W
L1(R3)

= 0 ;

which contradicts the initial assumption.
The �rst statement of the Theorem is a consequence of the third one and Corollary 3.2. Finally,

the fourth statement is an application of Proposition 3.3, once the third statement holds true.

4 The asymptotic problem in the 2-D case

The analysis of the asymptotic behaviour of the Poisson potential in the 2-D case needs a di¤erent
approach w.r.t. the one followed in the previous Section. This is essentially due to the fact that
the singularity of the integral kernel of (��)�1, in dimension 2, prevents us to use the estimate
(3.3) and a global Fourier analysis approach in the study of the problem. Let consider the rescaled
density rh

rh =
X
i�N0

Bhi

���I
h; "S (�; "hi ) ~	hi ���2 ; (4.1)

where, due to the results of Lemma 2.7, the coe¢ cients

Bhi = jlnhj Ahi (4.2)

are uniformly bounded w.r.t. h 2 (0; h0]. It is possible to extract out of any S � (0; h0], 0 2 �S, a
subset D � S, 0 2 �D, such that

lim
h!0
h2D

Bhi = Bi : (4.3)

It is worthwhile to stress that the convergence conditions (4.3) contain the existence of a uniform
bound for Bhi and Bi w.r.t. h

Bhi ; Bi � C ; 8h 2 D :

This property, together with the normalization condition
~	hi 

L2(
h)
= 1, will be extensively used

in what follows. As already noticed (see the proof of Lemma 2.9), the family
�
I
h; "(�; "hi ) ~	hi

�
h2(0;h0]

is bounded in L2 \L4(R2) uniformly w.r.t. the parameter h. Then, due to the de�nition (4.1), the
rescaled density (rh)h2(0;h0] is bounded in L

1 \ L2(R2). Moreover, it follows from relation

1
h�
h =

�
ln
1

h

��1
rh; (4.4)

that 1
h�hL1\L2(R2) = O(jlnhj�1) (4.5)

as h! 0. The above result proves that, unlike the 3-D case, if any non null limit potential exists,
it will not satisfy a Poisson problem.
In this analysis, we consider the Poisson potential ~V h de�ned, in terms of the rescaled density,

by the equation (
��~V h =

�
ln 1

h

��1
rh in 
h ;

~V h
���
@
h

= 0 :
(4.6)
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Our strategy consists into a direct estimate of the L1-norm of the contribution to ~V h given by the
source term in a region of size O(ln 1

h ). The size O(ln
1
h ) appears naturally since it is small enough

to apply the multipole expansion of the (��)�1-Green kernel on @
h, and big enough to exploit
the exponential decay of the eigenfunctions outside a region of this size. In particular, exploiting
the compensation between the logaritmic singularity of the Laplacian�s Green function and the
scaling factor

�
ln 1

h

��1
appearing in (4.6), we are able to obtain an explicit asymptotic picture of

the Poisson potential, as h! 0, both at the classical and the quantum scales.
In what follows Br and B(x; r) denote the balls of radius r centered, respectively, in the origin

and in the point x of R2. Moreover, we �x R and R0 such that the following inclusions hold

BR
h
� 
h � BR0

h
: (4.7)

Finally, setting Rh = �
�
ln 1

h

�
for some � > 0, the inclusions

BRh � BR
h
� 
h (4.8)

hold for all h 2 (0; h0] when h0 is chosen small enough, depending on � and R. Next, we consider
the decomposition

�h1 = rh IB
Rh
; �h2 = rh

�
1� IB

Rh

�
; (4.9)

where IB
Rh
is the characteristic function of the ball BRh and rh is given by (4.1). The Poisson

potential ~V h can be written as
~V h =Wh

1 +W
h
2 ; (4.10)

with (
��Wh

j =
�
ln 1

h

��1
�hj in 
h ;

Wh
j

��
@
h

= 0 :
(4.11)

The next Lemmas give an asymptotic characterization as h! 0 of the �elds Wh
j=1;2 and W

h.

Lemma 4.1 For any � > 0, the function Wh
2 , de�ned by (4.1), (4.9) and (4.11) tends uniformly

to 0 on 
h as h! 0 with the following asymptotic orderWh
2


L1(
h)

= O (h) (4.12)

for some constant  2 (0; 1).

Proof. Let us introduce the auxiliary function

~Wh
2 =

�
ln
1

h

��1
G � �h2 ; (4.13)

where G denotes the Green kernel of the Laplacian in R2: G(x; y) = � 1
2� ln jx� yj. The di¤erence

Wh
2 � ~Wh

2 satis�es the equation8<: ��
�
Wh
2 � ~Wh

2

�
= 0 in 
h ;

Wh
2 � ~Wh

2

���
@
h

= � ~Wh
2

���
@
h

;

and, due to the maximum principle, we get

jjWh
2 jjL1(
h) � jjWh

2 � ~Wh
2 jjL1(
h) + jj ~Wh

2 jjL1(
h) � jj ~Wh
2 jjL1(@
h) + jj ~Wh

2 jjL1(
h) :

For R0 compliant with condition (4.7), previous inequality gives

jjWh
2 jjL1(
h) � 2jj ~Wh

2 jjL1(BR0
h

) : (4.14)
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In the next estimate the values of ~Wh
2 over BR0

h
are considered. Let x 2 BR0

h
; according to the

explicit de�nitions of ~Wh
2 , �

h
2 and r

h, the uniform boundedness of the coe¢ cients Bhi�N0
and the

decay estimate (A.18), we have

j ~Wh
2 (x)j =

����� jlnhj�12�

Z
R2
ln jx� yj�h2 (y) dy

����� � jlnhj�1

2�

X
i�N0

"hi <"S

Bhi

Z
R2nB

Rh

jln jx� yjj
���1
h ~	hi (y)���2 dy

� jlnhj�1

2�

X
i�N0

"hi <"S

Bhi e
�2c0Rh

Z
R2nB

Rh

jln jx� yjj
���1
hec0jyj ~	hi (y)���2 dy

� C
e�2c0R

h

jlnhj
X
i�N0

"hi <"S

�
kln jx� yjkL2(B(x;1))

ec0jxj ~	hi 2
L4(
h)

+

Z
R2n(B(x;1)[B

Rh
)

jln jx� yjj
���1
hec0jyj ~	hi (y)���2 dy

#

� C
e�2c0R

h

jlnhj
X
i�N0

"hi <"S

"
1 + ln

2R0

h

Z
R2n(B(x;1)[B

Rh
)

���1
hec0jyj ~	hi (y)���2 dy
#

� C
e�2c0R

h

jlnhj
X
i�N0

"hi <"S

�
1 + ln

2R0

h
jjec0jxj ~	hi jj2L2(
h)

�

� Ce�2c0R
h
�
jlnhj�1 + 1

�
;

where at each step C is a suitable positive constant. Combining this estimate with (4.14), it easily
follows that Wh

2


L1(
h)

= O
�
e�c0�jlnhj

�
as h! 0.
Let us introduce the function

~Wh
1 =

�
ln
1

h

��1
G � �h1 (4.15)

and the constant
� =

1

2�

X
i�N0

Bi ; (4.16)

where, G denotes the Green kernel of the Laplacian in R2: G(x; y) = � 1
2� ln jx� yj, while Bi are

the limits (4.3) of the coe¢ cients Bhi .

Lemma 4.2 For any � > 0, let Wh
1 and ~Wh

1 be de�ned by (4.1), (4.9), (4.11) and (4.15), and
assume R, R0 and h0 satisfy the conditions (4.7) and (4.8). For a set D such that the condition
(4.3) is veri�ed, the following limits hold

lim
h!0
h2D

 ~Wh
1 + �


L1(BR0

h

nBR
h
)
= 0 ; (4.17)

lim
h!0
h2D

Wh
1 � ( ~Wh

1 + �)

L1(
h)

= 0 ; (4.18)

lim
h!0
h2D

 ~Wh
1


L1(B

Rh
)
= 0 : (4.19)
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Proof. Take the function ~Wh
1

~Wh
1 (x) = �

�
ln 1

h

��1
2�

X
i�N0

"hi <"S

Bhi

Z
B
Rh

ln jx� yj
���~	hi (y)���2 dy

on the set BR0
h
nBR

h
. Let (r; #) and (r0; #0) denote the polar coordinates of the points x and y

respectively. For x 2 BR0
h
nBR

h
and y 2 BRh , the ratio r0

r is estimated by:
r0

r �
�
Rh
�
ln 1

h

�
, and the

multipole expansion

ln jx� yj = ln r �
+1X
k=1

1

k

�
r0

r

�k
[cos k# cos k#0 + sin k# sin k#0]

is uniformly convergent for �
Rh
�
ln 1

h

�
< 1. According to this expansion, the values of ~Wh

1 over the
set BR0

h
nBR

h
can be expressed as follows

~Wh
1 (x)

���
x2BR0

h

nBR
h

= �
�
ln 1

h

��1
2�

X
i�N0

"hi <"S

Bhi ln jxj
Z
B
Rh

���~	hi (y)���2 dy + o�jlnhj�1� :
Replace ln jxj with

ln jxj =
�
ln
1

h

� 
1 +

�
ln
1

h

��1
lnh jxj

!
:

When x belongs to a domain of size � 1
h , the quantity lnh jxj is uniformly bounded as h ! 0.

Therefore we get

~Wh
1 (x)

���
x2BR0

h

nBR
h

= � 1

2�

X
i�N0

"hi <"S

Bhi

Z
B
Rh

���~	hi (y)���2 dy + o�jlnhj�1� :
Making use of this expression, the norm

 ~Wh
1 + �


L1(BR0

h

nBR
h
)
admits the estimate

 ~Wh
1 + �


L1(BR0

h

nBR
h
)
�

��������
1

2�

X
i�N0

"hi <"S

Bhi

Z
B
Rh

���~	hi (y)���2 dy � �
��������+ o

�
jlnhj�1

�

� 1

2�

X
i�N0

"hi <"S

����Bhi ~	hi 2L2(B
Rh
)
�Bi

����+ o�jlnhj�1� :
Taking into account the exponential decay of the eigenfunctions ~	hi with "

h
i < "S and the limit

conditions Bhi �!
h!0; h2D

Bi, we have

����Bhi ~	hi 2L2(B
Rh
)
�Bi

���� � Bhi

����~	hi 2L2(B
Rh
)
� 1
����+ ��Bhi �Bi��

= Bhi

����~	hi 2L2(B
Rh
)
�
~	hi 2

L2(R2)

����+ ��Bhi �Bi�� = Bhi

~	hi 2
L2(R2nB

Rh
)
+
��Bhi �Bi��

� Bhi e
�2c0Rh

ec0j�j ~	hi 2
L2(R2)

+
��Bhi �Bi�� :
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These inequalities lead us to (4.17).
Let us consider (4.18). The function Wh

1 � ( ~Wh
1 + �) is the unique solution to the problem(

��u = 0 in 
h ;

uj@
h = �( ~Wh
1 + �)

���
@
h

:

Using the Maximum Principle and (4.17), we get

lim
h!0
h2D

Wh
1 � ( ~Wh

1 + �)

L1(
h)

� lim
h!0
h2D

 ~Wh
1 + �


L1(@
h)

� lim
h!0
h2D

 ~Wh
1 + �


L1(BR0

h

nBR
h
)
= 0 :

Concerning the last limit, (4.19), we notice that, for any x 2 BRh , the following estimate holds

j ~Wh
1 (x)j �

�
ln 1

h

��1
2�

X
i�N0

"hi <"S

Bhi

Z
B
Rh

jln jx� yjj
���~	hi (y)���2 dy

� C

�
ln
1

h

��1 X
i�N0

"hi <"S

�
kln jx� yjkL2(B(x;1))

~	hi 2
L4(
h)

+

Z
B
Rh
nB(x;1)

jln jx� yjj
���~	hi (y)���2 dy

!

� C

�
ln
1

h

��1 X
i�N0

"hi <"S

 
1 + ln(2Rh)

Z
B
Rh
nB(x;1)

���~	hi (y)���2 dy
!

� C

�
ln
1

h

��1 X
i�N0

"hi <"S

�
1 + ln(2Rh)

~	hi 2
L2(
h)

�
;

C denoting, at each step, a suitable positive constant. The relevant term at the r.h.s. of this
expression is the product:

�
ln 1

h

��1
ln(2Rh), which, due to the de�nition of Rh, is proportional to

an in�nitesimal of type 1
x lnx with x = 2�

�
ln 1

h

�
as h! 0. This concludes the proof.

The results of previous Lemmas will help us to characterize the asymptotic shape of the Poisson
potential ~V h as h! 0.

Proposition 4.3 For a set D such that the condition (4.3) is veri�ed with h0 > 0 small enough,

the family of potentials
�
1
h ~V

h
�
h2D

is bounded in R2 and uniformly convergent on any compact
domain to the constant potential � de�ned by (4.16)). More precisely, for any � > 0, setting

Rh = �
�
ln 1

h

�
, the family

�
~V h
�
h2D

satis�es the limit

lim
h!0
h2D

 ~V h � �
L1(B

Rh
)
= 0 : (4.20)

Proof. Set � > 0, Rh = �
�
ln 1

h

�
. Let R and h0 satisfy the condition (4.8). The decomposition

(4.10) and the results of the Lemmas 4.1 and 4.2, give the following auxiliary estimates

� Consider the di¤erence ~V h � � on BRh ~V h � �
L1(B

Rh
)
�
Wh

1 � �

L1(B

Rh
)
+
Wh

2


L1(B

Rh
)

�
Wh

1 � �

L1(B

Rh
)
+
Wh

2


L1(
h)

= jjWh
1 � �jjL1(BRh

) +O (h)

�
Wh

1 � ( ~Wh
1 + �)


L1(B

Rh
)
+
 ~Wh

1


L1(B

Rh
)
+O (h)

�
Wh

1 � ( ~Wh
1 + �)


L1(
h)

+
 ~Wh

1


L1(B

Rh
)
+O (h) �!

h!0; h2D
0
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from which we get

lim
h!0
h2D

 ~V h � �
L1(B

Rh
)
= 0 : (4.21)

� Consider 1
h ~V h on R2nBR
h1
h ~V h

L1(R2nBR
h
)
=
 ~V h

L1(
hnBR
h
)
�
Wh

1


L1(
hnBR

h
)
+
Wh

2


L1(
hnBR

h
)

�
Wh

1


L1(
hnBR

h
)
+
Wh

2


L1(
h)

=
Wh

1


L1(
hnBR

h
)
+O (h)

�
Wh

1 � ( ~Wh
1 + �)


L1(
hnBR

h
)
+
 ~Wh

1 + �

L1(
hnBR

h
)
+O (h)

�
Wh

1 � ( ~Wh
1 + �)


L1(
h)

+
 ~Wh

1 + �

L1(
hnBR

h
)
+O (h) �!

h!0; h2D
0

which gives

lim
h!0
h2D

1
h ~V h
L1(R2nBR

h
)
= 0 : (4.22)

� Finally we consider ~V h on BR
h
nBRh ~V h

L1(BR
h
nB

Rh
)
�
Wh

1 � ( ~Wh
1 + �)


L1(
h)

+
 ~Wh

1 + �

L1(BR

h
nB

Rh
)
+
Wh

2


L1(
h)

�
Wh

1 � ( ~Wh
1 + �)


L1(
h)

+ C +
 ~Wh

1


L1(BR

h
nB

Rh
)
+
Wh

2


L1(
h)

:

From the results of Lemma 4.1 and 4.2, we have ~V h
L1(BR

h
nB

Rh
)
� C +

 ~Wh
1


L1(BR

h
nB

Rh
)
; h 2 D :

Set x 2 BR
h
nBRh ; proceeding as in Lemma 4.2, the inequality

��� ~Wh
1 (x)

��� � �ln 1
h

��1
2�

X
i�N0

"hi <"S

Bhi

Z
B
Rh

jln jx� yjj
���~	hi (y)���2 dy

� C

�
ln
1

h

��1 X
i�N0

"hi <"S

 
kln j jx� yjkL2(B(x;1))

~	hi 2
L4(
h)

+ ln
2R

h

Z
B
Rh
nB(x;1)

���~	hi (y)���2 dy
!

� C

�
ln
1

h

��1 X
i�N0

"hi <"S

�
1 + ln

2R

h

~	hi 2
L2(
h)

�

holds, C denoting at each step a positive constant. The leading asymptotic term at the r.h.s.
of this expression is the product:

�
ln 1

h

��1
ln 2Rh which is a constant as h ! 0. The above

considerations allow us to conclude that ~V h
���
BR

h
nB

Rh

is uniformly bounded for h 2 D, i.e. it

exists a positive constant C such that ~V h
L1(BR

h
nB

Rh
)
� C 8h 2 D : (4.23)
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As a direct consequence of (4.21), (4.22) and (4.23),
n
1
h ~V

h
o
h2D

is bounded in the whole

space uniformly w.r.t. h. Moreover, for any compact set K � R2, it exists hK 2 D such that
K � BRh for all h 2 D \ fh jh < hK g. This circumstance implies that ~V h � �

L1(K)
�
 ~V h � �

L1(B
Rh
)

�!
h!0; h2D

0 :

Corollary 4.4 Under the assumptions of Proposition 4.3, the family
�
V h
�
h2D converges strongly

to 0 in H1
0 (
) V h

H1
0 (
)

= O
�

1

jlnhj

�
:

Proof. The Poisson potentials at the classical and quantum scales are related by the change of
variables: 
! 
h and the relation (1.11). In 2D, we haveV h

H1
0 (
)

=
 ~V h

H1
0 (


h)
: (4.24)

Projecting the Poisson equation for ~V h (the second one in (2.26)) over ~V h itself, we can estimate
the H1

0 -norm of this function by ~V h2
H1
0 (


h)
= jlnhj�1

X
i�N0

"hi <"S

Bhi

Z

h
j~	hi j2 ~V h dx � jlnhj

�1
1
h ~V h

L1(R2)

X
i�N0

"hi <"S

Bhi :

Following the result of Proposition 4.3, we have1
h ~V h
L1(R2)

� C 8h 2 D ;

and, due to the boundedness of the coe¢ cients Bhi , it follows thatV h
H1
0 (
)

= O
�
jlnhj�1

�
:

As shown in Proposition 4.3, the limit potential at the quantum scale coincides with the constant
value � on compact sets. In the following Lemma we give a numerical estimate of this quantity.

Lemma 4.5 Let e1 denotes the �rst eigenvalue of the Hamiltonian H0 = �� + U , D(H0) =
H2(Rd). Under the assumptions of Proposition 4.3, the following conditions hold

lim
h!0

inf "hi > "S for i > 1 ; (4.25)

lim
h!0

"h1 = e1 + � and lim
h!0
h2D

jlnhj f("h1 ) = 2�� : (4.26)

Proof. In what follows, N1 denotes the integer

N1 = max

�
i

���� limh!0
inf "hi = "S

�
;

while feigi�N is the point spectrum of H0 and H� the operator

H� = ��+ U + �; D(H�) = H2(R2)

whose eigenvalues are
e�i = ei + �; i = 1; :::; N : (4.27)
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As in the proof of Proposition 3.3, it is possible to �nd a set D � (0; h0] such that condition (4.3)
is veri�ed and the following limit holds

lim
h!0
h2D

"hi�N1
= "S ; (4.28)

with N1 � 1. Due to the above limit, one can set h0 so small that "hi�N1
< "S

2 , 8h 2 D. This
property allows us to apply the exponential estimate (A.17) for all h 2 D.
To obtain the results stated in (4.25) and (4.26), it is enough to prove that: N1 = 1 and

"S = e1 + �. The proof is articulated in three steps. We start showing that the eigenvalues "hi�N1

of the Hamiltonian ~Hh asymptotically belong to the spectrum �(H�) as h! 0. Then, the limit

lim
h!0
h2D

"hi�N1
= e�1

is achieved. We conclude by using a spectral approximation argument.
� Consider the vector family: uhi�N1

= �h ~	hi�N1
, where �h(x) = �(hx + x0) and � 2 C10 (R2) is

such that: � = 1 on BR
2
and � = 0 on R2nBR, for a radius R > 0 verifying (4.7). Under these as-

sumptions, the functions uhi�N1
are inH2(R2) and we can consider the di¤erence:

�
H � � "hi

�
uhi�N1

which is expressed by

(H� � "hi )uhi = �(��h) ~	hi � 2r�h � r~	hi � �h( ~V h � �) ~	hi :

The functions r�h and ��h are smooth and supported outside B R
2h
. A direct application of

estimate (A.17) gives

jjr�h � r~	hi jjL2(R2) + jj(��h) ~	hi jjL2(R2) � Cjj�jjC2(R2)(h+ h
2)e�c0

R
2h 8h 2 D : (4.29)

Next, we de�ne Rh = R ln 1
h and we suppose that h0 is small enough so that (4.8) holds; using

(A.17), equation (4.20) and the boundedness of
n
1
h ~V

h
o
h2D

(obtained in Proposition 4.3) we

have 8h 2 D�h( ~V h � �) ~	hi 2
L2(R2)

� jj�jj2L1(R2)

 Z
B
Rh

j( ~V h � �) ~	hi j2dx+
Z

hnB

Rh

j( ~V h � �) ~	hi j2dx
!

� C

�
jj ~V h � �jj2L1(B

Rh
) +

Z

h
jec0jxj ~	hi j2dx e�2c0R

h

�
and

lim
h!0
h2D

�h( ~V h � �) ~	hi 
L2(R2)

= 0 :

Combining equations (4.29) and the result above, it is possible to �nd a function �(h) independent
of i such that �(h)! 0 when h! 0 and

jj(H� � "hi )uhi jjL2(R2) � �(h) 8h 2 D : (4.30)

Let us denote with d(�; �(H)) the distance of � 2 C from the spectrum of an Hamiltonian H.
Using a classical inequality for self-adjoint operators, we have

jjuhi jjL2(R2)d("hi ; �(H�)) � jj(H� � "hi )uhi jjL2(R2) : (4.31)

Due to the exponential decay relation (A.17) and the normalization condition (1.13), the mass of
~	hi concentrates around the origin. This circumstance allows us to obtain a uniform lower bound
for
R
B R
2h

j~	hi j2dx (see e.g. (2.27) in Lemma 2.7), and

jjuhi jjL2(R2) �
1

2

27



for all h 2 D and h0 small enough. Previous relations lead us to the following result

d("hi ; �(H�)) � 2jj(H� � "hi )uhi jjL2(R2) �!
h!0; h2D

0 :

� The above condition and the limit (4.28), imply that "S 2 �(H�) and, in particular

"S = e�k (4.32)

for some k � 1. On the other hand, following the same line as in the previous step, it is possible
to show that

lim
h!0
h2D

d(e�1; �(
~Hh)) = 0 : (4.33)

Here it follows a brief sketch of the proof. Let �1 2 H2(R2) denote the �rst normalized eigenvector
of H�. Exploiting the Agmon distance on R2 associated with the potential (U � e1

2 ) from a point
x to the well !, it is possible to recover the quantum scale decay estimateZ

R2

���ec0jxj�1���2 dx+ Z
R2

���ec0jxjr�1���2 dx � C (4.34)

for suitable positive constants c0 and C (this is the analogous of relation (A.6) in the whole space
case, we refer to Proposition 6.4 in [6] for this point). Setting vh = �h�1, we have vh 2 D( ~Hh)
and

( ~Hh � e�1)vh = �(��h)�1 � 2r�h:r�1 + �h( ~V h � �)�1 :

The estimate (4.34) allows to apply the same scheme as in the previous case. Therefore we havevh
L2(R2) �

1

2
and lim

h!0
h2D

( ~Hh � e�1)vh

L2(R2)

= 0 (4.35)

from which the relation (4.33) directly follows.
Using the constraints (4.28) and (4.32), a direct consequence of (4.33) is

lim
h!0
h2D

"hi�N1
= "S = e1 + � : (4.36)

� Let b = e�2�e
�
1

2 > 0. The unique spectral point of H� in the interval I := [e�1 � b; e�1 + b] is e�1;
moreover, H� has no spectrum in fx; 0 < d(x; I) < bg

�(H�) \ ((I +B(0; b))nI) = ? : (4.37)

From the previous point, we know that "hi�N1
de�nitely belong to I when h 2 D. Next we consider

the vector space E spanned by the family
�
uhi
�
i�N1

and the spectral subspace F associated with
�(H�)\I. By construction, F coincides with the �rst eigenspace of the operator H�. Using (A.17),
it can be easily shown that the matrix M = ((uhi ; u

h
j )L2(R2))1�i;j�N1 veri�es

M = I + o(1) (4.38)

when h ! 0, h 2 D. Then, from Theorem 2.4 in [9] and the relation (4.30), the distance d(E;F )
(de�nition given in [9]) is estimated by

d(E;F ) �
�
N1
�min

� 1
2 2�(h)

b
8h 2 D ; (4.39)

where �min denotes the smallest eigenvalue of M . Equation (4.38) implies

�min = 1 + o(1) �
1

2
8h 2 D :
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Using the above equation and the limit condition limh!0 �(h) = 0 in (4.39), we get

d(E;F ) < 1

for all h 2 D with h0 small enough. This last condition allows us to state that the map �F jE :
E ! F is injective (e.g. in Lemma 1.3 in [9]), from which the condition N1 = 1, and then (4.25)
follow. For a set D such that condition (4.3) holds, the last limit limh!0

h2D
jlnhj f("h1 ) = 2�� is a

simple rewriting of the de�nition (4.16) of � when (4.25) is true.
We conclude this Section giving the proof of Theorem 1.3

Proof of Theorem 1.3. Let D, 0 2 �D, be any set for which the condition (4.3) is veri�ed. The
constant � related to D is de�ned by

� =
1

2�

X
i�N0

Bi ; lim
h!0
h2D

Bhi = Bi : (4.40)

Due to the relations (2.20) and (4.26), this constant is uniquely determined from the data of the
problem

� = "S � e1 : (4.41)

Assume now that the second statement is not true. Then there exists a constant � > 0, a set

S � (0; h0], 0 2 �S and a strictly positive constant c such that
 ~V h � �

L1(jxj��� lnh)
� c for all

h 2 S. On the other hand, the boundedness of the coe¢ cients stated in Lemma 2.7 allows us to
extract a subset D � S, 0 2 �D, such that the condition (4.3) is veri�ed. Then the Proposition 4.3
brings a contradiction. We have proved ad absurdum, the second statement of Theorem 1.3.
The third statement is also proved by using an ad absurdum argument. Out of any in�nite

set S � (0; h0] with 0 2 S which contradicts the statement, a subset D � S with 0 2 D can be
extracted so that (4.3) holds. Then the relation (4.5) implies the L2 estimate. Moreover Lemma 4.5
says that "hi > "S for i � 2 and h small enough and provides the asymptotic behaviour of "h1 and
f("h1 ) as h! 0, h 2 D. Thus the subset S cannot exist.
The �rst statement is a direct consequence of the second one combined with Corollary 4.4.
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A Agmon estimates

Agmon estimates form a standard technical tool in evaluating the rate of decay of eigenfunctions far
from the interaction support. In what follows we apply this technique to the case of the Schrödinger
Poisson system with a squeezing quantum well; in particular we give some useful decay estimates
for those stationary states �on both the classical and the quantum scales �related to the energies
below some negative energy. Let us �rst recall the de�nition of the Agmon distance associated
with a smooth potential V , de�ned on D � Rd, and to the energy E

dV�E(x; y) = inf
2Px;y

Z 1

0

q
(V ((s))� E)+ j

0(s)j ds ; (A.1)

where Px;y denotes the set of all regular curves connecting x and y in D. We have the classical
property

jrxdV�E(x; y)j2 � (V � E)+ (x) a:e: (A.2)

which is still true if we consider the Agmon distance from a set of points ! (e.g. in [8])

dV�E(x; !) = inf
y2!

dV�E(x; y) :
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Lemma A.1 (Agmon estimates) Let "hi be a spectral point of the (unitarily equivalent) Hamil-
tonians

Hh = �h2�+ Uh + V h (A.3)

and
~Hh = ��+ U + ~V h (A.4)

placed below some negative energy: "hi < " where " 2 (�jjU jjL1 ; 0). The related stationary states
�	hi and ~	

h
i �admit the estimateshr�e�=h	hi �

L2(
)
+
e�=h	hi 

L2(
)
� C ; (A.5)

e~� ~	hi 
H1(
h)

� ~C ; (A.6)

where C and ~C are suitable positive constants, � and ~� are the Agmon distances

�(x) = (1� �) dUh�"(x; !
h); x 2 
 (A.7)

~�(x) = (1� �) dU�"(x; !); x 2 
h (A.8)

� is a positive parameter smaller than 1, while !h and ! are the support of Uh and U respectively.

Proof. We start considering the problem at the quantum scale. We use the relation (see for
instance Theorem 1.1 in [9])Z


h
jr(e'u)j2dx+

Z

h
(V � jr'j2)e2' u2dx =

Z

h
e2' (��+ V )u � udx : (A.9)

Setting u = ~	hi , ' = ~� and V = U + ~V h � "hi , we getZ

h
jr(e~� ~	hi )j2dx = �

Z

h
(U + ~V h � "hi � jr~�j2)e2�

�
~	hi

�2
dx ; (A.10)

and, due to (2.2), Z

h
jr(e~� ~	hi )j2dx � �

Z

h
(U � "hi � jr~�j2)e2

~�
�
~	hi

�2
dx : (A.11)

Next we follow the same line as in Proposition 3.3.1 of [8] and introduce the set


+h;� =
�
x 2 
h jU � " � �

	
;

where � is a small positive parameter. Relation (A.11) can be written asZ

h
jr(e~� ~	hi )j2dx+

Z

+h;�

(U � "hi � jr~�j2)e2
~�
�
~	hi

�2
dx � �

Z

�h;�

(U � "hi � jr~�j2)e2
~�
�
~	hi

�2
dx ;

(A.12)
with 
�h;� = 


hn
+h;�. The function U � "hi � jr~�j2 admits the following estimates

� The domain 
�h;� is inside the support of U ; therefore, in this region, we have ~� = 0,

U � "hi � jr~�j2 = U � "hi and

sup
x2
�h;�

�
�
U � "hi � jr~�j2

�
� kUkL1 : (A.13)
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� In 
+h;�; applying (A.2), we have

U � "hi � jr~�j2 � U � "hi � (1� �)
2
(U � ")

� (U � ")(2� � �2) � 2�2 � �3 :

For � < min f1; j"jg, it follows

inf
x2
+h;�

�
U � "hi � jr~�j2

�
> �2 : (A.14)

Replacing (A.13) and (A.14) into (A.12) and taking into account the condition
~	hi 

L2(
h)
= 1,

we obtain Z

h
jr(e~� ~	hi )j2dx+ �2

Z

+h;�

e2
~�
�
~	hi

�2
dx � kUkL1

andZ

h
jr(e~� ~	hi )j2dx+ �2

Z

h
e2
~�
�
~	hi

�2
dx � kUkL1 + �

2

Z

�h;�

e2
~�
�
~	hi

�2
dx � kUkL1 + �

2 :

This gives the estimate (A.6).
The analogous result at the classical scale (A.5) can be easily achieved making use of the change

of variables: 
h ! 
, and taking into account the relations (1.8) and

1

h
dUh�"(x; !

h) = dU�"(
x� x0
h

; !) ; x 2 
 :

Remark A.2 The previous Lemma allows us to state that the stationary states related to negative
energies show an exponential decay outside the support of the potential well, which is given by !h or
! depending on the description adopted. In particular, for " < 0, we notice that the corresponding
Agmon metric �

Uh � "
� 1
2

+
dx and (U � ")

1
2
+ dx

identi�es with the Euclidian one
j"j 1

2 dx

in the open domains x 2 Rdn�!h and x 2 Rdn�! respectively. It follows that, in these regions, �(x)
and ~�(x) are strictly positive functions increasing, for jxj ! 1, as the standard Euclidean distance
in Rd. This property can be rephrased by the following Lemma.

Lemma A.3 The functions � and ~�, de�ned in (A.7)-(A.8), admit the following estimate

c0 jx� x0j � h c1 � �(x) � c2 jx� x0j ; x 2 
 (A.15)

c0 jxj � c1 � ~�(x) � c2 jxj ; x 2 
h (A.16)

where ci, i = 0; 1; 2, are suitable positive constants.

Corollary A.4 Set " 2 (�jjU jjL1 ; 0). For "hi < ", the following estimates holdec0j�j ~	hi 
L2(
h)

+
ec0j�jr~	hi 

L2(
h)
� C ; (A.17)

ec0j�j ~	hi 
Lp(
h)

� C 0 ; (A.18)

with: p 2 [1; 6] in dimension d = 3 or p 2 [1;+1) in dimension d = 2, and for suitable positive
constants C, C 0.
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Proof. As a direct consequence of the estimate (A.6) and the inequality (A.16), it follows that
the L2-norm of the function ec0j�j ~	hi is uniformly bounded w.r.t. h.
For what concern the second contribution in (A.17), we notice that

ec0j�j�c1
���r~	hi ��� � ���e~�r~	hi ��� = ���r�e~� ~	hi �� �re~�� ~	hi ��� :

The term re~� at the r.h.s. is pointwise bounded by���re~���� � (U � ") 12+ e~� ;
as it comes from (A.2). Then, using once more the relation (A.6), we obtain

e�c1
ec0j�jr~	hi 

L2(
h)
�
r�e~� ~	hi �

L2(
h)
+ sup
x2
h

(U � ")
1
2
+

e~� ~	hi 
L2(
h)

� C :

From the continuous injection H1 ,! Lp and the Agmon estimate (A.6), we gete~� ~	hi 
Lp(
h)

� C 0 :

Then, relation (A.18) easily follows taking into account the inequality ep (c0j�j�c1)
���~	hi ���p � ���e~� ~	hi ���p.

B Further technical tools

Here is a basic result of functional analysis which is used in Section 3.2.

Lemma B.1 Let H0 be a closed self-adjoint operator on a Hilbert space H with inf �(H0) = "0 >
�1 and inf �ess(H0) = "0;ess. Assume that E is a real Banach space of symmetric relatively
bounded perturbations with relative bound 0 of H0 with the estimate

8� > 0;9C� > 0;8W 2 E;8 2 D(H0); kW k � � kWkE kH0 k+ C� kWkE k k :

Then for any W 2 E, the operator H0 +W is self-adjoint with domain D(H0 +W ) = D(H0),
bounded from below and the mapping " : E 3 W ! "(W ) = inf �(H0 +W ) 2 R is continuous.
Moreover if any W 2 E is a relatively compact perturbation of H0, then �ess(H0+W ) = �ess(H0)
for any W 2 E and the mapping " is real analytic on the open set fW 2 E; "(W ) < "0;essg .

Proof. Any W 2 E is a relatively bounded perturbation with bound less than 1 of H0. Hence
H0 + W is self-adjoint with D(H0 + W ) = D(H0). The mapping " is well de�ned from E to
R [ f�1g by

"(W ) = inf
'2Hnf0g

(' ; (H0 +W )')

k'k2

is concave as an in�mum of a¢ ne functions. It is continuous when it is locally bounded. This is
again a consequence of our accurate relative boundedness with the second resolvent formula. Write
for � 2 R and � � 2 j"0j+ 1

(H0 +W + �)�1 =
�
Id + (H0 + �)

�1W
��1

(H0 + �)
�1

with (H0 + �)
�1W

 = W (H0 + �)
�1 � 2� kWkE + C�

�� j"0j
kWkE :

For kWkE � R, and by taking � > 2j"0j+1+ 3RC1=(6R) and � = 1=(6R), the resolvent (�+H0 +
W )�1 exists and equals the series

(H0 +W + �)�1 =
1X
k=0

(�1)k[(�+H0)
�1W ]k(�+H0)

�1 in L(H) :
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Hence "(W ) � �1� 2 j"0j � 3RC1=(6R) when kWkE � R . This ends the proof of the continuity.
The additional relative compactness assumption with the Weyl and the Kato-Rellich theorems (see
[17]-IV) yield the second statement.
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