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Institut Néel, CNRS et Université Joseph Fourier, BP 166, 38042 Grenoble Cedex 9, France. 

 
Abstract 
 

Two phenomenological approaches are currently used in the study of the vitreous state. One is 

based on the concept of fictive temperature introduced by Tool and recently revisited by 

Nieuwenhuizen [Phys. Rev. Lett. 80, 5580 (1998)]. The other is based on the thermodynamics 

of irreversible processes initiated by De Donder at the beginning of the last century and 

recently used by Möller and co-workers for a thorough study of the glass transition [J. Chem. 

Phys. 125, 094505 (2006)]. This latter approach leads to the possibility of describing the glass 

transition by means of the freezing-in of one or more order parameters connected to the 

internal structural degrees of freedom involved in the vitrification process. In this paper, the 

equivalence of the two preceding approaches is demonstrated, not only for glasses, but in a 

very general way for any system undergoing an irreversible transformation. This equivalence 

allows the definition of an effective temperature for all systems departed from equilibrium 

generating a positive amount of entropy. In fact, the initial fictive temperature concept of Tool 

leads to the generalization of the notion of temperature for systems out of thermodynamic 

equilibrium, for which glasses are just particular cases.  
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I. INTRODUCTION 

 

 The mysterious glass transition is mainly due to the gradual freezing of one or several 

degrees of freedom when the temperature of a system is decreased below its temperature of 

crystallization (for example a glass-forming liquid or a polymer). However, the understanding 

of the thermodynamic basis of the glass transition and the relationship existing between 

thermodynamics and dynamics (or kinetics) seem to be still under debate.1 While the glass 

transition occurs, the system is for a time out of its state of equilibrium until it reaches a new 

equilibrium state when it is completely frozen. To our knowledge, the first attempt to 

envisage the glass transition in considering the progressive freezing-in of the internal modes 

of a system under a thermodynamic point of view has been done by Simon and latter by 

Bernal, Jones, Davies, Prigogine and Defay.2-5 At the same time, in order to conciliate theory 

and experiments on the glass transition, Tool has invented a useful phenomenological concept 

called the fictive temperature.6,7 This parameter, which has the same physical dimension as a 

temperature can describe how far a system is departed from its initial equilibrium state. The 

fictive temperature is nowadays extensively used theoretically and experimentally in studies 

on the vitreous state or on systems with slow internal dynamics.8,9 Nieuwenhuizen has 

recently developed a new thermodynamics based on the fictive temperature.10 Using this 

effective temperature as additional thermodynamic variable, he has explained most of the "old 

questions" concerning the glass transition.11,12 Nevertheless, what does this temperature really 

means and how it is experimentally accessible is still under discussion. Nowadays, the notion 

of temperature for systems departed from thermodynamic equilibrium is still not exactly 

clarified, especially from a statistical physics point of view, and the ongoing literature on the 

subject is very abundant.13-15 A recent review on the subject has been written by Casas-

Vázquez and Jou.16 In the low temperatures field, however, it is demonstrated that different 
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kinds of particles such as phonons and electrons can be transiently thermally decoupled within 

a single material and thus, can be brought at different temperatures as measured for instance 

by means of electronic noise.17 Recently, it has been finely demonstrated that at such low 

temperatures the transfer of heat is indifferently carried out by phonons, electrons or, when 

the electron-phonon interaction is frozen, by photons.18 However, what does the classical 

statistical temperature exactly mean when the system undergoes a glass transition? Does the 

current statistical physics even make sense for vitreous systems for which the fundamental 

ergodic hypothesis seems to be not valid anymore?19 Likewise, does the notion of temperature 

has a real signification for macroscopic systems out of thermodynamic equilibrium? These 

questions are assessed in this paper when the fictive temperature is envisaged by means of the 

classical theory of irreversible processes.  

 The paper is decomposed into six sections. After the introduction, in the section II we 

present the current literature around which the present paper is based. Especially, in a first 

part the macroscopic non-equilibrium thermodynamics based on De Donder's precursor works 

is briefly presented, and in a second part the thermodynamics recently developed by 

Nieuwenhuizen is provided. A brief survey of the initial fictive temperature concept of Tool 

under which the thermodynamics of Nieuwenhuizen is based is presented. In the section III, 

we argue that the two approaches are equivalent and particularly that the effective temperature 

and the order parameter are two variables which are not independent of each others. We give 

several relationships connecting these two variables. For that purpose, a simple thermal model 

based on the Fourier's equation on the propagation of heat is employed and a comparison of 

macroscopic quantities such as the rate of production of entropy and the heat capacity are 

used in order to establish the connection between the two approaches. In the section IV, we 

used this connection in order to show that a supplementary thermodynamic macroscopic 

temperature can be defined for all systems undergoing an irreversible process. The particular 
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case of glasses is discussed. In the section V, we envisage experiments which can reveal the 

existence of an effective temperature as defined in the previous section. The last section VI is 

a concluding summary.  

 

 

II. TWO PHENOMENOLOGICAL APPROACHES OF THE GLASS TRANSITION 

 

A. Macroscopic non-equilibrium thermodynamics based on De Donder precursor works 

 

 Among the thermodynamic coefficients, the heat capacity is likely one of the best adapted 

in describing the glass transition. This thermodynamic quantity, indeed, makes evident how 

internal degrees of freedom are thermally activated within a body. Another usual property in 

considering systems departed from thermodynamic equilibrium, for example during aging of 

a glass, is the so-called entropy production. This property is always linked to an amount of 

heat dissipated inside the system when sub-microscopic friction takes place in the volume 

delimited by the body due to the slow internal reorganisation of some degrees of freedom. 

Prior to describe succinctly the phenomenology of the glass transition, let us recall briefly the 

expression of the two principles of thermodynamics following the classical non-equilibrium 

thermodynamics. Owing to the Belgian school of thermodynamics, the first law is written in 

making apparent a supplementary variable, the so-called order parameter ξ, which 

characterizes a specific internal degree of freedom involved in the change of the order of the 

system during the transformation:20,21 

 

ξδδ AdWQdU −+=           (1) 
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where PTGA ,)/ ξ∂−∂=  is the affinity of thermodynamic transformation, G being the Gibbs 

free energy. Although initially the above equation has been derived by De Donder only in the 

case of chemical reactions, where ξ represents the degree of advance of the reaction (and A 

the affinity of the reaction), this variable has been next generalized by Prigogine, De Groot 

and Mazur in order to characterize any irreversible processes.22,23 Today, any irreversible 

process can be described by fluxes of ordering parameters with associated affinities. Recently, 

Rubi, Pérez-Madrid, Vilar and Reguera have developed a very clear and interesting general 

mesoscopic non-equilibrium thermodynamics based on the generalization of internal degrees 

of freedom to any irreversible processes extended outside the local equilibrium assumption.24-

26 Following the classical thermodynamics of irreversible processes, the internal creation of 

entropy is always expressed by the product of the thermodynamic force ( TA /  for instance) 

by the advance of the conjugated thermodynamic order parameter ( ξd  for instance): 

 

ξd
T
ASdi =             (2) 

 

Taking into account this notion of order parameter, the heat capacity of a system at constant 

pressure measured for example during a calorimetric experiment is written:21 

 

dT
dHC

dT
QC Tp

ξξδ
ξ )/∂∂+==          (3) 

 

δQ is the amount of heat (positive or negative) exchanged between the system and the thermal 

surroundings (thermal bath); dT is the temperature variation effectively recorded by the 

experimentalist; H is the enthalpy of the system; ξξ )/ THC ∂∂=  is the heat capacity at 
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constant order parameter. TH )/ ξ∂∂  is called the isothermal heat of the transformation due to 

the advancement of the order parameter. The affinity of the process (driving force) being a 

state function, it is differentiable with respect to the temperature and the order parameter as 

follows: 

 

ξξξ dAdTTAdA T)/)/ ∂∂+∂∂=          (4) 

 

It can be demonstrated that the first partial derivative coefficients of the affinity is 

TT GA )/)/ 22 ξξ ∂−∂=∂∂  and the second TSTA )/)/ ξξ ∂∂=∂∂ . So, knowing that when the 

system is out of thermodynamic equilibrium the time becomes a preponderant variable, then 

the heat capacity can be explicitly written: 

 

dtdT
dtdHC

dtdT
dtQC TP /

/)/
/
/ ξξδ

ξ ∂∂+==         (5) 

 

Replacing the rate of the order parameter in the above equation by means of (4), the general 

expression of the heat capacity of a system departed from equilibrium was first obtained by 

Prigogine and Defay:27 
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This expression emphasizes the presence of the affinity in the heat capacity. More important 

is the ratio of the affinity rate on the temperature rate which defines the internal response of 
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the system departed from equilibrium to an experimentally imposed temperature variation of 

well-fixed rate.  

 From the previous equations, it is possible to briefly describe the phenomenology of the 

glass transition. Actually, we observe from (4) that it is possible to be in a situation where for 

a given temperature variation TΔ , over a time scale tΔ , the order parameter has had not 

enough time to evolve over this time scale ( )0=Δξ . In this case, the affinity variation is only 

due to the temperature variation, or in other words, the temperature rate is infinitely high as 

compared to the order parameter rate. Injecting this value of the affinity rate in the general 

expression (6), the equality ξCCP =  is obtained. It is the heat capacity of a system for which 

the parameter ξ has been frozen (glassy state). The system is in the so-called arrested 

equilibrium over the time scale of observation like in the case of a glass transition. The 

configurational heat capacity, which is the contribution to the total heat capacity of the 

structural degree of freedom, given by the three last terms of (6), does not exist anymore. In 

the other extreme case, if the temperature rate is so slow that the order parameter takes its 

equilibrium value at each instant and each temperature, the configurational heat capacity is 

maximum. That is to say that not only all the fast internal degrees of freedom are energetically 

excited, but also that the internal degree of freedom concerned by the order parameter is also 

excited (the order of the system has changed). In this case, it is possible to show that the heat 

capacity can be expressed as follow:27 

 

eq
T

eq
T

eq GT
HCC

)/
])/[

22

2

ξ
ξ

ξ ∂∂
∂∂

+=           (7) 

 

where the second term of the right-hand side outlines the "energetic contribution" of the 

considered order parameter to the heat capacity (often called the enthalpy peak). In fact, in a 
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real temperature cooling experiment on a glass-forming liquid the situation just above is 

impossible to obtain, even for slow temperature scans, because the relaxation time of the 

order parameter becomes so high in the annealing temperature range that progressively the 

order parameter rate tends toward zero bringing the system in the first case discussed above 

(glassy state). The most observable effect is a decrease of the glass transition temperature gT . 

This latter temperature can be defined from the inflection point in the )(TCP  jump during the 

transition for example. At this stage, we would like to discuss one simplification that we will 

consider in the whole paper. For example, we will always consider one single order parameter 

in describing basically the α-relaxation process which is the slowest observable structural 

relaxation in the annealing region. The possibility of using this assumption is, however, still 

under debate (see for example references [10,28,29]) and it is not our aim to enter in the 

details of the glass transition feature, but just to give phenomenological models which could 

improve our thermodynamic understanding of the glass transition phenomenon and especially 

to discuss the notion of temperature for glasses. For very complete and interesting reviews on 

glass transition, see the following references [30] to [34]. 

 

 

B. Phenomenological approaches of the fictive and effective temperatures 

 

 Tool has recognized himself that the time variable is of high importance in glass transition 

studies.6,7 In the glass transformation range, when the time necessary for internal 

configurational readjustments exceeds the time taken by the temperature to undergo a sudden 

change, the system is for an instant in a thermodynamic non-equilibrium state with regard to 

some of its internal degrees of freedom. As Tool did, it is thus possible to define one extra 

parameter, called the fictive temperature, which has a dimension of a temperature, and which 
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takes into account the slow evolution of some internal degrees of freedom inside the system. 

He defined the fictive temperature, near equilibrium, by means of a simple linear first-order 

differential equation:7 

 

)( fT
f TTK

dt
dT

−=            (8) 

 

where fT  is the fictive temperature. T is the classical temperature. TK  is a positive 

coefficient generally exponentially depending on T. Tool has initially given a simple 

expression for this coefficient: ( )kTKKT /exp=  with k  the Twyman's constant and K the 

value of TK  for 0=T  (see ref. [7]). From (8), it can be seen that if a temperature 0T  is 

maintained constant, the fictive temperature fT  relaxes toward 0T  following the relaxation 

time constant TK/1=τ . At a first order, this decay effect is connected to aging, annealing or 

structural recovery while it is experimentally observed during the measurement of physical 

properties such as the volume or the enthalpy. If the temperature is cooled following a 

temperature ramp crossing the glass transition, τ  tends rapidly towards a very high value, the 

fictive temperature rate thus becomes also progressively close to zero and the system becomes 

finally in an arrested-equilibrium state (freezing-in of the slow modes or divergence of the 

viscosity). In this latter case, the system is a glass for which a frozen fictive temperature can 

be estimated from calorimetric measurement for example35. It defines actually the equilibrium 

temperature of the system when it just became to be frozen at a previous instant. We will 

show in the following that this frozen fictive temperature, which is the conventional 

parameter used in glass transition, is not a thermodynamic temperature. In contrast, the initial 

definition of the fictive temperature according to Tool (equation (8)) is a thermodynamic 

temperature in the classical meaning.  
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 In a recent version due to Nieuwenhuizen, based nevertheless on Tool's approach, the 

fictive temperature is regarded as the real temperature of the slow relaxing modes within a 

system in the annealing range.10-12,36-38 Nieuwenhuizen defines the fictive temperature (mostly 

called effective temperature in his works) as an extra thermodynamic parameter included 

directly in the heat exchange appearing in the first law of thermodynamics WQdU δδ += , 

where the heat exchange is separated in two contributions: 

 

dITTdSQ eep +=δ            (9) 

 

T  and eT  are the classical and effective temperatures respectively. epdS  and dI  are the two 

components of the total entropy variation of the system: 

 

dIdSdS ep +=            (10) 

 

Nieuwenhuizen has called epS  the equilibrium part of the system entropy and I  the 

configurational part or complexity.10 In the case of glasses, I (sometimes called residual 

entropy) is connected to the number of macroscopic glassy states that a system can potentially 

have, each of these states being dependant on the way (e.g cooling temperature ramp) for 

obtaining them. For example, for one temperature cooling rate, this part of the entropy 

disappeared in the glass transition region because the system is frozen in one defined 

macroscopic state.12 From these two fundamental equations, Nieuwenhuizen solves several 

paradoxes concerning the glass transition phenomenon. For example, this approach has 

allowed a better understanding of the non unity of the Prigogine-Defay ratio and has led to the 

modification of the Ehrenfest relations and to the modification of the Maxwell relations when 

other works than the mechanical one are taken into account (see for details references [10] 
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and [12]). Particularly, with the separation of the heat into an equilibrium and a non-

equilibrium part, he has derived the following expression for the heat capacity:11 

 

dT
dIT

dT
dS

T
dT
QC e

ep
P +==

δ           (11) 

 

 

III. EQUIVALENCE OF THE NON-EQUILIBRIUM THERMODYNAMICS OF DE 

DONDER/PRIGOGINE/DEFAY AND THE EFFECTIVE TEMPERATURE 

FRAMEWORK OF TOOL/NIEUWENHUIZEN  

 

A. Fourier's model and the effective temperature  

 

 To our knowledge, no connections have been already established between the ξ-order 

parameter and the fictive temperature concept. Let us, however, mention the work of Baur on 

thermodynamic relaxation in the glass transition region by means of thermodynamics of 

irreversible processes, although the author used ξ and Tf as two independent variables in 

describing the glass transition.39,40 Let us also mention the very interesting and recent work of 

Möller, Schmelzer and Gutzow who have used the non-equilibrium thermodynamics of De 

Donder/Prigogine/Defay for the study of the glass transition.29,41 In one of their paper 

concerning the Prigogine-Defay ratio, the authors conclude that a comparison must be of 

interest between the classical non-equilibrium thermodynamics and that of Nieuwenhuizen 

without pushing further the reasoning.29 The aim of this present section is to demonstrate that 

ξ and the effective temperature of Nieuwenhuizen eT , although being known as two 

parameters employed in different frameworks, are actually not independent of each other. But, 
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in order to establish a clear connection between the two approaches, we have firstly to push 

further the thermodynamics of Nieuwenhuizen by using a very simple thermal model depicted 

in the figure 1. Indeed, since Nieuwenhuizen states that eT  is the temperature of the slow 

relaxing modes during the glass transition, let us describe, by analogy with the Fourier's law, 

the irreversible exchange of heat between two parts having different temperatures. In the 

sketch of the figure 1, a thermodynamic homogenous discrete system is composed of two 

different sub-parts; one is linked to the thermal bath and has an equilibrium classical 

thermodynamic temperature T; the other part is thermally connected to this first part by means 

of a thermal conductance iK , and has an effective temperature eT . This latter system 

represents only the configurational degrees of freedom. This picture depicts the thermal 

coupling between the fast modes of classical temperature T and the slow modes of 

temperature eT . This minimalist model enables us to describe a time-scale separation between 

different internal degrees of freedom constituting a whole system submitted to a time 

dependent external perturbation. We have, however, to bear in mind that in the figure 1, 

instead of considering an heat exchange between two parts of different temperatures in a 

classical three dimensional space as it is usually the case for the Fourier's law, we have to 

imagine that this heat exchange takes place between different degrees of freedom of different 

temperatures following a virtual axis represented by the advance of the process occurring at 

any point in the volume of the entire system. The advancement of ξ  in the course of time 

defines this virtual axis. In this case, the order parameter ξ  is the "internal macroscopic 

coordinate" of the whole system such as used in the energy landscape theory.42 To consider 

any irreversible transformation as a diffusion process inside a virtual internal space of 

coordinate has already been envisaged (see the following references [24] and [43] for 

diffusion of internal degrees of freedom by means of non-equilibrium thermodynamics). In 

our case, the analogy is pushed farther because we consider a diffusion of heat between the 
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effective temperature and the classical temperature occurring at any points inside the volume 

delimiting the entire system. Under this circumstance, the classical version of the Fourier's 

law in stationary conditions, TKdtdQ Δ=/ , is a transport equation which can be obtained 

directly from the thermodynamics of irreversible processes like all transport equations (Fick's 

law, Ohm's law, etc…). The getting of transport equations from the physics of irreversible 

processes requires an underlying assumption, due to Onsager, defining linear relations 

between thermodynamic fluxes and forces.22,23 In the case of our minimalist model, where for 

simplicity we have used discrete sub-systems, the thermodynamic force involved in the 

system (generalized affinity) is: 

 

TTT e

111
−=⎟

⎠
⎞

⎜
⎝
⎛Δ            (12) 

 

Owing to Onsager, the thermodynamic flux of the conjugated variable (heat flux) is simply 

proportional to the force: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

TT
TTL

TT
L
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dQ

e

e

e

11          (13) 

 

where L is the kinetic coefficient of Onsager. This is the Fourier's law where TTLK ei /= . In 

a stationary state, the preceding picture gives rise to a permanent production of entropy 

written as the product of the flux with the force: 

 

TT
TTK

dt
Sd

e

eii
i

2)( −
==σ           (14) 
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For non-stationary situations, there is an irreversible process due to the relaxation of the 

effective temperature toward the equilibrium temperature of the system and where the heat 

capacity of the slow mode, iC , plays a role. In this case, this relaxation process is driven by 

the classical dynamic equation of heat where the relaxation time constant ii KC /=τ  governs 

the dynamic of the heat exchanges. 

 

 

B. Fourier's model and the effective temperature in Nieuwenhuizen's approach 

 

 The second law of thermodynamics states that the total entropy variation during an 

irreversible transformation is greater than the entropy variation due only to reversible 

exchanges of heat between a system and its surrounding. This second principle can be written 

in the form of equality when making apparent the positive entropy produced by non-

equilibrium processes occurring within the system (entropy source term): 

 

SdSddS ie +=            (15) 

 

where Sde  is the external contribution due only to the quantity of heat exchange between the 

system and the surrounding TQSde /δ= , and Sdi  is the internal entropy produced inside the 

system when an irreversible process occurs. When this latter formulation of the second law is 

compared to the formulation of Nieuwenhuizen (equation (10)), it is possible to derive two 

relations, the first being: 

 

dI
T
TdSSd e

epe +=            (16) 
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It is worth noticing that at equilibrium, TTe =  and the external entropy contribution equals 

the total variation of entropy. The second relation concerns the entropy produced during an 

irreversible process: 

 

dI
T

TTSd e
i

−
=            (17) 

 

At equilibrium, the internal entropy contribution is equal to zero. When this equation above is 

compared with that obtained for the Fourier's law (equation (14)), the time derivative of the 

residual entropy of Nieuwenhuizen takes the simple following form: 

 

e

ei

T
TTK

dt
dI )( −

=            (18) 

 

Now, in order to deeply establish the connection between this Fourier's approach and the 

Nieuwenhuizen's thermodynamics, let us return to the thermal model of the figure 1. From 

this picture, a quantity of heat supplied to the "phonon-bath" (fast modes) sub-system is 

separated into two parts following the energy balance equation: 

 

eidTCdTCQ += ∞δ            (19) 

 

This usual calorimetric equation reveals the heat capacities of the different parts of the entire 

system. The first term of the right-hand-side of this equation is related to the heat capacity of 

the infinitely fast degrees of freedom of the system all having the equilibrium temperature T. 

A point of some interest is that the quantity of heat is supplied via the surrounding only to 
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them, which means that a heater (for example a Joule effect heater) is coupled principally to 

these rapid modes. The other part is related to the heat capacity of the slow internal degree of 

freedom, Ci, involved in the slow configurational change. A direct comparison with equation 

(9) yields to: 

 

⎩
⎨
⎧

=

= ∞

)(ln
)(ln

ei

ep

TdCdI
TdCdS

           (20) 

 

The preceding equations emphasize two features. Firstly, the equilibrium part of the entropy 

of Nieuwenhuizen is related to the heat capacity of the fast mode at equilibrium multiplied by 

the logarithmic variation of the classical temperature, such as described in classical 

thermodynamics. Secondly, it emphasizes the link between the configurational part of the 

entropy of Nieuwenhuizen with the heat capacity of the slow modes multiplied by the 

logarithmic variation of the effective temperature. Finally, it is trivial from (19) to obtain the 

following expression for the heat capacity: 

 

dT
dTCCC e

iP += ∞            (21) 

 

This expression of the heat capacity obtained with our thermal model included in the effective 

temperature framework of Nieuwenhuizen can now be compared with that provided in the 

section II.  

 

 

C. Relationships connecting eT  and ξ  
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 In equalling the two expressions of the internal production of entropy (equations (2) and 

(17)) coming from the classical non-equilibrium thermodynamics and the effective 

temperature approaches, a first relationship connecting ξ and eT  is provided: 

 

dt
dITT

dt
dA e )( −=
ξ            (22) 

 

From this equation, we can say that the thermodynamic force (affinity) of the irreversible 

process driving the flux of the order parameter is equivalent to the departure of the fictive 

temperature from the equilibrium temperature driving the flux of the residual entropy of 

Nieuwenhuizen. By means of this previous relationship concerning the entropy production, 

and knowing that by definition TTT HSTGA )/)/)/ ξξξ ∂∂−∂∂=∂−∂= , it is trivial to show 

that the equations (3) and (11) of the heat capacity expressed in the two different formalisms 

are equivalent, and particularly that: 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=∂∂

=

dT
dIT

dT
dH

dT
dS

TC

eT

ep

ξξ

ξ

)/
          (23) 

 

As already mentioned, since the heat capacity is by essence able to stress how internal degrees 

of freedom can be thermally activated, the comparison can yield to interesting relations 

connecting the relaxing parameters coming from the different models. Particularly, in 

equalizing the expressions (5) and (21) of the heat capacities, a second relationship 

connecting the two parameters ξ and eT  is provided: 
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dt
dTC

dt
dH e

iT =∂∂
ξξ )/          (24) 

 

This equality occurs between two heat fluxes, one expressed in terms of the rate of the order 

parameter multiplied by the isothermal heat of the transformation (which are usual 

thermodynamic variables), and the other in terms of the heat capacity of the slow modes 

multiplied by the effective temperature rate (which have an existence only in the effective 

temperature approach). Let us mention that it has been implicitly assumed that ξCC =∞ , 

which is trivial because these two quantities are related only to the infinitely fast degrees of 

freedom (glassy state). Finally, summing member per member this latter equation with (22), 

an interesting equation connecting the entropy flux due to the advance of the order parameter 

with the heat capacity of the slow modes multiplied by the effective temperature rate is 

obtained: 

 

dt
dT

T
C

dt
dS ei

iT +=∂∂ σξξ )/           (25) 

 

In integrating this general entropy balance equation over a time interval at constant 

temperature, the entropy variation of the system due to the change of order can be obtained by 

means of the heat capacity of the slow modes taking into account the positive entropy 

produced over this time scale. Actually, this reveals that the variation of the entropy of the 

whole system can be regarded has an irreversible internal exchange of heat between two sub-

systems of different temperature, not separated by spatial dimension but only by time.  

 

 

D. Relationships connecting eT  and ξ  in the linear regime 
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 Now, let us consider the linear regime of the thermodynamics of irreversible processes. 

The fundamental assumption underlying the linear regime is to consider that the temperature 

rate is not too high in order that the moving variables are not too departed from their 

equilibrium values. It is the regime of validity of the so-called linear response theory. We are 

aware that in the case of the glass transition, when the kinetic relaxation times of the 

quantities involved in the process are very high, this assumption can bring some questions. 

However, let us envisage one consequence of our approach in this regime. As we have 

assumed that ξ and eT  are two variables coming from different frameworks describing the 

same underlying process, then near equilibrium their kinetic relaxation times must be equal. 

For example, near equilibrium, in considering that τ  is the kinetic relaxation time constant, 

the order parameter relaxes toward its equilibrium value eqξ  following the simple relaxation 

equation: 

 

τ
ξξξ )( eq

dt
d −

−=            (26) 

 

Consequently, from (24) and using the Tool's equation (8) with TK/1=τ , we obtain: 

 

)()()/ TTCH e
eq
ieq

eq
T −=−∂∂ ξξξ          (27) 

 

Again, this latter relationship proves that any irreversible process can be regarded under two 

different, but however equivalent, points of view. The left-hand-side of (27) comes to 

consider heat exchange inside the system due to the departure from equilibrium of an order 

parameter. The right-hand-side comes to consider that this heat exchange holds within the 
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system between the classical equilibrium temperature of the system and the effective 

temperature. Let us now derive a useful relation in this regime near equilibrium. In 

substituting eq
iC  by its expression (second term of the right-hand member of (7) because 

eq
i

eq
P CCC += ξ ) and using the fact that, near equilibrium, T

eq
T HH )/)/ ξξ ∂∂≈∂∂  and also that 

the affinity can be developed to the first order in Taylor expansion of the extent of the 

transformation )()/)/ 22
eq

eq
TT GGA ξξξξ −∂−∂=∂−∂= , then we obtain: 
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At gTT =  (the glass transition temperature), this latter equation becomes: 
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g  is the so-called Prigogine-Defay ratio measured at 

gT .29 PCΔ  is the heat capacity jump, κΔ  the compressibility jump, αΔ  the thermal 

expansion coefficient jump near the glass transition temperature, and V  is the volume of the 

system. From (28), since eT  is a time-dependent temperature, then the Prigogine-Defay ratio 

is time-dependent. For glassy system, however, we can assume that at the glass transition 

temperature the system becomes completely frozen and thus that eT  becomes also 

progressively frozen. We will see in the next section that this frozen effective temperature 

which is actually the usual fictive temperature fT  calculated from calorimetric experiments 
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for example, is not a thermodynamic temperature. Consequently, the non-unity of the 

Prigogine-Defay ratio measured in experiments is due to the departure from gT  of the fictive 

temperature and can be, to a first order, found from the simple equality (29) above. Another 

consequence is since eT  can be greater or smaller than gT , depending on the sign of the 

temperature rate, then the Prigogine-Defay ratio can be slightly greater or smaller than the 

unity (see for recent works on the Prigogine-Defay ratio the references [12,28,29]). In 

conclusion, we can see that this simple relation (29) holding only near equilibrium can be 

used to a first order to estimate from the measurement of gT  and fT  an approximate value of 

the the Prigogine-Defay ratio. 

 

 

IV. GENERALISATION OF THE NOTION OF TEMPERATURE FOR SYSTEMS 

OUT OF THERMODYNAMIC EQUILIBRIUM 

 

A. General definition of the effective temperature 

 

 In the previous section, we have supposed that ξ  and eT  are not independent variables, 

but that they describe the same underlying phenomenon. We have provided different 

relationships connecting these variables from the expressions of the entropy and the heat 

capacities when these properties are expressed in the formalism of Tool/Nieuwenhuizen and 

in the formalism of De Donder/Prigogine/Defay. Certain of these relationships hold only in 

the linear regime. We would like now to push further the reasoning in considering simply that 

an effective temperature can be associated to any irreversible phenomenon existing in Nature. 

Indeed, since any irreversible process can be characterized by the advance of one or more 

order parameters in the course of time, generating thus a positive amount of entropy, then 
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from the connection established previously, there is an effective temperature (or more) that 

characterizes thermodynamically the system undergoing this irreversible transformation. In 

other words, the time scale separation occurring between different internal degrees of freedom 

of a whole system gives rise to different thermodynamic temperatures inside this system. 

Precisely, from the equation (14) of the production of entropy in the effective temperature 

framework based on the Fourier's model, the following expression of the effective 

temperature is obtained: 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+±+=

2/1
411

2
1

i

i

i

ie K
KT

T
σ

σ          (30) 

 

The sign plus or minus means that the effective temperature can be greater or smaller than the 

real temperature of the system depending on the experimental conditions. Hence, it is 

sufficient that an evolving order parameter inside a system generates an amount of entropy to 

define an effective temperature different than the classical one. As a matter of generality, any 

irreversible process (whatever its nature) generating entropy gives rise to an effective 

temperature. Practically, in referring another time to the thermal picture of the figure 1, while 

this mentioned non-equilibrium event occurs, there is an exchange of heat between the 

effective temperature of the slow modes and the temperature of the fast modes within the 

system. Once the equilibrium is reached, the effective temperature does not exist anymore and 

the classical temperature of the system makes its classical sense. In fact, under this approach, 

the notion of thermodynamic equilibrium takes the same significance than the notion of 

thermal equilibrium. 

 Let us envisage simple practical examples to endorse our demonstration. Let be a 

diffusion of matter whenever a gradient of concentration of diffusing species holds inside the 



 23

system. This diffusion of species (molecules, particles, ions, etc) is ruled by the Fick's law. It 

is an irreversible process, which generates entropy. Consequently, when a diffusion of matter 

happens inside a system due to gradient of concentration, then from (30) there is more than 

one macroscopic temperature characterizing the system. Let be a chemical reaction occurring 

in a system maintained at a classical constant temperature 0T . The production of entropy is 

given by dtdTAi // ξσ ×=  where in this case A is the chemical affinity of the process and ξ  

the extent of the reaction. An intriguing consequence of our approach is that while this 

chemical reaction takes place at a well-defined classical temperature, the exact temperature of 

the system is actually not well-defined, and thus we must consider more than one 

thermodynamic temperature for the system. Finally, this general reasoning can be applied to 

all other irreversible phenomena (Ohm's law, thermoelectric effects, etc…). For example, 

when an amount of work is supplied irreversibly to a system, producing thus entropy, an 

effective temperature can be defined. In accordance with this approach, it may also be 

interesting to calculate the effective temperature in the case of coupled cross irreversible 

phenomena following the so-called Onsager's relations.  

 

 

B. The case of the glass transition 

 

 The glass transition is a very specific case of irreversible process for which the advance of 

the order parameter characterizing a structural change in the system becomes frozen at a 

temperature below gT . We can summarize briefly under our approach what is expected for 

glasses: 

-Well above gT , although the system is under-cooled (in the case of a glass-forming liquid), 

there is no production of entropy because the relaxation time of the structural degree of 
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freedom is too small; thus the system is considered at equilibrium and its temperature is well-

defined.  

-Around gT , in the annealing range, there is production of entropy because of the relaxation 

of the structural degree of freedom (structural recovery); thus in this case, there is an effective 

temperature following (30) and the temperature of the system is not well defined.  

-Lastly, below gT , the system is completely glassy, the order parameter is completely frozen, 

there is no production of entropy and the temperature of the glass is well-determined. The 

glass is considered at thermodynamic equilibrium when considering time scales not too long. 

Under these circumstances, the temperature is uniquely determined by the energy fluctuations 

of the fast internal degrees of freedom. When the system is glassy, it is nevertheless possible 

to define a frozen effective temperature, which is the usual fictive temperature determined 

from calorimetric measurements for example.35 It is the equilibrium temperature for the 

system when it starts to be glassy. But, this fictive temperature does not have the meaning of a 

real thermodynamic effective temperature which, under our approach, is uniquely defined 

when the system evolves and produces entropy. Another manner in envisaging these three 

cases, is to consider the gradual apparition of a time-scale separation between internal degrees 

of freedom whereas the temperature of the system is decreased following a defined cooling 

ramp. At high temperatures the time-scales of the several degrees of freedom are the same. At 

low temperatures for glasses, there are two well separated time-scales, one tending toward the 

infinity (frozen-in of the slow modes) and the other close to zero determining the 

thermodynamic temperature of the system. In the intermediary temperatures ranges, the two 

time-scales are not completely separated and the system has two thermodynamic 

temperatures. We will see now, how in changing the observation time scale, experimentalists 

can effectively access to the effective temperature. 
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V. TEMPERATURE MODULATED CALORIMETRIC EXPERIMENTS REVEAL 

THE EFFECTIVE TEMPERATURE OF SYSTEMS OUT OF EQUILIBRIUM 

 

 As already mentioned, there are some questions concerning the possibility to have 

experimentally access to the effective temperature. One more time, we will show that heat 

capacity measurements can reveal that, in a system undergoing an irreversible physico-

chemical transformation, there is an effective temperature at the same time that the classical 

temperature. This latter is the temperature which is measured with the thermometer because 

generally the thermometer and the heater are mostly coupled to the fast modes of the system. 

For instance, let us consider temperature modulated calorimetric experiments such as the 

famous Birge and Nagel specific heat spectroscopy experiments on glass-forming liquids.44-46 

Other type of temperature modulated experiments such as temperature modulated differential 

scanning calorimetry (TMDSC) or ac-calorimetry experiments can be envisaged.47-50 In these 

types of calorimetric measurements, an oscillating thermal power is supplied onto a sample 

producing a harmonic temperature oscillation, )exp( ϕωδ −= tiTT acac . The monitored 

temperature oscillation is directly linked to a frequency dependent complex heat capacity of 

the sample, "'* iCCC −= . The great interest of these experimental methods is the existence of 

a well-defined observation time scale directly given by the period of the temperature 

modulation (or the frequency of the power modulation). This time-scale control parameter is a 

spectroscopic probe allowing the observance of the internal dynamic inside a sample 

undergoing a physico-chemical transformation. The principal interest of these modulated 

calorimetric methods as compared to classical DSC for glasses study comes from the 

stationary character of these methods (TMDSC not included). This means that the dynamic of 

the glass transition can be probed in changing the observation time scale at constant τ  around 
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a given temperature, while in scanning temperature methods it is the variation of τ  with 

temperature which provokes the freezing-in of the system for a constant observation time 

scale.  

 The formalism used for deriving the complex heat capacity is usually the linear response 

theory. Nevertheless, Baur and Wunderlich have derived this dynamic property, in the linear 

regime, directly from macroscopic non-equilibrium thermodynamics.51,52 From this latter 

approach, it is demonstrated that the imaginary part of the frequency dependent complex heat 

capacity is directly connected to the mean entropy production averaged over one period of the 

temperature cycle: 
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where 0T  is the mean dc temperature around which the temperature oscillation of amplitude 

acTδ  occurs. Under the effective temperature formalism, from (14) we have:  
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Hence, the measurement of an imaginary component in the frequency dependent complex 

heat capacity reveals that an oscillating effective temperature with amplitude attenuation and 

phase lag with respect to the driving oscillating temperature holds inside the sample. Since in 

modulated calorimetric experiments, there is only a mean production of entropy in a 

determined range around a given frequency )(/1 00 Tτω ≈ , then in this range the temperature 

of the sample is not well-defined (see the graph of the figure 2). As depicted in the figure 2 
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where the imaginary part of the complex heat capacity is represented versus the thermal 

frequency, then at low frequencies the system remains at each instant in equilibrium. There is 

neither amplitude attenuation, nor phase lag of the effective temperature, which means that 

there is only one single temperature. At high frequencies, the integral in (32) tends toward 

zero, the effective temperature has no time to move over a period of the oscillation. The net 

entropy produced over this time scale is equal to zero. The system is glassy over this 

observation time scale, and its temperature which is only given by the energy repartition 

between the rapid internal degrees of freedom is well-defined. The expression of the 

frequency dependent complex heat capacity, has been either obtained by means of an 

oscillating effective temperature or by means of an oscillating order parameter, which 

confirms another time the equivalence of the two approaches.53,54 Lastly, we have also 

recently shown that in modulated temperature calorimetric experiments when there is a 

relaxation time constant connected to the temperature of the sample (adiabaticity and thermal 

diffusivity) there is always the possibility to define an experimental frequency dependent 

complex heat capacity for which the imaginary part is connected to the averaged entropy 

produced over a period of the cycle.55 Since, in the case of the usual frequency dependent 

complex heat capacity, the same relation exactly holds when an order parameter connected to 

a structural degree of freedom is involved, then it appears logical to define also a temperature 

(effective temperature) connected to the relaxation of this order parameter. 

 

 

VI. CONCLUSION 

 

 The new thermodynamics of Nieuwenhuizen based on an effective temperature as an extra 

thermodynamic variable has been explained under the framework of classical 
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thermodynamics of irreversible processes. In comparing, on one hand, the equations of the 

entropy production and, in other hand, the equations of the heat capacity that can be obtained 

from the two approaches, several relationships have been derived connecting the effective 

temperature with the ordering parameter characterizing the departure from equilibrium of a 

structural internal degree of freedom inside a system. The connection between the two 

approaches has been strongly established in proposing a simple thermal picture defining the 

exchange of heat between two sub-parts inside a system possessing different temperatures, 

and where the equation of Fourier have been used.  

 From this point, the Fourier's model of the effective temperature, and particularly the 

entropy production calculated from this model, has been used in order to associate at each 

irreversible process existing in Nature an effective temperature. This is the generalisation of 

the macroscopic notion of temperature to systems out of thermodynamic equilibrium. From 

this point of view, the relaxation toward equilibrium of any internal degree of freedom inside 

a system when it is departed from equilibrium can be seen as relaxation of the effective 

temperature toward the classical bath temperature. In fact, what can be easily seen with this 

approach is that the classical notion of temperature is defined only when the energy 

exchanges within the system are equally distributed amongst the internal degrees of freedom 

constituting the system. When after a perturbation, some of the internal degrees of freedom 

are so slow that energy takes time to be transferred between them and from the fast ones the 

temperature of the whole system is not well-defined. There is not a single temperature inside 

the system. In this case, the slow modes have their proper temperature (effective temperature. 

Under this approach with the definition (30) of the effective temperature, the notion of 

thermodynamic equilibrium takes exactly the same meaning than thermal equilibrium. 

 What happens in the case of glasses? When the perturbation of the system is so fast that 

the structural degree of freedom has had not enough time to be excited, or in other words, that 
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the order parameter has had not enough time to take a new value, then the system is frozen in 

a specific structural configuration (one macroscopic state) for which the representative 

entropy is thus equal to zero. Nevertheless in this case a frozen fictive temperature can be 

defined which can be estimated from a )(TH  or a )(TCP curve as it is usually done in glasses 

experiments. This is the equilibrium temperature that the system had at an anterior instant 

when it just began to be frozen. A certain quantity of energy is thus trapped in the frozen 

internal degree of freedom. But, since in this case the fast internal degrees of freedom 

continue to be equally excited, the temperature of the glass continue however to be well 

defined, but only by the energy fluctuations of these rapid modes. The frozen fictive 

temperature usually obtained in glass experiments does not have the meaning of a 

temperature. There is no production of entropy. It exists, however, intermediate situations for 

which the effective temperature is relaxing (aging effects), and where entropy is being 

produced, and where, as shown in this paper, there are several thermodynamic temperatures in 

the system.  

 The great interest of the heat capacity coefficient is its availability in revealing directly the 

quantity of heat trapped in frozen degrees of freedom or which is relaxing by thermalization 

process between the effective temperature and the bath temperature inside the system. The 

heat capacity is, actually, the ratio of the amount of heat supplied (or released) to the system 

from the exterior with the effectively recorded temperature variation (temperature of the rapid 

modes, with which the thermometer is coupled). Since, the quantity of heat supplied to the 

system is a priori well-defined, and that the infinitely fast degrees of freedom are all excited, 

the temperature elevation is equally the same, whether the slow modes are excited or not 

(temperature is intensive variable). In this case, the heat capacity is lower. In other words, the 

quantity of heat does not go where we believe that it should go, because a certain part is 

trapped somewhere inside the system. Indeed, in the case of glasses, the configurational heat 
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capacity is equal to zero, and the measured contribution is always lower than the equilibrium 

one. In the intermediary regime, the trapped energy contribution becomes to be resumed, 

producing thus entropy (and disorder) whose signature is directly observable, for example, by 

the presence of an imaginary part in the frequency dependant complex heat capacity. During 

this relaxation process, there is a thermodynamic temperature other than that defined by the 

rapid modes inside the whole system, but due only to slow exchange of energy between the 

slow and fast modes.  
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Figure 1: Thermal model representing a thermodynamic system composed by two distinctive 

parts, one being composed by the fast degrees of freedom of the system (phonon bath) with 

the heat capacity ∞C  and the usual equilibrium temperature T, and the other composed by the 

slow internal degrees of freedom with the heat capacity iC  and the effective temperature eT . 

The " iC " heat capacity part is thermally coupled by a thermal conductance iK  to the " ∞C " 

one, this latter being thermally coupled to the outside world (thermal bath) by a thermal 

conductance 0K . The quantity of heat Qδ  is only supplied to the fast modes of the system.  

 

Figure 2: Mean entropy calculated over one cycle of the temperature oscillation during a 

temperature modulated calorimetric experiment versus the frequency of the temperature 

oscillation. We can find two ranges where the mean entropy produced is equal to zero. One 

for frequencies tending toward the infinity (glassy state) and the other for frequencies tending 

towards zero (true equilibrium state). For these two cases, since the mean entropy produced is 

equal to zero, the system is considered at equilibrium and the temperature is well-defined, 

although for the glassy state some of the internal degrees of freedom have been frozen-in. In 

the frequency range where the mean entropy produced is different from zero, the temperature 

is not well-defined and there is the presence of a frequency dependent effective temperature. 
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