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Abstract

To reduce computational complexity and memory requirerfar-D elastodynamics using
the boundary element method (BEM), a multi-level fast npalte BEM (FM-BEM) is proposed.
The diagonal form for the expansion of the elastodynamicléumental solution is used, with
a truncation parameter adjusted to the subdivision levidature necessary for achieving opti-
mal computational efficiency. Both the single-level and tilelvel forms of the elastodynamic
FM-BEM are considered, with emphasis on the latter. Cruniglementation issues, including
the truncation of the multipole expansion, the optimal nemiif levels, the direct and inverse
extrapolation steps are examined in detail with the backingumerical experiments. A com-
plexity analysis for both the single-level and multi-leversions is conducted. The correctness
and computational performances of the proposed elastodgrfaVM are demonstrated on nu-
merical examples, featuring up @(10°) DOFs run on a single-processor PC and including the
diffraction of an incident P plane wave by a semi-sphericalemi-ellipsoidal canyon, represen-
tative of topographic site effects.

Keywords: Fast multipole method; Boundary element method; 3-D elstamics; Topographic
site effects

1 Introduction

The boundary element method (BEM), pioneered in the sifg41], is a mesh reduction method,
subject to restrictive constitutive assumptions but yrejchighly accurate solutions. It is in particular
well suited to deal with unbounded-domain idealizationmewnly used in e.g. acoustics [50], elec-
tromagnetics [35, 39] or seismology [7, 22]. In contrastwdbmain discretization methods, artificial
boundary conditions [18] are not needed for dealing withr#laiation conditions, and grid dispersion
cumulative effects are absent [24, 51].

However, in traditional boundary element (BE) implemets, the dimensional advantage
with respect to domain discretization methods is offsetgyfully-populated nature of the BEM co-
efficient matrix, with set-up and solution times rapidlyri@asing with the problem siz¥. It is thus
essential to develop alternative, faster strategies flat @0 still exploit the known advantages of
BEMs when largeV prohibit the use of traditional implementations. Fast BEMs BEMs of com-
plexity lower than that of traditional BEMs, appeared amd985 with an iterative integral-equation
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approach for solving 2-D Laplace problems withiH/N) CPU time per iteration [42]. The fast
multipole method (FMM) concept was introduced in [19, 28]the context of many-particle simula-
tions. The FMM then naturally led to fast multipole boundatgment methods (FM-BEMS), whose
scope and capabilities have rapidly progressed, espeaiationnection with application in electro-
magnetics [21, 31, 32, 53], but also in other fields includacgustics [14, 36, 48] and computational
mechanics [30]. Many of these investigations are summaiize review article by Nishimura [37].
The FMM, as well as other fast BEM approaches [23, 27, 55,iB8]nsically relies upon an iterative
solution approach for the linear system of discretized BEMeadions, with solution times typically of
orderO(N log N) per iteration for frequency-domain wave propagation @otsl (instead of)(N?)
per iteration with traditional forms of the BEM).

With a view toward future applications in seismology andaiwic soil-structure interaction, this
article is concerned with the formulation and implemeotatf a multi-level FM-BEM for 3-D elas-
todynamics in the frequency domain. Only a few referencesess this particular area of application.
Two- and three-dimensional FM-BEMSs for frequency-domdastsdynamics are proposed in [16]
and [17, 58], respectively, while time-domain problemsaadressed in [54]. As the free-space fun-
damental solution used in elastodynamic boundary intégraiulations is expressed in terms of the
full-space Green’s function for the scalar Helmholtz eguraéind its derivatives, many of the existing
developments towards fast integral solvers for equatidtisesoHelmholtz type (including in particu-
lar the Maxwell equations) are transposable to elastodimBEMs. A complete presentation of an
elastodynamic FM-BEM formulation based on such transosits the main purpose of this article.
In particular, computational efficiency of fast elastodyin@a BEMs in the mid-frequency regime is
enhanced by using the so-called diagonal form for the Helinl@green’s function [11, 43-45]; the
upper limit stems from the fact that the si2é becomes intractable at high frequencies, while the
diagonal form breaks down at very low frequencies and musgplaced with other types of expan-
sions [5, 10, 25]. Improving on [17], where the diagonal fomas already adopted, the present work
implements crucial features such as the adjustment of timedtion parameter in the multipole ex-
pansion to the subdivision level, known from recent stutbeshe Maxwell equations such as [8, 25]
to be necessary for achieving optimal computational effimye Both the single-level and multi-level
forms of the FM-BEM are considered, with emphasis on theldat substantial fraction of the ar-
ticle is then devoted to the discussion, backed with theltesfi numerical experiments, of crucial
implementation details (many of which transposing methwdsiously proposed for electromagnetic
FM-BEMs [8, 53] to the present 3-D elastodynamic context) arcomplexity analysis for both the
single-level and multi-level versions.

The article is organized as follows. Classical concepttapeng to elastodynamic BEMs are
recalled in Section 2. Then, Section 3 presents underlyingvations and fundamental concepts
for the elastodynamic FMM. Next, several crucial compotzl and implementation issues are ad-
dressed in Section 4. Section 5 is devoted to the analysisamérical verification of the algorithmic
complexity of single-level and multi-level versions. Higathe correctness and computational per-
formances of the proposed FM-BEM are assessed in Sectiom@raerical examples involving up
to N = O(10°) nodal unknowns. The latter include the diffraction of arideat P plane wave by a
semi-spherical or semi-ellipsoidal canyon, represargaif topographic site effects.

2 Boundary element method

2.1 Boundary integral representation

Let Q c R3 denote the region of space occupied by a three-dimensidmsticesolid with isotropic
constitutive properties defined lpy(shear modulus), (Poisson’s ratio) ang (mass density). Time-
harmonic motions, with circular frequenay, induced by a prescribed traction distributiéf on



the boundaryf2 and in the absence of body forces are considered for defasiteim this article.
The accommodation of other boundary conditions needs omgpmmodifications to the treatment
proposed therein. The displacemarit given at an interior point € () by the following well-known
representation formula [3]:

up () = - /a ()T (@), + /8 UMy, (@e). @

whereUF (z, y;w) and TF(z, y;w) denote thei-th components of the elastodynamic fundamental
solution, i.e. of the displacement and traction, respelgtigenerated aj € R? by a unit point force
applied atx € R? along the directiork, given by [12]:
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k . _ o . _ . _ .
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0
T (x, y;w) = Cijne——UF (@, y;w)n;(y), (2b)
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in which ks andkp are the respective wavenumbers of S and P elastic wavesatso th
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G(+; k) is the free-space Green’s function for the Helmholtz eguatvith wavenumbek:, given by

Grik) = exp(ikr)

: 4

4rr

n(y) is the unit normal t@<? directed outwards of?2, andC;;, are the components of the fourth-
order elasticity tensor, i.e.:

2v
Cijhe = 1 [E%@hz + 6indje + 5jh5i€] : (5

2.2 Boundary integral equation

Whenx € 012, a singularity occurs iy = x. With the help of a well-documented limiting pro-
cess [4], the integral representation (1) yields the irstlegguation:

(Ku)(x) = f(x) (x € 09), (6)
with the linear integral operatd€ and the right-hand sidé¢ defined by
() (@) = el@yu(@) + PV | w(w)T @.y:w)as, ™
f@) = [ U y)as, ®)
where (P.V.) indicates a Cauchy principal value (CPV) siagintegral and thdree-termc;;(x) is
equal ta0.5d; in the usual case whet#) is smooth ate. The integral operator (7) may be recast into

alternative, equivalent regularized forms which are fre€BV integrals [3]. Equations (1) and (6)
are applicable to either interior or exterior elastodyraproblems.



2.3 Boundary Element Method

The numerical solution of boundary integral equation (8)ased on a discretization of the surface
0flinto Ng isoparametric boundary elements. Piecewise-lineargotation of displacements, based
on three-noded triangular boundary elements, is usedsmibik. TheN; displacement interpolation
nodes thus defined also serve as collocation points. Thisetigation process transforms (6) into a
square complex-valued matrix equation of si¢e= 3N of the form

[K{u} ={f}, 9)

where theN-vector {u} collects the sought degrees of freedom (DOFs), namely tbalmisplace-
ment components, while th¥ x N matrix of influence coefficientg<] and theN-vector{ f} arise
from (7) and (8), respectively. Setting up the mafi| classically requires the computation of all
element integrals for each collocation point, thus needisgmputational time of orded(N?).

2.4 Solution strategy for the BEM equations

The influence matriXk] is fully-populated. StoringK] is thus limited, on ordinary computers, to
BEM models of size not exceediny = O(10*). Direct solvers, such as the LU factorization, re-
quire O(N?) arithmetic operations (i.e. they haveOd N3) complexity), and are thus also limited
to moderately-sized BEM models. BEM problems of larger sz preferably solved by means of
iterative algorithms (GMRES [47] being the usual choicejah build sequences of solution candi-
dates until convergence within a predefined tolerance chiexh With reference to (9), each GMRES
iteration requires one evaluation [df]{«} for given{u}, a task requiring a computing time of order
O(N?) if either [K] is stored o K]{u} is evaluated by means of standard BEM numerical integra-
tion procedures. In the latter case, tﬂ(aNz) complexity stems from the fact that, again, all element
integrals must be recomputed for each collocation pointplisptions of the BEM to large models
(typically N = O(10%)) require evaluation procedures fgi]{u} that are fast (i.e. of complex-
ity below O(N?)) and that avoid explicit formation and storage[&f]. The fast multipole method
(FMM) is known in many other fields as a very efficient appromtachieving these objectives. Itis
therefore chosen as the basis for the present formulatidimnaplementation of a fast elastodynamic
BEM.

3 Fast Multipole Method: principle

3.1 Multipole expansions of the elastodynamic fundamentaolutions

The FMM is based on a reformulation of the fundamental smhgtiin terms of products of functions
of x and ofy. This allows to re-use integrations with respectitavhen the collocation poink

is changed, thereby lowering tii&(N?) complexity per iteration entailed by standard BEMs. The
elastodynamic fundamental solutions (2a,b) are linearbtoations of derivatives of the Green’s
function (4) for the Helmholtz equation. On recasting theiflon vectorr = y — x in the form

\i \\\\\\ » To
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Figure 1: Decomposition of the position vector: notation.



r =7+ (y—yy) — (x — xy), wherex, andy, are two poles ane, = y, — =y (Fig. 1), the
Helmholtz Green’s function is shown [9, 11] to admit the daposition

G(|r|;k) = lim eikg'(y_yO)gL(é;ro; k‘)e_ikg'(w_wo) ds, (10)
L—+oo Jaes
where S is the unit sphere oR? and thetransfer functionGy,(8;ro; k) is defined in terms of the
Legendre polynomial#’, and the spherical Hankel functions of the first khﬁl) by:

. ik . u
Gr(8;irosk) = Ton2 Z (2p + 1)1ph1(,1)(k]r0])Pp(cos(s,ro)). (11)
0<p<L

The decomposition (10)—(11) is seen to achieve the des@pdration of variableg andy. Then,
to recast the elastodynamic fundamental solutions in a fmilar to (10)-(11), one simply notes
that (10) implies:
9 G(|r|; k) = —ik8;G(|r|; k) iG(\r]'k) = ik8;G(|r|; k) (12)
axl b) - KA ) M ayz ) - (] ) M
wheres; is thei-th component of the vectat. Then, on substituting (12) into (2a,b) and invoking
decomposition (10)-(11), the following multipole decorsfiion of the elastodynamic fundamental
solutions is obtained:

UF(x,y;w) = lim eik”é'(y_yO)Uk’Lp(& 1g) e kP8 (@=@0) g3

2

+ lim eiks8.(y—yo) ukf(g; 1) e iks8(@=20) gz (13)

Z?
TH(x,y;w) = lim e'kP8-(¥=vo) ’Z;kL’P(é; 1) e kP8 (@=20) g3
L—+oo Jges ’

+ lim eiksg-(y—’yo)Tkl’/s(g;ro)e—iksé.(m—mo) ds, (14)

2y

with the elastodynamic transfer functions given in termghefacoustic transfer functiayy, by

2

U (35m0) = T5:8,GL(8; 703 kp), (15a)
’ u
) sy
T} (8:m0) = ST CijnedednanGr(8; mo; ke)n; (y), (15b)
k’S g — 1 &, @ & .
ui,L (87 TO) - ;(67/]6 - Skjsi)gL(sa 7"07 ks)a (16a)
. ik . o
ZFL’S(S?TO) = 75(5% — 5151)Cijne8eGL(8; 10 ks)n;(y). (16b)

Truncation error and clustering. In practice, the limiting procesé — +oc in (10) or (13), (14)
cannot be performed exactly and is replaced with an evaludtir a suitably chosen finite value of
L. A key error analysis result [9] states that there exist fmnstants’;, Cs, C3, Cy such that

L =Cy + Cok|r — 7| + CsIn(k|r — ro|) + Cylne!
exp(ik|r|)

o / eikg-(y—yo)gL(:g‘; T0; k)e—iké.(w—wo) ds| < e (17)
47|r| scS
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Figure 2: 3D cubic grid embedding the boundas.

for any chosen error level< 1, whenever

|7 —ol/Irol = |(y —yo) — (@ —@0)|/Iro| <2/V5. (18)

The error bound (17), (18) implies that expansions (13)) (hdst be used for well-separated
sets of collocation and integration points clustered atopolesx, andy,. Moreover, (17) also
indicates that the value of the truncation paramétedlowing to achieve a given level of accuracy
e increases with the size of these clusters. Other studiesronaontrol in multipole expansions for
Helmholtz equations can be found in e.g. [21, 38].

3.2 Single-level fast multipole formulation

In the single-level FMM, a 3D cubic grid of linear spacidgmbedding the bounda®X? is intro-
duced (Fig. 2). The centers of the cubic cells thus definetie&en as poles or y, in decomposi-
tions (13), (14). Two cells are deemadjacentif they have at least one common point, e.g. a vertex
(Fig. 3). Whenever: andy belong to cell,, C, that are not adjacent, condition (18) is automati-
cally fulfilled (as one then always has—ry|/|ro| < v/3/2 < 2//5) and expansions (13), (14) can
be safely used. Conversely, wherandy lie in adjacent cells, condition (18) is not assured and the
classical expressions (2a,b) of the fundamental solutwesised instead. These considerations lead
to reformulate expressions (7) and (8), for any collocafiomt x lying in a given cellC,,, as

_ near, FM
(Ku)(x) = (’:e@;)r (z) ;rM(’CU) (z), (€ 00NC,), (19)
fl@) = ["N@) + ()
boundary O,f the domain

d| /L/ ™

/ ( Cell C,
»\ Q ~

Far cell / _)/ N
5 _ ZAdjacent cells C, € A(C,)
¢, ¢ 4T X 5 y

Figure 3: Definition of the adjacent cells



where, letting.4(C) denote the set of cells which are adjacent to a given cublaCcétig. 3), the
“near” parts are defined for each collocation painas the net contributions from the portion of
boundary situated in cells adjacent to that containinge. by

(Ku)"®(x) = cin(@)ui(z) + > (PV) wi(y) T} (@, y; w)dS,y, (20a)
C,eACs) o0NCy
e = Y [ Py, (200)
The “FM” parts then collect all contributions from cells tteae not adjacent t6, :

@) = 3 [ uwTie s, (21a)

e, 2A(CL) Py
Ma)= Y [ Py, (21b)

CyA(Cs) O

The “near” contributions (20a,b) are evaluated by meansapidard BE techniques. The treat-
ment of the “FM” contributions (21a,b) exploits expansiqi8), (14) truncated at a finit& and
in a manner suggested by their multiplicative form, i.e.efipluate integrals over each céjj and
associate obtained values to the cell cemfgr(ii) apply transfer functions to obtain quantities as-
sociated to the centet, of cell C,, and (iii) evaluate contribution at each collocation paink C,.
Accordingly, multipole momentslefined by

R?’u(&cy) = —iks[bikS; + 0k — 25:8;5k] /BQ . ui(y)n;(y)elks®¥=v)4s, (22a)
NCy
2 N
RPU(3;C,) = —iksy? [ﬁ@j + 2§i§j} / wi(y)n; (y)ehesW-v0)4s; (22b)
e aaNC,
1 .
Ry (8:Cy) = — [0ra — $k] / ta(y)ehs®W—v)gs; (23a)
2 o0NCy
2 . -~
RPY(5;¢,) = = Sata(y)ePe¥v0)gs, (23b)
K Jaane,

are computed for each cell, (step (i)). Then,ocal expansiondor the cellC, are evaluated by
applying the transfer functions to the multipole momentading to

L3"(3C) = Y Gu(8roks)RE"(3:C,), (24a)
Cy#A(Cs)

LPU(3:C) = Y Gu(8moke)RPU(3;:C,) (24b)
CyEA(Cs)

L3'(8:C,) = Z Gr(3;70; ks)RY'(3;C,), (25a)
CyEA(Ce)

LP(3:C) = D> Gu(8reke)RPI(5:Cy), (25b)
Cy#A(Cs)

wherery = y, —xo joins the centers of cells, andC, (step (ii)). Upon multiplying (24a,b), (25a,b)
by the local factorexp [ikaé.(x — a:o)] (step (iii)) and replacing the integration over the unitesgh
in (13), (14) by a numerical quadrature rule based on a s@tapfadrature points, € S and weights
w, (see Section 4.3), the “FM” contributions finally take thenfio

Q
(Ku)M(@) ~ ) " w, [e—ikséq-@—%)cj“(gq; Cp) + e heda(@=20) (3 ), rPu(5 . C,) (26)

q=1
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Figure 4: Matrix-vector product without FMM (top) and with FMM (bottg.

Q
Z |: —lkssq r— mO)ESt( q,Cx)+e ikp3gq. (z— 2130)( ) EPt( C:C)] (27)

Expression (26) defines the “FM” contribution to the matrector producti K|{u}, and hence is
evaluated once per GMRES iteration, while (27) provides“Bid” contribution to the right-hand
side{f} and is computed once, prior to calling the GMRES solver. FEguschematically depicts
the acceleration mechanism achieved by the previouslyridescsteps.

As remarked in section 3.1, the truncation paraméteand hence the maximum degree of
Legendre polynomials featured in the transfer functi@pés; ro; k., ), increases with the cell sizé
Consequently, the numbé) of quadrature points necessary for achieving a given acgura(26),
(27) is also an increasing function 6f i.e. ofd (see section 4.1 for further elaboration).

The single-level elastodynamic FMM is more efficient thamdlassical BEM, with a complexity
of O(N3/2) per GMRES iteration (as shown in section 5.1). Further &tagbn is achievable by
adopting a multi-level approach, as described next for tesgnt context of 3-D elastodynamics.

3.3 Multi-level fast multipole formulation

To have maximal efficiency, FM-BEM algorithms must confine+#€M calculations to the smallest
possible portion of the boundary while clustering whengyessible the computation of influence
terms into the largest possible non-adjacent groups. Shishieved by the multi-level FMM [8, 30,
37,52, 53], which is based on using large cells and hiereadligi subdividing each cell int@ x 2 x

2 = 8 children cubic cells. This cell-subdivision approach istsynatized by means of an oct-tree
structure of cells. The levél= 0, composed of only one cubic cell containing the whole sertie,

is the tree root. The levél-cell is divided into2 x 2 x 2 = 8 children cubic cells, which constitute
the level/ = 1. All level-1 cells being adjacent, the FMM cannot be applied to them. €lell
¢ = 2 is then defined by dividing each leveleell into 8 children cells, and so contaifig cells.
The subdivision process is further repeated until the fileest ¢ = ¢, implicitly defined by a preset
subdivision-stopping criterion, is reached. Le¥elells are usually termeléaf cells The FMM is
applied from level =2 to level/ =/, i.e. featured — 1 “active” levels.

The multi-level approach basically consists in first appdythe FMM to all influence compu-
tations between disjoint lev@lcells (so as to use the largest clusters whenever possinid)then
recursively tracing the tree downwards, applying the FMMltonteraction between disjoint levél-
cells that are children of adjacent levél-1) cells (Fig. 5). Finally, interactions between adjacent lea
cells are treated using traditional (i.e. non FM-based) &hniques. This approach thus minimizes
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Figure 5: Multi-level fast multipole algorithm. Only multipole monts from non-adjacent (light-
grey) ceIISC(E) ¢ A( ) may prowde (through transfer) FM-computed contributiomgCu )™ (z)
at collocation pointse lying in ceIIC Upon cell subdivision (right), new FM-computed contri-
butions to collocation points in cafl or|g|nate from ceIIS,’(”l) in theinteraction I|stZ(C(”1))
of ¢\, while the adjacent regiont(C{‘™) reduces in size.

the overall proportion of influence computations requiriihg traditional treatment.
The computation of the discretized linear operator (7),dfehe matrix-vector produdt<]{u},
by the multi-level elastodynamic FMM hence consists of thilofving main steps:

1. Initialization: compute multipole moments (22a,b) for all lowest-levélcé, = ij.

2. Upward pass recursively aggregate multipole moments by moving upwarthe tree until
level 2 is reached. Denoting I&(C) the set of children of a given cdfl, the transition from a
level{¢+1) cell to its parent level-cell is based on identities

Rp“EC) = N expl-ikss.(yl T — yi ) REM(B:CLY) (28a)
e es(cl)
RPugC) = S exp[—ikes.(y) T — gy ) RPU(S CLD). (28b)

ey esey)

It is essential at this point to emphasize a crucial featlitkeoelastodynamic multi-level FMM,
namely that the number and location of the quadrature poinfsare level-dependent (see Sec-

tion 4.3 for details), a consequence of the previously-ioaetl dependence df, the trunca-

tion parameter in expansions (13), (14), on the cell sizenddeapplication of identities (28a,b)

requires an extrapolation procedure furnishing the vahiégg’“, RPv at the levelé quadra-
ture points from those at the levél-+ 1) quadrature points (see section 4.4).

3. Transfer initialize local expansions for each levetell Cg(f) and at each leved < ¢ < 7 using

30 cy = > Gu8Wsre ke Ry (31 C0) (29a)
cPezc?)
PPy = > Gr(8Wreike)RPM (30 ) (29b)

ciPezc?)

whereZ(C), theinteraction listof a given cellC (Fig. 5), is the set ofame-levetells which

are not adjacent t6 while having a parent cell adjacent to thatlofFor a level-2 cell, (29a,b)

coincides with (24a,b), a5(C?) collects all level-2 cells not adjacent @3.

9



4. Downward pass for all levels3 < ¢ < /, the local expansion for each levekell Cg(f) is
updated with the contribution from the parent leyél- 1) cell, by means of the identity
L3%(5;C9) = £33, + exp[—iks(8.(z ) — 2N L3 (5;¢))  (30a)

T

£P(5;000) = £P(3:¢0) + exp[—ike(s.(xy ) — 2] L&) (300)
Similarly to step 2, application of identity (30a,b) redsran inverse extrapolation procedure
furnishing the values otg’“, LPv at the levelé quadrature points from those at the leyél-1)
quadrature points (see section 4.4).

5. When the leaf level = / is reached, all local expansions have been computed. Thelzen
tion (Ku)™(x) is evaluated using (26) with the levélguadrature points, and the near-field
contribution is evaluated according to (20a,b) for all le&@eaf) cellsC,.

The computation of the right-hand side (8) follows the satepss with the multipole moments
Ry, RP* and local expansions; ", £P* replaced with their counterpar®;’, R>* and £y, £P*.
The above steps are shown in Section 5.2 to have a complexdy mostO(N log N), with the
exception of the direct and inverse extrapolations in skepsd 4, whose complexity i9(N3/2).

3.4 Computation of near-field contributions

The near-field contributions (20a,b) involve (i) CPV-sifayu (ii) weakly-singular and (iii) non-
singular element integrals. CPV-singular integrals ati apcording to

(P.V.) ui(y)Tf(a:, y;w)dSy
o0

= / ui(y) [T} (2, yiw) — TF(@, y)]dS, + (P.V) | wi(y)TF(x, y)ds,
a0 a0

where TF(z, y) are the traction components of the (singular) static furetgai solution and the
differenceT’ (x, y; w) — TF(x, y) is non-singular [3]. The remaining CPV integral is then aatd
analytically, taking advantage of the fact that three-nbtitengular elements, which have constant
unit normal and Jacobian, are used. Weakly-singular iategwhich feature the kernél’(z, y; w))
and non-singular integrals are computed using numericakSan quadrature (the weak singularity
being first cancelled by means of a suitable change of comtieih Finally, wherd() presents an
edge or corner at, the free-terny;; () is evaluated using the method of [33].

4 Fast Multipole Method: computational aspects

Both the single-level and multi-level elastodynamic FMMé&deen implemented, for three-noded
triangular boundary elements, using a public domain vareiche GMRES solver [15] with a con-
vergence criterion set th{Ku — f}||/ [[{f}I| < 1073. All examples have been run on the same
single-processor PC (RAM: 3GB, CPU frequency: 3.40 GHz)cdpx where indicated otherwise,
the multi-level FMM is used.

The numerical efficiency and accuracy of the FMM is strondfgaed by several factors, such
as the truncation of the transfer function, the quadratwer the unit sphere and the number of
levels, and great care must be taken in the implementatidwis Section is devoted to a discussion
of these issues, and of various algorithmic choices anddwgmnents. The latter are largely based
on a transposition to the present elastodynamic contextleds and methods proposed in [8, 53]
for the FMM applied to the 3-D frequency-domain Maxwell efipras. At several places, illustrative
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Figure 6: Pressurized spherical cavity: notation.

numerical results for the test problem of a spherical caitadiuse embedded in an elastic isotropic
infinite medium (withy = 0.25), subjected to an internal time-harmonic uniform presgei(&ig. 6)
are given. This problem has a simple, spherically-symmetxact solution [12], with the radial
displacement and stress given in terms of the normalizadlreabrdinater = r/a by:

. aP 1 v2(1 — ikpar) . .
up (1) = 7 1201 = Thea) — (kpa)? exp(ikpa(r — 1))

31
1 (kpa)??? — 442(1 — ikpar) (1)

o (7) = P =5 472(1 — ikpa) — (kpa)?

exp(ikpa(r — 1))
with the wavenumbekp and the wave velocity ratig defined in (3).

4.1 Truncation of the transfer function

As already mentioned in section 3.1, the decomposition iEl6hown in [9] to be convergent in the
limit L — 400, which immediately implies convergence for the correspmmpéxpressions (13), (14)

of the elastodynamic kernels. However, the spherical Hafoiketions hél)(z) behave like(p/ z)P

for large p [1] and their evaluation must therefore be avoided for argesignificantly larger than
klro|. Hence, the truncation levdl used in (11) has to be large enough to guarantee sufficient
accuracy in (10) while avoiding divergence of the Hankelctions appearing in (11). Appropriate
values forL achieving the "numerical convergence" of the transfertiond7;,(s; ro; k) are selected
using formulae empirically established from numericalexikpents. One such formula, known from
previous studies on FMMs for Maxwell equations [8], reads:

L(d) = v/3kd + C. log,o(v/3kd + ). (32)

In this work, distinct truncation levelép and Ls are defined according to (32) with = kp and
k = ks, respectively. The transfer functions (15a,b) and (16aé)hen evaluated usirlg= Ls and
L = Lp, respectively. The truncation parameter value defined Byig3level-dependent through the
cell sized, and [ is (roughly) doubled for each upwards transition to a newllev

Formula (32) features a constatit which has to be adjusted from numerical experiments. For
that purpose, the test problem is now considered\fee 30726, with a leaf level = 3 and a leaf-cell
sized® = 0.6\s (Where\s = 27t/ ks denotes thesS-wavelength). A subset of 10 columns of the
influence matrix{/K] are computed using both the present FM-BEM (by performingrimraector
products|K[{u} with all entries of{u} set to zero except that corresponding to the selected column
of [K], set to unity) and standard BEM techniques. The relative RiffSrence between these two
sets of matrix columns measures the truncation error inted by the FMM with finite truncation
level L. This truncation error, and the CPU time for one FMM itematiare plotted againgt, in

11
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Figure 7: Truncation error and CPU time per iteration as a function ofjastable parametef’..

Fig. 7. Error levels below0~3 are achieved fof < C. < 12.5, which corroborates the previously-
discussed notion of a numerically optimal truncation lekelValues ofC. outside the above range
lead to values ol that are either too small (insufficient convergence in (b@)po large (divergence

of Hankel functions in (11)). Figure 7 also shows that the Qi for one FMM iteration increases
with C,, which was to be expected sinéegiven by (32) also increases wifty. The valueC, = 7.5

is found to achieve to keep a good compromise between agcarat computational cost, and is
retained in the present implementation. This observasaonsistent with that made in [53] for 3-D
electromagnetics.

4.2 Number of levels

The choice of the leaf levélis crucial, as it affects both the overall computationaleiamd the accu-
racy of the elastodynamic FM-BEM algorithm. A too-small rugn of levels increases the proportion
of near interactions, thus pushing the complexity of the poiation closer ta)(N?), while a too-
large number of levels increases the number of transfergeleet levels (see Table 1 where several
values of/ are considered, withpa = 67 and IV = 122886). )

The truncation parametdrat any level depends on the leaf-cell si#€. This is now illustrated
with the help of the comparison method and test problem dised.1: relative RMS differences
between matrices generated by FM-BEM (witliletermined at all levels by (32)) and standard BEM
produced by this comparison are plotted in Fig. 8 agaifistor several choices of®. For small
values ofksd®), the FM-BEM algorithm is seen to be insufficiently accuraféis stems from the
fact that the distances| between leaf cells scale with and the spherical Hankel functions in (11)
are known to diverge in the small-argument limit. Estimédt@)(accordingly predicts that has a
O(In kd) divergence in the small cell size limit, and formula (32) slo®t provide adequate values

7 (leaf level) | ksd®)/2x | error / BEM | CPU time / iter (s)
3 1.32 1.1107° 367
4 0.66 4.7107% 134
5 0.33 3.71073 104
6 0.17 5.11072 200
7 0.083 1.71071 380

Table 1: Error and CPU time against the number of levels
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Figure 8: Truncation error as a function of adjustable parameter for several values of leaf-cell
sized®).

of L in this case, even upon increasing the constantas evidenced by the results of Fig. 8. This
suggests that the leaf cell sizé) must be chosen larger to a minimum vali®¥" to avoid divergence;
for instance, results obtained usm)ﬁ = 0.075\s have very poor accuracy. A minimum leaf cell size
dmin — A/10 is adopted in [8]. Accuracy and computational efficiencysiderations make higher
values ofd™n preferable. In this work, the subdivision-stopping cidardefining the leaf levef is
set to: d(F) < gmin < g0 with d™" = 0.3\s. Configurations for which cells of size significantly
smaller thand™" ~ 0.3)\3 are desirable (e.g. geometries with complex details atvelength
scales) require an adaptation to elastodynamics of appesazombining the diagonal form (10) with
other types of expansions valid for low wavenumbers, seE)35].

4.3 Quadrature over the unit sphere

Another practical issue is the numerical computation afdrals over the unit sphefein (13), (14).
The quadrature method of [8], based on a product rule in tlgeilan spherical coordinates ¢,
employs quadrature points and weights of the f@&m= (6;, ¢;) andw, = wfwj.’, where(6;, w?)
(1<i< L) correspond to d&+1-point Gaussian rule of), 7] while (¢;, wj’), given by

2 6 2

%= 50317 YT o1

(0<j<2L), (33)

correspond to a uniform rule o), 2x]. This approach, which employ@ = (L + 1)(2L + 1)
quadrature points overall, is designed so as to integratetigxthe L2(S)-orthonormal set of spher-
ical harmonics( Yy, (6, ¢) )0<p<L <<, Of Order< L, a requirement which, together with (32),
implies that the number of quadrature points must be legpkddent. It is adopted here, in a form
slightly modified as explained next.

Reduction of the number of quadrature points. The transfer functiorj;, given by (11) has the
form G (ro, 3, k) = Elf o Hp(10) Py (cos(8,70)). The factorH,(rq) does not depend ofy and is
computed once for eaaty. Then, for each paifrg, §), the Legendre polynomials are computed by
induction:

p(1) = (2 =1/p)zBp-r(2) + (1/p = 1) Pp—a(2) _ 18
{Po(w) 1, (x_ > (34)

Pi(z) == rol[3]
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The Legendre polynomials are known to satisfy the idedjfy—z) = (—1)? P,(z). This can be
exploited to reduce the number of quadrature paintsgrid that is invariant under the transformation
§ — —§ allows to perform the numerical integration éhwith half the original quadrature points.
The rule defined by (33) fulfils this invariance provided tm&orm rule on|0, 27| is defined in terms
of 2L + 2, rather thar2L + 1, points. This modified version of (33) featurgd. + 1)? points, but
only (L + 1)? points are actually computed, stored and used. As a rebaligamputing time and
memory required by the quadrature are roughly divided.by

4.4 Extrapolation (direct/inverse)

The upward translations (28a,b) require evaluating maltipnoments at level-quadrature points
from their values at level¢ + 1) quadrature points. This important step of the algorithm dag-
nificant impact on the overall CPU time required by the FM-BEMd hence has to be formulated
carefully. A fast method, which takes advantage of the umifdistribution (33) of quadrature points
along¢ and exploitsL?(S)-orthogonality and finite-bandwidth properties of the sjda harmonics,
has been proposed in [8, 53] and is used here.

With the quadrature points at levelaind/ + 1 of the form

s = (0 ) 0<i< LD 0 << 2r®),
50 = (0%, 61)) 0<d<L® o0<j <200,

the valuesF; ;; = ]:(02(,5 ,¢§f ) at the level¢ quadrature points of a generic functigi{s) = F (6, ¢)

are extrapolated from thosg,; = F (QZ@H), ¢§z+1)) at the levelt/+1) quadrature points by means of
the following three steps:

2L (1)
. () :
F - > et ]_—i(j_€+1) (Im| < L¥Y)  forward Fast Fourier Transform
(1)
7o Z B L) dense matrix-vector product  (35)
L(ZH) @
J’:i(,l;-), = Z ey ]32(?1 backward Fast Fourier Transform
m=— L&)

with

I,(¢1)
. . 2p+1(p ! m

Likewise, the downward translations (30a,b) require isgezxtrapolations from levélquadra-
ture points to level<+ 1) points, which are based on a transposed version of the eldtam:

2L
3 ®
For =S e ™ ]-'( ) (Im| < L*)  forward Fast Fourier Transform

i'm
7'=0
()

FE - Z BtED dense matrix-vector product  (36)

L(Hl)
(e41) - ,
Fyil =3 eme D backward Fast Fourier Transform

m
m:—L(e+1)
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Other extrapolation methods have been proposed [8], somnich being of lower computa-
tional complexity but at the cost of further approximatidrne above extrapolation method is exact,
and will be shown in numerical experiments (section 5) taaat for only a modest fraction of the
overall CPU time of an elastodynamic FM-BEM analysis, anddeeto be satisfactory.

4.5 Ordering of the transfer operations

In operations (29a,b), the transfer functiaghs need to be evaluated only for vectorg linking the
centers of two same-level cell, andC,. Such vectors are integer multiples of the cell size
ro = (nynyn;)d. Moreover, at any given level, the transfers are only coegbdivr cellsC, in the
interaction list of a given cell,, i.e. the integers:,,n,,n, necessarily belong to the sgt-3 <

Mgy Ny, Nz < 3P\{—1 < ngyny,n. < 1} The maximum number of distinct vectorg required
for performing all operations (29a,b) for a given level igréfore7®> — 32 = 316. Each transfer
matrix can thus be reused many times, especially at the tdesssds. In order to take advantage of
this remark, the transfer operations are first sorted aguptd the vector,. Then, for each,, the
transfer matrix is computed using the method of sectionM@eover, the same transfer matrices are
used for each GMRES iteration. It is therefore possible stzpmpute and store on disk each transfer
matrix, prior to performing any GMRES iteration.

4.6 Matrix of near interactions

The only BEM matrix in the FMM for which storage may be consétkis the near-interaction in-
fluence matri K%, such thaf K"*?{u} = {Ku}"*®" with reference to (20a), becauE"®?] is
sparse. The most common storage strategy for sparse nsatritee Compressed Sparse Row (CSR)
approach [46], based on three linear arrays: the nonzenaxmeatries (stored row-wise), the column
indices, and integer pointers to the beginning of each metv in the first two arrays. Products of
CSR-stored sparse matrices with vectors are then comportety row, which prevents one to take
advantage of optimized matrix-vector product routineg, those of the BLAS library.

A modification of this storage strategy takes advantagee$tiucture of the computation of the
near interactions, where a cell can interact only with itiginieor cells. The idea is to store blocks
representing the interaction of a cell on its neighbor géllg. 9) and then to evaluate matrix-vector
products blockwise (instead of termwise). Each block isestan full-matrix format. For example,
the largest model used in the numerical study of compleXityextion 5.3, for whichV = 1215291,
features 18351 non-empty leaf cells. The correspondingkhlize-sparse matrix of near interactions
is made of 260203 blocks (i.e. a given leaf cell has on aveadget 14 non-empty adjacent cells,
including itself, for this example).

column index of cell C,

T[T Cells C, € A(C.)

row index of cell C,

Figure 9: Near interactions matrix (blockwise-sparse storage)
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This storage strategy has two advantages. First, it usaslists of unknown DOFs for a given
cell and its neighbors, instead of the global list. Secomdindzed BLAS routines can be used to
compute the product of each block g&"¢®] with the corresponding part of the solution vector.
Moreover, to reduce the number of blockwise matrix-vectadpcts, only one block is created for
each leaf celC,, with lines and columns corresponding to collocation nade$, and interpolation
nodes in all cell€, € A(C,), respectively. The matrix entries for each such block arepded by
treating the set of elements belonging to@Jle A(C,) as a single (small) BEM mesh and using
traditional BEM matrix set-up methods.

4.7 Memory management

In the multi-level elastodynamic FM-BEM, multipole mometi22a,b) and local expansions (28a,b)
are computed for each cell, each level and each quadratime and thus arise in large numbers. It
is esssential to keep the storage of such quantities to anmmi The memory needed for a given
FM-BEM analysis is affected by the order in which certairktagre performed. To compute the local
expansionsCy, £P at level/, R7, RP are needed at levéland £3, £P at level (¢ —1). One may
therefore discard the values ﬁl’%, RP at level (¢ + 1) (and reallocate the corresponding memory)
onceR?, RP are computed at levél As schematized in Fig. 10, performing the transfer at lével
immediately after the upward pass from leyék- 1) to level ¢ allows to restrict the storage to the
multipole moments at levelsand (¢ + 1), and the local expansions at all levels. This ordering hence
reduces by about half the memory required for storing moléipnoments and local expansions.

Moreover, virtual memory is optimized for large problemesizas follows. Multipole moments
and local expansions are written on disk (out-of-core). riTlier each step of the multi-level FMM,
the needed information is read in the appropriate file anetdtback in that file after updating. The
maximum virtual memory cost is therefore incurred by thasfar pass at levél for which all level{
multipole moments and local expansions must be saved imavinhemory.

For even larger problem sizes, an improved version of thegesjy, where thé-level cells are
split into V. groups, has been implemented. The transfer pass is thexeeffas two nested loops
over theM,, groups, with operations (including the reordering acamydio vectorsry linking the
centers of two same-level cells, see Section 4.5) done onlgdils belonging to the two currently
active groups. As a result, the virtual memory required byaadfer pass is divided by/,,. This
multi-group out-of-core process is applied separatelyatthepass of the multi-level FMM. In order
to define groups of similar size at each level, the numberaiigg is level- and problem-dependent.

- Ee—] 7]
— [Er—{2 (Ao

A | |

! 3? 10 | 5? 10 |

L [ ¥ [ ¥
T e ]
L R“ —5—» m L 12- —1- RO‘ —2—» m 12~

Figure 10: Non-optimal (left) and optimal (right) orderings of the v@us steps of the multi-level
FMM (the numbered arrows indicate the sequential orderihgasses for each case).
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4.8 Implementation of the elastodynamic FM-BEM: summary

The elastodynamic multi-level FM-BEM solver implementedtie course of this work, whose fea-
tures are those discussed in Sections 3 and 4, is summaoizedrivenience in Figs. 11 and 12.

(a) Octree generation: hierarchicaly subdvide eat cél into 8 children cels, urtil
ledf level ¢ defined by d“! < d™"=0.3\g < d’ isreated
Retain only non-empty children cdls

(b) Near contributions:
Compute and store matrix [K"¢?] of nea interadions (Sec 4.6)
Compute “nea” contribution { f"?}, Eq. (20b); storeinto {f}

(c) Initial FMM step: preparatory step

Sort vedors ro =y, — xo (Sec 4.5)

Compute and store on dsk the transfer matrices

Uses sveep for comptting the “far” contribution { f™ 1}, Eq. (21b); storeinto { f}

(d) GMRES nitiali zation:
Set restart parameter to 50, initialize solution vedor to {u} ={0}

(e) Generic GMRES teration; invokes generic FMM step (seeFig. 12)
Invoke (computed and stored in Step (c)) vedors ry and transfer matrices

Use sweep for computing the “far” contribution {Cu}™ , Eq. (212)

Evauate {Ku} = {Ku}™ + {ICu}"®, Egs. (19), (20a); passresult to GMRES

(f) Convergence chedk for GMRES: ||[{Ku — f}|| / |[{f}I| <1073 ? NG

YES

(g) Post-processng of solution:
Evaluate integral representations, crede graphics...

Figure 11: Elastodynamic multi-level FM-BEM: schematic descriptadroverall algorithm
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(@ forallled celsC]
initialization : computation of multi pole moments, Eq. (223)
transfer using L(d") = v/3kd* +7.5log,,(v/3kd’ 4 ) terms in expansion,
Egs. (29a,b)
endfor

(b) foralllevels? = ¢ — 1,2 (in this order)
for all cdlscy”
foral cdlsc{™ e s(c)
upward pass Egs. (28a,b)
end for
extrapolation, Eq. (35)
endfor
for al cdls Cg(f)
foral cdisc” e (c)
transfer using L(d*) = v/3kd" +7.51og,o(v/3kd" + ) termsin expansion,
Egs. (29a,b)
end for
end for
end for

(c) foralllevels ¢ = 3,/ (in this order)
for all cellsc”
downward pass Eg. (30a,b)
inverse extrapolation, Eq. (36)
endfor
end for

(d) foradllled cdlsC’ i
for al collocaion pdnts z € C!
local expansions Eq. (26)
add "near" part Eq. (209)
end for
end for

Figure 12: Elastodynamic multi-level FM-BEM: schematic descriptidigeneric FMM step

5 Complexity of the elastodynamic FMM

In this section, the theoretical complexity of the elastmaiyic FMM, i.e. the CPU time spent for
each GMRES iteration as a function f, is studied for both the single- and multi-level versions

(sections 5.1 and 5.2) and then compared to results from mecehexperiments (section 5.3).

5.1 Theoretical evaluation, single-level FMM

Noting d > d™" the linear cell size, the number of non-empty cells and thmber of average
DOFs per non-empty cell a@(N/d?) andO(d?) respectively; these estimates stem from the fact
that the geometrical support of the unknown BE DOFs is twoettisional. The truncation parameter
L(d) given by (32) is such that there is a positive constEnfwhich depends od™") for which
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L(d) < Hd for anyd > d™". Therefore, one may conservatively consider that) = O(d) and, by
virtue of (33), that the numbe® of quadrature points ove§ is Q = O(d?). The main steps of the
single-level FMM entail the following computational coragities:

(a) Evaluation of multipole moments (22a,b) and local esjams (26), for each quadrature point
and each cellO(Nd?);

(b) Transfers (24a,b), (25a,b), for each quadrature poidteach pair of non-adjacent cells:
O(d? x N/d* x N/d?) = O(N?/d?);

(c) Near interactions (6), for each cell, by means of the peodf aO(d?) x O(d?) matrix with a
O(d?) vector:O(N/d? x d*) = O(Nd?).

Settingd = O(N®) the optimal complexity is obtained by minimizing the largesponent inVd? =
N'*22 andN?2/d?> = N?~2e, Hence the optimal cell size in the single-level FMMiis= O(N1/4).
As a result, the optimal complexity in the single-level FMiMélastodynamics is of ordé€)(N3/2),
and is achieved by using(N?3/4) cells.

5.2 Theoretical evaluation, multi-level FMM

The leaf cell sizel®) is as small as possible, under the constrdifit!) < ¢™n < J) (dM" being a
fixed fraction ofS wavelength), as discussed in section 4.2. Assuming a cunstamber of DOFs
per wavelengthd® may be considered as independent\oin the complexity analysis. The size
d of the largest cells is related ") by 2/d“) = d(®), Moreover, the fact that the BEM nodes are
located on a surface of characteristic diamé&é&i(*)) implies thatd®) = 2/4() = O(N'/?). Hence,
the total number of levels is:

¢ =0(log N) (37)

and the number of leaf cells 8(/V). Moreover, since the DOFs are supported on a surface, each
non-empty levek cell has on average 4 non-empty children cells, and thexdioids an average
of N = O(4=¢N) DOFs. The numbers of non-empty cells and of children at eextl For the
example of a spherical cavity witN =1 215 291 DOFs, shown in Table 2, corroborate this estimate.
Lastly, one notes that the levélruncation parameter and the number of lef/gliadrature points are
LO =0(d®)=0(d® x 279 = O(N/2 x 27) andQ¥ = O((d"))?) = O(N x 47°).

Based on the foregoing remarks, the computational contj@exassociated with the main steps
of the multi-level FMM are obtained as:

(i) Multipole moments (22a,b) and local expansions (263Jeated only at level: O(N).

(i) Transfers (29a,b), performed for each level, each@@land each cekﬂy) el (Cg(f)):
04! x QW) = O(N) per level, i.eO(N log N) overall.

level | number of non-empty cells number of children
2 56 4.86
3 272 4.26
4 1160 4.07
5 4720 3.89
6 18351 —

Table 2: Average number of non-empty cells and children at each level
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(iif) Upward and downward passes (28a,b), (30a,b), for éedl ¢, each cell and each quadrature
point5: O(NV) per level, i.e.O(N log N) overall.

(iv) Direct and inverse extrapolations, for each lefahd each cellO(N3/2).

Estimate (ii) relies on the fact that the interaction listogiven cell contains at mogt — 3% = 189
cells, irrespective of the level and the total number ofscdiistimate (iv) stems from the observation
that each extrapolation (35) from levéh-1) to level¢ (whose total number i©(4)) requiresL(®)+1
dense matrix-vector products, each of izé) +1) x (L") +1), i.e. O (4 x 27! NV/2x (27 N1/2 x
2~ (I N1/2)) = O(N3/22-(41)) operations. Summing these extrapolations from Iével 7 to
¢ = 3, the obtained cumulative complexity of all extrapolatidas)(N?3/?) as stated. A similar
analysis holds for the cumulative effect of the inverseaptiation steps (36).

This analysis therefore predicts a theoretical compleodit§) (N log N + BN?’/?) per iteration
for the multi-level FMM.

5.3 Numerical study of complexity

The theoretical complexities just formulated are now comg@against recorded CPU times, on the
pressurized spherical cavity problem (section 4). Thisgamson aims in particular at evaluating the
respective importances of tii® aN log N) andO(8N?3/2) contributions to the overall complexity of
the multi-level FMM. Several frequencies are considereith the size of the BEM models adjusted
S0 as to maintain a mesh density of about 10 nodesSpeavelength (Table 3). This complexity
study involves problem sizes of up 16 ~ 1.2 10%, while the examples of [17] used < 2.510%.

N ||30726 122769 217983 389232 449835 530709 635349 7719120858815291]
kpa/m| 3.05 6.14 8.31 109 1166 1268 1391 152 17.4 19)24

Table 3: Numerical study of complexity: BEM model siZésnd non-dimensional frequencies used.

Multi-level FMM: complexity of the main steps. With reference to items (i) to (iv) of section 5.2,
the cumulative CPU times recorded for the main steps of thid-feuel FMM are compared to the
corresponding theoretical complexities for the evaluaid (i) the multipole moments (Fig. 13a)
and local expansions (Fig. 13b), (ii) the transfers (Figc)l&nd (iii-iv) the upward and down-
ward passes including the (direct/inverse) extrapolatifffigs. 13d). For the latter case, coeffi-
cients («, 3) allowing a best fit of theoretical complexities of the fo@{aN log N 4+ SN?3/2) to
the CPU data are obtained via regressioricas?) = (1.310~7,9.810~?) for the upward pass and
(o, ) = (1.8107%,8.21078) for the downward pass. These values, which are of course ende
computer-dependent, suggest that the importance oO#é>/2) contribution to the upward and
downward passes becomes significant/foaboveO(10%).

On Fig. 14 the computation time required by the upward andwavd passes and its estimation
BN®/? are compared to the other steps of the algorithm. The resditsate that thed (N3/2) contri-
butions arising from the extrapolations are small comp&wedeO (N log V) contributions for BEM
model sizesV = O(10°) or less, for which the extrapolation method of Section 4thésefore satis-
factory. Using improved algorithms for extrapolation sashthose proposed in [8], of computational
complexity lower tharO(N?3/2), would reduce the elastodynamic FMM complexity@0N log N).
They may prove essential for BEM models involving severdlioms DOFs and more.

Overall complexity of the single-level and multi-level FMM. Numerical experiments, in the form
of full BEM solutions obtained using the standard BEM, sitfvel FM-BEM and multi-level FM-

20



40 T T T T 40 T T T T
350~ |~ 1.9.10%N ] | |— 2.7.10%N
| | = FMM multi = FMM multi
300 g % 300- g
© 500k J ' 200 i
£ 200 2200
2 - _
3 150 2
O o
100~ g 100~ g
50 g
07 L | L | L L | L | L | 0 L | L | L | L | L |
0.0e+002.0e+05 4.0e+05 6.0e+05 8.0e+AMe+06 1.2e+06 0.0e+002.0e+05 4.0e+05 6.0e+05 8.0e+QMe+06 1.2e+06
N N
(a) Multipole moments (b) Local expansions
40 — 20 L e S S |
350 |— 1.4.10°N*log N i — 1.3.10"*Nlog N+9.8.10™N*?
t | m FMM multi = upward
2 300- . 5150~ |-~ 1.8.10°*Nlog N+8.2.10™N*? e
= T = e downward o
£ 250~ 7 2
~ = ~ /.’
) ) e 4
£ 200 : £ 100- o -
D 150+ B ) e
o [od e
o o
100~ : 50 g
50 8 vt
L .
| | | | | | - 1 | | |

0 1 1 1 1 1 1
0.0e+002.0e+05 4.0e+05 6.0e+05 8.0e+2He+06 1.2e+06
N

(c) Transfer

0.0e+002.0e+05 4.0e+05 6.0e+05 8.0e+2He+06 1.2e+06
N

(d) Upward and downward passes

Figure 13: Theoretical complexity and recorded CPU times for the mps of the multi-level elas-

todynamic FMM.
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Figure 14: Comparison of the cost of the upward and downward passesetottier steps of the
algorithm

BEM on BEM models of respective sizes up@g10*), O(10°) andO(10°), corroborate the previ-
ously discussed theoretical complexities estimates foh epproach, as seen in Fig. 15, where the
O(N3/?) contribution to the multi-level FMM has been disregardeadsordance with the previous

discussion on its effect.
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5.4 Discussion

The results of Sections 5.2 and 5.3 are consistent with gporeding studies in [8, 53] for electro-
magnetics, where particular tii® N3/2) complexity of the direct and inverse extrapolations is also
pointed out. The) (N log ) overall complexity is also obtained for the method stablldtequen-
cies proposed in [10]. In contrast, the elastodynamic FMVBE [17] uses a level-independent value
for the truncation parametdr. This variant avoids the need for direct and inverse extedjom but
requiresL = O(ksd¥)) = O(N'/2) by virtue of (32). Revisiting steps (i), (i) and (iii) of Séon 5.2
with fixed values forZ = O(N'/?) and@Q = O(L?) = O(N), one finds a)(N?) complexity for that
approach, as remarked also in [37]. In comparison, statieBEWSs for static problems are known
to haveO(N) complexity [30, 37] since the truncation parameter in thédtipoie expansion in that
case depends neither on the level nor on the problem size.

6 Numerical examples

First, additional numerical results for the example of aspugized spherical cavity, introduced in
Section 4, are presented. Then, the more complex example afiffraction of an incident P plane
wave by a spherical cavity, for which an exact solution is algilable, further demonstrates the good
accuracy of the present FMM. Finally, the usefulness of tapgsed FMM formulation is illustrated
on the scattering of a seismic plane P wave by an irregul&spalce model. For all results presented
therein, the following computational parameters were ugéd= 7.5, d™" = 0.3\s (unless indicated
otherwise), and a convergence threshold definefi{lfy— KCu}||/||[{f}|| < 103 (using the notations
of equation (9)) for GMRES.

6.1 Pressurized spherical cavity

The example configuration defined in Section 4 is again uskest, Rumerically-computed solutions
are compared for four non-dimensional frequencies to tlieesponding exact solution (31). The
stopping criterion relative to cell subdivision proposediection 4.2 led to four levels for the highest
frequency considerediga/m = 2). Four levels were also used for the other three resultsdardo
ensure that a sufficient proportion of the computationsgzetimultipole expansions (the subdivision-
stopping criterion being hence disregarded for these LaBes each frequency, relative RMS errors
for the radial displacement on the cavity wall and over tlibalantervala < r < 3a are presented in
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kpa/m 0.1 | 0.50 | 1.00 | 2.00

# nodes/ As 80 16 8 4
RMS error,r = a (cavity wall) | 0.025| 0.006| 0.006 | 0.021
RMS error,a <r<3a (domain) | 0.011| 0.006 | 0.008 | 0.031

Table 4: Pressurized spherical cavity: RMS solution error on theityeand in the domain

# nodes per S-wavelength N | RMS solution error on cavity CPU time per iter.(s
2.5 1926 2.01072 1.5

5 7686 4.61073 3.7

10 30726 1.31073 14.2

20 122 886 4.0107% 85.1

Table 5: Pressurized spherical cavity: influence of the number obsquer S-wavelength on the RMS
solution error and the CPU time per iteration.

Table 4. The present FM-BEM is seen to be quite accurate,ievtte low-frequency caséga/m =
0.1) for which the accuracy of FMM expansions of the form (10)rieWn to deteriorate [8], whereas
the standard BEM does not [7].

Next, the effect of the number of nodes per S-wavelength dutisn accuracy is examined.
For that purpose, the cavity radiasand angular frequency are kept constant (witkpa = 37),
while four BEM meshes with increasing mesh densities are.u3ée corresponding numbers of
nodes per S-wavelength are given in Table 5 (first columng rEhative solution errors observed for
these meshes (Table 5, second column) indicate that a gdaitbecaccuracy requires a minimum
of 5 nodes per S-wavelength. The corresponding observedtibidd per iteration (Table 5, third
column) increase due to the combined effect of mesh refineamghtruncation parameter (32). The
numerical results presented in the remainder of this artiave been obtained using meshes featuring
a minimum of 10 nodes per S-wavelength.

6.2 Diffraction of an incident plane P wave by a spherical caiy

The geometrical configuration and material parameterssaire the previous example, but the cavity
surface is now traction-free. An incident plane P-wave pgaes along the positive-direction
(Fig. 16). Two frequencies are considered, definedigy/ 7 = 1 and kpa/m = 4, with respective
problem sizedV = 7686 and N = 122886. The numerical results are compared to the analytical
solution given in [12] (which, incidentally, features a tgvaphical error corrected in [7]).

plane wave

Figure 16: Diffraction of an incident plane P wave by a spherical cavitptation
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Figure 17: Diffraction of an incident plane P wave by a spherical cavigomparison of the nu-
merical FMM and analytical solutions for normalized frequeéeskpa/7m = 1,4 and azimuths
0=0,7/4,m/2,3n/4.

The numerical results are computed along radial straigkslemanating from the cavity center
in directions ¢ = 0, 7/4, w/2, 3w /4) in thex-z plane. Figure 17 shows the real part of the radial dis-
placement against the normalized radial coordingte The subdivision-stopping criterion employed
for caseskpa/7 = 1 andkpa /7w = 4 corresponds respectively #'" = 0.2\s andd™" = 0.3\s. The
numerical results obtained using the present FM-BEM are t®agree very well with the exact so-
lution for the two frequencies considered, even alongtker /2 direction corresponding to grazing
incidence. For the casga/m = 4, a solution CPU time of 44s per iterationdfl GMRES iterations,
no preconditioning) is recorded. In Table 6, the influencehef choice of leaf cell size (see Sec-

am | =0 O=n/4 O=m/2 6=3r/4

kpa/m =1 (NN =7686) 0.2\s | 9.210=® 2.61073 2.210~2 8.6107*
0.1\s | 9.6107% 8.61073 9.21073 4.91073

0.05M\s | 1.11072 2.31072 4.81072 2.110°2

0.02\s | 4.2107%2 3.11072 3.1107' 8.51072

kpa/m =4 (N =122886) | 0.3\s | 1.410°2 4.410~% 23102 5.610°3
0.2)\s | 1.4107%2 4.2107% 2.01072 5.210°3

0.1\s | 1.7107%2 1.5107%2 4.61072 6.81073

0.05\s | 1.410"! 6.81072 2.6107' 4.610°2

0.02)\s | 5.810°' 3.5107' 6.0107' 2.1107!

Table 6: Diffraction of an incident plane P wave by a spherical cavityfluence of leaf cell size on

solution error.
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tion 4.2) is further examined. Results obtained by choosfify > 0.1)\s are satisfactorily accurate.
On the other hand, solution errors are seen to deterioratkentig whenever valueg™” < 0.1\s
are used. These results corroborate the validity of themezended valu@™" > 0.3\s proposed in
Section 4.2 on the basis of an essentially one-dimensiesaproblem. Some of the values "
smaller thar).3\s also lead to acceptable solution errors for this examples fitwever cannot be
expected to be always true, as the test of Section 4.2 irdicat

6.3 Diffraction of an incident P plane wave by a semi-ellipsiolal canyon

This example is concerned with the diffraction by a senipstiidal canyon of a plane P-wave of
unit amplitude travelling in an elastic homogeneous irteghalf-space (Fig. 18). A right-handed
Cartesian framéxz, y, z) is defined so that the elastic half-space occupies the rediony, z) | z >

0}. The surface of the canyon is ellipsoidal, with semiakes a respectively aligned along the
coordinate directions, y, z. The plane wave travels along directisin ¢pe, — cos fpe,. The semi-
ellipsoidal surface of the canyon and the surrounding portif free surface lying inside a disk of
radiusD > a, b are discretized using boundary elements. Such a configaregtirepresentative of a
“topographic site effect” in seismology and has been thgestilof numerous studies, see [13, 28, 29,
57] and [7, 26, 34, 40, 49] where diffraction of waves by stefheterogeneities is considered.

Semi-spherical canyon and vertical incident P-wave. First, the diffraction of a vertical incident
plane P-wave by a semi-spherical canyon is considered {i. a, see Fig. 18), withv = 0.25.
Results obtained by the present FM-BEM for the (low) noreelifrequency:pa = 0.257, by means

of a BE mesh featuringv = 23 382 DOFs, are compared to corresponding results from [49] (base
on a semi-analytical approach) and [40] (obtained usingradstrd elastodynamic BEM). In this case,
the subdivision-stopping threshold used/f®&" = 0.15)\s, resulting in a leaf levef = 3. Figure 19

8Y

free surface A B a

elastic half-space

plane P wave

Figure 18: Diffraction of an oblique incident P plane wave by a semipslbidal canyon: notation
(top left and bottom); sample BEM mesh, with= 25788 (top right).
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Figure 19: Diffraction of an incident P plane wave by a semi-sphericatyon: horizontal and ver-
tical computed displacement on line CDE (with points C, D gffirced on Fig. 18) plotted against
normalized arc-length coordinat€/a along CDE (normalized frequendya/m = 0.25). Com-
parison of present FMM solution to results from Sanchez¥add9] and Reinoso et al. [40]

shows that the horizontal and vertical displacements almegCDE (with points C, D, E defined
in Fig. 18) produced by the three approaches are in good ragrde Note that the corresponding
results in [40, 49] are plotted against the horizontal cowtigy, whereas the arc-length coordinate
along ABC is used in Fig. 19. The same vallle= 3¢ of the truncation radius has been used for all
three sets of results. The present computation required REMiterations ands of CPU time per
iteration.

Moreover, the FM-BEM allows to deal with non-dimensionaduencies significantly higher
than those considered in previous studies. Figure 20 shmvdisplacements along line ABC com-
puted for a nondimensional frequenkya /7 = 5 using the present method. This time, the problem
size N = 287946 is well beyond the capabilities of standard BEM. This comagiah, performed with
a leaf levell = 6, required86 GMRES iterations (without preconditioning) aind3 s of CPU time
per iteration. The displacement near the canyon edgey(ex ands = 7a /2, see Fig. 18) has strong
variations, as expected.

! i !
|l (present FMM
— |u,| (present FMM

N

displacement modulus
=

00 1 2 3

s/a

Figure 20: Diffraction of an incident P plane wave by a semi-sphericatyon: horizontal and ver-
tical computed displacement on line CDE (with points C, D gffirced on Fig. 18) plotted against
normalized arc-length coordinate/a along CDE (normalized frequenéya /7 = 5)
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kpa/ﬂ':O.25 kpa/ﬂ':O.E) kpCL/7T=O.75 kpa/ﬂ': 1.5 kpa/ﬂ':f) kpa/ﬂ': 10
D =3a 7(23382) 10(23382 12 (23382) 19 (23382) 86 (287946)> 280 (1145700
D=5a 7(61875) 10 (61875 15 (61875) 28 (61875) 159 (774180
D=Ta 8 (77565) 13 (77565] 17 (77565) 43 (77565
D=20a| 14 (98844) 39 (98844) 43 (98844

Table 7: Diffraction of a plane wave by a semi-spherical canyon: namitf GMRES iterations for
various truncation radiiD and nondimensional frequencigégsa/m with, in parentheses, the corre-
sponding problem sizes.

The size of the problems that can be solved is now limited kyniimber of iterations of the
iterative solver. The number of iterations required forvamgence of the GMRES solver, reported
in Table 7 for various problem size§ and (non-dimensional) frequenciésa /7, clearly depend
on bothN andkpa/7. Reducing the iteration count requires a preconditioninatesgy. This critical
component of the development of efficient FM-BEM algorithmmains in the authors’ view a largely
open issue and is not addressed here. In [17], a block dihguataix is used. Other strategies for
defining preconditioning matrices, found to be effectivéhia context of electromagnetic FM-BEMs,
include performing an incomplete LU decomposition[&f| [52] or using the SParse Approximate
Inverse [2]. A comparative performance study of availalylecpnditioning strategies remains to be
done for the elastodynamic FM-BEM.

Semi-ellipsoidal canyon and oblique incident P-wave. Finally, a fully three-dimensional configu-
ration is considered, namely the scattering of an obliqoilént P-wave by a semi-ellipsoidal canyon
(with b = 3a andfy = 7/6, see Fig. 18), with = 1/3. This problem has been previously studied
in [13] by means of a wave function expansion and, for lowdiestgies, in [40] using a standard BEM.
Results obtained by the present FM-BEM for the (low) noreedifrequencyisa/m = 0.5, by means

of a BE mesh featuringyv = 25 788 DOFs shown in Fig. 18, are compared to corresponding numer-
ical results from [40]. Figure 21 shows that the horizontad aertical displacements produced by
both approaches, plotted against the normalized arcHerwirdinates/a along line ABCDE (with

—T——
| (present FMM) |

° |uy| (Reinoso et all) |
— |4 (present FMM
» || (Reinoso et al)) |

displacement modulus

s/a
Figure 21: Diffraction of an oblique incident P plane wave by a semipslbidal canyon: horizon-
tal and vertical computed displacement on line ABCDE (wittinfs A, B, C D, E defined on
Fig. 18) plotted against normalized arc-length coordinat along ABCDE (normalized fre-
quencyksa/m = 0.5). Comparison of present FMM solution to results from Reineisal. [40]
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2.50 3.05
1.87 2.35
1.25 1.66
0.63 0.97
0.01 |_y 0.28

Figure 22: Diffraction of an oblique incident P plane wave by a semipslbidal canyon: horizon-
tal (left) and vertical (right) computed displacement omgan surface and meshed part of free
surface (normalized frequenéya /7 = 2). The white ellipse depicts the canyon edge.

points A, B, C, D, E defined on Fig. 18), are in good agreemehé gresent computation (featuring
a truncation radiu®) = 6a and a leaf level = 3) required 11 GMRES iterations arii$ of CPU
time per iteration. Finally, results obtained using thespré FM-BEM for a higher frequency defined
by ksa/m = 2 are presented in terms of thygand z components of the displacement field (Fig. 22).
The problem size i&V = 353232. The computation, performed with a leaf levek 5, required 32
GMRES iterations andli43s of CPU time per iteration.

7 Conclusions

In this article, the Fast Multipole Method has been sucdlyséxtended to3D elastodynamics in
the frequency domain. Combined with the BEM formulatiorpdtmits to reduce the computational
burden, in both CPU time and memory requirements, for théysisaof wave propagation (e. g.
seismic), and allows to run BEM models of sixe= O(10°) on an ordinary PC. Comparisons with
analytical or previously published numerical results shioevefficiency and accuracy of the present
elastodynamic FM-BEM. Theoretical complexity estimataskfoth the single-level and multi-level
formulations were derived and corroborated by numericpkgarments.

Applications of the present FM-BEM to realistic cases iss®logy are under way. Moreover, a
natural extension of this work consists in formulating ripdie expansions of other fundamental so-
lutions, with the half-space elastodynamic fundamentaitmm being currently investigated. Finally,
improving the efficiency of the elastodynamic FM-BEM alsquies further research into refined
(direct/inverse) extrapolation techniques (for lowerthg O(N3/2) of this step) and a well-chosen
preconditioning strategy (for reducing the GMRES itenatimunt).
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