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Abstract

To reduce computational complexity and memory requirementfor 3-D elastodynamics using
the boundary element method (BEM), a multi-level fast multipole BEM (FM-BEM) is proposed.
The diagonal form for the expansion of the elastodynamic fundamental solution is used, with
a truncation parameter adjusted to the subdivision level, afeature necessary for achieving opti-
mal computational efficiency. Both the single-level and multi-level forms of the elastodynamic
FM-BEM are considered, with emphasis on the latter. Crucialimplementation issues, including
the truncation of the multipole expansion, the optimal number of levels, the direct and inverse
extrapolation steps are examined in detail with the backingof numerical experiments. A com-
plexity analysis for both the single-level and multi-levelversions is conducted. The correctness
and computational performances of the proposed elastodynamic FMM are demonstrated on nu-
merical examples, featuring up toO(106) DOFs run on a single-processor PC and including the
diffraction of an incident P plane wave by a semi-spherical or semi-ellipsoidal canyon, represen-
tative of topographic site effects.

Keywords: Fast multipole method; Boundary element method; 3-D elastodynamics; Topographic
site effects

1 Introduction

The boundary element method (BEM), pioneered in the sixties[6, 41], is a mesh reduction method,
subject to restrictive constitutive assumptions but yielding highly accurate solutions. It is in particular
well suited to deal with unbounded-domain idealizations commonly used in e.g. acoustics [50], elec-
tromagnetics [35, 39] or seismology [7, 22]. In contrast with domain discretization methods, artificial
boundary conditions [18] are not needed for dealing with theradiation conditions, and grid dispersion
cumulative effects are absent [24, 51].

However, in traditional boundary element (BE) implementations, the dimensional advantage
with respect to domain discretization methods is offset by the fully-populated nature of the BEM co-
efficient matrix, with set-up and solution times rapidly increasing with the problem sizeN . It is thus
essential to develop alternative, faster strategies that allow to still exploit the known advantages of
BEMs when largeN prohibit the use of traditional implementations. Fast BEMs, i.e. BEMs of com-
plexity lower than that of traditional BEMs, appeared around 1985 with an iterative integral-equation
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approach for solving 2-D Laplace problems withinO(N) CPU time per iteration [42]. The fast
multipole method (FMM) concept was introduced in [19, 20], in the context of many-particle simula-
tions. The FMM then naturally led to fast multipole boundaryelement methods (FM-BEMs), whose
scope and capabilities have rapidly progressed, especially in connection with application in electro-
magnetics [21, 31, 32, 53], but also in other fields includingacoustics [14, 36, 48] and computational
mechanics [30]. Many of these investigations are summarized in a review article by Nishimura [37].
The FMM, as well as other fast BEM approaches [23, 27, 55, 56],intrinsically relies upon an iterative
solution approach for the linear system of discretized BEM equations, with solution times typically of
orderO(N log N) per iteration for frequency-domain wave propagation problems (instead ofO(N2)
per iteration with traditional forms of the BEM).

With a view toward future applications in seismology and dynamic soil-structure interaction, this
article is concerned with the formulation and implementation of a multi-level FM-BEM for 3-D elas-
todynamics in the frequency domain. Only a few references address this particular area of application.
Two- and three-dimensional FM-BEMs for frequency-domain elastodynamics are proposed in [16]
and [17, 58], respectively, while time-domain problems areaddressed in [54]. As the free-space fun-
damental solution used in elastodynamic boundary integralformulations is expressed in terms of the
full-space Green’s function for the scalar Helmholtz equation and its derivatives, many of the existing
developments towards fast integral solvers for equations of the Helmholtz type (including in particu-
lar the Maxwell equations) are transposable to elastodynamic BEMs. A complete presentation of an
elastodynamic FM-BEM formulation based on such transposition is the main purpose of this article.
In particular, computational efficiency of fast elastodynamic BEMs in the mid-frequency regime is
enhanced by using the so-called diagonal form for the Helmholtz Green’s function [11, 43–45]; the
upper limit stems from the fact that the sizeN becomes intractable at high frequencies, while the
diagonal form breaks down at very low frequencies and must bereplaced with other types of expan-
sions [5, 10, 25]. Improving on [17], where the diagonal formwas already adopted, the present work
implements crucial features such as the adjustment of the truncation parameter in the multipole ex-
pansion to the subdivision level, known from recent studiesfor the Maxwell equations such as [8, 25]
to be necessary for achieving optimal computational efficiency. Both the single-level and multi-level
forms of the FM-BEM are considered, with emphasis on the latter. A substantial fraction of the ar-
ticle is then devoted to the discussion, backed with the results of numerical experiments, of crucial
implementation details (many of which transposing methodspreviously proposed for electromagnetic
FM-BEMs [8, 53] to the present 3-D elastodynamic context) and a complexity analysis for both the
single-level and multi-level versions.

The article is organized as follows. Classical concepts pertaining to elastodynamic BEMs are
recalled in Section 2. Then, Section 3 presents underlying motivations and fundamental concepts
for the elastodynamic FMM. Next, several crucial computational and implementation issues are ad-
dressed in Section 4. Section 5 is devoted to the analysis andnumerical verification of the algorithmic
complexity of single-level and multi-level versions. Finally, the correctness and computational per-
formances of the proposed FM-BEM are assessed in Section 6 onnumerical examples involving up
to N = O(106) nodal unknowns. The latter include the diffraction of an incident P plane wave by a
semi-spherical or semi-ellipsoidal canyon, representative of topographic site effects.

2 Boundary element method

2.1 Boundary integral representation

Let Ω ⊂ R
3 denote the region of space occupied by a three-dimensional elastic solid with isotropic

constitutive properties defined byµ (shear modulus),ν (Poisson’s ratio) andρ (mass density). Time-
harmonic motions, with circular frequencyω, induced by a prescribed traction distributiontD on
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the boundary∂Ω and in the absence of body forces are considered for definiteness in this article.
The accommodation of other boundary conditions needs only minor modifications to the treatment
proposed therein. The displacementu is given at an interior pointx ∈ Ω by the following well-known
representation formula [3]:

uk(x) = −
∫

∂Ω
ui(y)T k

i (x,y;ω)dSy +

∫

∂Ω
tDi (y)Uk

i (x,y;ω)dSy (x ∈ Ω), (1)

whereUk
i (x,y;ω) andT k

i (x,y;ω) denote thei-th components of the elastodynamic fundamental
solution, i.e. of the displacement and traction, respectively, generated aty ∈ R

3 by a unit point force
applied atx ∈ R

3 along the directionk, given by [12]:

Uk
i (x,y;ω) =

1

k2
Sµ

(

(δqsδik − δqkδis)
∂

∂xq

∂

∂ys
G(|y − x|; kS) +

∂

∂xi

∂

∂yk
G(|y − x|; kP)

)

, (2a)

T k
i (x,y;ω) = Cijhℓ

∂

∂yℓ
Uk

h (x,y;ω)nj(y), (2b)

in whichkS andkP are the respective wavenumbers of S and P elastic waves, so that

k2
S =

ρω2

µ
, kP = γkS, γ2 =

1 − 2ν

2(1 − ν)
, (3)

G(·; k) is the free-space Green’s function for the Helmholtz equation with wavenumberk, given by

G(r; k) =
exp(ikr)

4πr
, (4)

n(y) is the unit normal to∂Ω directed outwards ofΩ, andCijhℓ are the components of the fourth-
order elasticity tensor, i.e.:

Cijhℓ = µ
[ 2ν

1 − 2ν
δijδhℓ + δihδjℓ + δjhδiℓ

]

. (5)

2.2 Boundary integral equation

Whenx ∈ ∂Ω, a singularity occurs iny = x. With the help of a well-documented limiting pro-
cess [4], the integral representation (1) yields the integral equation:

(Ku)(x) = f(x) (x ∈ ∂Ω), (6)

with the linear integral operatorK and the right-hand sidef defined by

(Ku)(x) = cik(x)ui(x) + (P.V.)
∫

∂Ω
ui(y)T k

i (x,y;ω)dSy (7)

f(x) =

∫

∂Ω
tDi (y)Uk

i (x,y;ω)dSy, (8)

where (P.V.) indicates a Cauchy principal value (CPV) singular integral and thefree-termcik(x) is
equal to0.5δik in the usual case where∂Ω is smooth atx. The integral operator (7) may be recast into
alternative, equivalent regularized forms which are free of CPV integrals [3]. Equations (1) and (6)
are applicable to either interior or exterior elastodynamic problems.
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2.3 Boundary Element Method

The numerical solution of boundary integral equation (6) isbased on a discretization of the surface
∂Ω into NE isoparametric boundary elements. Piecewise-linear interpolation of displacements, based
on three-noded triangular boundary elements, is used in this work. TheNI displacement interpolation
nodes thus defined also serve as collocation points. This discretization process transforms (6) into a
square complex-valued matrix equation of sizeN = 3NI of the form

[K]{u} = {f}, (9)

where theN -vector{u} collects the sought degrees of freedom (DOFs), namely the nodal displace-
ment components, while theN × N matrix of influence coefficients[K] and theN -vector{f} arise
from (7) and (8), respectively. Setting up the matrix[K] classically requires the computation of all
element integrals for each collocation point, thus needinga computational time of orderO(N2).

2.4 Solution strategy for the BEM equations

The influence matrix[K] is fully-populated. Storing[K] is thus limited, on ordinary computers, to
BEM models of size not exceedingN = O(104). Direct solvers, such as the LU factorization, re-
quire O(N3) arithmetic operations (i.e. they have aO(N3) complexity), and are thus also limited
to moderately-sized BEM models. BEM problems of larger sizeare preferably solved by means of
iterative algorithms (GMRES [47] being the usual choice), which build sequences of solution candi-
dates until convergence within a predefined tolerance is reached. With reference to (9), each GMRES
iteration requires one evaluation of[K]{u} for given{u}, a task requiring a computing time of order
O(N2) if either [K] is stored or[K]{u} is evaluated by means of standard BEM numerical integra-
tion procedures. In the latter case, theO(N2) complexity stems from the fact that, again, all element
integrals must be recomputed for each collocation point. Applications of the BEM to large models
(typically N = O(106)) require evaluation procedures for[K]{u} that are fast (i.e. of complex-
ity below O(N2)) and that avoid explicit formation and storage of[K]. The fast multipole method
(FMM) is known in many other fields as a very efficient approachfor achieving these objectives. It is
therefore chosen as the basis for the present formulation and implementation of a fast elastodynamic
BEM.

3 Fast Multipole Method: principle

3.1 Multipole expansions of the elastodynamic fundamentalsolutions

The FMM is based on a reformulation of the fundamental solutions in terms of products of functions
of x and ofy. This allows to re-use integrations with respect toy when the collocation pointx
is changed, thereby lowering theO(N2) complexity per iteration entailed by standard BEMs. The
elastodynamic fundamental solutions (2a,b) are linear combinations of derivatives of the Green’s
function (4) for the Helmholtz equation. On recasting the position vectorr = y − x in the form

x

x0 y0

y

r r0

Figure 1: Decomposition of the position vector: notation.
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r = r0 + (y − y0) − (x − x0), wherex0 andy0 are two poles andr0 = y0 − x0 (Fig. 1), the
Helmholtz Green’s function is shown [9, 11] to admit the decomposition

G(|r|; k) = lim
L→+∞

∫

ŝ∈S
eikŝ.(y−y0)GL(ŝ; r0; k)e−ikŝ.(x−x0) dŝ, (10)

whereS is the unit sphere ofR3 and thetransfer functionGL(ŝ; r0; k) is defined in terms of the

Legendre polynomialsPp and the spherical Hankel functions of the first kindh
(1)
p by:

GL(ŝ; r0; k) =
ik

16π2

∑

0≤p≤L

(2p + 1)iph(1)
p (k|r0|)Pp

(

cos(ŝ, r0)
)

. (11)

The decomposition (10)–(11) is seen to achieve the desired separation of variablesx andy. Then,
to recast the elastodynamic fundamental solutions in a formsimilar to (10)-(11), one simply notes
that (10) implies:

∂

∂xi
G(|r|; k) = −ikŝiG(|r|; k),

∂

∂yi
G(|r|; k) = ikŝiG(|r|; k), (12)

whereŝi is thei-th component of the vector̂s. Then, on substituting (12) into (2a,b) and invoking
decomposition (10)-(11), the following multipole decomposition of the elastodynamic fundamental
solutions is obtained:

Uk
i (x,y;ω) = lim

L→+∞

∫

ŝ∈S
eikPŝ.(y−y0) Uk,P

i,L (ŝ; r0) e−ikPŝ.(x−x0) dŝ

+ lim
L→+∞

∫

ŝ∈S
eikSŝ.(y−y0) Uk,S

i,L (ŝ; r0) e−ikSŝ.(x−x0) dŝ, (13)

T k
i (x,y;ω) = lim

L→+∞

∫

ŝ∈S
eikPŝ.(y−y0) T k,P

i,L (ŝ; r0) e−ikPŝ.(x−x0) dŝ

+ lim
L→+∞

∫

ŝ∈S
eikSŝ.(y−y0) T k,S

i,L (ŝ; r0) e−ikSŝ.(x−x0) dŝ, (14)

with the elastodynamic transfer functions given in terms ofthe acoustic transfer functionGL by

Uk,P
i,L (ŝ; r0) =

γ2

µ
ŝiŝkGL(ŝ; r0; kP), (15a)

T k,P
i,L (ŝ; r0) =

ikSγ
3

µ
CijhℓŝℓŝhŝkGL(ŝ; r0; kP)nj(y), (15b)

Uk,S
i,L (ŝ; r0) =

1

µ
(δik − ŝkŝi)GL(ŝ; r0; kS), (16a)

T k,S
i,L (ŝ; r0) =

ikS

µ
(δhk − ŝkŝh)CijhℓŝℓGL(ŝ; r0; kS)nj(y). (16b)

Truncation error and clustering. In practice, the limiting processL → +∞ in (10) or (13), (14)
cannot be performed exactly and is replaced with an evaluation for a suitably chosen finite value of
L. A key error analysis result [9] states that there exist fourconstantsC1, C2, C3, C4 such that

L = C1 + C2k|r − r0| + C3 ln(k|r − r0|) + C4 ln ǫ−1

=⇒
∣

∣

∣

∣

exp(ik|r|)
4π|r| −

∫

ŝ∈S
eikŝ.(y−y0)GL(ŝ; r0; k)e−ikŝ.(x−x0) dŝ

∣

∣

∣

∣

< ǫ (17)
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d

∂Ω

Figure 2: 3D cubic grid embedding the boundary∂Ω.

for any chosen error levelǫ < 1, whenever

|r − r0|/|r0| = |(y−y0)− (x−x0)|/|r0| ≤ 2/
√

5. (18)

The error bound (17), (18) implies that expansions (13), (14) must be used for well-separated
sets of collocation and integration points clustered around polesx0 and y0. Moreover, (17) also
indicates that the value of the truncation parameterL allowing to achieve a given level of accuracy
ǫ increases with the size of these clusters. Other studies on error control in multipole expansions for
Helmholtz equations can be found in e.g. [21, 38].

3.2 Single-level fast multipole formulation

In the single-level FMM, a 3D cubic grid of linear spacingd embedding the boundary∂Ω is intro-
duced (Fig. 2). The centers of the cubic cells thus defined aretaken as polesx0 or y0 in decomposi-
tions (13), (14). Two cells are deemedadjacentif they have at least one common point, e.g. a vertex
(Fig. 3). Wheneverx andy belong to cellsCx, Cy that are not adjacent, condition (18) is automati-
cally fulfilled (as one then always has|r−r0|/|r0| ≤

√
3/2 < 2/

√
5) and expansions (13), (14) can

be safely used. Conversely, whenx andy lie in adjacent cells, condition (18) is not assured and the
classical expressions (2a,b) of the fundamental solutionsare used instead. These considerations lead
to reformulate expressions (7) and (8), for any collocationpoint x lying in a given cellCx, as

(Ku)(x) = (Ku)near(x) + (Ku)FM(x),

f(x) = fnear(x) + fFM(x)
(x ∈ ∂Ω ∩ Cx), (19)

Cell Cx

Adjacent cells Cy ∈ A(Cx)
Far cells

Cy /∈ A(Cx)

Ω

boundary of the domain

d

Figure 3: Definition of the adjacent cells
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where, lettingA(C) denote the set of cells which are adjacent to a given cubic cell C (Fig. 3), the
“near” parts are defined for each collocation pointx as the net contributions from the portion of
boundary situated in cells adjacent to that containingx, i.e. by

(Ku)near(x) = cik(x)ui(x) +
∑

Cy∈A(Cx)

(P.V.)
∫

∂Ω∩Cy

ui(y)T k
i (x,y;ω)dSy, (20a)

fnear(x) =
∑

Cy∈A(Cx)

∫

∂Ω∩Cy

tDi (y)Uk
i (x,y;ω)dSy. (20b)

The “FM” parts then collect all contributions from cells that are not adjacent toCx:

(Ku)FM(x) =
∑

Cy 6∈A(Cx)

∫

∂Ω∩Cy

ui(y)T k
i (x,y;ω)dSy, (21a)

fFM(x) =
∑

Cy 6∈A(Cx)

∫

∂Ω∩Cy

tDi (y)Uk
i (x,y;ω)dSy. (21b)

The “near” contributions (20a,b) are evaluated by means of standard BE techniques. The treat-
ment of the “FM” contributions (21a,b) exploits expansions(13), (14) truncated at a finiteL and
in a manner suggested by their multiplicative form, i.e. (i)evaluate integrals over each cellCy and
associate obtained values to the cell centery0, (ii) apply transfer functions to obtain quantities as-
sociated to the centerx0 of cell Cx, and (iii) evaluate contribution at each collocation pointx ∈ Cx.
Accordingly,multipole moments, defined by

RS,u
k (ŝ; Cy) = −ikS

[

δikŝj + δjkŝi − 2ŝiŝj ŝk

]

∫

∂Ω∩Cy

ui(y)nj(y)eikSŝ.(y−y0)dSỹ (22a)

RP,u(ŝ; Cy) = −ikSγ
3
[ 2ν

1 − 2ν
δij + 2ŝiŝj

]

∫

∂Ω∩Cy

ui(y)nj(y)eikPŝ.(y−y0)dSỹ (22b)

RS,t
k (ŝ; Cy) =

1

µ

[

δka − ŝkŝa

]

∫

∂Ω∩Cy

ta(y)eikSŝ.(y−y0)dSỹ (23a)

RP,t(ŝ; Cy) =
γ2

µ

∫

∂Ω∩Cy

ŝata(y)eikPŝ.(y−y0)dSỹ (23b)

are computed for each cellCy (step (i)). Then,local expansionsfor the cellCx are evaluated by
applying the transfer functions to the multipole moments according to

LS,u
k (ŝ; Cx) =

∑

Cy 6∈A(Cx)

GL(ŝ; r0; kS)RS,u
k (ŝ; Cy), (24a)

LP,u(ŝ; Cx) =
∑

Cy 6∈A(Cx)

GL(ŝ; r0; kP)RP,u(ŝ; Cy) (24b)

LS,t
k (ŝ; Cx) =

∑

Cy 6∈A(Cx)

GL(ŝ; r0; kS)RS,t
k (ŝ; Cy), (25a)

LP,t(ŝ; Cx) =
∑

Cy 6∈A(Cx)

GL(ŝ; r0; kP)RP,t(ŝ; Cy), (25b)

wherer0 = y0−x0 joins the centers of cellsCx andCy (step (ii)). Upon multiplying (24a,b), (25a,b)
by the local factorsexp

[

ikαŝ.(x − x0)
]

(step (iii)) and replacing the integration over the unit sphere
in (13), (14) by a numerical quadrature rule based on a set ofQ quadrature pointŝsq ∈ S and weights
wq (see Section 4.3), the “FM” contributions finally take the form

(Ku)FM
k (x) ≈

Q
∑

q=1

wq

[

e−ikSŝq.(x−x0)LS,u
k (ŝq; Cx) + e−ikPŝq.(x−x0)(ŝq)kLP,u(ŝq; Cx)

]

(26)
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Cy Cx

y1

y2

y3
y4

x1

x2

x3

x4

Cy Cx

y0 x0

y1

y2

y3
y4

x1

x2

x3

x4

Figure 4: Matrix-vector product without FMM (top) and with FMM (bottom).

fFM
k (x) ≈

Q
∑

q=1

wq

[

e−ikSŝq.(x−x0)LS,t
k (ŝq; Cx) + e−ikPŝq .(x−x0)(ŝq)kLP,t(ŝq; Cx)

]

(27)

Expression (26) defines the “FM” contribution to the matrix-vector product[K]{u}, and hence is
evaluated once per GMRES iteration, while (27) provides the“FM” contribution to the right-hand
side{f} and is computed once, prior to calling the GMRES solver. Figure 4 schematically depicts
the acceleration mechanism achieved by the previously described steps.

As remarked in section 3.1, the truncation parameterL, and hence the maximum degree of
Legendre polynomials featured in the transfer functionsGL(ŝ; r0; kα), increases with the cell sized.
Consequently, the numberQ of quadrature points necessary for achieving a given accuracy in (26),
(27) is also an increasing function ofL, i.e. ofd (see section 4.1 for further elaboration).

The single-level elastodynamic FMM is more efficient than the classical BEM, with a complexity
of O(N3/2) per GMRES iteration (as shown in section 5.1). Further acceleration is achievable by
adopting a multi-level approach, as described next for the present context of 3-D elastodynamics.

3.3 Multi-level fast multipole formulation

To have maximal efficiency, FM-BEM algorithms must confine non-FM calculations to the smallest
possible portion of the boundary while clustering wheneverpossible the computation of influence
terms into the largest possible non-adjacent groups. This is achieved by the multi-level FMM [8, 30,
37, 52, 53], which is based on using large cells and hierarchically subdividing each cell into2× 2×
2 = 8 children cubic cells. This cell-subdivision approach is systematized by means of an oct-tree
structure of cells. The levelℓ = 0, composed of only one cubic cell containing the whole surface ∂Ω,
is the tree root. The level-0 cell is divided into2× 2× 2 = 8 children cubic cells, which constitute
the levelℓ = 1. All level-1 cells being adjacent, the FMM cannot be applied to them. The level
ℓ = 2 is then defined by dividing each level-1 cell into 8 children cells, and so contains64 cells.
The subdivision process is further repeated until the finestlevel ℓ = ℓ̄, implicitly defined by a preset
subdivision-stopping criterion, is reached. Level-ℓ̄ cells are usually termedleaf cells. The FMM is
applied from levelℓ = 2 to levelℓ = ℓ̄, i.e. features̄ℓ−1 “active” levels.

The multi-level approach basically consists in first applying the FMM to all influence compu-
tations between disjoint level-2 cells (so as to use the largest clusters whenever possible),and then
recursively tracing the tree downwards, applying the FMM toall interaction between disjoint level-ℓ
cells that are children of adjacent level-(ℓ−1) cells (Fig. 5). Finally, interactions between adjacent leaf
cells are treated using traditional (i.e. non FM-based) BE techniques. This approach thus minimizes
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level ℓ level ℓ+1

x

d(ℓ)

x

d(ℓ+1)

C(ℓ+1)
y ∈A(C(ℓ+1)

x )

C(ℓ+1)
y ∈I(C(ℓ+1)

x )

C(ℓ+1)
x

C(ℓ)
y ∈A(C(ℓ)

x )

C(ℓ)
x

Figure 5: Multi-level fast multipole algorithm. Only multipole moments from non-adjacent (light-
grey) cellsC(ℓ)

y 6∈ A(C(ℓ)
x ) may provide (through transfer) FM-computed contributionsto (Ku)FM(x)

at collocation pointsx lying in cell C(ℓ)
x . Upon cell subdivision (right), new FM-computed contri-

butions to collocation points in cellC(ℓ+1)
x originate from cellsC(ℓ+1)

y in theinteraction listI(C(ℓ+1)
x )

of C(ℓ+1)
x , while the adjacent regionA(C(ℓ+1)

x ) reduces in size.

the overall proportion of influence computations requiringthe traditional treatment.
The computation of the discretized linear operator (7), i.e. of the matrix-vector product[K]{u},

by the multi-level elastodynamic FMM hence consists of the following main steps:

1. Initialization: compute multipole moments (22a,b) for all lowest-level cells Cy = C ℓ̄
y.

2. Upward pass: recursively aggregate multipole moments by moving upwardin the tree until
level 2 is reached. Denoting byS(C) the set of children of a given cellC, the transition from a
level-(ℓ+1) cell to its parent level-ℓ cell is based on identities

RS,u
k (ŝ; C(ℓ)

y ) =
∑

C
(ℓ+1)
y ∈S(C

(ℓ)
y )

exp
[

−ikSŝ.(y
(ℓ+1)
0 − y

(ℓ)
0 )

]

RS,u
k (ŝ; C(ℓ+1)

y ) (28a)

RP,u(ŝ; C(ℓ)
y ) =

∑

C
(ℓ+1)
y ∈S(C

(ℓ)
y )

exp
[

−ikPŝ.(y
(ℓ+1)
0 − y

(ℓ)
0 )

]

RP,u(ŝ; C(ℓ+1)
y ). (28b)

It is essential at this point to emphasize a crucial feature of the elastodynamic multi-level FMM,
namely that the number and location of the quadrature pointsonS are level-dependent (see Sec-
tion 4.3 for details), a consequence of the previously-mentioned dependence ofL, the trunca-
tion parameter in expansions (13), (14), on the cell size. Hence, application of identities (28a,b)
requires an extrapolation procedure furnishing the valuesof RS,u

k , RP,u at the level-ℓ quadra-
ture points from those at the level-(ℓ+1) quadrature points (see section 4.4).

3. Transfer: initialize local expansions for each level-ℓ cell C(ℓ)
x and at each level2≤ ℓ≤ ℓ̄ using

LS,u
k (ŝ(ℓ); C(ℓ)

x ) =
∑

C
(ℓ)
y ∈I(C

(ℓ)
x )

GL(ŝ(ℓ); r0; kS)RS,u
k (ŝ(ℓ); C(ℓ)

y ) (29a)

LP,u(ŝ(ℓ); C(ℓ)
x ) =

∑

C
(ℓ)
y ∈I(C

(ℓ)
x )

GL(ŝ(ℓ); r0; kP)RP,u(ŝ(ℓ); C(ℓ)
y ) (29b)

whereI(C), the interaction listof a given cellC (Fig. 5), is the set ofsame-levelcells which
are not adjacent toC while having a parent cell adjacent to that ofC. For a level-2 cell, (29a,b)
coincides with (24a,b), asI(C2) collects all level-2 cells not adjacent toC2.
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4. Downward pass: for all levels3 ≤ ℓ ≤ ℓ̄, the local expansion for each level-ℓ cell C(ℓ)
x is

updated with the contribution from the parent level-(ℓ−1) cell, by means of the identity

LS,u
k (ŝ; C(ℓ)

x ) = LS,u
k (ŝ; C(ℓ)

x ) + exp
[

−ikS(ŝ.(x
(ℓ−1)
0 − x

(ℓ)
0 ))

]

LS,u
k (ŝ; C(ℓ−1)

x ) (30a)

LP,u(ŝ; C(ℓ)
x ) = LP,u(ŝ; C(ℓ)

x ) + exp
[

−ikP(ŝ.(x
(ℓ−1)
0 − x

(ℓ)
0 ))

]

LP,u(ŝ; C(ℓ−1)
x ) (30b)

Similarly to step 2, application of identity (30a,b) requires an inverse extrapolation procedure
furnishing the values ofLS,u

k , LP,u at the level-ℓ quadrature points from those at the level-(ℓ−1)
quadrature points (see section 4.4).

5. When the leaf levelℓ = ℓ̄ is reached, all local expansions have been computed. The contribu-
tion (Ku)FM(x) is evaluated using (26) with the level-ℓ̄ quadrature points, and the near-field
contribution is evaluated according to (20a,b) for all level-ℓ̄ (leaf) cellsCx.

The computation of the right-hand side (8) follows the same steps, with the multipole moments
RS,u

k ,RP,u and local expansionsLS,u
k ,LP,u replaced with their counterpartsRS,t

k ,RP,t andLS,t
k ,LP,t.

The above steps are shown in Section 5.2 to have a complexity of at mostO(N log N), with the
exception of the direct and inverse extrapolations in steps2 and 4, whose complexity isO(N3/2).

3.4 Computation of near-field contributions

The near-field contributions (20a,b) involve (i) CPV-singular, (ii) weakly-singular and (iii) non-
singular element integrals. CPV-singular integrals are split according to

(P.V.)
∫

∂Ω
ui(y)T k

i (x, y;ω)dSy

=

∫

∂Ω
ui(y)

[

T k
i (x, y;ω) − T k

i (x, y)
]

dSy + (P.V.)
∫

∂Ω
ui(y)T k

i (x, y)dSy

whereT k
i (x, y) are the traction components of the (singular) static fundamental solution and the

differenceT k
i (x, y;ω)−T k

i (x, y) is non-singular [3]. The remaining CPV integral is then evaluated
analytically, taking advantage of the fact that three-noded triangular elements, which have constant
unit normal and Jacobian, are used. Weakly-singular integrals (which feature the kernelUk

i (x, y;ω))
and non-singular integrals are computed using numerical Gaussian quadrature (the weak singularity
being first cancelled by means of a suitable change of coordinates). Finally, when∂Ω presents an
edge or corner atx, the free-termcij(x) is evaluated using the method of [33].

4 Fast Multipole Method: computational aspects

Both the single-level and multi-level elastodynamic FMM have been implemented, for three-noded
triangular boundary elements, using a public domain version of the GMRES solver [15] with a con-
vergence criterion set to‖{Ku − f}‖/ ‖{f}‖ ≤ 10−3. All examples have been run on the same
single-processor PC (RAM: 3GB, CPU frequency: 3.40 GHz). Except where indicated otherwise,
the multi-level FMM is used.

The numerical efficiency and accuracy of the FMM is strongly affected by several factors, such
as the truncation of the transfer function, the quadrature over the unit sphere and the number of
levels, and great care must be taken in the implementation. This section is devoted to a discussion
of these issues, and of various algorithmic choices and improvements. The latter are largely based
on a transposition to the present elastodynamic context of ideas and methods proposed in [8, 53]
for the FMM applied to the 3-D frequency-domain Maxwell equations. At several places, illustrative
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Figure 6: Pressurized spherical cavity: notation.

numerical results for the test problem of a spherical cavityof radiusa embedded in an elastic isotropic
infinite medium (withν = 0.25), subjected to an internal time-harmonic uniform pressureP (Fig. 6)
are given. This problem has a simple, spherically-symmetric, exact solution [12], with the radial
displacement and stress given in terms of the normalized radial coordinatêr = r/a by:

ur(r̂) =
aP

µ

1

r̂2

γ2(1 − ikPar̂)

4γ2(1 − ikPa) − (kPa)2
exp(ikPa(r̂ − 1))

σrr(r̂) = P
1

r̂3

(kPa)2r̂2 − 4γ2(1 − ikPar̂)

4γ2(1 − ikPa) − (kPa)2
exp(ikPa(r̂ − 1))

(31)

with the wavenumberkP and the wave velocity ratioγ defined in (3).

4.1 Truncation of the transfer function

As already mentioned in section 3.1, the decomposition (10)is shown in [9] to be convergent in the
limit L → +∞, which immediately implies convergence for the corresponding expressions (13), (14)
of the elastodynamic kernels. However, the spherical Hankel functionsh

(1)
p (z) behave like(p/z)p

for largep [1] and their evaluation must therefore be avoided for orders p significantly larger than
k|r0|. Hence, the truncation levelL used in (11) has to be large enough to guarantee sufficient
accuracy in (10) while avoiding divergence of the Hankel functions appearing in (11). Appropriate
values forL achieving the "numerical convergence" of the transfer function GL(s̃; r0; k) are selected
using formulae empirically established from numerical experiments. One such formula, known from
previous studies on FMMs for Maxwell equations [8], reads:

L(d) =
√

3kd + Cǫ log10(
√

3kd + π). (32)

In this work, distinct truncation levelsLP andLS are defined according to (32) withk = kP and
k = kS, respectively. The transfer functions (15a,b) and (16a,b)are then evaluated usingL = LS and
L = LP, respectively. The truncation parameter value defined by (32) is level-dependent through the
cell sized, andL is (roughly) doubled for each upwards transition to a new level.

Formula (32) features a constantCǫ which has to be adjusted from numerical experiments. For
that purpose, the test problem is now considered forN = 30726, with a leaf level̄ℓ = 3 and a leaf-cell
sized(ℓ̄) = 0.6λS (whereλS = 2π/kS denotes theS-wavelength). A subset of 10 columns of the
influence matrix[K] are computed using both the present FM-BEM (by performing matrix-vector
products[K]{u} with all entries of{u} set to zero except that corresponding to the selected column
of [K], set to unity) and standard BEM techniques. The relative RMSdifference between these two
sets of matrix columns measures the truncation error introduced by the FMM with finite truncation
level L. This truncation error, and the CPU time for one FMM iteration, are plotted againstCǫ in
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Figure 7: Truncation error and CPU time per iteration as a function of adjustable parameterCǫ.

Fig. 7. Error levels below10−3 are achieved for5 ≤ Cǫ ≤ 12.5, which corroborates the previously-
discussed notion of a numerically optimal truncation levelL. Values ofCǫ outside the above range
lead to values ofL that are either too small (insufficient convergence in (10))or too large (divergence
of Hankel functions in (11)). Figure 7 also shows that the CPUtime for one FMM iteration increases
with Cǫ, which was to be expected sinceL given by (32) also increases withCǫ. The valueCǫ = 7.5
is found to achieve to keep a good compromise between accuracy and computational cost, and is
retained in the present implementation. This observation is consistent with that made in [53] for 3-D
electromagnetics.

4.2 Number of levels

The choice of the leaf level̄ℓ is crucial, as it affects both the overall computational time and the accu-
racy of the elastodynamic FM-BEM algorithm. A too-small number of levels increases the proportion
of near interactions, thus pushing the complexity of the computation closer toO(N2), while a too-
large number of levels increases the number of transfers between levels (see Table 1 where several
values ofℓ̄ are considered, withkPa = 6π andN = 122886).

The truncation parameterL at any level depends on the leaf-cell sized(ℓ̄). This is now illustrated
with the help of the comparison method and test problem of section 4.1: relative RMS differences
between matrices generated by FM-BEM (withL determined at all levels by (32)) and standard BEM
produced by this comparison are plotted in Fig. 8 againstCǫ for several choices ofd(ℓ̄). For small
values ofkSd

(ℓ̄), the FM-BEM algorithm is seen to be insufficiently accurate.This stems from the
fact that the distances|r0| between leaf cells scale withd, and the spherical Hankel functions in (11)
are known to diverge in the small-argument limit. Estimate (17) accordingly predicts thatL has a
O(ln kd) divergence in the small cell size limit, and formula (32) does not provide adequate values

ℓ̄ (leaf level) kSd
(ℓ̄)/2π error / BEM CPU time / iter (s)

3 1.32 1.1 10−5 367
4 0.66 4.7 10−4 134
5 0.33 3.7 10−3 104
6 0.17 5.1 10−2 200
7 0.083 1.7 10−1 380

Table 1: Error and CPU time against the number of levels
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Figure 8: Truncation error as a function of adjustable parameterCǫ for several values of leaf-cell
sized(ℓ̄).

of L in this case, even upon increasing the constantCǫ, as evidenced by the results of Fig. 8. This
suggests that the leaf cell sized(ℓ̄) must be chosen larger to a minimum valuedmin to avoid divergence;
for instance, results obtained usingd(ℓ̄) = 0.075λS have very poor accuracy. A minimum leaf cell size
dmin = λ/10 is adopted in [8]. Accuracy and computational efficiency considerations make higher
values ofdmin preferable. In this work, the subdivision-stopping criterion defining the leaf level̄ℓ is
set to:d(ℓ̄+1) ≤ dmin ≤ d(ℓ̄), with dmin = 0.3λS. Configurations for which cells of size significantly
smaller thandmin ≈ 0.3λS are desirable (e.g. geometries with complex details at sub-wavelength
scales) require an adaptation to elastodynamics of approaches combining the diagonal form (10) with
other types of expansions valid for low wavenumbers, see [5,10, 25].

4.3 Quadrature over the unit sphere

Another practical issue is the numerical computation of integrals over the unit sphereS in (13), (14).
The quadrature method of [8], based on a product rule in the angular spherical coordinatesθ, φ,
employs quadrature points and weights of the formŝq = (θi, φj) andwq = wθ

i w
φ
j , where(θi, w

θ
i )

(1≤ i≤L) correspond to aL+1-point Gaussian rule on[0, π] while (φj , w
φ
j ), given by

φj =
2π

2L + 1
j, wφ

j =
2π

2L + 1
(0 ≤ j ≤ 2L), (33)

correspond to a uniform rule on[0, 2π]. This approach, which employsQ = (L + 1)(2L + 1)
quadrature points overall, is designed so as to integrate exactly theL2(S)-orthonormal set of spher-
ical harmonics

(

Yp,m(θ, φ)
)

0≤p≤L,−p≤m≤p
of order≤ L, a requirement which, together with (32),

implies that the number of quadrature points must be level-dependent. It is adopted here, in a form
slightly modified as explained next.

Reduction of the number of quadrature points. The transfer functionGL given by (11) has the
form GL(r0, ŝ, k) =

∑L
p=0 Hp(r0)Pp

(

cos(ŝ, r0)
)

. The factorHp(r0) does not depend on̂s, and is
computed once for eachr0. Then, for each pair(r0, ŝ), the Legendre polynomials are computed by
induction:

{

Pp(x) = (2 − 1/p)xPp−1(x) + (1/p − 1)Pp−2(x)

P0(x) = 1, P1(x) = x

(

x =
r0.ŝ

|r0| |ŝ|
)

. (34)
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The Legendre polynomials are known to satisfy the identityPp(−x) = (−1)pPp(x). This can be
exploited to reduce the number of quadrature pointsŝ: a grid that is invariant under the transformation
ŝ → −ŝ allows to perform the numerical integration onS with half the original quadrature points.
The rule defined by (33) fulfils this invariance provided the uniform rule on[0, 2π] is defined in terms
of 2L + 2, rather than2L + 1, points. This modified version of (33) features2(L + 1)2 points, but
only (L + 1)2 points are actually computed, stored and used. As a result, the computing time and
memory required by the quadrature are roughly divided by2.

4.4 Extrapolation (direct/inverse)

The upward translations (28a,b) require evaluating multipole moments at level-ℓ quadrature points
from their values at level-(ℓ+ 1) quadrature points. This important step of the algorithm hasa sig-
nificant impact on the overall CPU time required by the FM-BEM, and hence has to be formulated
carefully. A fast method, which takes advantage of the uniform distribution (33) of quadrature points
alongφ and exploitsL2(S)-orthogonality and finite-bandwidth properties of the spherical harmonics,
has been proposed in [8, 53] and is used here.

With the quadrature points at levelsℓ andℓ+1 of the form

ŝ(ℓ+1)
q = (θ

(ℓ+1)
i , φ

(ℓ+1)
j ) 0 ≤ i ≤ L(ℓ+1) 0 ≤ j ≤ 2L(ℓ+1),

ŝ(ℓ)
q = (θ

(ℓ)
i′ , φ

(ℓ)
j′ ) 0 ≤ i′ ≤ L(ℓ) 0 ≤ j′ ≤ 2L(ℓ),

the valuesFi′j′ = F(θ
(ℓ)
i′ , φ

(ℓ)
j′ ) at the level-ℓ quadrature points of a generic functionF(ŝ) = F(θ, φ)

are extrapolated from thoseFij = F(θ
(ℓ+1)
i , φ

(ℓ+1)
j ) at the level-(ℓ+1) quadrature points by means of

the following three steps:

F̃ (ℓ+1)
im =

2L(ℓ+1)
∑

j=0

e−imφ
(ℓ+1)
j F (ℓ+1)

ij

(

|m| ≤ L(ℓ+1)
)

forward Fast Fourier Transform,

F̃ (ℓ)
i′m =

L(ℓ+1)
∑

i=0

Bm,ℓ
i′i F̃ (ℓ+1)

im dense matrix-vector product, (35)

F (ℓ)
i′j′ =

L(ℓ+1)
∑

m=−L(ℓ+1)

e
imφ

(ℓ)

j′ F̃ (ℓ)
i′m backward Fast Fourier Transform,

with

Bm,ℓ
i′i =

L(ℓ+1)
∑

p=|m|

Qm
p (cos θ

(ℓ+1)
i )Qm

p (cos θ
(ℓ)
i′ ), Qm

p (u) =

√

2p + 1

4π

(p − m)!

(p + m)!
Pm

p (u)

Likewise, the downward translations (30a,b) require inverse extrapolations from level-ℓ quadra-
ture points to level-(ℓ+1) points, which are based on a transposed version of the extrapolation:

F̃ (ℓ)
i′m =

2L(ℓ)
∑

j′=0

e
−imφ

(ℓ)

j′ F (ℓ)
i′j′

(

|m| ≤ L(ℓ+1)
)

forward Fast Fourier Transform,

F̃ (ℓ+1)
im =

L(ℓ+1)
∑

i′=0

Bm,ℓ
i′i F̃ (ℓ)

i′m dense matrix-vector product, (36)

F (ℓ+1)
i′j′ =

L(ℓ+1)
∑

m=−L(ℓ+1)

eimφ
(ℓ+1)
j F̃ (ℓ+1)

im backward Fast Fourier Transform,
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Other extrapolation methods have been proposed [8], some ofwhich being of lower computa-
tional complexity but at the cost of further approximation.The above extrapolation method is exact,
and will be shown in numerical experiments (section 5) to account for only a modest fraction of the
overall CPU time of an elastodynamic FM-BEM analysis, and hence to be satisfactory.

4.5 Ordering of the transfer operations

In operations (29a,b), the transfer functionsGL need to be evaluated only for vectorsr0 linking the
centers of two same-level cellsCy and Cx. Such vectors are integer multiples of the cell sized:
r0 = (nx ny nz)d. Moreover, at any given level, the transfers are only computed for cellsCy in the
interaction list of a given cellCx, i.e. the integersnx, ny, nz necessarily belong to the set{−3 ≤
nx, ny, nz ≤ 3}\{−1 ≤ nx, ny, nz ≤ 1}. The maximum number of distinct vectorsr0 required
for performing all operations (29a,b) for a given level is therefore73 − 33 = 316. Each transfer
matrix can thus be reused many times, especially at the lowest levels. In order to take advantage of
this remark, the transfer operations are first sorted according to the vectorr0. Then, for eachr0, the
transfer matrix is computed using the method of section 4.3.Moreover, the same transfer matrices are
used for each GMRES iteration. It is therefore possible to precompute and store on disk each transfer
matrix, prior to performing any GMRES iteration.

4.6 Matrix of near interactions

The only BEM matrix in the FMM for which storage may be considered is the near-interaction in-
fluence matrix[Knear], such that[Knear]{u} = {Ku}near with reference to (20a), because[Knear] is
sparse. The most common storage strategy for sparse matrices is the Compressed Sparse Row (CSR)
approach [46], based on three linear arrays: the nonzero matrix entries (stored row-wise), the column
indices, and integer pointers to the beginning of each matrix row in the first two arrays. Products of
CSR-stored sparse matrices with vectors are then computed row by row, which prevents one to take
advantage of optimized matrix-vector product routines, e.g. those of the BLAS library.

A modification of this storage strategy takes advantage of the structure of the computation of the
near interactions, where a cell can interact only with its neighbor cells. The idea is to store blocks
representing the interaction of a cell on its neighbor cells(Fig. 9) and then to evaluate matrix-vector
products blockwise (instead of termwise). Each block is stored in full-matrix format. For example,
the largest model used in the numerical study of complexity of Section 5.3, for whichN = 1215291,
features 18351 non-empty leaf cells. The corresponding blockwise-sparse matrix of near interactions
is made of 260203 blocks (i.e. a given leaf cell has on averageabout 14 non-empty adjacent cells,
including itself, for this example).

Cells Cy ∈ A(Cx)

column index of cell Cy

ro
w

in
d
ex

of
ce

ll
C x

Figure 9: Near interactions matrix (blockwise-sparse storage)
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This storage strategy has two advantages. First, it uses local lists of unknown DOFs for a given
cell and its neighbors, instead of the global list. Second, optimized BLAS routines can be used to
compute the product of each block of[Knear] with the corresponding part of the solution vector.
Moreover, to reduce the number of blockwise matrix-vector products, only one block is created for
each leaf cellCx, with lines and columns corresponding to collocation nodesin Cx and interpolation
nodes in all cellsCy ∈ A(Cx), respectively. The matrix entries for each such block are computed by
treating the set of elements belonging to allCy ∈ A(Cx) as a single (small) BEM mesh and using
traditional BEM matrix set-up methods.

4.7 Memory management

In the multi-level elastodynamic FM-BEM, multipole moments (22a,b) and local expansions (28a,b)
are computed for each cell, each level and each quadrature point, and thus arise in large numbers. It
is esssential to keep the storage of such quantities to a minimum. The memory needed for a given
FM-BEM analysis is affected by the order in which certain tasks are performed. To compute the local
expansionsLS

k, LP at levelℓ, RS
k, RP are needed at levelℓ andLS

k, LP at level(ℓ− 1). One may
therefore discard the values ofRS

k, RP at level(ℓ + 1) (and reallocate the corresponding memory)
onceRS

k, RP are computed at levelℓ. As schematized in Fig. 10, performing the transfer at levelℓ
immediately after the upward pass from level(ℓ + 1) to level ℓ allows to restrict the storage to the
multipole moments at levelsℓ and(ℓ+1), and the local expansions at all levels. This ordering hence
reduces by about half the memory required for storing multipole moments and local expansions.

Moreover, virtual memory is optimized for large problem sizes, as follows. Multipole moments
and local expansions are written on disk (out-of-core). Then, for each step of the multi-level FMM,
the needed information is read in the appropriate file and stored back in that file after updating. The
maximum virtual memory cost is therefore incurred by the transfer pass at level̄ℓ, for which all level-̄ℓ
multipole moments and local expansions must be saved in virtual memory.

For even larger problem sizes, an improved version of this strategy, where theℓ-level cells are
split intoNgr groups, has been implemented. The transfer pass is then effected as two nested loops
over theNgr groups, with operations (including the reordering according to vectorsr0 linking the
centers of two same-level cells, see Section 4.5) done only for cells belonging to the two currently
active groups. As a result, the virtual memory required by a transfer pass is divided byNgr. This
multi-group out-of-core process is applied separately to each pass of the multi-level FMM. In order
to define groups of similar size at each level, the number of groups is level- and problem-dependent.
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Figure 10: Non-optimal (left) and optimal (right) orderings of the various steps of the multi-level
FMM (the numbered arrows indicate the sequential ordering of passes for each case).
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4.8 Implementation of the elastodynamic FM-BEM: summary

The elastodynamic multi-level FM-BEM solver implemented in the course of this work, whose fea-
tures are those discussed in Sections 3 and 4, is summarized for convenience in Figs. 11 and 12.

(a) Octree generation: hierarchically subdivide each cell i nto 8 children cells, until
leaf level ℓ̄ defined byd

¯ℓ+1 ≤ dmin = 0.3λS ≤ dℓ̄ is reached
Retain only non-empty children cells

(c) Initial FMM step: preparatory step
Sort vectors r0 = y0−x0 (Sec. 4.5)
Compute and store on disk the transfer matrices
Uses sweep for computing the “far” contribution {fFM}, Eq. (21b); store into {f}

(b) Near contr ibutions:
Compute and store matrix [Knear] of near interactions (Sec. 4.6)
Compute “near” contribution {fnear}, Eq. (20b); store into {f}

(d) GMRESinitialization:
Set restart parameter to 50, initializesolution vector to {u}= {0}

(e) Generic GMRES iteration; invokes generic FMM step (seeFig. 12)
Invoke (computed and stored in Step (c)) vectors r0 and transfer matrices
Usesweep for computing the “far” contribution {Ku}FM , Eq. (21a)
Evaluate {Ku}= {Ku}FM +{Ku}near, Eqs. (19), (20a); passresult to GMRES

(f) Convergence check for GMRES: ‖{Ku − f}‖ / ‖{f}‖ ≤ 10−3 ?

(g) Post-processing of solution:
Evaluate integral representations, create graphics...

YES

NO

Figure 11: Elastodynamic multi-level FM-BEM: schematic descriptionof overall algorithm
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(a) for all l eaf cells C ℓ̄
y

initialization : computation of multipole moments, Eq. (22a)
transfer usingL(dℓ̄) =

√
3kdℓ̄ +7.5 log10(

√
3kdℓ̄ +π) terms in expansion,

Eqs. (29a,b)
end for

(b) for all l evels ℓ = ℓ̄ − 1, 2 (in this order)
for all cells C(ℓ)

y

for all cells C(ℓ+1)
y ∈ S(C(ℓ)

y )
upward pass, Eqs. (28a,b)

end for
extrapolation, Eq. (35)

end for
for all cells C(ℓ)

x

for all cells C(ℓ)
y ∈ I(C(ℓ)

x )
transfer usingL(dℓ) =

√
3kdℓ +7.5 log10(

√
3kdℓ +π) terms in expansion,

Eqs. (29a,b)
end for

end for
end for

(c) for all l evels ℓ = 3, ℓ̄ (in this order)
for all cells C(ℓ)

x

downward pass, Eq. (30a,b)
inverse extrapolation, Eq. (36)

end for
end for

(d) for all l eaf cells C ℓ̄
x

for all collocation points x ∈ C ℓ̄
x

local expansions Eq. (26)
add " near" par t Eq. (20a)

end for
end for

Figure 12: Elastodynamic multi-level FM-BEM: schematic descriptionof generic FMM step

5 Complexity of the elastodynamic FMM

In this section, the theoretical complexity of the elastodynamic FMM, i.e. the CPU time spent for
each GMRES iteration as a function ofN , is studied for both the single- and multi-level versions
(sections 5.1 and 5.2) and then compared to results from numerical experiments (section 5.3).

5.1 Theoretical evaluation, single-level FMM

Noting d ≥ dmin the linear cell size, the number of non-empty cells and the number of average
DOFs per non-empty cell areO(N/d2) andO(d2) respectively; these estimates stem from the fact
that the geometrical support of the unknown BE DOFs is two-dimensional. The truncation parameter
L(d) given by (32) is such that there is a positive constantH (which depends ondmin) for which
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L(d) ≤ Hd for anyd ≥ dmin. Therefore, one may conservatively consider thatL(d) = O(d) and, by
virtue of (33), that the numberQ of quadrature points overS is Q = O(d2). The main steps of the
single-level FMM entail the following computational complexities:

(a) Evaluation of multipole moments (22a,b) and local expansions (26), for each quadrature point
and each cell:O(Nd2);

(b) Transfers (24a,b), (25a,b), for each quadrature point and each pair of non-adjacent cells:

O(d2×N/d2×N/d2) = O(N2/d2);

(c) Near interactions (6), for each cell, by means of the product of aO(d2)×O(d2) matrix with a
O(d2) vector:O(N/d2×d4) = O(Nd2).

Settingd = O(Nα) the optimal complexity is obtained by minimizing the largest exponent inNd2 =
N1+2α andN2/d2 = N2−2α. Hence the optimal cell size in the single-level FMM isd = O(N1/4).
As a result, the optimal complexity in the single-level FMM in elastodynamics is of orderO(N3/2),
and is achieved by usingO(N3/4) cells.

5.2 Theoretical evaluation, multi-level FMM

The leaf cell sized(ℓ̄) is as small as possible, under the constraintd(ℓ̄+1) ≤ dmin ≤ d(ℓ̄) (dmin being a
fixed fraction ofS wavelength), as discussed in section 4.2. Assuming a constant number of DOFs
per wavelength,d(ℓ̄) may be considered as independent ofN in the complexity analysis. The size
d(0) of the largest cells is related tod(ℓ̄) by 2ℓ̄d(ℓ̄) = d(0). Moreover, the fact that the BEM nodes are
located on a surface of characteristic diameterO(d(0)) implies thatd(0) = 2ℓ̄d(ℓ̄) = O(N1/2). Hence,
the total number of levels is:

ℓ̄ = O(log N) (37)

and the number of leaf cells isO(N). Moreover, since the DOFs are supported on a surface, each
non-empty level-ℓ cell has on average 4 non-empty children cells, and therefore holds an average
of N (ℓ) = O(4−ℓN) DOFs. The numbers of non-empty cells and of children at each level for the
example of a spherical cavity withN = 1 215 291 DOFs, shown in Table 2, corroborate this estimate.
Lastly, one notes that the level-ℓ truncation parameter and the number of level-ℓ quadrature points are
L(ℓ) = O(d(ℓ)) = O(d(0)×2−ℓ) = O(N1/2×2−ℓ) andQ(ℓ) = O

(

(d(ℓ))2
)

= O(N ×4−ℓ).
Based on the foregoing remarks, the computational complexities associated with the main steps

of the multi-level FMM are obtained as:

(i) Multipole moments (22a,b) and local expansions (26), evaluated only at level̄ℓ: O(N).

(ii) Transfers (29a,b), performed for each level, each cellC(ℓ)
x and each cellC(ℓ)

y ∈ I(C(ℓ)
x ):

O(4ℓ×Q(ℓ)) = O(N) per level, i.e.O(N log N) overall.

level number of non-empty cells number of children
2 56 4.86
3 272 4.26
4 1160 4.07
5 4720 3.89
6 18351 —

Table 2: Average number of non-empty cells and children at each level
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(iii) Upward and downward passes (28a,b), (30a,b), for eachlevel ℓ, each cell and each quadrature
point ŝ(ℓ): O(N) per level, i.e.O(N log N) overall.

(iv) Direct and inverse extrapolations, for each levelℓ and each cell:O(N3/2).

Estimate (ii) relies on the fact that the interaction list ofa given cell contains at most63 −33 = 189
cells, irrespective of the level and the total number of cells. Estimate (iv) stems from the observation
that each extrapolation (35) from level(ℓ+1) to levelℓ (whose total number isO(4ℓ)) requiresL(ℓ)+1
dense matrix-vector products, each of size(L(ℓ)+1)×(L(ℓ+1)+1), i.e. O

(

4ℓ×2−ℓN1/2×(2−ℓN1/2×
2−(ℓ+1)N1/2)

)

= O
(

N3/22−(ℓ+1)
)

operations. Summing these extrapolations from levelℓ = ℓ̄ to
ℓ = 3, the obtained cumulative complexity of all extrapolationsis O(N3/2) as stated. A similar
analysis holds for the cumulative effect of the inverse extrapolation steps (36).

This analysis therefore predicts a theoretical complexityof O(αN log N + βN3/2) per iteration
for the multi-level FMM.

5.3 Numerical study of complexity

The theoretical complexities just formulated are now compared against recorded CPU times, on the
pressurized spherical cavity problem (section 4). This comparison aims in particular at evaluating the
respective importances of theO(αN log N) andO(βN3/2) contributions to the overall complexity of
the multi-level FMM. Several frequencies are considered, with the size of the BEM models adjusted
so as to maintain a mesh density of about 10 nodes perS wavelength (Table 3). This complexity
study involves problem sizes of up toN ≈ 1.2 106, while the examples of [17] usedN ≤ 2.5 104.

N 30726 122769 217983 389232 449835 530709 635349 771912 955608 1215291
kPa/π 3.05 6.14 8.31 10.9 11.66 12.68 13.91 15.2 17.4 19.24

Table 3: Numerical study of complexity: BEM model sizesN and non-dimensional frequencies used.

Multi-level FMM: complexity of the main steps. With reference to items (i) to (iv) of section 5.2,
the cumulative CPU times recorded for the main steps of the multi-level FMM are compared to the
corresponding theoretical complexities for the evaluation of (i) the multipole moments (Fig. 13a)
and local expansions (Fig. 13b), (ii) the transfers (Fig. 13c), and (iii-iv) the upward and down-
ward passes including the (direct/inverse) extrapolations (Figs. 13d). For the latter case, coeffi-
cients(α, β) allowing a best fit of theoretical complexities of the formO(αN log N + βN3/2) to
the CPU data are obtained via regression as(α, β) = (1.3 10−7, 9.8 10−9) for the upward pass and
(α, β) = (1.8 10−6, 8.2 10−8) for the downward pass. These values, which are of course code- and
computer-dependent, suggest that the importance of theO(N3/2) contribution to the upward and
downward passes becomes significant forN aboveO(105).

On Fig. 14 the computation time required by the upward and downward passes and its estimation
βN3/2 are compared to the other steps of the algorithm. The resultsindicate that theO(N3/2) contri-
butions arising from the extrapolations are small comparedto theO(N log N) contributions for BEM
model sizesN = O(106) or less, for which the extrapolation method of Section 4.4 istherefore satis-
factory. Using improved algorithms for extrapolation suchas those proposed in [8], of computational
complexity lower thanO(N3/2), would reduce the elastodynamic FMM complexity toO(N log N).
They may prove essential for BEM models involving several millions DOFs and more.

Overall complexity of the single-level and multi-level FMM. Numerical experiments, in the form
of full BEM solutions obtained using the standard BEM, single-level FM-BEM and multi-level FM-
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(a) Multipole moments
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(b) Local expansions
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(c) Transfer
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(d) Upward and downward passes

Figure 13: Theoretical complexity and recorded CPU times for the main steps of the multi-level elas-
todynamic FMM.
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Figure 14: Comparison of the cost of the upward and downward passes to the other steps of the
algorithm

BEM on BEM models of respective sizes up toO(104), O(105) andO(106), corroborate the previ-
ously discussed theoretical complexities estimates for each approach, as seen in Fig. 15, where the
O(N3/2) contribution to the multi-level FMM has been disregarded inaccordance with the previous
discussion on its effect.
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Figure 15: Complexity of the standard BEM, single-level FMM and multi-level FMM (left: CPU time,
right: memory)

5.4 Discussion

The results of Sections 5.2 and 5.3 are consistent with corresponding studies in [8, 53] for electro-
magnetics, where particular theO(N3/2) complexity of the direct and inverse extrapolations is also
pointed out. TheO(N log N) overall complexity is also obtained for the method stable atall frequen-
cies proposed in [10]. In contrast, the elastodynamic FM-BEM of [17] uses a level-independent value
for the truncation parameterL. This variant avoids the need for direct and inverse extrapolation but
requiresL = O(kSd

(0)) = O(N1/2) by virtue of (32). Revisiting steps (i), (ii) and (iii) of Section 5.2
with fixed values forL = O(N1/2) andQ = O(L2) = O(N), one finds aO(N2) complexity for that
approach, as remarked also in [37]. In comparison, static FM-BEMs for static problems are known
to haveO(N) complexity [30, 37] since the truncation parameter in the multipole expansion in that
case depends neither on the level nor on the problem size.

6 Numerical examples

First, additional numerical results for the example of a pressurized spherical cavity, introduced in
Section 4, are presented. Then, the more complex example of the diffraction of an incident P plane
wave by a spherical cavity, for which an exact solution is also available, further demonstrates the good
accuracy of the present FMM. Finally, the usefulness of the proposed FMM formulation is illustrated
on the scattering of a seismic plane P wave by an irregular half-space model. For all results presented
therein, the following computational parameters were used: Cǫ = 7.5, dmin = 0.3λS (unless indicated
otherwise), and a convergence threshold defined by‖{f −Ku}‖/‖{f}‖ ≤ 10−3 (using the notations
of equation (9)) for GMRES.

6.1 Pressurized spherical cavity

The example configuration defined in Section 4 is again used. First, numerically-computed solutions
are compared for four non-dimensional frequencies to the corresponding exact solution (31). The
stopping criterion relative to cell subdivision proposed in Section 4.2 led to four levels for the highest
frequency considered (kPa/π = 2). Four levels were also used for the other three results in order to
ensure that a sufficient proportion of the computations utilize multipole expansions (the subdivision-
stopping criterion being hence disregarded for these cases). For each frequency, relative RMS errors
for the radial displacement on the cavity wall and over the radial intervala<r≤3a are presented in
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kPa/π 0.1 0.50 1.00 2.00
# nodes/λS 80 16 8 4

RMS error,r = a (cavity wall) 0.025 0.006 0.006 0.021
RMS error,a<r≤3a (domain) 0.011 0.006 0.008 0.031

Table 4: Pressurized spherical cavity: RMS solution error on the cavity and in the domain

# nodes per S-wavelength N RMS solution error on cavity CPU time per iter.(s)
2.5 1 926 2.0 10−2 1.5

5 7 686 4.6 10−3 3.7

10 30 726 1.3 10−3 14.2

20 122 886 4.0 10−4 85.1

Table 5: Pressurized spherical cavity: influence of the number of nodes per S-wavelength on the RMS
solution error and the CPU time per iteration.

Table 4. The present FM-BEM is seen to be quite accurate, evenin the low-frequency case (kPa/π =
0.1) for which the accuracy of FMM expansions of the form (10) is known to deteriorate [8], whereas
the standard BEM does not [7].

Next, the effect of the number of nodes per S-wavelength on solution accuracy is examined.
For that purpose, the cavity radiusa and angular frequencyω are kept constant (withkPa = 3π),
while four BEM meshes with increasing mesh densities are used. The corresponding numbers of
nodes per S-wavelength are given in Table 5 (first column). The relative solution errors observed for
these meshes (Table 5, second column) indicate that a good solution accuracy requires a minimum
of 5 nodes per S-wavelength. The corresponding observed CPUtimes per iteration (Table 5, third
column) increase due to the combined effect of mesh refinement and truncation parameter (32). The
numerical results presented in the remainder of this article have been obtained using meshes featuring
a minimum of 10 nodes per S-wavelength.

6.2 Diffraction of an incident plane P wave by a spherical cavity

The geometrical configuration and material parameters are as in the previous example, but the cavity
surface is now traction-free. An incident plane P-wave propagates along the positivez-direction
(Fig. 16). Two frequencies are considered, defined bykPa/π = 1 andkPa/π = 4, with respective
problem sizesN = 7686 andN = 122 886. The numerical results are compared to the analytical
solution given in [12] (which, incidentally, features a typographical error corrected in [7]).

O
θ a

z

x

y

cavity

plane wave

Figure 16: Diffraction of an incident plane P wave by a spherical cavity: notation
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Figure 17: Diffraction of an incident plane P wave by a spherical cavity: comparison of the nu-
merical FMM and analytical solutions for normalized frequencieskPa/π = 1, 4 and azimuths
θ = 0, π/4, π/2, 3π/4.

The numerical results are computed along radial straight lines emanating from the cavity center
in directions (θ = 0, π/4, π/2, 3π/4) in thex-z plane. Figure 17 shows the real part of the radial dis-
placement against the normalized radial coordinater/a. The subdivision-stopping criterion employed
for caseskPa/π = 1 andkPa/π = 4 corresponds respectively todmin = 0.2λS anddmin = 0.3λS. The
numerical results obtained using the present FM-BEM are seen to agree very well with the exact so-
lution for the two frequencies considered, even along theθ = π/2 direction corresponding to grazing
incidence. For the casekPa/π = 4, a solution CPU time of 44s per iteration (144 GMRES iterations,
no preconditioning) is recorded. In Table 6, the influence ofthe choice of leaf cell size (see Sec-

dmin θ = 0 θ = π/4 θ = π/2 θ = 3π/4

kPa/π = 1 (N = 7686) 0.2λS 9.210−3 2.610−3 2.210−2 8.610−4

0.1λS 9.610−3 8.610−3 9.210−3 4.910−3

0.05λS 1.1 10−2 2.310−2 4.810−2 2.110−2

0.02λS 4.210−2 3.110−2 3.110−1 8.510−2

kPa/π = 4 (N = 122 886) 0.3λS 1.410−2 4.410−3 2.310−2 5.610−3

0.2λS 1.410−2 4.210−3 2.010−2 5.210−3

0.1λS 1.710−2 1.510−2 4.610−2 6.810−3

0.05λS 1.410−1 6.810−2 2.610−1 4.610−2

0.02λS 5.810−1 3.510−1 6.010−1 2.110−1

Table 6: Diffraction of an incident plane P wave by a spherical cavity: influence of leaf cell size on
solution error.
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tion 4.2) is further examined. Results obtained by choosingdmin ≥ 0.1λS are satisfactorily accurate.
On the other hand, solution errors are seen to deteriorate markedly whenever valuesdmin < 0.1λS

are used. These results corroborate the validity of the recommended valuedmin ≥ 0.3λS proposed in
Section 4.2 on the basis of an essentially one-dimensional test problem. Some of the values ofdmin

smaller than0.3λS also lead to acceptable solution errors for this example. This however cannot be
expected to be always true, as the test of Section 4.2 indicates.

6.3 Diffraction of an incident P plane wave by a semi-ellipsoidal canyon

This example is concerned with the diffraction by a semi-ellipsoidal canyon of a plane P-wave of
unit amplitude travelling in an elastic homogeneous irregular half-space (Fig. 18). A right-handed
Cartesian frame(x, y, z) is defined so that the elastic half-space occupies the region{(x, y, z) | z ≥
0}. The surface of the canyon is ellipsoidal, with semiaxesb, a, a respectively aligned along the

coordinate directionsx, y, z. The plane wave travels along directionsin θ0ey − cos θ0ez. The semi-
ellipsoidal surface of the canyon and the surrounding portion of free surface lying inside a disk of
radiusD > a, b are discretized using boundary elements. Such a configuration is representative of a
“topographic site effect” in seismology and has been the subject of numerous studies, see [13, 28, 29,
57] and [7, 26, 34, 40, 49] where diffraction of waves by surface heterogeneities is considered.

Semi-spherical canyon and vertical incident P-wave. First, the diffraction of a vertical incident
plane P-wave by a semi-spherical canyon is considered (i.e.b = a, see Fig. 18), withν = 0.25.
Results obtained by the present FM-BEM for the (low) normalized frequencykPa = 0.25π, by means
of a BE mesh featuringN = 23382 DOFs, are compared to corresponding results from [49] (based
on a semi-analytical approach) and [40] (obtained using a standard elastodynamic BEM). In this case,
the subdivision-stopping threshold used isdmin = 0.15λS, resulting in a leaf level̄ℓ = 3. Figure 19
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D EBA
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Figure 18: Diffraction of an oblique incident P plane wave by a semi-ellipsoidal canyon: notation
(top left and bottom); sample BEM mesh, withN = 25788 (top right).
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Figure 19: Diffraction of an incident P plane wave by a semi-spherical canyon: horizontal and ver-
tical computed displacement on line CDE (with points C, D, E defined on Fig. 18) plotted against
normalized arc-length coordinates/a along CDE (normalized frequencykPa/π = 0.25). Com-
parison of present FMM solution to results from Sánchez-Sesma [49] and Reinoso et al. [40]

shows that the horizontal and vertical displacements alongline CDE (with points C, D, E defined
in Fig. 18) produced by the three approaches are in good agreement. Note that the corresponding
results in [40, 49] are plotted against the horizontal coordinatey, whereas the arc-length coordinates
along ABC is used in Fig. 19. The same valueD = 3a of the truncation radius has been used for all
three sets of results. The present computation required 7 GMRES iterations and6s of CPU time per
iteration.

Moreover, the FM-BEM allows to deal with non-dimensional frequencies significantly higher
than those considered in previous studies. Figure 20 shows the displacements along line ABC com-
puted for a nondimensional frequencykPa/π = 5 using the present method. This time, the problem
sizeN = 287 946 is well beyond the capabilities of standard BEM. This computation, performed with
a leaf levelℓ̄ = 6, required86 GMRES iterations (without preconditioning) and163 s of CPU time
per iteration. The displacement near the canyon edge (i.e.y = a ands = πa/2, see Fig. 18) has strong
variations, as expected.
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Figure 20: Diffraction of an incident P plane wave by a semi-spherical canyon: horizontal and ver-
tical computed displacement on line CDE (with points C, D, E defined on Fig. 18) plotted against
normalized arc-length coordinates/a along CDE (normalized frequencykPa/π = 5)
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kPa/π = 0.25 kPa/π = 0.5 kPa/π = 0.75 kPa/π = 1.5 kPa/π = 5 kPa/π = 10

D = 3a 7 (23382) 10 (23382) 12 (23382) 19 (23382) 86 (287946)> 280 (1145700)
D = 5a 7 (61875) 10 (61875) 15 (61875) 28 (61875) 159 (774180)
D = 7a 8 (77565) 13 (77565) 17 (77565) 43 (77565)
D = 20a 14 (98844) 39 (98844) 43 (98844)

Table 7: Diffraction of a plane wave by a semi-spherical canyon: number of GMRES iterations for
various truncation radiiD and nondimensional frequencieskPa/π with, in parentheses, the corre-
sponding problem sizesN .

The size of the problems that can be solved is now limited by the number of iterations of the
iterative solver. The number of iterations required for convergence of the GMRES solver, reported
in Table 7 for various problem sizesN and (non-dimensional) frequencieskPa/π, clearly depend
on bothN andkPa/π. Reducing the iteration count requires a preconditioning strategy. This critical
component of the development of efficient FM-BEM algorithmsremains in the authors’ view a largely
open issue and is not addressed here. In [17], a block diagonal matrix is used. Other strategies for
defining preconditioning matrices, found to be effective inthe context of electromagnetic FM-BEMs,
include performing an incomplete LU decomposition of[K] [52] or using the SParse Approximate
Inverse [2]. A comparative performance study of available preconditioning strategies remains to be
done for the elastodynamic FM-BEM.

Semi-ellipsoidal canyon and oblique incident P-wave. Finally, a fully three-dimensional configu-
ration is considered, namely the scattering of an oblique incident P-wave by a semi-ellipsoidal canyon
(with b = 3a andθ0 = π/6, see Fig. 18), withν = 1/3. This problem has been previously studied
in [13] by means of a wave function expansion and, for low frequencies, in [40] using a standard BEM.
Results obtained by the present FM-BEM for the (low) normalized frequencykSa/π = 0.5, by means
of a BE mesh featuringN = 25788 DOFs shown in Fig. 18, are compared to corresponding numer-
ical results from [40]. Figure 21 shows that the horizontal and vertical displacements produced by
both approaches, plotted against the normalized arc-length coordinates/a along line ABCDE (with
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Figure 21: Diffraction of an oblique incident P plane wave by a semi-ellipsoidal canyon: horizon-
tal and vertical computed displacement on line ABCDE (with points A, B, C D, E defined on
Fig. 18) plotted against normalized arc-length coordinates/a along ABCDE (normalized fre-
quencykSa/π = 0.5). Comparison of present FMM solution to results from Reinoso et al. [40]
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Figure 22: Diffraction of an oblique incident P plane wave by a semi-ellipsoidal canyon: horizon-
tal (left) and vertical (right) computed displacement on canyon surface and meshed part of free
surface (normalized frequencykSa/π = 2). The white ellipse depicts the canyon edge.

points A, B, C, D, E defined on Fig. 18), are in good agreement. The present computation (featuring
a truncation radiusD = 6a and a leaf level̄ℓ = 3) required 11 GMRES iterations and9s of CPU
time per iteration. Finally, results obtained using the present FM-BEM for a higher frequency defined
by kSa/π = 2 are presented in terms of they andz components of the displacement field (Fig. 22).
The problem size isN = 353 232. The computation, performed with a leaf levelℓ̄ = 5, required 32
GMRES iterations and143s of CPU time per iteration.

7 Conclusions

In this article, the Fast Multipole Method has been succesfully extended to3D elastodynamics in
the frequency domain. Combined with the BEM formulation, itpermits to reduce the computational
burden, in both CPU time and memory requirements, for the analysis of wave propagation (e. g.
seismic), and allows to run BEM models of sizeN = O(106) on an ordinary PC. Comparisons with
analytical or previously published numerical results showthe efficiency and accuracy of the present
elastodynamic FM-BEM. Theoretical complexity estimates for both the single-level and multi-level
formulations were derived and corroborated by numerical experiments.

Applications of the present FM-BEM to realistic cases in seismology are under way. Moreover, a
natural extension of this work consists in formulating multipole expansions of other fundamental so-
lutions, with the half-space elastodynamic fundamental solution being currently investigated. Finally,
improving the efficiency of the elastodynamic FM-BEM also requires further research into refined
(direct/inverse) extrapolation techniques (for loweringthe O(N3/2) of this step) and a well-chosen
preconditioning strategy (for reducing the GMRES iteration count).
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