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Abstract

To reduce computational complexity and memory requirerfar®-D elastodynamics using
the boundary element method (BEM), a multi-level fast npale BEM (FM-BEM) is proposed.
The diagonal form for the expansion of the elastodynamicé&mental solution is used, with
a truncation parameter adjusted to the subdivision lev&@ature necessary for achieving opti-
mal computational efficiency. Both the single-level and tidelel forms of the elastodynamic
FM-BEM are considered, with emphasis on the latter. Cruoilementation issues, including
the truncation of the multipole expansion, the optimal nemdx levels, the direct and inverse
extrapolation steps are examined in detail with the backingumerical experiments. A com-
plexity analysis for both the single-level and multi-leveksions is conducted. The correctness
and computational performances of the proposed elastodigriéMM are demonstrated on nu-
merical examples, featuring up @(10°) DOFs run on a single-processor PC and including the
diffraction of an incident P plane wave by a semi-sphericaemmi-ellipsoidal canyon, represen-
tative of topographic site effects.

Keywords: Fast multipole method; Boundary element method; 3-D etystamics; Topographic
site effects

1 Introduction

The boundary element method (BEM), pioneered in the si¥@e41], is a mesh reduction method,
subject to restrictive constitutive assumptions but yiejchighly accurate solutions. Itis in particular
well suited to deal with unbounded-domain idealizationsewnly used in e.g. acoustics [50], elec-
tromagnetics [35, 39] or seismology [7, 22]. In contrastwdbmain discretization methods, artificial
boundary conditions [18] are not needed for dealing withréitkation conditions, and grid dispersion
cumulative effects are absent [24, 51].

However, in traditional boundary element (BE) implemeiotad, the dimensional advantage
with respect to domain discretization methods is offsethiyftlly-populated nature of the BEM co-
efficient matrix, with set-up and solution times rapidly i@asing with the problem siz&. It is thus
essential to develop alternative, faster strategies thaw @o still exploit the known advantages of
BEMs when largeV prohibit the use of traditional implementations. Fast BEMs BEMs of com-
plexity lower than that of traditional BEMs, appeared add®985 with an iterative integral-equation
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approach for solving 2-D Laplace problems withi(N) CPU time per iteration [42]. The fast
multipole method (FMM) concept was introduced in [19, 26]the context of many-particle simula-
tions. The FMM then naturally led to fast multipole boundatgment methods (FM-BEMSs), whose
scope and capabilities have rapidly progressed, espeaiationnection with application in electro-
magnetics [21, 31, 32, 53], but also in other fields includiegustics [14, 36, 48] and computational
mechanics [30]. Many of these investigations are summaiize review article by Nishimura [37].
The FMM, as well as other fast BEM approaches [23, 27, 55,iB8]nsically relies upon an iterative
solution approach for the linear system of discretized BEMations, with solution times typically of
orderO(N log N) per iteration for frequency-domain wave propagation peois (instead of) (IV?)
per iteration with traditional forms of the BEM).

With a view toward future applications in seismology andalyic soil-structure interaction, this
article is concerned with the formulation and implemewoianf a multi-level FM-BEM for 3-D elas-
todynamics in the frequency domain. Only a few referencesess this particular area of application.
Two- and three-dimensional FM-BEMs for frequency-domaestdynamics are proposed in [16]
and [17, 58], respectively, while time-domain problemsaadressed in [54]. As the free-space fun-
damental solution used in elastodynamic boundary intdgraiulations is expressed in terms of the
full-space Green’s function for the scalar Helmholtz eguraaind its derivatives, many of the existing
developments towards fast integral solvers for equatidiseoHelmholtz type (including in particu-
lar the Maxwell equations) are transposable to elastodin&EMs. A complete presentation of an
elastodynamic FM-BEM formulation based on such transpwsit the main purpose of this article.
In particular, computational efficiency of fast elastodyna BEMs in the mid-frequency regime is
enhanced by using the so-called diagonal form for the Helinl@&reen’s function [11, 43-45]; the
upper limit stems from the fact that the si2é becomes intractable at high frequencies, while the
diagonal form breaks down at very low frequencies and musepkaced with other types of expan-
sions [5, 10, 25]. Improving on [17], where the diagonal fouas already adopted, the present work
implements crucial features such as the adjustment of timedtion parameter in the multipole ex-
pansion to the subdivision level, known from recent stufbeshe Maxwell equations such as [8, 25]
to be necessary for achieving optimal computational efiimye Both the single-level and multi-level
forms of the FM-BEM are considered, with emphasis on thedath substantial fraction of the ar-
ticle is then devoted to the discussion, backed with theltesfi numerical experiments, of crucial
implementation details (many of which transposing methwédsiously proposed for electromagnetic
FM-BEMs [8, 53] to the present 3-D elastodynamic context) arcomplexity analysis for both the
single-level and multi-level versions.

The article is organized as follows. Classical conceptsapéng to elastodynamic BEMs are
recalled in Section 2. Then, Section 3 presents underlyingjivations and fundamental concepts
for the elastodynamic FMM. Next, several crucial compotadi and implementation issues are ad-
dressed in Section 4. Section 5 is devoted to the analysia@mnerical verification of the algorithmic
complexity of single-level and multi-level versions. Higathe correctness and computational per-
formances of the proposed FM-BEM are assessed in Sectiom@rorrical examples involving up
to N = O(10°) nodal unknowns. The latter include the diffraction of anident P plane wave by a
semi-spherical or semi-ellipsoidal canyon, represergaif topographic site effects.

2 Boundary element method

2.1 Boundary integral representation

Let Q c R? denote the region of space occupied by a three-dimensitmsticesolid with isotropic
constitutive properties defined hy(shear modulus)y (Poisson’s ratio) ang (mass density). Time-
harmonic motions, with circular frequeney, induced by a prescribed traction distributiéf on



the boundary$? and in the absence of body forces are considered for defassem this article.
The accommodation of other boundary conditions needs oimpmmodifications to the treatment
proposed therein. The displacemerit given at an interior point € € by the following well-known
representation formula [3]:

i@ == [ wwT@ye)ds,+ [ PeUieyos,  (@e. @

whereUF (z, y;w) and TF(z, y;w) denote thei-th components of the elastodynamic fundamental
solution, i.e. of the displacement and traction, respebtj\generated ay € R? by a unit point force
applied atz € R? along the directiork, given by [12]:
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in which ks andkp are the respective wavenumbers of S and P elastic wavesatso th
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G(-; k) is the free-space Green’s function for the Helmholtz equatvith wavenumbek:, given by

Grik) = exp(ikr)

; “4)

4rr

n(y) is the unit normal t&(? directed outwards of2, andC;;, are the components of the fourth-
order elasticity tensor, i.e.:

2v
Cijhe = b E@ﬂhe + 6indje + 5jh5i€] - (5

2.2 Boundary integral equation

Whenx € 01, a singularity occurs iy = «. With the help of a well-documented limiting pro-
cess [4], the integral representation (1) yields the irgkegquation:

(Ku)(x) = f(z) (@€ Q) (6)

with the linear integral operatd€ and the right-hand sid¢ defined by

(Ku)(x) = cip(x)u;(x) + (P.V.) - u,(y)TZk(ac, y;w)dSy 7)

fla) = /6 @)U @y)S, ®)

where (P.V.) indicates a Cauchy principal value (CPV) slagintegral and thdree-termc;;(x) is
equal t00.5d; in the usual case wheé¥? is smooth atc. The integral operator (7) may be recast into
alternative, equivalent regularized forms which are fre€BV integrals [3]. Equations (1) and (6)
are applicable to either interior or exterior elastodynaprioblems.



2.3 Boundary Element Method

The numerical solution of boundary integral equation (8dased on a discretization of the surface
09 into N isoparametric boundary elements. Piecewise-linearpotation of displacements, based
on three-noded triangular boundary elements, is usedsmibik. TheN; displacement interpolation
nodes thus defined also serve as collocation points. Thisatiigation process transforms (6) into a
square complex-valued matrix equation of sive= 3NV} of the form

[K{u} ={f}, 9)

where theN-vector{u} collects the sought degrees of freedom (DOFs), namely tbalrsplace-
ment components, while th¥ x N matrix of influence coefficientg] and theN-vector{ f} arise
from (7) and (8), respectively. Setting up the malfix] classically requires the computation of all
element integrals for each collocation point, thus neediegmputational time of orded(N?).

2.4 Solution strategy for the BEM equations

The influence matriXK| is fully-populated. StorindK| is thus limited, on ordinary computers, to
BEM models of size not exceedin§ = O(10*). Direct solvers, such as the LU factorization, re-
quire O(N?) arithmetic operations (i.e. they haveC{ N3) complexity), and are thus also limited
to moderately-sized BEM models. BEM problems of larger size preferably solved by means of
iterative algorithms (GMRES [47] being the usual choicehjch build sequences of solution candi-
dates until convergence within a predefined tolerance hexh With reference to (9), each GMRES
iteration requires one evaluation [df']{«} for given{u}, a task requiring a computing time of order
O(N?) if either [K] is stored offK]{u} is evaluated by means of standard BEM numerical integra-
tion procedures. In the latter case, théN?) complexity stems from the fact that, again, all element
integrals must be recomputed for each collocation pointplisptions of the BEM to large models
(typically N = O(10%)) require evaluation procedures fiiK]{u} that are fast (i.e. of complex-
ity below O(N?)) and that avoid explicit formation and storage|&f]. The fast multipole method
(FMM) is known in many other fields as a very efficient approémtachieving these objectives. Itis
therefore chosen as the basis for the present formulatidnnaplementation of a fast elastodynamic
BEM.

3 Fast Multipole Method: principle

3.1 Multipole expansions of the elastodynamic fundamentadolutions

The FMM is based on a reformulation of the fundamental sohgin terms of products of functions
of & and ofy. This allows to re-use integrations with respectitavhen the collocation poink

is changed, thereby lowering tii&(/N?) complexity per iteration entailed by standard BEMs. The
elastodynamic fundamental solutions (2a,b) are linearbioations of derivatives of the Green’s
function (4) for the Helmholtz equation. On recasting theipon vectorr = y — « in the form

\Z ~\\\\\ » To
0 = Yo

Figure 1: Decomposition of the position vector: notation.



r =19+ (y —yy) — (x — xp), wherexy andy, are two poles anay = y, — xo (Fig. 1), the
Helmholtz Green’s function is shown [9, 11] to admit the deposition

G(|r|;k) = lim eikzé.(y*yo)gL(é‘;rO;k)efikzé.(:cfwo) ds, (10)

L—+too Jzes

where S is the unit sphere oR? and thetransfer functionG,(8;ro; k) is defined in terms of the
Legendre polynomial$’, and the spherical Hankel functions of the first kh}&ﬁ) by:

ik
1672

Gr(8;m0; k) = > @+ DiPh{) (klrol) Py (cos(8,70)). (11)

0<p<L

The decomposition (10)—(11) is seen to achieve the desapdration of variables: andy. Then,
to recast the elastodynamic fundamental solutions in a familar to (10)-(11), one simply notes
that (10) implies:

) - . 9 LY ina .
&%G(Irlvk) = —ik&;G(|r|; k), ain(lrl, k) = ik3;G(|r|; k), (12)

wheres; is thei-th component of the vectat. Then, on substituting (12) into (2a,b) and invoking
decomposition (10)-(11), the following multipole decorsjiion of the elastodynamic fundamental
solutions is obtained:

. N a _ P ~ s ~ _ R
U-k(a: y.w) — lim €1kps.(y yo)uk, (S’To)e ikp8.(x—xo) ds
LA i,L\53
L—+o00 3es ’

+ Lhrfoo ) eiksé.(y*yo) uf’Ls(g’ 7.0) efiksﬁ.(:z:fwo) d§, (13)

. kpd. (y— kP A —ikp3.(m— .
Tik(:n,y;w) = lim eikps-(y yO)’Z;L’ (8;r0) € ikp.(x—z0) (3
L—+oo Jaes '

+ lim [ PEETITR ) RO s, (4
— 56

with the elastodynamic transfer functions given in termghefacoustic transfer functiayy;, by

2

U (35m0) = 881G (85703 kp), (15a)
! 7
. iksy® S .
Z?L’P(Svfo) T /S] Ciinede5n55G91L(8; 10 kp)n;j(y), (15b)
Ut (8;r0) = ;(51%: — 83:)GL(8; 703 k), (16a)
. ik . R .
7558 m0) = f@hkz — 8150) CijnedeGr(8; s ks)nj(y). (16b)

Truncation error and clustering. In practice, the limiting procesé — +oc in (10) or (13), (14)
cannot be performed exactly and is replaced with an evaludtir a suitably chosen finite value of
L. A key error analysis result [9] states that there exist fmunstants”, Csy, C5, Cy such that

L= Cl + CQk"" — ’I‘o‘ + 03 ln(k:\r — ’l"0|) + 04 In 671
exp(ik|r])

_/ GRG0 G, (5:po: k)e RS @20 da| < ¢ (17)
ses

47 |r|
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Figure 2: 3D cubic grid embedding the boundai$.

for any chosen error level < 1, whenever

|7 — 7ol /|7o| = [(y —y0) — (& —20)| /0| < 2/V5. (18)

The error bound (17), (18) implies that expansions (13)) (hdst be used for well-separated
sets of collocation and integration points clustered agiopolesx, andy,. Moreover, (17) also
indicates that the value of the truncation paraméteilowing to achieve a given level of accuracy
e increases with the size of these clusters. Other studiesronaontrol in multipole expansions for
Helmholtz equations can be found in e.g. [21, 38].

3.2 Single-level fast multipole formulation

In the single-level FMM, a 3D cubic grid of linear spacidgembedding the bounda®f? is intro-
duced (Fig. 2). The centers of the cubic cells thus definedsden as poles or y, in decomposi-
tions (13), (14). Two cells are deemadjacentif they have at least one common point, e.g. a vertex
(Fig. 3). Whenever: andy belong to cell€,, C, that are not adjacent, condition (18) is automati-
cally fulfilled (as one then always has— r|/|ro| < v/3/2 < 2/+/5) and expansions (13), (14) can
be safely used. Conversely, wherandy lie in adjacent cells, condition (18) is not assured and the
classical expressions (2a,b) of the fundamental solutoasised instead. These considerations lead
to reformulate expressions (7) and (8), for any collocapoimt x lying in a given cellC,., as

(Ku)(x) = (Ku)"**(a) + (Ku)™ (),

f(ac) — fnear(w) + fFM(w) (m € 00 ﬂCg;), (19)

boundary O,f the domain

d| LN
yauw
/ /
/ [ Cell C,
> Q ~
CFya; jl(lcx> :\‘ e _ Sadjacent cells C, € A(C,)
N/

Figure 3: Definition of the adjacent cells



where, letting.4(C) denote the set of cells which are adjacent to a given cublcCcétig. 3), the
“near” parts are defined for each collocation paitas the net contributions from the portion of
boundary situated in cells adjacent to that contairnge. by

(Ku)"*™(a) = cir(@)ui(z) + Y (PV) ui(y)T} (x,y;w)dS,,  (20a)
C,eACs) a0Nc,
Freal ) Z / YUF(z, y;w w)dS,. (20b)
CyEA(CS) oonc, '
The “FM” parts then collect all contributions from cells ttae not adjacent t6,:

@) = 3 [ uTie s, (21a)

C,dA(Ca) 2T
Ma)= Y [ Pk yes, (210)

C,dA(Cy) ) OCy

The “near” contributions (20a,b) are evaluated by meansaofdard BE techniques. The treat-
ment of the “FM” contributions (21a,b) exploits expansidas), (14) truncated at a finité and
in a manner suggested by their multiplicative form, i.e.effpluate integrals over each céj) and
associate obtained values to the cell cenigr(ii) apply transfer functions to obtain quantities as-
sociated to the centex; of cell C,, and (iii) evaluate contribution at each collocation paink C,.
Accordingly, multipole momentsiefined by

Ri’u(§§cy) = —iks[5ik§j + 018 — 2§i§j§k] /BQ . Uz’(y)nj(y)eik’s@(yfyo)dsg (22a)
n
Pu(g 2v ikp3.(y—v,)
R™(8;C,) = —iksy® [ 52J + 23, SJ:| ui(y)n;(y)e™**Y=Yo/ds; (22b)
1 - 20nC,
Ry (8:Cy) = — [&m — 8184 / ta(y)ets®Wv0lgs; (23a)
H oQNC.
2 . ~
RP(5C,) = L Sata(y)e*PH ¥ 4s; (23b)
B Joonc,

are computed for each cell, (step (i)). Then/local expansiondor the cellC, are evaluated by
applying the transfer functions to the multipole momentsoading to

LPM(8:C) = > Gu(3mo;ks)RY“(5:C,), (24a)
Cy2A(C:)

LPU3E:C) = D Gr(8moike)RPM(3;C,) (24b)
. Cy2A(C:)

LPNE:C) = Y Gu(&roks)RY (8:Cy), (25a)
Cy2A(C:)

LPH8:C) = Y Gu(8moke)RY(8:C,), (25b)
C,2A(Cx)

wherery = y, — g joins the centers of cells, andC, (step (ii)). Upon multiplying (24a,b), (25a,b)
by the local factorexp [ikzaé.(m — aco)] (step (iii)) and replacing the integration over the unit eygh
in (13), (14) by a numerical quadrature rule based on a s@tqfadrature points, € S and weights
wq (see Section 4.3), the “FM” contributions finally take thenfio

Q
()M () 3wy [ b @0 £33, ,) + emhedele=a0)(5,) P (35¢,) (26)
qg=1
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Figure 4: Matrix-vector product without FMM (top) and with FMM (bottg.
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Expression (26) defines the “FM” contribution to the matreetor product K|{«}, and hence is
evaluated once per GMRES iteration, while (27) provides“fd” contribution to the right-hand
side{f} and is computed once, prior to calling the GMRES solver. fEguschematically depicts
the acceleration mechanism achieved by the previouslyritescsteps.

As remarked in section 3.1, the truncation paramdigiand hence the maximum degree of
Legendre polynomials featured in the transfer functiGn$s; ro; k., ), increases with the cell sizé
Consequently, the numbé} of quadrature points necessary for achieving a given acgura(26),
(27) is also an increasing function 6f i.e. ofd (see section 4.1 for further elaboration).

The single-level elastodynamic FMM is more efficient thamdtassical BEM, with a complexity
of O(N®/?) per GMRES iteration (as shown in section 5.1). Further @&atibn is achievable by
adopting a multi-level approach, as described next for thegnt context of 3-D elastodynamics.

3.3 Multi-level fast multipole formulation

To have maximal efficiency, FM-BEM algorithms must confin@+#M calculations to the smallest
possible portion of the boundary while clustering whengwassible the computation of influence
terms into the largest possible non-adjacent groups. Ehashieved by the multi-level FMM [8, 30,
37,52, 53], which is based on using large cells and hiereadllgi subdividing each cell int@ x 2 x

2 = 8 children cubic cells. This cell-subdivision approach isteynatized by means of an oct-tree
structure of cells. The leveél= 0, composed of only one cubic cell containing the whole sertie,

is the tree root. The levdl-cell is divided into2 x 2 x 2 = 8 children cubic cells, which constitute
the level/ = 1. All level-1 cells being adjacent, the FMM cannot be applied to them. Eiell
¢ = 2 is then defined by dividing each levéleell into 8 children cells, and so contaifg cells.
The subdivision process is further repeated until the fitest ¢ = 7, implicitly defined by a preset
subdivision-stopping criterion, is reached. Levetells are usually termefgaf cells The FMM is
applied from level =2 to level/ =/, i.e. featured — 1 “active” levels.

The multi-level approach basically consists in first appdythe FMM to all influence compu-
tations between disjoint levél-cells (so as to use the largest clusters whenever possirid)then
recursively tracing the tree downwards, applying the FMMlanteraction between disjoint levél-
cells that are children of adjacent levél-1) cells (Fig. 5). Finally, interactions between adjacent lea
cells are treated using traditional (i.e. hon FM-based) &hniques. This approach thus minimizes
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Figure 5: Multi-level fast multipole algorithm. Only multipole mome from non-adjacent (light-
grey) cellscg(,e) géA( ) may prowde (throughtransfer) FM-computed contributitm§Cu)™ ()
at collocation pointse lying in cellcf Upon cell subdivision (right), new FM-computed contri-
butions to collocation points in cefl’ (t+1) ) originate from cell!™) in theinteraction listz(c{"™)

of ¢ while the adjacent regiont (™) reduces in size.

the overall proportion of influence computations requirthg traditional treatment.
The computation of the discretized linear operator (7),d0fe¢he matrix-vector produdt<]{u},
by the multi-level elastodynamic FMM hence consists of thikiving main steps:

1. Initialization: compute multipole moments (22a,b) for all lowest-levels€, = Cg.

2. Upward pass recursively aggregate multipole moments by moving upwarthe tree until
level 2 is reached. Denoting I&(C) the set of children of a given cdl, the transition from a
level{¢+ 1) cell to its parent level-cell is based on identities

RP“EC) = S expl-iksd.(yh T — yi ) REM(8:C{D) (28a)
cifesc?)
RPUE ) = S exp[-ikea.(yS T — yi)) RPU(g; ). (28b)

CIE,ZJrl)ES(qu))

Itis essential at this point to emphasize a crucial feat@iteeoelastodynamic multi-level FMM,
namely that the number and location of the quadrature pomsare level-dependent (see Sec-

tion 4.3 for details), a consequence of the previously-inaeetl dependence df, the trunca-

tion parameter in expansions (13), (14), on the cell sizenddeapplication of identities (28a,b)

requires an extrapolation procedure furnishing the vahfeigz’u, RP™ at the levelt quadra-
ture points from those at the levél+ 1) quadrature points (see section 4.4).

3. Transfer initialize local expansions for each levektell Cﬁf) and at each levedl < ¢ < 7 using

ey = ST 6o ke R (31l (29a)
ciPezct?)
LPrE0ey = > Gu(3W;re ke)RPM(3Y; () (29Db)

cPezct”)

whereZ(C), theinteraction listof a given cellC (Fig. 5), is the set ofame-levetells which

are not adjacent t6 while having a parent cell adjacent to that(fFor a level-2 cell, (29a,b)

coincides with (24a,b), a(C?) collects all level-2 cells not adjacent @3.

9



4. Downward pass for all levels3 < ¢ < /, the local expansion for each levekell Cg(f) is
updated with the contribution from the parent leyél- 1) cell, by means of the identity

£3"(5;C0) = £3(8;C0) + exp[—iks(8.(x) " —2{)] L&)  (30a)
LPu(3;,00) = £P¥(5;C0) + exp[—ikp(8.(x( ) — a{”))] £P(5;¢) (30b)

Similarly to step 2, application of identity (30a,b) reqsran inverse extrapolation procedure
furnishing the values aﬁf’“, L£Pv at the levelé quadrature points from those at the leyél-1)
quadrature points (see section 4.4).

5. When the leaf level = 7 is reached, all local expansions have been computed. Thglen
tion (Cu)™(x) is evaluated using (26) with the levélguadrature points, and the near-field
contribution is evaluated according to (20a,b) for all le¢¢leaf) cellsC,.

The computation of the right-hand side (8) follows the saneps with the multipole moments
Rz’“, RP% and local expansionsi’“, LP replaced with their counterpaﬂ%gt, RPt andﬁi’t, L£Pt.
The above steps are shown in Section 5.2 to have a complexay mostO (N log N), with the
exception of the direct and inverse extrapolations in siegsd 4, whose complexity 3(N 3/ ).

3.4 Computation of near-field contributions

The near-field contributions (20a,b) involve (i) CPV-sitagu (i) weakly-singular and (iii) non-
singular element integrals. CPV-singular integrals ati apcording to

(PN) [ w(y)TF(z, y;w)dS,
o0

= / ui(y) [T, y;0) — TF (@, y)]dS, + (PV) | wi(y)T (2, y)dS,
o0 o0

whereTF(x, y) are the traction components of the (singular) static furefatal solution and the
differenceT (x, y;w) — T (x, y) is non-singular [3]. The remaining CPV integral is then eattd
analytically, taking advantage of the fact that three-nbttf@ngular elements, which have constant
unit normal and Jacobian, are used. Weakly-singular iategwhich feature the kern@lf (x,y;w))
and non-singular integrals are computed using numericak&an quadrature (the weak singularity
being first cancelled by means of a suitable change of coates). Finally, wher®() presents an
edge or corner at, the free-ternt;;(x) is evaluated using the method of [33].

4 Fast Multipole Method: computational aspects

Both the single-level and multi-level elastodynamic FMMé@deen implemented, for three-noded
triangular boundary elements, using a public domain varsfcthe GMRES solver [15] with a con-
vergence criterion set td{Cu — f}||/ [[{f}I| < 1073. All examples have been run on the same
single-processor PC (RAM: 3GB, CPU frequency: 3.40 GHz)cdpx where indicated otherwise,
the multi-level FMM is used.

The numerical efficiency and accuracy of the FMM is strondfgaded by several factors, such
as the truncation of the transfer function, the quadratwer ¢the unit sphere and the number of
levels, and great care must be taken in the implementatitiis Section is devoted to a discussion
of these issues, and of various algorithmic choices anddwggnents. The latter are largely based
on a transposition to the present elastodynamic contextleds and methods proposed in [8, 53]
for the FMM applied to the 3-D frequency-domain Maxwell egpias. At several places, illustrative
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Figure 6: Pressurized spherical cavity: notation.

numerical results for the test problem of a spherical cavityadiusa embedded in an elastic isotropic
infinite medium (withy = 0.25), subjected to an internal time-harmonic uniform presdaréig. 6)
are given. This problem has a simple, spherically-symmetkact solution [12], with the radial
displacement and stress given in terms of the normalizeidlredordinater = r/a by:
aP 1 2(1 — ikpat
) = ) s CxPlikea(7 1)
oor () = 1 (kpa)?*** — 49*(1 — ikpar)
" 73 4~2(1 —ikpa) — (kpa)?

(31)

exp(ikpa(? — 1))
with the wavenumbekp and the wave velocity ratig defined in (3).

4.1 Truncation of the transfer function

As already mentioned in section 3.1, the decomposition iEl&hown in [9] to be convergent in the
limit L — 400, which immediately implies convergence for the correspog@xpressions (13), (14)

of the elastodynamic kernels. However, the spherical Hafuketions h,(})(z) behave like(p/z)?

for large p [1] and their evaluation must therefore be avoided for adesignificantly larger than
k|lro|. Hence, the truncation level used in (11) has to be large enough to guarantee sufficient
accuracy in (10) while avoiding divergence of the Hankelctions appearing in (11). Appropriate
values forL achieving the "numerical convergence" of the transfer fionoG . (S; ro; k) are selected
using formulae empirically established from numericalerkpents. One such formula, known from
previous studies on FMMs for Maxwell equations [8], reads:

L(d) = V3kd + C. log,,(V3kd + ). (32)

In this work, distinct truncation level&p and Ls are defined according to (32) with = kp and
k = ks, respectively. The transfer functions (15a,b) and (16are)Xhen evaluated usidg= Ls and
L = Lp, respectively. The truncation parameter value defined By i€level-dependent through the
cell sized, andL is (roughly) doubled for each upwards transition to a nevellev

Formula (32) features a constarit which has to be adjusted from numerical experiments. For
that purpose, the test problem is now considered\foe 30726, with a leaf levell = 3 and a leaf-cell
sized®) = 0.6)\s (Where\s = 27/ks denotes thes-wavelength). A subset of 10 columns of the
influence matrix[ /] are computed using both the present FM-BEM (by performindrimzaector
products[K |{u} with all entries of{u} set to zero except that corresponding to the selected column
of [K], set to unity) and standard BEM techniques. The relative RiiffSrence between these two
sets of matrix columns measures the truncation error inted by the FMM with finite truncation
level L. This truncation error, and the CPU time for one FMM iterafiare plotted against'. in
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Figure 7: Truncation error and CPU time per iteration as a function afjastable parametef’..

Fig. 7. Error levels below0~3 are achieved fob < C. < 12.5, which corroborates the previously-
discussed notion of a numerically optimal truncation lezelValues ofC, outside the above range
lead to values ol that are either too small (insufficient convergence in (t@Xpo large (divergence

of Hankel functions in (11)). Figure 7 also shows that the Gift¢ for one FMM iteration increases
with C,, which was to be expected sinéegiven by (32) also increases wift.. The valueC, = 7.5

is found to achieve to keep a good compromise between agcarat computational cost, and is
retained in the present implementation. This observasaronsistent with that made in [53] for 3-D
electromagnetics.

4.2 Number of levels

The choice of the leaf levélis crucial, as it affects both the overall computationalgiamd the accu-
racy of the elastodynamic FM-BEM algorithm. A too-small ragn of levels increases the proportion
of near interactions, thus pushing the complexity of the potation closer ta@)(N?), while a too-
large number of levels increases the number of transfergdast levels (see Table 1 where several
values of? are considered, withpa = 6 and N = 122886). )

The truncation parametdr at any level depends on the leaf-cell si#€. This is now illustrated
with the help of the comparison method and test problem diwed.1: relative RMS differences
between matrices generated by FM-BEM (withietermined at all levels by (32)) and standard BEM
produced by this comparison are plotted in Fig. 8 againstor several choices of®. For small
values ofksd?), the FM-BEM algorithm is seen to be insufficiently accuraféis stems from the
fact that the distancds| between leaf cells scale with and the spherical Hankel functions in (11)
are known to diverge in the small-argument limit. Estimat&)(accordingly predicts thal has a
O(In kd) divergence in the small cell size limit, and formula (32) slo®t provide adequate values

7 (leaf level) | ksd® /2 | error / BEM | CPU time / iter (s)
3 1.32 1.1107° 367
4 0.66 4.7107% 134
5 0.33 3.71073 104
6 0.17 5.1 1072 200
7 0.083 1.7107! 380

Table 1: Error and CPU time against the number of levels
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Figure 8: Truncation error as a function of adjustable parameter for several values of leaf-cell
sized®.

of L in this case, even upon increasing the consfantas evidenced by the results of Fig. 8. This
suggests that the leaf cell sizé) must be chosen larger to a minimum vali®¥" to avoid divergence;
for instance, results obtained usit§) = 0.075\s have very poor accuracy. A minimum leaf cell size
d™" = X\/10 is adopted in [8]. Accuracy and computational efficiencysiderations make higher
values ofd™" preferable. In this work, the subdivision-stopping cierdefining the leaf levef is
set to: d1) < gmin < ¢ with d™" = 0.3\s. Configurations for which cells of size significantly
smaller thand™" ~ 0.3\s are desirable (e.g. geometries with complex details atvea®length
scales) require an adaptation to elastodynamics of appesatombining the diagonal form (10) with
other types of expansions valid for low wavenumbers, se&J325].

4.3 Quadrature over the unit sphere

Another practical issue is the numerical computation cggndls over the unit sphetgin (13), (14).
The quadrature method of [8], based on a product rule in tlgalan spherical coordinate, ¢,
employs quadrature points and weights of the fé&m= (¢;, ¢;) andw, = wfwj’, where(6;, w?)

(1<i<L) correspond to &+ 1-point Gaussian rule of), 7] while (¢;, wj’), given by

27T R ) 27T
= w -
oL + 17

¥ (0<j<2L), (33)

I T 2L +1
correspond to a uniform rule oft), 27]. This approach, which employ§ = (L + 1)(2L + 1)
quadrature points overall, is designed so as to integratetigxthe L?(S)-orthonormal set of spher-
ical harmonics(Ypm(Q, ®) )0< <1 _pem<, Of Order< L, a requirement which, together with (32),
o ’ <p<L,—p<m<p . ) .

implies that the number of quadrature points must be leepkddent. It is adopted here, in a form
slightly modified as explained next.

Reduction of the number of quadrature points. The transfer functior$j;, given by (11) has the
form G (ro, 8, k) = Zﬁ:o Hy(r0) Py (cos(8,m)). The factorH,(r) does not depend of and is
computed once for eaaty. Then, for each paifr, §), the Legendre polynomials are computed by
induction:

(34)

Bp(x) = 2= 1/p)xBpa(z) + (1/p = 1) Ppa(x) ( _ 108 )
Py(x)=1, Pi(z)==x ol 18]/
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The Legendre polynomials are known to satisfy the idemffyy—x) = (—1)? P,(x). This can be
exploited to reduce the number of quadrature paoénis grid that is invariant under the transformation
§ — —§ allows to perform the numerical integration ¢hwith half the original quadrature points.
The rule defined by (33) fulfils this invariance provided timéform rule on|0, 27 is defined in terms
of 2L + 2, rather thar2 L + 1, points. This modified version of (33) featurg&l + 1)? points, but
only (L + 1)? points are actually computed, stored and used. As a rekeltgdmputing time and
memory required by the quadrature are roughly divide@ by

4.4 Extrapolation (direct/inverse)

The upward translations (28a,b) require evaluating moléipnoments at level-quadrature points
from their values at leve{¢ + 1) quadrature points. This important step of the algorithm dag-
nificant impact on the overall CPU time required by the FM-BEdvid hence has to be formulated
carefully. A fast method, which takes advantage of the unifdistribution (33) of quadrature points
along¢ and exploitsL.?(S)-orthogonality and finite-bandwidth properties of the gt harmonics,
has been proposed in [8, 53] and is used here.

With the quadrature points at leveland/ + 1 of the form

S(Z—H) (9(Z+1 7¢€+1 ) 0<i< L(f—{—l) 0< ] < 2L(€+1)7
50 = (00, 649 0<i'<r® o<j<2r®)

the valuesF; ;» = f(é)(,e), (b@) at the level¢ quadrature points of a generic functigi(s) = F(0, ¢)

are extrapolated from thosg; = F (¢ “1),(15(”1)

the following three steps:

at the levelf/+1) quadrature points by means of

o, (1)

- ()
F - > e imel " ]—“ﬁ“’ (Im| < L) forward Fast Fourier Transform
=0
L)
m, 0 Z(¢+1) .
Z By Fim dense matrix-vector product  (35)
L(I’+1) ©
fi(,?, = ) e FiD backward Fast Fourier Transform
m=—L(&1)

with

(A1)
ml m (&+1)\ Am () min 20+ 1(p—m)!
B™ — ZQP (cos ) QM (cos 6;,), Q' (u) _\/ = (p+m)!Pp (u)
p=[m

Likewise, the downward translations (30a,b) require iseegxtrapolations from levélguadra-
ture points to level# + 1) points, which are based on a transposed version of the ekatamn:

2L®
0 Cims® e ,
Fi = > e JTZ-(/]-)/ (Im| < L*Y)  forward Fast Fourier Transform
3'=0
~ ()
FE - Z B ED dense matrix-vector product  (36)
e
(1) ()~ (1) .
Fog ' = Z eme backward Fast Fourier Transform
m=— L&)
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Other extrapolation methods have been proposed [8], somnioh being of lower computa-
tional complexity but at the cost of further approximatidrhe above extrapolation method is exact,
and will be shown in numerical experiments (section 5) taaot for only a modest fraction of the
overall CPU time of an elastodynamic FM-BEM analysis, anddego be satisfactory.

4.5 Ordering of the transfer operations

In operations (29a,b), the transfer functidis need to be evaluated only for vectarg linking the
centers of two same-level celly, andC,. Such vectors are integer multiples of the cell size
ro = (ng nyn;)d. Moreover, at any given level, the transfers are only comgbdor cellsC, in the
interaction list of a given cell,, i.e. the integers:,,n,,n. necessarily belong to the sgt-3 <

Mgy Ny, Nz < 3P\{—1 < ng,ny,n. < 1} The maximum number of distinct vectorg required
for performing all operations (29a,b) for a given level itifore 73 — 32 = 316. Each transfer
matrix can thus be reused many times, especially at the tdexsls. In order to take advantage of
this remark, the transfer operations are first sorted a@egrh the vectony. Then, for eachq, the
transfer matrix is computed using the method of sectionM@&eover, the same transfer matrices are
used for each GMRES iteration. It is therefore possible &mpmpute and store on disk each transfer
matrix, prior to performing any GMRES iteration.

4.6 Matrix of near interactions

The only BEM matrix in the FMM for which storage may be consatkis the near-interaction in-
fluence matrix K], such thaf K"®®|{u} = {Ku}"*® with reference to (20a), becaufE"®?] is
sparse. The most common storage strategy for sparse nsasitee Compressed Sparse Row (CSR)
approach [46], based on three linear arrays: the nonzeroxmeatries (stored row-wise), the column
indices, and integer pointers to the beginning of each madk in the first two arrays. Products of
CSR-stored sparse matrices with vectors are then compatethy row, which prevents one to take
advantage of optimized matrix-vector product routineg, those of the BLAS library.

A modification of this storage strategy takes advantageesttucture of the computation of the
near interactions, where a cell can interact only with itgyhieor cells. The idea is to store blocks
representing the interaction of a cell on its neighbor ogig. 9) and then to evaluate matrix-vector
products blockwise (instead of termwise). Each block isestan full-matrix format. For example,
the largest model used in the numerical study of compleXitgertion 5.3, for whichV = 1215291,
features 18351 non-empty leaf cells. The correspondingkhlse-sparse matrix of near interactions
is made of 260203 blocks (i.e. a given leaf cell has on aveadgeit 14 non-empty adjacent cells,
including itself, for this example).

column index of cell C,

] — Cells C, € A(C,)

row index of cell C,.

Figure 9: Near interactions matrix (blockwise-sparse storage)
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This storage strategy has two advantages. First, it usaslists of unknown DOFs for a given
cell and its neighbors, instead of the global list. Seconudintized BLAS routines can be used to
compute the product of each block pE"¢?] with the corresponding part of the solution vector.
Moreover, to reduce the number of blockwise matrix-vectadpcts, only one block is created for
each leaf celC,, with lines and columns corresponding to collocation ndde$, and interpolation
nodes in all cell€, € A(C,), respectively. The matrix entries for each such block aramated by
treating the set of elements belonging to@Jlc A(C,) as a single (small) BEM mesh and using
traditional BEM matrix set-up methods.

4.7 Memory management

In the multi-level elastodynamic FM-BEM, multipole momei22a,b) and local expansions (28a,b)
are computed for each cell, each level and each quadratimg pod thus arise in large numbers. It
is esssential to keep the storage of such quantities to amami The memory needed for a given
FM-BEM analysis is affected by the order in which certairk&aare performed. To compute the local
expansionsC?, £ at levell, RS, RP are needed at levéland £3, £P at level (¢ — 1). One may
therefore discard the values ﬁ’ff, RP at level (¢ + 1) (and reallocate the corresponding memory)
onceRy, RF are computed at levél As schematized in Fig. 10, performing the transfer at lével
immediately after the upward pass from leyéH- 1) to level ¢ allows to restrict the storage to the
multipole moments at levelsand(¢+ 1), and the local expansions at all levels. This ordering hence
reduces by about half the memory required for storing molépnoments and local expansions.

Moreover, virtual memory is optimized for large problemeszas follows. Multipole moments
and local expansions are written on disk (out-of-core). nftier each step of the multi-level FMM,
the needed information is read in the appropriate file anadtback in that file after updating. The
maximum virtual memory cost is therefore incurred by thesfar pass at levél for which all level/
multipole moments and local expansions must be saved imavithemory.

For even larger problem sizes, an improved version of thietesgy, where thé-level cells are
split into V- groups, has been implemented. The transfer pass is theteeffas two nested loops
over theNy, groups, with operations (including the reordering acawgdio vectorsr linking the
centers of two same-level cells, see Section 4.5) done anlgdlls belonging to the two currently
active groups. As a result, the virtual memory required byaadfer pass is divided by/,,. This
multi-group out-of-core process is applied separatelyachepass of the multi-level FMM. In order
to define groups of similar size at each level, the numberaifijgs is level- and problem-dependent.

=2 [®s—{] m)—s—{]
4| 9| 71 9|
=3 R[] (R} —{£7]
4 4 ! 4 !
! 3! 10 | 5! 10 |
L ! v ! ¥
=t "} —[2]
_ 3 11
(=

b —1- R“ —5—» /;a -12- —1-[ R }b—2—] £ }12-

Figure 10: Non-optimal (left) and optimal (right) orderings of the V@uis steps of the multi-level
FMM (the numbered arrows indicate the sequential orderihgasses for each case).
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4.8 Implementation of the elastodynamic FM-BEM: summary

The elastodynamic multi-level FM-BEM solver implementedhe course of this work, whose fea-
tures are those discussed in Sections 3 and 4, is summaoizedrivenience in Figs. 11 and 12.

(@) Octree generation: hierarchicaly subdvide eat cdl into 8 children cels, urtil
led level ¢ defined by d“! < d™N=0.3\g < d’ isreaded
Retain only non-empty children cdls

(b) Near contributions:
Compute and store matrix [K "] of nea interadions (Sec 4.6)
Compute “nea” contribution { f"?}, Eq. (20b); storeinto {f}

(o) Initial FMM step: preparatory step

Sort vedors ro =y, — xg (Sec 4.5)

Compute and store on dsk the transfer matrices

Uses sveep for comptting the “far” contribution { f™ 1}, Eq. (21b); storeinto { f}

(d) GMRES nitiali zation:
Set restart parameter to 50, initialize solution vedor to {u} = {0}

(e) Generic GMRES iteration; invokes generic FMM step (seeFig. 12)
Invoke (computed and stored in Step (c)) vedors ry and transfer matrices

Use sweep for computing the “far” contribution {Cu}™ , Eq. (21a)

Evaluate {Ku} = {Ku}™ + {Ku}", Egs. (19), (20a); passresult to GMRES

(f) Convergence chedk for GMRES: ||[{Ku — f}|| / |[{f}I| <1073 ? NG

YES

(g) Post-processng of solution:
Evaluate integral representations, crede graphics...

Figure 11: Elastodynamic multi-level FM-BEM: schematic descriptidroverall algorithm
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(@ forallled cdlsC]
initialization : computation of multi pole moments, Eq. (224)
transfer using L(d") = v/3kd® +7.5log,,(v/3kd’ 4 ) terms in expansion,
Egs. (2%,b)
endfor

(b) foralllevels¢ = ¢ — 1,2 (in this order)
for all cdlscy’
foral cdisc{™ e s(c{)
upward pass Egs. (28a,b)
endfor
extrapolation, Eq. (35)
endfor
for all cellsc”
foral cdisc” e (")
transfer using L(d*) = v/3kd’ +7.5log;,(v/3kd’ + ) termsin expansion,
Egs. (29a,b)
end for
endfor
end for

(c) foral levels ¢ = 3,/ (in this order)
for all cdlscl”
downward pass Eq. (30a,b)
inverse extrapolation, Eg. (36)
end for
end for

(d) foralled cdlsC’ i
for al collocation pdnts = € C¢
local expansions Eq. (26)
add "near" part Eq. (209)
endfor
endfor

Figure 12: Elastodynamic multi-level FM-BEM: schematic descriptidrgeneric FMM step

5 Complexity of the elastodynamic FMM

In this section, the theoretical complexity of the elastmiyic FMM, i.e. the CPU time spent for
each GMRES iteration as a function of, is studied for both the single- and multi-level versions

(sections 5.1 and 5.2) and then compared to results from meehexperiments (section 5.3).

5.1 Theoretical evaluation, single-level FMM

Noting d > d™" the linear cell size, the number of non-empty cells and thaber of average
DOFs per non-empty cell a®@(N/d?) andO(d?) respectively; these estimates stem from the fact
that the geometrical support of the unknown BE DOFs is twoettisional. The truncation parameter
L(d) given by (32) is such that there is a positive constEnfwhich depends od™") for which
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L(d) < Hdfor anyd > d™". Therefore, one may conservatively consider that) = O(d) and, by
virtue of (33), that the numbe® of quadrature points ove$ is Q = O(d?). The main steps of the
single-level FMM entail the following computational corepities:

(a) Evaluation of multipole moments (22a,b) and local espams (26), for each quadrature point
and each cellO(Nd?);

(b) Transfers (24a,b), (25a,b), for each quadrature paidtemch pair of non-adjacent cells:
O(d? x N/d?> x N/d?) = O(N?/d?);

(c) Near interactions (6), for each cell, by means of the pevbaf aO(d?) x O(d?) matrix with a
O(d?) vector:O(N/d? x d*) = O(Nd?).

Settingd = O(N®) the optimal complexity is obtained by minimizing the largesponent inVd? =
N2 andN?/d? = N?~2*. Hence the optimal cell size in the single-level FMMlis= O(N'/4).
As a result, the optimal complexity in the single-level FMiMalastodynamics is of ordéj(N?’/Q),
and is achieved by using(N?3/4) cells.

5.2 Theoretical evaluation, multi-level FMM

The leaf cell sizel) is as small as possible, under the constrdifit!) < d™n < ¢ (dMn peing a
fixed fraction ofS wavelength), as discussed in section 4.2. Assuming a canstenber of DOFs
per wavelengthd® may be considered as independentN\ofin the complexity analysis. The size
d©® of the largest cells is related t8°) by 2¢d() = d(©). Moreover, the fact that the BEM nodes are
located on a surface of characteristic diamé@¢i©)) implies thatd®) = 2¢d®) = O(N'/?). Hence,
the total number of levels is:

¢ = O(log N) (37)

and the number of leaf cells 8(/NV). Moreover, since the DOFs are supported on a surface, each
non-empty levek cell has on average 4 non-empty children cells, and thezdiotds an average
of N = O(4~N) DOFs. The numbers of non-empty cells and of children at eee#l for the
example of a spherical cavity witN = 1 215 291 DOFs, shown in Table 2, corroborate this estimate.
Lastly, one notes that the levékuncation parameter and the number of le¥/gliadrature points are
LO =0(d®)=0(d? x274) = O(N1/2 x 27 andQ¥) = O((d¥)?) =O(N x 47°).

Based on the foregoing remarks, the computational contjexassociated with the main steps
of the multi-level FMM are obtained as:

(i) Multipole moments (22a,b) and local expansions (263Jeated only at level: O(N).

(i) Transfers (29a,b), performed for each level, each @%PI and each cek[fzse) el (Cg(f)):
04 x Q) = O(N) per level, i.e.O(N log N) overall.

level | number of non-empty cells number of children
2 56 4.86
3 272 4.26
4 1160 4.07
5 4720 3.89
6 18351 —

Table 2: Average number of non-empty cells and children at each level
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(i) Upward and downward passes (28a,b), (30a,b), for daehl ¢, each cell and each quadrature
point3: O(N) per level, i.e.O(N log N) overall.

(iv) Direct and inverse extrapolations, for each le¢and each ceIIO(N3/2).

Estimate (ii) relies on the fact that the interaction lisiaogiven cell contains at moét — 3% = 189
cells, irrespective of the level and the total number ofscelistimate (iv) stems from the observation
that each extrapolation (35) from levgh-1) to level? (whose total number i©(4¢)) requiresL(¥)+1
dense matrix-vector products, each of 26 +1) x (L*#1) +1),i.e. O (4 x 27 N1/2x (27! N'1/2 x
2~ N1/2)) = O(N3/22-(41)) operations. Summing these extrapolations from lével 7 to
¢ = 3, the obtained cumulative complexity of all extrapolatiaas)(N?3/2) as stated. A similar
analysis holds for the cumulative effect of the inverseapatation steps (36).

This analysis therefore predicts a theoretical complexit§) (N log N + 3N3/2) per iteration
for the multi-level FMM.

5.3 Numerical study of complexity

The theoretical complexities just formulated are now coregagainst recorded CPU times, on the
pressurized spherical cavity problem (section 4). Thisgamnson aims in particular at evaluating the
respective importances of tlig oV log N') andO(8N?3/2) contributions to the overall complexity of
the multi-level FMM. Several frequencies are considereith the size of the BEM models adjusted
S0 as to maintain a mesh density of about 10 nodesSpsavelength (Table 3). This complexity
study involves problem sizes of up 1 ~ 1.2 10%, while the examples of [17] used < 2.510%.

N ||30726 122769 217983 389232 449835 530709 635349 7719120853215291]
kpa/m| 3.05 6.14 8.31 109 1166 12.68 1391 152 17.4 19)24

Table 3: Numerical study of complexity: BEM model si2ésnd non-dimensional frequencies used.

Multi-level FMM: complexity of the main steps. With reference to items (i) to (iv) of section 5.2,
the cumulative CPU times recorded for the main steps of thiti-heuel FMM are compared to the
corresponding theoretical complexities for the evaluatd (i) the multipole moments (Fig. 13a)
and local expansions (Fig. 13b), (ii) the transfers (Figc)l&and (iii-iv) the upward and down-
ward passes including the (direct/inverse) extrapolati@figs. 13d). For the latter case, coeffi-
cients (o, 3) allowing a best fit of theoretical complexities of the fo{aN log N + SN3/2) to
the CPU data are obtained via regressiorf@s?) = (1.310~7,9.810~?) for the upward pass and
(o, B) = (1.81079,8.21078) for the downward pass. These values, which are of course et
computer-dependent, suggest that the importance oDI(Hé?’/Q) contribution to the upward and
downward passes becomes significantfoaboveO(10°).

On Fig. 14 the computation time required by the upward andeavd passes and its estimation
BN3/2 are compared to the other steps of the algorithm. The resalisate that thed (N3/2) contri-
butions arising from the extrapolations are small compéwdteO(N log N) contributions for BEM
model sizesV = O(10°) or less, for which the extrapolation method of Section 4tésefore satis-
factory. Using improved algorithms for extrapolation s@shthose proposed in [8], of computational
complexity lower tharO(NN3/2), would reduce the elastodynamic FMM complexityQN log N).
They may prove essential for BEM models involving severdlioms DOFs and more.

Overall complexity of the single-level and multi-level FMM.  Numerical experiments, in the form
of full BEM solutions obtained using the standard BEM, smgvel FM-BEM and multi-level FM-
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Figure 13: Theoretical complexity and recorded CPU times for the megpsof the multi-level elas-
todynamic FMM.
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Figure 14: Comparison of the cost of the upward and downward passesetottier steps of the
algorithm

BEM on BEM models of respective sizes up@g10*), O(10%) andO(10°), corroborate the previ-
ously discussed theoretical complexities estimates foh egproach, as seen in Fig. 15, where the
O(N?/2) contribution to the multi-level FMM has been disregardeddgordance with the previous

discussion on its effect.
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Figure 15: Complexity of the standard BEM, single-level FMM and mighiel FMM (left: CPU time,
right: memory)

5.4 Discussion

The results of Sections 5.2 and 5.3 are consistent with sporeding studies in [8, 53] for electro-
magnetics, where particular thIE(N?’/ 2) complexity of the direct and inverse extrapolations is also
pointed out. Th& (N log N') overall complexity is also obtained for the method stabkldtequen-
cies proposed in [10]. In contrast, the elastodynamic FMvVBE [17] uses a level-independent value
for the truncation parametdr. This variant avoids the need for direct and inverse extedjmm but
requiresL = O(ksd(?)) = O(N'/2) by virtue of (32). Revisiting steps (i), (ii) and (i) of Sten 5.2
with fixed values forl, = O(N'/?) andQ = O(L?) = O(N)), one finds aD(N?) complexity for that
approach, as remarked also in [37]. In comparison, statiecBEWs for static problems are known
to haveO(NN) complexity [30, 37] since the truncation parameter in thdtipele expansion in that
case depends neither on the level nor on the problem size.

6 Numerical examples

First, additional numerical results for the example of aspugized spherical cavity, introduced in
Section 4, are presented. Then, the more complex example afiffraction of an incident P plane
wave by a spherical cavity, for which an exact solution i algailable, further demonstrates the good
accuracy of the present FMM. Finally, the usefulness of top@sed FMM formulation is illustrated
on the scattering of a seismic plane P wave by an irreguldrsipalce model. For all results presented
therein, the following computational parameters were ugéd= 7.5, d™" = 0.3\s (unless indicated
otherwise), and a convergence threshold definefi{ty— Ku}||/||{f}|| <1073 (using the notations
of equation (9)) for GMRES.

6.1 Pressurized spherical cavity

The example configuration defined in Section 4 is again usiest, Rumerically-computed solutions
are compared for four non-dimensional frequencies to threesponding exact solution (31). The
stopping criterion relative to cell subdivision proposadsiection 4.2 led to four levels for the highest
frequency consideredca/ ™ = 2). Four levels were also used for the other three resultsderao
ensure that a sufficient proportion of the computationszeatimultipole expansions (the subdivision-
stopping criterion being hence disregarded for these fabes each frequency, relative RMS errors
for the radial displacement on the cavity wall and over tltgakintervala < r <3a are presented in
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kpa/m 0.1 | 0.50 | 1.00 | 2.00

# nodes/ \s 80 16 8 4
RMS error,r = a (cavity wall) | 0.025| 0.006 | 0.006 | 0.021
RMS error,a <r <3a (domain)| 0.011| 0.006 | 0.008 | 0.031

Table 4: Pressurized spherical cavity: RMS solution error on theityagand in the domain

# nodes per S-wavelength N | RMS solution error on cavity CPU time per iter.(s
2.5 1926 2.01072 1.5

5 7686 4.61073 3.7

10 30726 1.31073 14.2

20 122 886 4.0107% 85.1

Table 5: Pressurized spherical cavity: influence of the number oesquker S-wavelength on the RMS
solution error and the CPU time per iteration.

Table 4. The present FM-BEM is seen to be quite accurate,ievtte low-frequency caséfa/m =
0.1) for which the accuracy of FMM expansions of the form (10)n®Wwn to deteriorate [8], whereas
the standard BEM does not [7].

Next, the effect of the number of nodes per S-wavelength dutien accuracy is examined.
For that purpose, the cavity radiusand angular frequency are kept constant (withpa = 37),
while four BEM meshes with increasing mesh densities arel.udéhe corresponding numbers of
nodes per S-wavelength are given in Table 5 (first columni fEfative solution errors observed for
these meshes (Table 5, second column) indicate that a gdaitbecaccuracy requires a minimum
of 5 nodes per S-wavelength. The corresponding observed fds$ per iteration (Table 5, third
column) increase due to the combined effect of mesh refinear@htruncation parameter (32). The
numerical results presented in the remainder of this arhieve been obtained using meshes featuring
a minimum of 10 nodes per S-wavelength.

6.2 Diffraction of an incident plane P wave by a spherical cawy

The geometrical configuration and material parameterssne the previous example, but the cavity
surface is now traction-free. An incident plane P-wave pggies along the positivedirection
(Fig. 16). Two frequencies are considered, definedily/m = 1 andkpa/m = 4, with respective
problem sizesV = 7686 and N = 122886. The numerical results are compared to the analytical
solution given in [12] (which, incidentally, features a tygaphical error corrected in [7]).

plane wave

Figure 16: Diffraction of an incident plane P wave by a spherical cavitgtation
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Figure 17: Diffraction of an incident plane P wave by a spherical cavigpmparison of the nu-

merical FMM and analytical solutions for normalized frequéeskpa/m = 1,4 and azimuths
0=0,7/4,7/2,37/4.

The numerical results are computed along radial straiglsliemanating from the cavity center
in directions ¢ = 0, w/4, 7/2, 37 /4) inthez-z plane. Figure 17 shows the real part of the radial dis-
placement against the normalized radial coordindte The subdivision-stopping criterion employed
for caseskpa/m = 1 andkpa/m = 4 corresponds respectively #'"" = 0.2\s andd™" = 0.3\s. The
numerical results obtained using the present FM-BEM are seagree very well with the exact so-
lution for the two frequencies considered, even alongitker /2 direction corresponding to grazing
incidence. For the cadga/m = 4, a solution CPU time of 44s per iteratiotdd GMRES iterations,
no preconditioning) is recorded. In Table 6, the influencehef choice of leaf cell size (see Sec-

Table 6: Diffraction of an incident plane P wave by a spherical cavityfluence of leaf cell size on

™| =0 O0=n/4 O=m/2 6=3r/4

kpa/m =1 (N =7686) 0.2)s | 9.2107% 2.61073 2.210~2 8.610~*
0.1\s | 9.61073 8.6107% 9.21073 4.91073

0.05\s | 1.11072 2.3107%2 4.81072 2.110°2

0.02)\s | 4.21072 3.11072 3.110°! 8.51072

kpa/m =4 (N =122886) | 0.3\s | 1.410°2 4.41073% 231072 5.610°3
0.2)s | 1.41072 4.2107% 2.01072 5.21073

0.1\s | 1.71072 1.5107%2 4.6107%? 6.81073

0.05\s | 1.410~! 6.81072 2.6107! 4.61072

0.02)s | 5.810~! 3.510~! 6.0107' 2.110°!

solution error.
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tion 4.2) is further examined. Results obtained by choosdlf§ > 0.1)\s are satisfactorily accurate.
On the other hand, solution errors are seen to deterioratkemly whenever valueg™" < 0.1\
are used. These results corroborate the validity of themesended valug™" > 0.3\s proposed in
Section 4.2 on the basis of an essentially one-dimensiesaptroblem. Some of the values "
smaller tharD.3)\s also lead to acceptable solution errors for this examplés fibwever cannot be
expected to be always true, as the test of Section 4.2 imdicat

6.3 Diffraction of an incident P plane wave by a semi-ellipsiolal canyon

This example is concerned with the diffraction by a senipstidal canyon of a plane P-wave of
unit amplitude travelling in an elastic homogeneous irtaghalf-space (Fig. 18). A right-handed
Cartesian framéxz, y, z) is defined so that the elastic half-space occupies the rediony, z) | z >

0}. The surface of the canyon is ellipsoidal, with semiakas a respectively aligned along the
coordinate directions, y, z. The plane wave travels along directisim e, — cos tpe.. The semi-
ellipsoidal surface of the canyon and the surrounding portf free surface lying inside a disk of
radiusD > a, b are discretized using boundary elements. Such a configar&irepresentative of a
“topographic site effect” in seismology and has been thgestilof numerous studies, see [13, 28, 29,
57] and [7, 26, 34, 40, 49] where diffraction of waves by scef&eterogeneities is considered.

Semi-spherical canyon and vertical incident P-wave. First, the diffraction of a vertical incident
plane P-wave by a semi-spherical canyon is considered {i#. a, see Fig. 18), withv = 0.25.
Results obtained by the present FM-BEM for the (low) norgedifrequency:pa = 0.257, by means

of a BE mesh featuringv = 23 382 DOFs, are compared to corresponding results from [49] (hase
on a semi-analytical approach) and [40] (obtained usingrdstrd elastodynamic BEM). In this case,
the subdivision-stopping threshold used/fd" = 0.15\s, resulting in a leaf level = 3. Figure 19

free surface _ A B a

elastic half-space

plane P wave

Figure 18: Diffraction of an oblique incident P plane wave by a semipslbidal canyon: notation
(top left and bottom); sample BEM mesh, wikh= 25788 (top right).
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Figure 19: Diffraction of an incident P plane wave by a semi-spheriaiyon: horizontal and ver-
tical computed displacement on line CDE (with points C, D gffirced on Fig. 18) plotted against
normalized arc-length coordinate/a along CDE (normalized frequendya/m = 0.25). Com-
parison of present FMM solution to results from Sanchezvadd9] and Reinoso et al. [40]

shows that the horizontal and vertical displacements almegCDE (with points C, D, E defined
in Fig. 18) produced by the three approaches are in good mgmte Note that the corresponding
results in [40, 49] are plotted against the horizontal comtty, whereas the arc-length coordinate
along ABC is used in Fig. 19. The same vallle= 3a of the truncation radius has been used for all
three sets of results. The present computation required REMiterations ands of CPU time per
iteration.

Moreover, the FM-BEM allows to deal with non-dimensionaduencies significantly higher
than those considered in previous studies. Figure 20 shwsvdisplacements along line ABC com-
puted for a nondimensional frequenkya /7 = 5 using the present method. This time, the problem
size N = 287946 is well beyond the capabilities of standard BEM. This comafiah, performed with
a leaf level/ = 6, required86 GMRES iterations (without preconditioning) and3 s of CPU time
per iteration. The displacement near the canyon edgey(i-z: ands = 7ra/2, see Fig. 18) has strong
variations, as expected.

T T T
|yl (present FMM
— |u,| (present FMM

displacement modulus

i ‘ ‘ ' ‘ ‘ ‘—“>‘
00 1 2 3

s/a

Figure 20: Diffraction of an incident P plane wave by a semi-spheriaiyon: horizontal and ver-
tical computed displacement on line CDE (with points C, Dglirced on Fig. 18) plotted against
normalized arc-length coordinatg/a along CDE (normalized frequenéya /7 =5)
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kpa/m=0.25 |kpa/m=0.5 |kpa/7m =0.75 |kpa/7m=1.5 |kpa/m =5 |kpa/m =10

D=3a 7(23382) 10 (23382] 12 (23382] 19 (23382] 86 (287946)> 280 (1145700
D=5a 7 (61875) 10 (61875] 15 (61875) 28 (61875) 159 (774180
D=Ta 8 (77565) 13 (77565] 17 (77565] 43 (77565

D =20a 14 (98844) 39(98844) 43 (98844

Table 7: Diffraction of a plane wave by a semi-spherical canyon: namif GMRES iterations for
various truncation radiiD and nondimensional frequenciggsa/m with, in parentheses, the corre-
sponding problem size¥.

The size of the problems that can be solved is now limited leynilimber of iterations of the
iterative solver. The number of iterations required forngence of the GMRES solver, reported
in Table 7 for various problem size§ and (non-dimensional) frequenciésa /7, clearly depend
on both N andkpa /7. Reducing the iteration count requires a preconditioningtegy. This critical
component of the development of efficient FM-BEM algorithsains in the authors’ view a largely
open issue and is not addressed here. In [17], a block dihguaiaix is used. Other strategies for
defining preconditioning matrices, found to be effectivéhia context of electromagnetic FM-BEMs,
include performing an incomplete LU decomposition[&f] [52] or using the SParse Approximate
Inverse [2]. A comparative performance study of availabiecpnditioning strategies remains to be
done for the elastodynamic FM-BEM.

Semi-ellipsoidal canyon and oblique incident P-wave. Finally, a fully three-dimensional configu-
ration is considered, namely the scattering of an obliqu&lent P-wave by a semi-ellipsoidal canyon
(with b = 3a andfy = /6, see Fig. 18), withy = 1/3. This problem has been previously studied
in [13] by means of a wave function expansion and, for lowdietcies, in [40] using a standard BEM.
Results obtained by the present FM-BEM for the (low) noreedifrequencysa/m = 0.5, by means

of a BE mesh featuringv = 25788 DOFs shown in Fig. 18, are compared to corresponding numer-
ical results from [40]. Figure 21 shows that the horizontad &ertical displacements produced by
both approaches, plotted against the normalized archetmtrdinates/a along line ABCDE (with

. — —
-yl (present FMM) |
° |uy| (Reinoso et all) |
— |y (present FMM

[%2] L 4
S u | (Reinoso et al
3,4 = | zl( )7
3 2.
o
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e | ]
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é— . R
2
1 —
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Figure 21: Diffraction of an oblique incident P plane wave by a semipsbidal canyon: horizon-
tal and vertical computed displacement on line ABCDE (witinfs A, B, C D, E defined on
Fig. 18) plotted against normalized arc-length coordinaj: along ABCDE (normalized fre-
quencyksa/m = 0.5). Comparison of present FMM solution to results from Reinetsal. [40]
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Figure 22: Diffraction of an oblique incident P plane wave by a semipsbbidal canyon: horizon-
tal (left) and vertical (right) computed displacement omgan surface and meshed part of free
surface (normalized frequenéya/m = 2). The white ellipse depicts the canyon edge.

points A, B, C, D, E defined on Fig. 18), are in good agreemehé gresent computation (featuring
a truncation radiusD = 6a and a leaf level = 3) required 11 GMRES iterations arsé of CPU
time per iteration. Finally, results obtained using thespré FM-BEM for a higher frequency defined
by ksa/m = 2 are presented in terms of thgand = components of the displacement field (Fig. 22).
The problem size i8V = 353 232. The computation, performed with a leaf levek 5, required 32
GMRES iterations andi43s of CPU time per iteration.

7 Conclusions

In this article, the Fast Multipole Method has been sucdlystxtended to3D elastodynamics in
the frequency domain. Combined with the BEM formulatiométmits to reduce the computational
burden, in both CPU time and memory requirements, for thdyaisaof wave propagation (e. g.
seismic), and allows to run BEM models of size= O(10°) on an ordinary PC. Comparisons with
analytical or previously published numerical results shibevefficiency and accuracy of the present
elastodynamic FM-BEM. Theoretical complexity estimatestfoth the single-level and multi-level
formulations were derived and corroborated by numericaberents.

Applications of the present FM-BEM to realistic cases irss@logy are under way. Moreover, a
natural extension of this work consists in formulating ripgte expansions of other fundamental so-
lutions, with the half-space elastodynamic fundamentiaitsm being currently investigated. Finally,
improving the efficiency of the elastodynamic FM-BEM alsques further research into refined
(direct/inverse) extrapolation techniques (for lowerthg O(N 3/ 2) of this step) and a well-chosen
preconditioning strategy (for reducing the GMRES iterattmunt).
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