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LARGE DEVIATIONS FOR RANDOM SPECTRAL

MEASURES AND SUM RULES

F. GAMBOA AND A. ROUAULT

Abstract. We prove a Large Deviation Principle for the random spec-
tral measure associated to the pair (HN , e) where HN is sampled in the
GUE(N) and e is a fixed unit vector (and more generally in the β extension
of this model). The rate function consists of two parts. The contribution
of the absolutely continuous part of the measure is the reversed Kullback
information with respect to the semicircle distribution and the contribu-
tion of the singular part is connected to the rate function of the extreme
eigenvalue in the GUE. This method is also applied to the Laguerre and
Jacobi ensembles, but in thoses cases the expression of the rate function is
not so explicit.

1. Introduction

Let U be a unitary operator in a Hilbert space H, and e be a unit cyclic
vector (the span generated by the iterates (Unx) is H). The spectral measure
associated with the pair (U, e) plays an important role and will be one of the
object studied here. This measure is the unique probability measure (p.m.) µ
on the unit circle T such that

〈e, Une〉 =

∫

T

zndµ(z) (n ≥ 1) .

Assume further that dim H = N and that e1 the first vector of the canonical
basis is cyclic for U . Let λ1, . . . , λN be the eigenvalues of U (all lying on T),
and let ψ1, . . . , ψN be a system of unit eigenvectors. The spectral measure is
then

µ(N)
w

=

N∑

k=1

πkδλk
(1)

with πk := |〈ψk, e1〉|2 k = 1, . . . , N . Notice that given λk, the vector ψk is
determined up to a phase, but the number πk is completely determined. To
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2 F. GAMBOA AND A. ROUAULT

avoid confusion, we put an index w (for weight) to distinguish this measure
from the classical empirical spectral distribution (ESD) defined by

µ(N)
u

=
1

N

N∑

k=1

δλk
. (2)

When U is uniformly sampled from U(N) (the unitary group of order N)
with the Haar distribution, it is well known that the joint distribution of
(λ1, . . . , λN ) has a density proportional to

|∆(λ1, . . . , λN )|2

where ∆ is the Vandermonde determinant (see for example [Meh04]). Fur-
thermore, e1 is almost surely (a.s.) cyclic and (π1, . . . , πN ) is independent of
(λ1, . . . , λN ). Moreover, (π1, . . . , πN ) is uniformly distributed on the simplex
Sn = {(π1, . . . , πN ) : πk > 0, (k = 1, . . . , N), π1 + . . . πN = 1}. As N tends

to infinity, both sequences of random measures (µ
(N)
w ) and (µ

(N)
u ) converge

weakly to the equilibrium measure, i.e. the uniform distribution on T. In
a previous work ([GR08]), we have established a strong connection between

the asymtotic properties of (µ
(N)
w ) and the random moment problem studied

in [GLC04] and [CKS93]. In particular we proved that the sequence (µ
(N)
w )

satisfies a Large Deviation Principle (denoted hereafter LDP), with speed N
and good rate function given by reversed Kullback entropy with respect to the
equilibrium measure (see the Appendix where we recall the definition of this
quantity). For the sake of completeness, we also recall in the appendix the
definition of a LDP and some useful results on large deviations. Notice that

there is a quite important difference in the large deviation behaviour of (µ
(N)
w )

and (µ
(N)
u ). Indeed, this last sequence of probability measures (p.ms.) satisfies

a LDP with speed N2 and with a rate function connected to the Voiculescu

entropy (see for example [HP00]). To show a LDP for (µ
(N)
w ) one may think

of two kinds of proof. The first one, which could be called the direct way,
uses the representation (1) [GR08]. Besides, it is possible to code a measure
µ on T by the system of its Verblunsky (or Schur) coefficients, via the Favard
theorem [Sim05b]; they are also the canonical moments of µ (see [DS97] for
the definition). The second method uses this coding. It turns out that, under

the Haar distribution, the canonical moments (c
(N)
1 , . . . c

(N)
N ) of µ

(N)
w are inde-

pendent random variables (r.vs.) with explicit distribution depending on N .
It is then possible in a first step to check the LDP on these variables and in
a second step to lift the LDP and the rate function on the space of measures
[LC05].

The precise form of the rate function can be explained, in the first method
by the Dirichlet weighting of the random measure, and in the second method
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by the Szegö formula, which enters in the class of the so-called sum rules. The
same thing can be done for the Jacobi ensemble with the arcsine distribution
(on [0, 1] or on [−2, 2]) playing the role of the uniform distribution on T (see
[GR08]).

In this paper we will focus on models of self-adjoint matrices and their
extensions. If H is a self-adjoint bounded operator in a Hilbert space H and
e a cyclic vector, the spectral measure is the unique p.m. µ on R such that

〈e,Hne〉 =

∫

R

xndµ(x) (n ≥ 1) .

If dim H = N and e1 is cyclic for H, the spectral measure is

µ(N)
w

=

N∑

k=1

πkδλk
(3)

with the same notation as above, except that, now, the eigenvalues are real.
The first two models studied here leads to an eigenvalue distribution that is

not almost surely (a.s.) supported by a fixed compact set. We will first study
the β-Hermite ensemble. It is a family extending the Gaussian ensembles
(GOE, GUE, GSE). The second model considered is the β-Laguerre ensem-
ble that generalizes Wishart matrices. In both cases, we could expect that

the sequence (µ
(N)
w ) satisfies a LDP with speed N and with a rate function

given by the reversed Kullback entropy with respect to the limit distribution
(respectively semicircle and Marchenko-Pastur distributions). Actually the
difference with the unitary case comes from the problem of support. We prove
results of the same flavour that those we previously obtained in the unitary
case, but with an extra contribution in the rate function due to the singular
part of measures. The third model studied is the β-Jacobi ensemble in which
the eigenvalues are confined in a compact set.

The paper is organized as follows. The next section is devoted to the in-
troduction of notation and models : topology on space of moments and real
matrix models that we will study later. In Section 3, we discuss some rela-
tionships between the random spectral measures and coefficients appearing in
the construction of the associated random orthogonal polynomials. The LDP
for real matrix models are studied in last two sections. The case of the β-
Hermite ensemble is completely tackled in Section 4. Surprisingly, we manage
to compute explicitely the rate function, with the help of a convenient sum
rule [Kil07]. The β-Laguerre and β-Jacobi ensembles are studied in Section 5
and 6. Here, the rate functions are not so explicit. All useful distributions we
work with are defined in Section 7.2. Furthermore, basic facts on LDPs are
recalled in Section 7.1.
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2. Notation and models

2.1. Topology on moments spaces. Let M1 be the set of all p.ms. on IR
and let M1

m be the subset consisting of p.ms. on IR having all their moments
finite. For µ ∈ M1

m we set

mk(µ) =

∫

R

xkdµ(x) , k ≥ 1 ,

and m(µ) =
(
mk(µ)

)
k≥1

. As it is classical in moment problems, we consider

the set M1
m as a subset of R[[X]], (the set of formal series with real coefficients),

or equivalently as a subset of the set of linear forms on the space R[X] of
polynomials with real coefficients, or eventually as a subset of RN. We may
identify µ either with

• The formal series
∑∞

n=0mn(µ)Xn,
• The linear form on R[X] : P (X) 7→

∫
R
P (x)dµ(x)

• The sequence m(µ).

We endow M1
m with the distance of convergence of moments:

d(µ, ν) =

∞∑

k=1

2−k |mk(µ) −mk(ν)|
1 + |mk(µ) −mk(ν)|

. (4)

If M1
m,d denotes the subset of M1

m consisting in all p.ms. determined by their

moments, then the mapping m is injective and continuous from M1
m,d to RN.

2.2. β-Hermite ensemble. Let us recall some classical Gaussian matrix
models and their extensions.

• GOE(N) The diagonal entries are independent and N (0; 2/N) dis-
tributed and the non diagonal entries are independent up to symmetry
and N (0; 1/N) distributed. The joint density on IRN of the eigenvalues
is proportional to

∆(λ1, . . . , λN ) exp−N
4

∑

j

λ2
j .

The matrix of eigenvectors is orthogonal, so its first line is uniformly
distributed on the N -dimensional sphere, i.e. the vector (π1, . . . , πN )
has the distribution DirN (1/2).

• GUE(N) The diagonal entries are independent and N (0; 1/N) dis-
tributed and the non diagonal entries are independent up to symmetry
and distributed as N (0; 1/2N) +

√
−1N (0; 1/2N) where both normal
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variables are independent. The joint density of the eigenvalues is pro-
portional to

∆(λ1, . . . , λN )2 exp−N
2

∑

j

λ2
j .

The matrix of eigenvectors is unitary, so the first line is uniformly
distributed on the N -dimensional (complex) sphere, i.e. the vector
(π1, . . . , πN ) has the distribution DirN (1).

If M is sampled from the GOE(N) or GUE(N), e1 is a.s. cyclic, the
eigenvalues are a.s. distinct and then we will consider the (random)

spectral measure µ
(N)
w given by (3).

We do not recall the definition of the symplectic ensemble GSE(N).
Nevertheless, some of the previous objects may also be defined in this
context.

• More generally, it is now classical to consider a parameter β = 2β′ > 0,
and a density in RN proportional to

|∆(λ1, . . . , λN )|β exp−Nβ
2

∑

j

λ2
j .

This expression extends the above formulas so that β = 1 for the GOE,
β = 2 for the GUE and β = 4 for the GSE. It is often called a Coulomb
gas model and (λ1, . . . , λN ) are called charges.

Dumitriu and Edelman ([DE02] Theorem 2.12) found a matrix model
for this distribution, i.e. a random real symmetric matrix whose eigen-
values follows the above distribution. Moreover they proved that the
corresponding vector (π1, . . . , πN ) is independent of the eigenvalues
and DirN (β′) distributed. A specific description of the matrix will be
given in the next section.

When N → ∞, it is known that (µ
(N)
u ) converges weakly to the

semicircle distribution, and satisfies a LDP with speed N2 and with a
rate function connected to the Voiculescu entropy.

2.3. β-Laguerre and β-Jacobi ensembles.

• The classical Wishart real ensemble is formed by W = G tG with G a
m×N matrix with independent N (0, 2/N) entries. The joint density
of eigenvalues is proportional to

|∆(λ)|
m∏

j=1

λ
1
2
(N−m+1)−1

j exp−N
4

m∑

j=1

λj

and the distribution of weights (π1, . . . , πm) is DirN (1/2).
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This eigenvalues distribution is classicaly extended to the β-Laguerre
distribution of charges, with density proportional to :

|∆(λ)|β
m∏

j=1

λ
β′(N−m+1)−1
j exp−Nβ

4

m∑

j=1

λj .

For this case, Dumitriu and Edelman ([DE02] Theorem 3.4) also gave
a (real symmetric) matrix model and proved that the vector of weights
(π1, . . . , πm) are also independent of the eigenvalues and is DirN (β′)
distributed.

• The JβE(N ; a, b) ensemble (with a > −1, b > −1) has been defined
to extend the MANOVA ensemble known in statistics for β = 1 and
β = 2. It is defined by a density of N charges on [−2, 2]

|∆(x1, . . . , xN )|β
N∏

j=1

(2 − xj)
a(2 + xj)

b .

Killip and Nenciu ([KN04]) found a matrix (real symmetric) model and
proved that the corresponding vector of weights is again independent of

the eigenvalues and DirN (β′) distributed. A variant is the ĴβE(N, a, b)
ensemble where the charges are distributed on [0, 1] according to a
density proportional to

|∆(x1, . . . , xN )|β
N∏

j=1

xbj (1 − xj)
a ,

In the matrix model, the weights have the same properties as above.

3. Tridiagonal representations

3.1. Spectral map. In this section, we will describe the Jacobi mapping
between tridiagonal matrices and spectral measures. This mapping will be one
of the key tools for our large deviations results. We consider finite size matrices
corresponding to measures supported by a finite number of points and semi-
infinite matrices corresponding to measures with bounded infinite support.
The material of this section is largely borrowed from [Sim05a], [Sim07] [Sim98].

If µ is a probability measure with a finite support consisting of N points
the orthonormal polynomials (with positive leading coefficients) obtained by
Gram-Schmidt procedure from the sequence 1, x, x2, . . . , xN−1 satisfy the re-
currence relation

xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x)
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for n ≤ N − 1, where an > 0 for those n. In the basis {p0, p1, . . . , pn−1}, the
linear transformation x 7→ xf(x) in L2(dµ) is represented by the matrix

Jµ =




b0 a0 0 . . . 0

a0 b1 a1
. . .

...

0
. . .

. . .
. . . 0

...
. . . aN−3 bN−2 aN−2

0 . . . 0 aN−2 bN−1




(5)

So, measures supported by N points lead to Jacobi matrices, i.e. N × N
symmetric tridiagonal matrices with subdiagonal positive terms ; in fact, there
is a one-to-one correspondence between them. Let be given such a Jacobi
matrix J and let e1 be a cyclic vector. If µ is the spectral measure associated
to the pair (J, e1), then J is nothing more than the representation of the
multiplication by x in the basis of orthonormal polynomials associated to µ
(and J = Jµ). More generally, if µ is a p.m. on IR, with bounded infinite
support, we may apply the same Gram-Schmidt process and consider the
associated semi-infinite Jacobi matrix:

Jµ =




b0 a0 0 0 . . .
a0 b1 a1 0 . . .
0 a1 b2 a3 . . .
. . . . . . . . . . . . . . .


 (6)

Notice that again we have ak > 0 for every k. The mapping µ 7→ Jµ (which
we call Jacobi mapping) is a one to one correspondence between p.ms on R

having compact infinite support and this kind of tridiagonal matrices with
supn(|an| + |bn|) < ∞. This result is sometimes called Favard’s theorem (see
[Sim05a] p.432).

Furthermore, a compactly supported p.m. µ is completely determined
through the knowledge of all its moments mk(µ) for k ≥ 1. So, an inversion
formula for the Jacobi mapping may be performed by using Jµ to compute
the moments of µ (see for example [Sim98]). Actually, there is a recursive
procedure connecting successive moments with sucessive sections of the ma-
trix. For a general Jacobi semi-infinite (resp. N × N) matrix A, let A[j] for
j ≥ 1 (resp. for j ≤ N) the left top submatrix of A. It is known from [Sim98]
formula (5.37), that if A is semi-infinite, we have the identity

〈e1, Ake1〉 = 〈e1,
(
A[j]

)k
e1〉 , k = 1, . . . , 2j − 1. (7)

It is straightforward that this formula holds true when A is a Jacobi N × N
matrix, as soon as j ≤ N and k ≤ 2j − 2. When A = Jµ, the Jacobi matrix
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associated to a p.m. µ, we get, in terms of the moments :

mk(µ) = 〈e1,
(
J [j]

µ

)k
e1〉 , k = 1, . . . , 2j − 1. (8)

for every j if µ as an infinite support, and for j ≤ N if µ is supported by N
points. Notice that this kind of formula leads to Gauss-Jacobi quadratures. It
means that, there exists a sequence of polynomials fr of 2[N/2] + 1 variables,
such that

mr(µ) = fr(b0, . . . , b[r/2]; a0, . . . , a[r/2]−1) , (9)

for any r if µ as an infinite support, and for r ≤ 2N − 1 if µ is supported by
N points.

Notice that the inverse relations are quite intricated (see for instance Simon
[Sim98] Theorem A2). Actually, an depends on m1, . . . ,m2n+2 and bn depends
on m1, . . . ,m2n+1.

3.2. Tridiagonal representations of β-ensembles. We now consider the
Jacobi mapping for our random matrix models. The case of the β-ensembles
is directly obtained by the representation proposed by Dumitriu and Edelman
([DE02]).

• For the normalized GβE this representation is

H
(N)
β =




b
(N)
0 a

(N)
0 0 . . . 0

a
(N)
0 b

(N)
1 a

(N)
1

. . .
...

0
. . .

. . .
. . . 0

...
. . . a

(N)
N−3 b

(N)
N−2 a

(N)
N−2

0 . . . 0 a
(N)
N−2 b

(N)
N−1




where the variables a
(N)
0 , . . . , a

(N)
N−2, b

(N)
0 , . . . , b

(N)
N−1 are independent and

b
(N)
j

(d)
= N (0; (β′N)−1) ,

a
(N)
j

(d)
=

√
γ
(
β′(N − 1 − j), (β′N)−1

)
. (10)

It means that H
(N)
β has the same joint distribution of eigenvalues as for

the GβE(N). Moreover the weights are independent of the eigenvalues
and have the required distribution.
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• For the LβE (N,m(N)) the representation is L
(N)
β = B

(N)
β

(
B

(N)
β )T

B
(N)
β =




d
(N)
1 0 0 . . . 0

s
(N)
1 d

(N)
2 0

. . .
...

0
. . .

. . .
. . . 0

...
. . . s

(N)
m(N)−2 d

(N)
m(N)−1 0

0 . . . 0 s
(N)
m(N)−1 d

(N)
m(N)




where the variables d
(N)
1 , . . . , d

(N)
m(N), s

(N)
1 , . . . , s

(N)
m(N)−1 are independent

and

s
(N)
j

(d)
=

√
γ
(
β′(m(N) − j), (β′N)−1

)
,

d
(N)
j

(d)
=

√
γ
(
β′(N + 1 − j), (β′N)−1

)
. (11)

• The representation of the JβE(N ; a, b) has been obtained by Killip
and Nenciu ([KN04]). Actually, they consider a measure µ on [−2, 2]
with finite support as the projection of a symmetric measure µ̃ on
the unit circle T = {z : |z| = 1} by the mapping z 7→ z + z−1.
The Jacobi parameters (a0, . . . ; b0, . . . ) of µ are in bijection with the
Verblunsky coefficients (α0, . . . ) of µ̃ by the Geronimus relations (this is
also true for measures with infinite support, see [Sim05a] section 11)).
Notice that choosing a probability distribution to sample Verblunsky
coefficients leads to a probability distribution on Jacobi matrices.

Theorem 3.1 (Killip-Nenciu, Theorem 2). Given β > 0, let α
(N)
k , 0 ≤

k ≤ 2N − 2 be independent and distributed as follows:

α
(N)
2p

(d)
= βs

(
(N − p− 1)β′ + a + 1, (N − p− 1)β′ + b + 1

)
,

α
(N)
2p−1

(d)
= βs

(
(N − p− 1)β′ + a+ b + 2, (N − p)β′

)
, (12)

for p = 0, . . . , N − 1. Let α
(N)
2N−1 = α

(N)
−1 = −1 and define1

b
(N)
k = (1 − α

(N)
2k−1)α

(N)
2k − (1 + α

(N)
2k−1)α

(N)
2k−2

a
(N)
k =

√
(1 − α

(N)
2k−1)(1 − (α

(N)
2k )2)(1 + α

(N)
2k+1) (13)

1these are the Geronimus relations
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Then the eigenvalues of the tridiagonal matrix A(N) built with these

coefficients a
(N)
k and b

(N)
k have a joint density proportional to

|∆(x1, . . . , xN )|β
N∏

j=1

(2 − xj)
a(2 + xj)

b

and the vector of weights is Dir(β′) distributed.

We call JβE(N, a, b) ensemble the above distribution on tridiagonal
N ×N matrices.

Since it is often convenient to work on [0, 1] instead of [−2, 2], let us
introduce the affine mappings :

x ∈ [0, 1]
r7→ 4x− 2 (14)

y ∈ [−2, 2]
s7→ y + 2

4
(15)

We call ĴβE(N, a, b) the image of JβE(N, a, b) by s. The preceding
result may be rephrased in the following way:

Corollary 3.2. If A(N) is sampled in the ĴβE(N, a, b) ensemble, its
eigenvalues have a joint density proportional to

|∆(x1, . . . , xN )|β
N∏

j=1

xbj (1 − xj)
a ,

and the vector of weights is Dir(β′) distributed.

4. Large Deviations in the β-Hermite ensemble

4.1. Introduction. Recall that the sequence of ESD

µ(N)
u

=
1

N

N∑

k=1

δλk

satisfies the LDP with speed β′N2 and good rate function

Iu(µ) = −Σ(µ) +

∫

R

x2

2
dµ(x) +KH ,

where KH is a constant (see [BAG97]) and

Σ(µ) =

∫∫

R2

log |x− y| dµ(x)dµ(y).

The equilibrium measure, unique minimizer of Iu, is the semicircle distri-
bution (denoted hereafter SC, see Section 7.2). In particular, the sequence

(µ
(N)
u ) converges weakly in probability to SC.
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To manage the large deviations of (µ
(N)
w ), we will first tackle the large

deviations of (a
(N)
k , b

(N)
k , k ≥ 0). It is important to notice already that, in

view of (10), as N → ∞, we have for fixed k ≥ 0 , a
(N)
k → 1 and b

(N)
k → 0 (in

probability). The corresponding infinite Jacobi matrix which satisfies

bk = 0 , ak = 1 , k ≥ 0 ,

(often called the free Jacobi matrix, see Simon ([Sim05b] p.13) is Jµ with
µ = SC.

In the large deviations properties of (µ
(N)
w ), the extremes eigenvalues will

play an important role. As a matter of fact, the following function will appear
in our rate function. Let, for x ≥ 2

FG(x) =

∫ x

2

√
t2 − 4 dt = 4

∫ x
2

1

√
t2 − 1 dt

=
x

2

√
x2 − 4 − 2 log

(
x+

√
x2 − 4

2

)
.

Further, for x < −2 set FG(x) = FG(−x). The following theorem gives the
large deviations properties for the largest eigenvalues in the GβE(N) model
frame.

Theorem 4.1. For the GβE(N) model the sequence (λ
(N)
max) satisfies for x ≥ 2

lim
N

1

β′N
log P(λ(N)

max ≥ x) = −FG(x) . (16)

The statement and proof for the GOE are due to [BADG01] Theorem 6.1,
the case GUE is in [Mai07] Prop. 3.1 and the general case, although not treated
completely is quoted in Féral [Fér08]. Actually, the proof depends only of the
explicit form of the joint distribution of charges and is easily extended.

To prepare the statement of our main result, we need another definition.

Definition 4.2 (Simon). We say that a p.m. µ on R satisfies the Blumenthal-
Weyl condition (B.W.c) if

i) Supp(µ) = [−2, 2]∪{E−j }N−

j=1∪{E+
j }N+

j=1 where N+ (resp. N−) is either
0, finite or infinite,

E−1 < E−2 < · · · < −2 and E+
1 > E+

2 > · · · > 2

are isolated points of the support.
ii ) If N+ = ∞ (resp. N− = ∞) then E+

j converges towards 2 (resp. E−j
converges towards −2).
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4.2. Main result. Here is our main result. Notice that, of course, SC is the
unique minimizer of the rate function, in accordance with the remark at the
beginning of this section.

Theorem 4.3. The sequence (µ
(N)
w ) satisfies the LDP in M1

m,d with speed

β′N and good rate function

Iw(ν) =

{
K(SC | ν) +

∑N+

n=1 FG(E+
n ) +

∑N−

n=1 FG(E−n ) if ν satisfies B.W.c,

+∞ otherwise .

(17)

Hence, the rate function I(ν) is finite if and only if

ν(dx) = fa(x)SC(dx) + νs(dx) +
N+∑

n=1

κnδE+
n
(dx) +

N−∑

n=1

κnδE−

n
(dx)

where νs is singular (with respect to the Lebesgue measure) and is supported
by a subset of [−2,+2] and

−
∫ 2

−2
log fa(x)SC(dx) <∞ ,

N+∑

n=1

FG(E+
n ) +

N−∑

n=1

FG(E−n ) <∞.

In this case

I(ν) =

∫ 2

−2
log

(√
4 − x2

2πfa(x)

) √
4 − x2

2π
dx+

N+∑

n=1

FG(E+
n ) +

N−∑

n=1

FG(E−n ) . (18)

Proof : For k > 0, the subsetM(k) of M1
m of all p.ms supported by [−k,+k]

is compact for our topology. Indeed, for p.ms in M(k) the moment maps are
continuous function (M(k) is tight for the convergence in law). From Theorem
4.1 we know that

lim
k→∞

lim
N→∞

1

N
log P(λ(N)

max > k) = −∞ .

By symmetry, we have also

lim
k→∞

lim
N→∞

1

N
log P(λ

(N)
min < −k) = −∞ .

This implies

lim
k→∞

lim
N→∞

1

N
log P(µ(N)

w
/∈M(k)) = −∞ ,

hence the sequence (µ
(N)
w )N is exponentially tight.

From the inverse contraction principle (see [DZ98] Theorem 4.2.4 and Re-
mark a)) it is a consequence of the two following theorems: the first one is
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a LDP for the sequence of moments and the second one is a magic formula
which allows a powerful identification of the rate function.

We now give one of the main ingredients of our LDP proof for GβE(N) en-
sembles. First define the functions g(x) := x−1− logx if x > 0 and g(x) = ∞
otherwise and let

G(x) :=

{
g(x2) if x > 0

∞ otherwise .

Theorem 4.4. The sequence
(
m(µ

(N)
w )

)
satisfies in RN the LDP with speed

β′N and good rate function I defined as follows. This function is finite if and
only if there exist (b0, . . . ; a0, . . . ) ∈ RN × (0,∞)N satisfying

∞∑

j=0

b2j <∞ ,
∞∑

j=0

(aj − 1)2 <∞ (19)

such that mr = 〈e1, Are1〉 for every r ≥ 1 with A infinite tridiagonal matrix
built with (b0, . . . ; a0, . . . ). In that case

I(m1, . . . ) =
1

2

∞∑

j=0

b2j +
∞∑

j=0

G(aj) <∞ .

Theorem 4.5 (Killip-Simon [KS03], [Sim05c] Theorem 13.8.6). Let J be a
Jacobi matrix built with (a0, . . . ; b0, . . . ) ∈ (0,∞)N × RN satisfying sup[an +
sup |bn|] < ∞. Let µ be the associated measure obtained by Favard’s theorem.
Then

∑

k

[
b2k + (ak − 1)2

]
<∞ (20)

if, and only if, the p.m. µ satisfies B.W.c. and the two following conditions:

N+∑

j=1

(E+
j − 2)3/2 +

N−∑

j=1

(−2 − E−j )3/2 <∞ (21)

∫ 2

−2
log(fa(x))

√
4 − x2 dx > −∞ . (22)

In that case

Iw(µ) =
∑

n

[
1

2
b2n +G(an)

]
(23)

where both sides may be (simultaneously) infinite.

The proof of Theorem 4.4 will use the following result.
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Lemma 4.6. For fixed k,
(
b
(N)
0 , . . . , b

(N)
k ; a

(N)
0 , . . . , a

(N)
k−1

)
N≥k

satisfies in R2k−1

a LDP with speed β′N and good rate function

Ik(b0, . . . , bk; a0, . . . , ak−1) =
1

2

k∑

j=0

b2j +

k−1∑

j=0

G(aj) . (24)

Proof It is an immediate consequence of independence and the LDP for
Gaussian and Gamma r.vs. recalled in the following lemma.

Lemma 4.7.

(1) The sequence of distributions N (0;n−1) satisfies the LDP with speed
n and good rate function x 7→ x2/2.

(2) For α > 0 and c fixed, the sequence of distributions γ
(
(n− c), (αn)−1

)

satisfies the LDP with speed n and good rate function x 7→ g(αx).
(3) For u, v > 0 and δ, δ′ fixed, the sequence of distributions βs(un+δ, vn+

δ′) satisfies the LDP with speed n and good rate function:

h(q) =

{
q(u− v) − u log(1 + q) − v log(1 − q) ; q ∈ (−1, 1)

∞ ; otherwise .
(25)

Proof The points 1 and 2 are well known. For point 3, we use the represen-
tation

βs(un+ δ, vn + δ′)
(d)
=
γ(un+ δ) − γ(vn + δ′)

γ(un+ δ) + γ(vn + δ′)

hence by contraction the rate function is

h(q) = inf{ug(x/u) + vg(y/v);
x− y

x+ y
= q} ,

which yields easily (25).

Proof of Theorem 4.4 : Fix ℓ > 1. By Lemma 4.6 and the contraction

principle, the sequence
(
m1(µ

(N)
w ), . . . ,m2ℓ−1(µ

(N)
w )

)
satisfies the LDP in R2ℓ−1

with speed β′N and rate function Ĩ2ℓ−1 defined as follows. Notice that there is
at most only one tridiagonal matrix Aℓ built from (b0, . . . , bℓ−1; a0, . . . , aℓ−2)
as in (5) such that

mr = 〈e1, Ar
ℓe1〉, r = 1, . . . , 2ℓ− 1. (26)

Hence, if (m1, . . . ,m2ℓ−1) satisfies (26), then

Ĩ2ℓ−1(m1, . . . ,m2ℓ−1) = Iℓ−1(b0, . . . , bℓ−1; a0, . . . , aℓ−2) (27)

Otherwise, Ĩ2ℓ−1(m1, . . . ,m2ℓ−1) is infinite. We do not consider the even case
since there is no injectivity in that case.
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We now apply the Dawson-Gärtner theorem. Let us endow R[[X]] with the
topology of pointwise convergence of coefficients. It can be viewed as the
projective limit

R[X] = lim
←−

Rk[X]

where Rk[X] is the set of polynomials of degree equal or less than k.
The rate function is

I(m1, . . . ) = sup{Ĩ2k+1(m1, . . . ,m2k+1) : k ≥ 0} . (28)

It is clear that

sup{Ĩ2k+1(m1, . . . ,m2k+1) : k ≥ 0} = sup
k
{1

2

k∑

j=0

b2j +

k−1∑

j=0

G(aj)}

=
1

2

∞∑

j=0

b2j +
∞∑

j=0

G(aj) ≤ ∞ .

4.3. Failure of the direct method. Mimicking the unitary case ([GR08]),
it is tempting to define the random measure

µ̃(N)
w

=

N∑

k=1

Ykδλk

with the Yk independent and γ(β′) distributed so that

µ(N)
w

=
µ̃

(N)
w

µ̃
(N)
w (1)

The problem is that the method of Najim [Naj02] cannot be applied as the
important assumption on the range of the eigenvalues is violated. Indeed,
not all the eigenvalues ly in the support of the semicircle law. So that, the
conclusion given by this approach is wrong. The rate function candidate only
contains the Kullback part of the LDP but loose the outer part.

4.4. Optimization of the rate function. In this subsection we discuss the
problem of minimizing the rate function Iw under moment constraints. Sur-
prisingly, using basic tools of large deviations, we show that this optimum
value may be expressed in terms of the coeficients (ak) and (bk). This result
has the same spirit as the relation between the optimum of Burg entropy under
trigonometric moment restrictions and the Verblunsky coeficients (see [GS84]
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and [Bur75]). To begin with, for l > 1, we define the moment sets

IM2l−1 :=

{(∫
xjµ(dx)

)

j=1,...,2l−1

: µ ∈ M1

}
,

IM
[−2,2]
2l−1 :=

{(∫
xjµ(dx)

)

j=1,...,2l−1

: µ ∈ M1, Suppµ ⊂ [−2, 2]

}
.

For c ∈ IM2l−1 (resp. c ∈ IM
[−2,2]
2l−1 ), let S2l−1(c) (resp. S [−2,2]

2l−1 (c)) denotes the
set of all p.ms on IR (resp. on [−2, 2]) having c as 2l − 1 first moments.

Corollary 4.8.

1) Let c ∈ Int IM2l−1, then

inf
µ∈S2l−1(c)

Iw(µ) =
1

2

l−1∑

j=0

b2j +
l−2∑

j=0

G(aj).

Where as before, the real (aj)j=1,...,l−2 and (bj)j=1,...,l−1 are the coefi-
cients of the tridiagonal matrix (5).

2) Let c ∈ Int (IM
[−2,2]
2l−1 ) then

inf
µ∈S2l−1(c)

Iw(µ) = inf
µ∈S

[−2,2]
2l−1 (c)

K(SC|µ) =
1

2

l−1∑

j=0

b2j +
l−2∑

j=0

G(aj)

= sup
(v0,v)∈IR2l

(
v0 +

2l−1∑

j=1

vjcj +

∫ 2

−2
log
(
1 − v0 −

2l−1∑

j=1

vjx
j
)
SC(dx)

)
,

(here log(u) = −∞ whenever u < 0).

Proof The proof of the first part directly follows from the contraction prin-
ciple (see [DZ98]). The first equality of the second part is obvious as FG is
non negative. The last equality is a direct application of general optimization
procedures developed in [GG97] or [BL93].

5. Large Deviations in the β-Laguerre ensemble

In the Laguerre case, in the usual asymptotics N → ∞, m(N)/N → τ < 1,
we observe similar phenomena. Recall that the sequence of ESD

µ(N)
u

=
1

m(N)

m(N)∑

k=1

δλk
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satisfies the LDP with speed β′N2 and good rate function

Iu(µ) = −Σ(µ) +

∫ ∞

0

(x
2
− (1 − τ) log x

)
dµ(x) +KL ,

where KL is a constant ([HP98]). The equilibrium measure, unique minimizer
of Iu is the Marchenko-Pastur distribution of parameter τ (denoted hereafter

by MP, see Appendix). In particular, the sequence (µ
(N)
u ) converges weakly in

probability to MP.

To manage the large deviations of (µ
(N)
w ), we will first tackle the large

deviations of (sN,m
k , dN,m

k , k ≥ 0). Recall that the elements of the tridiagonal

matrix L
(N)
β are

b
(N)
0 = (d

(N)
1 )2 , b

(N)
k = (s

(N)
k )2 + (d

(N)
k+1)

2 (1 ≤ k ≤ N − 1)

a
(N)
k = s

(N)
k+1d

(N)
k+1 (0 ≤ k ≤ N − 2) . (29)

We can see already that, in view of (11), we have for fixed k ≥ 1 and N →
∞, lim d

(N)
k = 1 and lim s

(N)
k =

√
τ (in probability). From (29), this yields

lim b
(N)
0 = 1 and for fixed k ≥ 1, lim b

(N)
k = 1 + τ , lim a

(N)
k−1 =

√
τ (in

probability). The corresponding infinite Jacobi matrix which satisfies

b0 = 1 , bk = 1 + τ , (k ≥ 1) ; ak =
√
τ ; (k ≥ 0) .

is Jµ with µ = MP .
Let FL defined by

FL(x) =





∫ x

b(τ)

√
(t− a(τ))(t − b(τ))

t
dt x ≥ b(τ) ,

∫ a(τ)

x

√
(a(τ) − t)(b(τ) − t)

t
dt 0 < x ≤ a(τ) .

This is actually the rate function of the LDP for the extreme eigenvalue, as
quoted in Féral [Fér08].

Proposition 5.1. For the LβE(N, τN) model,

(1) the sequence (λ
(N)
max) satisfies for x ≥ b(τ)

lim
N

1

β′N
log P(λ(N)

max ≥ x) = −FL(x) . (30)

(2) the sequence (λ
(N)
min) satisfies for 0 < x ≤ a(τ)

lim
N

1

β′N
log P(λ

(N)
min ≤ x) = −FL(x) . (31)
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For a general double sequence of positive numbers (dk)k≥1 and (sk)k≥1 we
set d ◦ s = (d1, . . . ; s1, . . . ). We deduce the elements

b0 = d2
1 , bk = s2k + d2

k+1 (k ≥ 1)

ak = sk+1dk+1 (k ≥ 0) . (32)

Conversely, if (a0, . . . ; b0, . . . ) is given in (0,∞)N×N such that the tridiagonal
matrix is positive, there exists a unique d ◦ s satisfying (32). Here is a direct
consequence of Lemma 4.7.

Theorem 5.2. Under the LβE(N, τN) model, the sequence (µ
(N)
w ) satisfies

in M1
m,d((0,∞)) a LDP with speed β′N and good rate function Iw defined

as follows. This function is finite at ν if and only if there exists d ◦ s ∈
[0,∞)N × [0,∞)N (necessarily unique) satisfying

∑

k

G(dk) + τ
∑

k

G(sk/
√
τ) <∞ ,

such that mr(ν) = 〈e1, Are1〉 for every r ≥ 1 with A infinite tridiagonal matrix
built with (b0, . . . ; a0, . . . ) satisfying (32). In that case

Iw(ν) =
∑

k

G(dk) + τ
∑

k

G(sk/
√
τ) . (33)

Remark 5.3.

• It is clear from (33) that the unique minimizer of Iw corresponds to
dk ≡ 1 and sk ≡ √

τ which corresponds to MP.
• When τ = 1, we can write:

Iw(ν) =
∑

k≥1

[
d2

k − 1 − log d2
k + s2k − 1 − log s2k

]

= d2
1 − 1 +

∑

k≥1

[
d2

k+1 + s2k − 2
]
− 2

∑

k≥1

log(dksk)

= b0 − 1 +
∑

k≥1

(bk − 2) − 2
∑

k≥0

log ak .

This expression of Iw in terms of the Jacobi coefficients makes plausible
the existence of a convenient sum rule and we propose the following
conjecture :

Conjecture 5.4. The rate function is

Iw(ν) = K(MP | ν) +
∑

j

FL(E±j ) .
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Proof of Theorem 5.2 For k fixed, (d
(N)
k ) (resp. (s

(N)
k )) satisfies a LDP

with good rate function G(dk) (resp. τG(sk/
√
τ)) hence, by independence,

the rate function is the sum (33).

6. Large Deviations in the β-Jacobi ensemble

Let us consider the ĴβE(N, a(N), b(N)) ensemble. The usual asymptotics
is N → ∞, b(N)/N → β′κ1, a(N)/N → β′κ2. The sequence of ESD

µN =
1

N

N∑

k=1

δλk

satisfies the LDP with speed β′N and good rate function :

Iu(µ) = −Σ(µ) −
∫ 1

0
(κ1 log x+ κ2 log(1 − x)) dµ(x) +KJ , (34)

where KJ is a constant (see [HP05]). The equilibrium measure (the unique
minimizer of Iu) is the Kesten-MacKay distribution (denoted hereafter KMK)
of parameter (u−, u+), where

u−, u+ = u±

(
1 + κ1

2 + κ1 + κ2
,
1 + κ1 + κ2

2 + κ1 + κ2

)

(see Section 7.2). In particular, the sequence (µ
(N)
u ) converges weakly in prob-

ability to KMK.

To manage the large deviations of (µ
(N)
w ), we will first tackle the large

deviations of (α
(N)
k , k ≥ 0). It is important to notice already that, in view of

(12), we have for fixed p ≥ 0,

lim
N
α

(N)
2p =

κ2 − κ1

2 + κ1 + κ2
, lim

N
α

(N)
2p+1 = − κ1 + κ2

2 + κ1 + κ2
.

The symmetric measure admitting these limiting Verblunsky coefficients is
well understood by its Cauchy-Stieltjes transform since the work of Geronimus
([Ger44], see also the books of Simon). We do not give details here to shorten
the paper. After projection, we obtain the KMK distribution.

Let FJ defined by

FJ(x) =





∫ x

u+

√
(t− u+)(t− u−)

t(1 − t)
dt u+ ≤ x < 1 ,

∫ u−

x

√
(u− − t)(u+ − t)

t(1 − t)
dt 0 < x ≤ u− .

This is actually the rate function of the LDP for the extreme eigenvalue.
Indeed as in Féral [Fér08], we can prove
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Lemma 6.1. For the ĴβE(N, a(N), b(N)) model with the above notations, if
κ1, κ2 > 0,

(1) the sequence (λ
(N)
max) satisfies for x ∈ (u+, 1)

lim
N

1

β′N
log P(λ(N)

max ≥ x) = −FJ(x) . (35)

(2) the sequence (λ
(N)
min) satisfies for x ∈ (0, u−)

lim
N

1

β′N
log P(λ

(N)
min ≤ x) = −FJ(x) . (36)

Proof We follow the scheme of proof of [Fér08], Section 5.2. The potential
is

V (x) = −κ1 log x− κ2 log(1 − x) .

It is convex and C∞ on the compact support of the equilibrium measure. It
fulfills assumption (iv) of Theorem 4.2 therein. Besides from the formula (46)
giving the Cauchy-Stieltjes transform, we see that we are exctly in the same
situation as in Féral.

Theorem 6.2.

(1) (Gamboa-Rouault [GR08]) Under the ĴβE(N, a, b) model, the sequence

(µ
(N)
w ) satisfies in M1([0, 1]) endowed with the weak topology the LDP

with speed N and good rate function

I(ν) = K(ARCSINE | ν) .
(2) Under the ĴβE(N,κ1N,κ2N) model, the sequence (µ

(N)
w ) satisfies in

M1([0, 1]) endowed with the weak topology the LDP with speed N and
with a good rate function Iw defined as follows. This function is finite
at ν if and only if there exists ~α ∈ (−1, 1)N (necessarily unique) such
that

I(~α) := (κ1 − κ2)
∞∑

0

α2k + (κ1 + κ2)
∞∑

0

α2k+1

− (1 + κ1)

∞∑

0

log(1 + α2k) − (1 + κ2)

∞∑

0

log(1 − α2k)

− (1 + κ1 + κ2)

∞∑

0

log(1 + α2k+1) −
∞∑

0

log(1 − α2k+1)

is finite. In that case

Iw(ν) = I(~α) .
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Proof We apply Lemma 4.7 (3), with n = β′N , and for an even index we
have u = 1 + κ1, v = 1 + κ2 and with odd index u = 1 + κ1 + κ2, v = 1

Iα2k
(x) = x(κ1 − κ2) − (1 + κ1) log(1 + x) − (1 + κ2) log(1 − x)

Iα2k+1
(x) = x(κ1 + κ2) − (1 + κ1 + κ2) log(1 + x) − log(1 − x)

Then it is enough to add up.
In the particular case of a and b fixed, we have κ1 = κ2 = 0 and

I(~α) = −
∞∑

0

log(1 − α2
k) .

But the Szegö formula ([Sim05b]) says that it is exactly the reversed Kullback
with respect to the ARCSINE distribution.

In the general case, there is up to our knowledge, no known sum rule.
Besides it is very intricate to express the above sums in terms of the tridiagonal
coefficients. Nevertheless it is tempting to propose the conjecture.

Conjecture 6.3. Under the ĴβE(N,κ1N,κ2N) model, the rate function is
given by

I(ν) = K(KMK | ν) +
∑

j

FJ (E±j )

7. Appendix

7.1. Large deviations. We present here large deviations principles (LDPs)
for sequences of random measures defined in the previous Section. For the sake
of completeness we briefly recall the LDP definition. Let (un) be a decreasing
positive sequence of real numbers with limn→∞ un = 0.

Definition 7.1. We say that a sequence (RN ) of p.ms. on a measurable
Hausdorff space (G,B(G)) satisfies a LDP with speed u−1

N and rate function I
if:

i) I is lower semicontinuous (lsc), with values in IR+ ∪ {+∞}.
ii) For any measurable set A of G:

−I(intA) ≤ lim inf
N→∞

uN logRN (A) ≤ lim sup
N→∞

uN logRN (A) ≤ −I(cloA),

where I(A) = infξ∈A I(ξ) and intA (resp. cloA) is the interior (resp.
the closure) of A.

We say that the rate function I is good if its level set {x ∈ G : I(x) ≤ a} is
compact for any a ≥ 0. More generally, a sequence of G-valued r.vs. is said
to satisfy a LDP if the sequence of their distributions satisfies a LDP.
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The rate functions obtained in this paper are built with be the so-called
Kullback information or cross entropy. Let P and Q be p.ms. on G, the
Kullback information between P and Q is defined by




K(P |Q) =

∫

G
log

dP

dQ
dP if P ≪ Q and log

dP

dQ
∈ L1(P ),

= +∞ otherwise.
(37)

7.2. The distributions.

7.2.1. Gamma distribution. For a, b > 0, the γ(a, b) distribution is supported
by [0,∞) with density

e−x/bxa−1

baΓ(a)

Its mean is ab.

7.2.2. Beta distribution. For a, b > 0, the beta symmetric distribution of pa-
rameter (a, b), denoted by βs(a, b), is supported by (−1, 1] and has density

21−a−b Γ(a+ b)

Γ(a)Γ(b)
(1 − x)a−1(1 + x)b−1

Its mean is b−a
b+a .

7.2.3. Dirichlet distribution. For k ≥ 1, we set

Sk := {(x1, · · · , xk) : xi > 0, (i = 1, · · · , k), x1 + · · · + xk = 1}
S<

k := {(x1, · · · , xk) : xi > 0, (i = 1, · · · , k), x1 + · · · + xk < 1} .

Obviously, the mapping (x1, · · · , xk+1) 7→ (x1, · · · , xk) is a bijection from the
simplex Sk+1 onto S<

k .
For aj > 0, j = 1, . . . , k+ 1, the Dirichlet distribution Dir(a1, · · · , ak+1) on

Sk+1 has the density

Γ(a1 + · · · + ak+1)

Γ(a1) · · ·Γ(ak+1)
xa1−1

1 · · · xak+1−1
k+1 (38)

with respect to the Lebesgue measure on Sk+1. When a1 = · · · = ak+1 = a >
0, we will denote the Dirichlet distribution by Dirk(a). If a = 1 we recover the
uniform distribution on S<

k .
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7.2.4. Semicircle distribution. The semicircle distribution denoted by SC is
supported by [−2, 2] with density

√
4 − x2

2π
.

Its Cauchy-Stieltjes transform2 is

m(z) =

∫
dµ(x)

x− z
=

−z +
√
z2 − 4

2
(39)

When 0 < τ ≤ 1, the Marchenko-Pastur distribution, denoted by MP is
supported by (a(τ), b(τ)) where a(τ) = (1 − √

τ)2 , b(τ) = (1 +
√
τ)2 with

density
√

(x− a(τ))(b(τ) − x)

2πτx
. (40)

Its Cauchy-Stieltjes transform is

m(z) =
−z + (1 − τ) +

√
(z − 1 − τ)2 − 4τ

2τz
. (41)

7.2.5. Kesten-McKay distribution. The Kesten-McKay distribution is supported
by (u−, u+) with 0 ≤ u− < u+ ≤ 1 and its density is

Cu−,u+

√
(x− u−)(u+ − x)

2πx(1 − x)
(42)

where

C−1
u−,u+

:=
1

2

[
1 −√

u−u+ −
√

(1 − u−)(1 − u+)
]
.

To express its Cauchy-Stieltjes transform, let us give some notation. For
(b, c) ∈ (0, 1) × (0, 1) we put

σ±(b, c) =
1

2

[
1 +

√
bc±

√
(1 − b)(1 − c)

]
, (43)

and for (x, y) ∈ (0, 1) × (0, 1)

u±(x, y) = (1 − x− y + 2xy) ± 2
√
x(1 − x)y(1 − y)

=
(√

(1 − x)(1 − y) ±√
xy
)2

. (44)

The mappings σ± and u± are inverse in the following sense :

{(b, c) : 0 < b < c < 1}
(σ−,σ+)−−−−−⇀↽−−−−−
(u−,u+)

{(x, y) : 0 < x < y < 1 and x+ y > 1} (45)

2Throughout, all branches of the square roots are taken in accordance to the definition
of Cauchy transform
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The Cauchy-Stieltjes is then (see for instance [Dem06] p.129, or [CC04] p.425)

m(z) =
(1 − σ+ − σ−)

2(1 − σ+)z
+

(σ+ − σ−)

2(1 − σ+)(1 − z)
+

√
(z − a−)(z − a+)

2z(1 − z)
. (46)

ARCSINE corresponds to u− = 0 and u+ = 1.

Acknowledgment Many thanks are due to Professor Holger Dette for helpful
discussions.
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In Séminaire de Probabilités XLI, volume 1934 of Lecture Notes in Math., pages
19–49. Springer, Berlin, 2008.

[Ger44] J. Geronimus. On polynomials orthogonal on the circle, on trigonometric
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