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Introduction

Consider a differential equation of the form:

F (u, ∂u r ∂x r , ∂u s ∂t s ) = 0, (1) 
The determination of travelling wave solutions of specific cases of (1), such as the Burgers or Burgers-Korteweg-De Vries equations, for instance, has been a major topic in the past few years, and play a crucial role in the study of wave equations. We presently aim at extending previous results, and give the whole classes of solitary wave solutions general for [START_REF] David | Structural stability of finite dispersion-relation preserving schemes[END_REF]. The paper is organized as follows. The general method is exposed in Section 2. A specific case is studied in section 3.

Solitary waves

Following Feng [START_REF] Feng | Solitary Wave Solutions of the Compound Burgers-Korteweg-de Vries Equation[END_REF] and our previous work [START_REF] David | A note on "general solitary wave solutions of the Compound Burgers-Korteweg-de Vries Equation[END_REF], in which travelling wave solutions of the CBKDV equation were exhibited as combinations of bell-profile waves and kink-profile waves, we aim at determining travelling wave solutions of (1) (see [START_REF] Li | Explicit exact solutions for new general twodimensional KdV-type and two-dimensional KdVBurgers-type equations with nonlinear terms of any order[END_REF], [START_REF] Whitham | Linear and Nonlinear Waves[END_REF], [START_REF] Ablowitz | Solitons and the Inverse Scattering Transform[END_REF], [START_REF] Dodd | Solitons and Nonlinear Wave Equations[END_REF], [START_REF] Johnson | A Modern Introduction to the Mathematical Theory of Water Waves[END_REF], [START_REF] Ince | Ordinary Differential Equations[END_REF], [START_REF] Zhang | Qualitative Analysis of Nonlinear Differential Equations[END_REF], [START_REF] Birkhoff | Ordinary Differential Equations[END_REF], [START_REF] Polyanin | Handbook of Nonlinear Partial Differential Equations[END_REF]).

Following [START_REF] Feng | Solitary Wave Solutions of the Compound Burgers-Korteweg-de Vries Equation[END_REF], we assume that equation (1) has travelling wave solutions of the form

u(x, t) = u(ξ), ξ = x -v t ( 2 
)
where v is the wave velocity. Substituting (2) into equation (1) leads to:

F (u, u (r) , (-v) s u (s) ) = 0, (3) 
Performing an integration of (3) with respect to ξ leads to an equation of the form:

F P ξ (u, u (r) , (-v) s u (s) ) = C, (4) 
where C is an arbitrary integration constant, which will be the starting point for the determination of solitary waves solutions.

In the previous works, this integration constant is usually taken equal to zero. Yet, it should not be so, since it can lead to a loss of solutions, as we are going to show it in the following.

3 Travelling Solitary Waves

Hyperbolic Ansatz

The discussion in the preceding section provides us useful information when we construct travelling solitary wave solutions for equation [START_REF] Burgers | Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion[END_REF]. Based on these results, in this section, a class of travelling wave solutions is searched as a combination of bell-profile waves and kink-profile waves of the form

ũ(x, t) = n i=1 U i tanh i C i (x -v t) + V i sech i C i (x -v t + x 0 ) + V 0 (5) 
where the

U ′ i s, V ′ i s, C ′ i s, (i = 1, • • • , n
), V 0 and v are constants to be determined. In the following, c is taken equal to 1.

Theoretical analysis

Substitution of (5) into equation ( 4) leads to an equation of the form i, j, k

A i tanh i C i ξ sech j C i ξ sinh k C i ξ = C (6) 
the A i being real constants.

The difficulty for solving equation ( 6) lies in finding the values of the constants U i , V i , C i , V 0 and v by solving the over-determined algebraic equations. Following [START_REF] Feng | Solitary Wave Solutions of the Compound Burgers-Korteweg-de Vries Equation[END_REF], after balancing the higher-order derivative term and the leading nonlinear term, we deduce n = 1.

Then, following [START_REF] David | A note on "general solitary wave solutions of the Compound Burgers-Korteweg-de Vries Equation[END_REF] we replace sech(C 1 ξ) by

2 e C 1 ξ +e -C 1 ξ , sinh(C 1 ξ) by e C 1 ξ -e -C 1 ξ 2 , tanh(C 1 ξ) by e C 1 ξ -e -C 1 ξ e C 1 ξ +e -C 1 ξ
, and multiply both sides by (1 + e 2 ξ C 1 ) 2 , so that equation ( 6) can be rewritten in the following form:

4 k=0 P k (U 1 , V 1 , C 1 , v, V 0 ) e k C 1 ξ = 0, (7) 
where the P k (k = 0, ..., 4), are polynomials of

U 1 , V 1 , C 1 , V 0 and v.
Depending wether (6) admits or no consistent solutions, spurious solitary waves solutions may, or not, appear.

A specific case

Consider the specific case when (1) is the equivalent equation of a DRP scheme, the coefficients of which will be denoted by γ k , k ∈ {-m, m} (see [START_REF] David | Structural stability of finite dispersion-relation preserving schemes[END_REF]):

-ut - σ 2 utt + 2 σ µ Re h m k=1 k γ k ux = 0 (8)
where Re h denotes the mesh Reynolds number, σ, the cf l coefficient, and µ, the viscosity. Equation ( 3) is then given by:

-v ũ′ (ξ) - v 2 σ 2 ũ′′ (ξ) + 2 σ µ Re h m k=1 k γ k ũ′ (ξ) = 0 (9)
Performing an integration of ( 9) with respect to ξ yields:

-v ũ(ξ) - v 2 σ 2 ũ′ (ξ) + 2 σ µ Re h m k=1 k γ k ũ(ξ) = C (10) 
i. e.:

2 σ µ Re h m k=1 k γ k -v ũ(ξ) - v 2 σ 2 ũ′ (ξ) = C ( 11 
)
where C is an arbitrary integration constant. Substitution of ( 5) for n = 1 into equation ( 11) leads to:

2 σ µ Re h m k=1 k γ k -v {U 1 tanh [ C 1 ξ ] + V 1 sech [ C 1 ξ ] + V 0 } - v 2 σ 2 U 1 sech 2 [ C 1 ξ ] -V 1 sinh [ C 1 ξ ] cosh 2 [ C 1 ξ ] = C (12) 
i. e.:

2 σ µ Re h m k=1 k γ k -v U 1 e C 1 ξ -e -C 1 ξ e C 1 ξ + e -C 1 ξ + 2 V 1 e C 1 ξ + e -C 1 ξ + V 0 - v 2 σ 2 U 1 2 e C 1 ξ + e -C 1 ξ 2 -2 V 1 e C 1 ξ -e -C 1 ξ e C 1 ξ + e -C 1 ξ 2 = C (13) 
Multiplying both sides by 1 + e 2 C 1 ξ 2 yields:

2 σ µ Re h m k=1 k γ k -v U 1 e 4 C 1 ξ -1 + 2 V 1 e 3 C 1 ξ + e C 1 ξ + V 0 1 + e 2 C 1 ξ 2 - v 2 C 1 σ C 1 2 4 U 1 -2 V 1 e 3 C 1 ξ -1 = C (14) 
which is a fourth-order equation in e C 1 ξ . This equation being satisfied for any real value of ξ, one therefore deduces that the coefficients of e k C 1 ξ , k = 0, . . . , 4 must be equal to zero, i.e.:

                                                 2 2 σ µ Re h m k=1 k γ k -v {-U 1 + V 0 } - v 2 C 1 σ 2 {4 U 1 + 2 V 1 } = C 2 σ µ Re h m k=1 k γ k -v 2 V 1 = 0 2 2 σ µ Re h m k=1 k γ k -v V 0 = 0 2 2 σ µ Re h m k=1 k γ k -v V 1 + v 2 C 1 σ V 1 = 0 2 σ µ Re h m k=1 k γ k -v {U 1 + V 0 } = 0 (15) v = 2 σ µ Re h m k=1 k γ k , V 1 = 0 leads to the trivial null solution. Therefore, V 1 is necessarily equal to zero, which implies:                v = 2 σ µ Re h m k=1 k γ k U 1 = - C 2 C 1 v 2 σ V 0 ∈ IR , C 1 ∈ IR (16)
It is easy to note that, if the integration constant C had been taken equal to zero, the solitary waves of the considered equation would have been loss.

Conclusions

The importance of choosing an integration constant which is not equal to zero, in the determination of solitary wave solutions of wave equations, has been carried out. We show that taking this constant equal to zero leads to a loss of solutions.