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ABSTRACT

We present a statistical study of the effects induced by substructures on the deflection
potential of dark matter halos in the strong lensing regime. This investigation is based
on the pertubative solution around the Einstein radius (Alard 2007) in which all the
information on the deflection potential is specified by only a pair of one-dimensional
functions on this ring.

Using direct comparison with ray-tracing solutions, we found that the iso-contours
of lensed images predicted by the pertubative solution is reproduced with a mean
error on their radial extension of less than 1% — in units of the Einstein radius, for
reasonable substructure masses. It demonstrates the efficiency of the approximation
to track possible signatures of substructures.

We have evaluated these two fields and studied their properties for different lens
configurations modelled either through massive dark matter halos from a cosmological
N-body simulation, or via toy models of Monte Carlo distribution of substructures
embedded in a triaxial Hernquist potential.

As expected, the angular power spectra of these two fields tend to have larger
values for larger harmonic numbers when substructures are accounted for and they
can be approximated by power-laws, whose values are fitted as a function of the profile
and the distribution of the substructures.

Key words: methods: Gravitational lensing-strong lensing; N-body simulations

1 INTRODUCTION

The cold dark matter (CDM) paradigm (Cole et al. 2005
and references therein) has led to a successful explanation of
the large-scale structure in the galaxy distribution on scales
0.02 ≤ k ≤ 0.15h Mpc−1. The CDM power spectrum on
these scales derived from large redshift surveys such as, for
instance, the Anglo-Australian 2-degree Field Galaxy Red-
shift Survey (2dFGRS), is also consistent with the Lyman-α
forest data in the redshift range 2 ≤ z ≤ 4 (Croft et al. 2002;
Viel et al. 2003; Viel, Haehnelt & Springel 2004).

In spite of these impressive successes, there are still dis-
crepancies between simulations and observations on scales
≤ 1 Mpc, extensively discussed in the recent literature. We
may mention the sharp central density cusp predicted by
simulations in dark matter halos and confirmed by the rota-
tion curves of low surface brightness galaxies (de Blok et al.
2001) or in bright spiral galaxies (Palunas & Williams 2000;
Salucci & Burkert 2000; Gentile et al. 2004). Moreover, deep
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surveys (z ≥ 1−2), such as the Las Campanas Infrared Sur-
vey, HST Deep Field North and Gemini Deep Deep Survey
(GDDS) are revealing an excess of massive early-type galax-
ies undergoing “top-down” assembly with high inferred spe-
cific star formation rates relative to predictions of the hier-
archical scenario (Glazebrook et al. 2004; Cimatti, Daddi &
Renzini 2006).

One problem that requires closer examination concerns
the large number of sub-L∗ subhalos present in simulations
but not observed (Kauffmann, White & Guiderdoni 1993;
Moore et al. 1999; Klypin et al. 1999). This is the case of
our Galaxy or M31, although there is mounting evidence for
a large number of very low mass dwarfs (Belokurov et al.
2006). However, it is still unclear whether the CDM model
needs to be modified to include self-interacting (Spergel
& Steinhardt 2000) or warm dark matter (Bode, Ostriker
& Turok 2001; Coĺın, Avila-Reese & Valenzuela 2000) or
whether new physical mechanisms can dispel such discrep-
ancies with the observations. For instance, gas cooling can
be partly prevented by photoionization process which may
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inhibit star formation in the majority of subhalos (Bullock,
Kravtsov & Weinberg 2001).

This “missing satellite problem” remains an ideal
framework to test cosmological models. During the past
years, different methods have been employed in order to
study the gravitational potential of groups or clusters of
galaxies, for instance through their X-ray lines emission of
hot gas in the intra-cluster medium or through lensing con-
siderations. However, while lensing directly probes the mass
distribution in those objects, the other methods rely more
often than not on strong hypotheses on the dynamical state
of the gas and interactions between baryons and dark mat-
ter. For example, the gas is supposed to be in hydrostatical
equilibrium in the gravitational potential well created by
dark matter halo, while spherical symmetry is assumed. In
this paper, we study the effects induced by substructures on
the deflection potential of dark matter halos in the strong
lensing regime. The presence of substructures follows from
the capture of small satellites which have not yet been dis-
rupted by tidal forces and/or suggests that the relaxation of
halos is not totally finished.

Ray-tracing through N-body cosmological simulations
suggest that substructures should have a significant impact
on the formation of giant arcs. At clusters of galaxies scales,
some results indicate that lensing optical depths can be en-
hanced (Bartelmann, Steinmetz & Weiss 1995; Fedeli et al.
2006; Horesh et al. 2005; Meneghetti et al. 2007a) whereas
some other recent studies suggest that the impact on arc oc-
curence frequency should only be mild (Hennawi et al. 2007).
On the other hand, the presence of substructures changes the
properties of strongly lensed images to a point that could
lead to misleading inferred cluster mass properties if not
properly accounted for (Meneghetti et al. 2007b). Assum-
ing a one-to-one association of cluster subhalos in the mass
range 1011 − 1012.5M⊙ and galaxies, Natarajan, De Lucia &
Springel (2007) used weak lensing techniques and found the
fraction of mass in such subhalos to account for 10− 20% of
the total cluster mass, thus in good agreement with predic-
tions from simulations (Moore et al. 1999).

Likewise, at the scales of galaxies, strong lensing events
have long been involving multiple quasars for which the im-
possibility of resolving the size or shape of the lensed im-
ages brought the attention toward flux ratios of conjugate
images as a probe of subtructures. Depart from flux ratios
expectations from a simple elliptically symmetric potential
is often interpreted as a signature for local potential per-
turbations by substructures (Bradač et al. 2002; Dalal &
Kochanek 2002; Bradač et al. 2004; Kochanek & Dalal 2004;
Amara et al. 2006). It is unclear whether anomalous flux ra-
tios actually probe “missing satellites” (Keeton, Gaudi &
Petters 2003; Mao et al. 2004; Macciò et al. 2006). Due to
the small source size in the case of lensed QSOs, sensitivity
to microlensing events due to stars in the lens galaxy makes
the interpretation less obvious. Astrometric perturbations
of multiple quasars have also been considered (Chen et al.
2007) despite substantial observational limitations.

Presumably the best way out would be to consider ex-
tended sources like QSOs observed in VLBI or lensed galax-
ies that will be sensitive to a narrower range of scales for the
pertubing potential and thus easier to interprete. New meth-
ods for inverting potential corrections that needed on top of
a smooth distribution were proposed (Koopmans 2005; Suyu

& Blandford 2006) but are not guaranteed to converge in all
practical cases and seem to depend on the starting smooth
distribution.

One interesting alternative approach is to treat all devi-
ations from a circularly symmetrical potential as small per-
turbations (Alard 2007, 2008) defining the location where
multiple extended images will form. Two perturbative fields,
f1(θ) and df0(θ)/dθ, can then be defined to characterize de-
flection potential of lenses as a function of the azimuthal
angle θ, near the Einstein radius. They respectively repre-
sent the radial and azimuthal derivative of the perturbated
potential (see Eq. (10) below). Alard (2008) showed that
these two fields have specific properties when one substruc-
ture of mass ∼ 1% of the total mass is positioned near the
critical lines. For instance, the ratio of their angular power
spectra at harmonic number n is nearly 1. We will investi-
gate the detailed properties of these perturbative fields by
considering more realistic lenses such as dark matter halos
extracted from cosmological simulations. In order to control
all the free parameters (mass fraction, and shapes of sub-
tructures for instance) and to study their relative impact on
arc formation, we will also generate different families of toy
halos.

This paper is organized as follows: in section 2 we
present our lensing modelling; section 3 first sketches the
pertubative lens solution and applies it to our simulated
lenses for validation against a ray tracing algorithm; section
4 presents our main results on the statistics of perturbations,
while the last section wraps up.

2 NUMERICAL MODELLING

2.1 Lens model

Halos formed in cosmological simulations tend to be cen-
trally cuspy (ρ ∼ r−1) and are generally not spherical, but
have an triaxial shape. The triaxiality of these potential
lenses is expected to increase significantly the number of
arcs relative to spherical models (Oguri, Lee & Suto 2003
and references therein), and must be taken into account in
numerical models. Thus, apart from dark matter halos ex-
tracted from cosmological simulations, we consider in this
work typical lenses modelled by of a dark matter halo of to-
tal mass M = 1014M⊙ with a generalized Hernquist density
profile (Hernquist 1990):

ρ(R) =
M

2π

Rs

R(R+Rs)3
, (1)

where Rs is the value of the scale radius, R a triaxial radius
defined by

R2 =
X2

a2
+
Y 2

b2
+
Z2

c2
(c ≤ b ≤ 1), (2)

and c/a and b/a the minor:major and intermediate:major
axis ratio respectively. We decided to use an Hernquist pro-
file for practical reasons. However, for direct comparison
with common descriptions of halos from cosmological simu-
lation in the literature, the Hernquist profile is related to an
NFW profile (Navarro, Frenk & White, 1996; 1997) with the
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same dark matter mass within the virial radius r200
1. More-

over, we also impose that the two profiles are identical in the
inner part (≤ Rs) which can be achieved by using relation
(2) between Rs and the NFW scale radius rs in Springel,
Di Matteo & Hernquist (2005). By convention, we use the
concentration parameter Chost = r200/rs in the following to
characterize the density profile of our lenses. For example,
for typical lens at a redshift z = 0.2, we use Rs = 223 kpc
which corresponds to a NFW profile with Chost = 8.0 (or
equivalently r200 = 957 kpc, rs = 119 kpc) and is consistent
with values found in previous cosmological N-body simu-
lations at the specific redshift and in the framework a the
ΛCDM cosmology (Bullock et al. 2001; Dolag, Bartelmann
& Perrotta 2004).

Axis ratios of each lens are randomly determined follow-
ing Shaw et al. 2006: b/a = 0.817±0.098, c/b = 0.867±0.067
and c/a = 0.707±0.095. These values are in good agreement
with previous findings from cosmological simulations (see for
instance Warren et al. 1992; Cole & Lacey 1996, Kasun &
Evrad 2005). Finally, it is worth mentioning that each halo
is made of 15 × 106 particles corresponding to a mass reso-
lution of 6.67×106M⊙. However, we impose a troncation at
a radius of value 5 Mpc.

2.2 Substructures model

2.2.1 Mass function

Numerical N-body simulations show that dark matter halos
contain a large number of self-bound substructures, which
correspond to about 10-20% of their total mass (Moore et
al. 1999). In the following, the number of substructures Nsub

in the mass range m – m+dm is assumed to obey (Moore
et al. 1999; Stoehr et al. 2003)

dNsub =
A

m1.78
dm. (3)

The normalization constant A is calculated by requiring the
total mass in the clumps to be 15% of the halo mass and by
assuming subhalos masses in the range 108 – 5 × 1012 M⊙.
The minimum number of particles in the substructures is
about 15, while the more massive ones have 45, 000 particles.

2.2.2 Radial distribution

Substructures are distributed according to the (normalized)
probability distribution p(r)d3r = (ρ(r)/Mh)d3r, where ρ(r)
is assumed to have an Hernquist profile of concentration
Csub, which yields the probability to find a clump at a dis-
tance r within the volume element d3r. While the abundance
of subtructures in halos of different masses has recently been
extensively quantified in cosmological simulation (see for in-
stance Vale & Ostriker 2004; Kravtsov et al. 2004; van den
Bosh et al. 2007), their radial distribution is less understood.
However, some studies seem to suggest their radial distribu-
tion is significantly less concentrated than that of the host
halo (Ghigna et al. 1998, 2000; Coĺın et al. 1999; Springel
et al. 2001; De Lucia et al. 2004; Gao et al. 2004; Nagai
& Kravtsov 2005; Macciò et al. 2006). We will use either

1 r200 defines the sphere within which the mean density is equal
to 200 times the critical density.

Csub = 5.0 in good agreement with those past investiga-
tions, or Csub = Chost for comparison.

2.2.3 Density profiles and alignment

The stripping process caused by tidal forces seems to reduce
the density of a clump at all radii and, in particular, in the
central regions, producing a density profile with a central
core (Hayashi et al. 2003). This process was further con-
firmed by simulations which found that the inner structure
of subhalos are better described by density profiles shallower
than NFW (Stoehr et al. 2003). However, other simulations
seem to indicate that the central regions of clumps are well-
represented by power law density profiles, which remain un-
modified even after important tidal stripping (Kazantzidis
et al. 2004a). This effect may be enhanced when star for-
mation is taken into account since dissipation of the gas
(from radiative cooling process) and subsequent star forma-
tion lead to a steeper dark matter density profile due to
adiabatic contraction. To test the importance of these dif-
ferences from the point of view of arcs formation, we allow
for both of these possibilities: we simulate halos with clumps
having a central core ρ(r) ∝ 1/(r0 + r)2, where r0 defines a
core radius, or a central cusp (Hernquist profile) and study
how our resulting arcs would change from one option to the
other. It is worth mentioning that each subhalo concentra-
tion parameter is obtained using relation (13) in Dolag et
al. (2004) within the ΛCDM cosmology. However, to avoid
spurious effects due to the lack of resolution, all subhalos
represented by less than 200 particles will have a concentra-
tion parameter value corresponding to that of an halo made
of exactly 200 particles (i.e m = 1.33 × 109M⊙). For core
profiles, we follow Hayashi et al. (2003) and take a core of
size r0 ∼ rs.

Finally, recent cosmological simulations suggest that
subhalos tend to be more spherical than their host (Pereira
et al. 2008; Knebe et al. 2008) and this effect can also be
enhanced if halos are formed in simulations with gas cool-
ing (Kazantzidis et al. 2004b). Moreover, the distribution
of the major axes of substructures seems to be anisotropic,
the majority of which pointing towards the center of mass
of the host (Aubert, Pichon & Colombi 2004; Pereira et al.
2008). Although shapes and orientations of subhalos provide
important constraints on structure formation and evolution,
we have not studied their relative influence in this work. We
reasonably think that modelling substructures by either tri-
axial shapes of spherical shapes won’t lead to any significant
differences in our results.

2.3 Lens samples

Table 1 summarizes our different samples of lenses. From a
statistical point of view, each sample involves one hundred
realizations of halos following the above described method-
ology. Lenses are assumed to be at a typical redshift z = 0.2.
They share a common total mass of 1014M⊙ and are thus
described by an Hernquist profile of concentration C = 8.
The sample A represents our reference catalogue in which
all halos have no substructure. For each of them, we intro-
duce a fraction of subtructures (Fsub) by removing some
background particles so that both the total mass and the
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Figure 1. Elliptical luminosity contour of a source with η0 =
0.2. The three dashed lines correspond to isophotes defined by
I(R1) = 0.6 Imax, I(R2) = 0.2 Imax and I(R3) = 0.01 Imax.

density profile of the initial halo are conserved. These halos
are classified in catalogues B and C according the definition
of inner density profile (IP) of clumps. For example, each
halo from samples B1 and B2 have 15% of substructures
with an inner profile represented by a cusp (Hernquist pro-
file). Their radial distribution (RD) within the halo is left
as a free parameter. We consider two possibilities, Csub = 5
as suggested by numerical simulations, and Csub = 8, which
is the concentration parameter of the whole halo. Finally,
lenses catalogues C1 and C2 have substructures represented
by a core profile with Csub = 5 and Csub = 8 respectively.

In addition, lensing efficiency depends on the relative
distance between lenses and sources. The efficiency of the
lens is scaled by the critical density

Σcrit =
c2

4πG

Ds

DdDds
, (4)

where Ds, Ds and Dds are the angular diameter distances
between the observer and the source, between the observer
and deflecting lens and between the deflector and the source
respectively. When the surface mass density in the lens ex-
ceeds the critical value, multiple imaging occurs. In order
to account this effect which, for a given lensing halo, im-
plies a different Einstein radius for a different source red-
shift, we consider the redshift distribution of sources taken
from the COSMOS sample of faint galaxies detected in the
ACS/F814W band (Leauthaud et al. 2007). It is well repre-
sented by the following expression

dn(zs)

dzs
=

1

z0Γ(a)
e−zs/z0(zs/z0)

a−1 , (5)

with z0 = 0.345 and a = 3.89 (Gavazzi et al. 2007).

3 NUMERICAL VALIDATION OF THE

PERTURBATIVE SOLUTION

In this section, we take advantage of the large sample of
mock lenses described in § 2 to assess the validity of the

Sample Sub F Sub IP Sub RD

A 0% - -

B1 15% cusp Csub = 5

B2 15% cusp Csub = 8

C1 15% core Csub = 5

C2 15% core Csub = 8

Table 1. Samples of lenses (see details in the text).

perturbative method developed in (Alard 2007). After a brief
presentation of the basic idea in § 3.1, we compare the ability
of this simplified procedure to reproduce multiple images
lensed by complex potentials as compared to a direct ray-
tracing method (§ 3.3) and define the validity range of the
perturbative approach.

3.1 The perturbative approach

For the sake of coherence, let us sketch the motivation
behind the perturbative lens method (Alard 2007) used
througout this paper. The general lens equation, relating the
position of an image on the lens plane to that of the source
on the source plane can be written in polar coordinates as

rs =
(
r − ∂φ

∂r

)
ur −

(1

r

∂φ

∂θ

)
uθ , (6)

where rs is the source position, and r, ur and uθ are the
radial distance, radial direction and orthoradial direction re-
spectively. Here φ(r, θ) is the projected potential. Let us now
consider a lens with a projected density, Σ(r), presenting cir-
cular symmetry, centered at the origin, and dense enough to
reach critical density at the Einstein radius, RE . Under these
assumptions, the image by the lens of a point source placed
at the origin is a perfect ring, and equation (6) becomes:

r − dφ0

dr
= 0, (7)

where the potential, φ0, is a function of r only, and the
zero subscript refers to the unperturbed solution. The basics
ideas of the perturbative approach is to expand equation (7)
by introducing i) small displacements of the source from the
origin and ii) non-circular perturbation of the potential, ψ
which can be described by:

rs = ǫrs , and φ = φ0 + ǫψ , (8)

where ǫ is small number: ǫ ≪ 1. To obtain image positions
(r,θ) by solving equation (6) directly, may prove to be analy-
ically impossible in the general case. It is then easier to find
perturbative solution by inserting equation (8) into equation
(6). For convenience, we re-scale the coordinate system so
that the Einstein radius is equal to unity. The response to
the perturbation on r may then be written as

r = 1 + ǫdr , (9)

which defines dr(θ), the azimuthally dependant enveloppe
of the relative deflection. Using Equation (8), the Taylor
expansion of φ is

φ = φ0 + ǫψ =
∞∑

n=0

[Cn + ǫfn(θ)](r − 1)n , (10)
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where:

Cn ≡ 1

n!

[dnφ0

drn

]

r=1
, and (11)

fn(θ) ≡ 1

n!

[∂nψ

∂rn

]

r=1
. (12)

Finally, inserting equations (9) and (10) into equation (6)
leads to:

rs = (κ2δr − f1)ur − df0
dθ

uθ , (13)

with κ2 = 1− 2C2. This equation corresponds to Eq. (8) in
Alard (2007).

3.2 Morphological effects VS astrometric

distortions

As demonstrated in Alard (2008), the morphology of arcs is
very sensitive to small perturbators such as substructures in
the main halo. The effect of substructures on morphologi-
cal features like for instance the size of an image is typically
much larger than pure astrometric distortions. Indeed, astro-
metric distortions are only of the order of the substructure
field, which in many case is smaller than the PSF size of
the instrument used, and represents then an observational
challenge to measure. Note that a perturbative theory of as-
trometric distorsions was already considered by Kochanek
et al. (2001) and Yoo et al. (2005; 2006). Note also that the
former perturbative approach is limited to astrometric ef-
fects, the relevant theory does not describe image formation,
and thus cannot predict morphological effects. When image
morphology is considered, effects are an order of magnitude
larger than astrometric effects. For instance, let us consider
the examples displayed in Fig.1 and Fig. 2 of Alard (2008).
Whereas a giant arc is obtained from an unperturbed ellip-
tical lens cusp caustic (Fig. 1), the introduction near the
Einstein radius of a substructure of only 1 % of the main
halo mass breaks the arcs into 3 sub-images (Fig. 2). The
detection of such effects should not require a particularly
good resolution, since the amplitude of the effect is a frac-
tion of the arc size, which is typically several time the PSF
size.

Specifically, let us consider the following example: we
take a sub-critical configuration for an elliptical lens and
evaluate the modification of the image size due to the per-
turbation by a substructure field. Let us assume that the
ellipticity of the lens is aligned with the axis system and
both source and the substructure are placed on the X-axis.
In this configuration, the size of the central image will be
perturbed by the substructure field, and this will be the
observable effect. The main interest of this example is the
simplicity of the calculations (linear local description of the
field) and the simple description of the effect (reduction of
image size). Let us now define some useful quantities: the
local slope of the unperturbed field α0, the angular size of
the unperturbed image ∆θ0 and the source size R0. The sub-
structure parameters are its mass mP (in unit of the main
halo mass) and its distance dr to the Einstein ring. For cir-
cular sources, the local slope, image size and source radius

are related by the following relation in the unperturbed case:

α0

∆θ0
2

= R0 . (14)

The slope perturbation introduced by the substructure dα
is (See Alard 2008, Sec. 2):

dα ≃ mP

dr
. (15)

The substructure field modifies the images size according to:

(α0 + dα)(∆θ0 + dθ) = R0 , (16)

which gives:

|dθ| = ∆θ0
dα

α0

=
2 mP R0

dr α2
0

. (17)

For an elliptical isothermal potential with ellipticity param-
eter η, the field df0(θ)/dθ reads (see Alard 2007, 2008):

df0
dθ

= η sin 2θ − η sin θ . (18)

Thus, α0 which is the field derivative in 0 is: α0 = η , leading
to:

|dθ| = 2
mP

dr

R0

η2
. (19)

The former equation evaluates the angular perturbation of
the image size by the substructure. To obtain the corre-
sponding perturbation on the image length dS, we have to
multiply by the Einstein Radius:

dS ≃ RE |dα| = 2RE
mP

dr

R0

η2
. (20)

Note that astrometric effects are identical to the effects of
the substructure on the f1 field for circular sources. Thus,
the astrometric effect dA is of the order (See Alard 2008,
Sec. 2):

dA ≃ RE
mP

dr
. (21)

Consequently, the ratio between morphological and astro-
metric effects here is:

dS

dA
≃ 2R0

η2
. (22)

For arcs, the source size (source diameter= 2R0), and the
parameter η have the same typical scale, which gives: η =
0.1, and R0 = 0.05; then:

dS

dA
≃ 10 . (23)

This means that morphological effects are 10 times larger
than astrometric effects. This point is critical, since it really
makes the effect of substructure observable. To illustrate
this latter point, let’s consider some numerical values for
typical galaxies. For a Milky way like galaxy, we have a
mass M ≃ 6 1011M⊙. The Einstein radius in arcsec is given
by:

RE ≃ 1.8

√
M

1012M⊙

= 1.4 arcsec , (24)

which gives the size of the image perturbation, dS =
RE |dα|:

dS ≃ 2.8
mP

dr

R0

η2
arcsec . (25)
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For a perturbator with 0.5 % mass of the galaxy, taking
typical scales, dr = 0.1, R0 = 0.1, and η = 0.1, we obtain:

dS ≃ 1.4 arcsec . (26)

Such effects should be within the reach of spatial instru-
ments such as DUNE or SNAP. On the contrary, astrometric
effects are typically 10 times smaller dA ≃ 0.14 arcsec and
should be then much more difficult to detect. Consequently
morphological effects are definitely our best hopes to detect
substructures.

Clearly, other configurations will also allow the mea-
surement of morphological effect of substructures, though
in general the calculations will be a little bit more compli-
cated, but the effects will more or less be of the same order,
since they are related to the amplitude of the perturbation
of the df0(θ)/dθ field by the substructure.

3.3 Reconstruction of images

One interesting feature of the perturbative method is to pro-
vide a framework for the reconstructions of images. By first
defining an elliptical source centered on position (x0, y0),
with a characteristic size R0, ellipticity

√
2η0, and inclina-

tion of the main axis θ0 such that,

R2
0 = (1 − η0 cos θ0)(xs − x0)

2

+ 2η0 sin 2θ0(xs − x0)(ys − y0)

+ (1 + η0 cos θ0)(ys − y0)
2 (27)

one can express the equations of the image contours using
Eq. (3.1): (see Alard (2007) for more details)

dr± =
1

κ2



f̃1 + sin 2θ̃
η0
S

df̃0
dθ

±

√
R2

0S − (1 − η2
0)(df̃0/dθ)2

S





S ≡ 1 − η0 cos 2θ̃ ,

θ̃ ≡ θ − θ0 (28)

This equation corresponds to Eq. (15) in Alard (2007). The
functional fi is defined to take into account the effect of the
translation of the source by the vector r0 = (x0, y0).

f̃i = fi + x0 cos θ + y0 sin θ, for i = 0, 1. (29)

As emphazised in Alard (2007), the image contours are only

governed by the two fields, f̃1(θ) and df̃0(θ)/dθ , which con-
tain all the information on the deflection potential at this
order in the perturbation. For instance, the two first terms
in the bracket of Eq. (28) give informations on the mean po-
sition of the two contour lines while the last term provides
informations on the image’s width along the radial direction
as well as a condition for image formation. Therefore, the
characterization of these two fields represents a simple and
efficient way to track possible signatures of the deflection po-
tential induced by substructures, so long as the perturbative
framework holds, as we will illustrate below. Alard (2007)
already implemented the method with a lens described by a
NFW profile yielding an analytical solution for the projected
potential profile. In this section, we illustrate and validate
the method while considering more complicated and realistic

situations. In particular, we use lenses either from cosmolog-
ical simulations or from toy models presented in section 2.

For direct comparison between arc reconstructions pre-
dicted by the perturbative method and theoritical ones, we
use a ray-tracing method. Part of our investigations indeed
makes use of the Smooth Particle Lensing technique (SPL),
described in details in Aubert, Amara & Metcalf (2007)
and summarized in this section. SPL has been developed
to compute the gravitational lensing signal produced by an
arbitrary distribution of particles, such as the ones provided
by numerical simulations. It describes particles as individ-
ual light deflectors where their surface density is arbitrarily
chosen to be 2D Gaussian. This choice makes it possible to
compute the analytical corresponding deflection potential,
given by:

φ(r) =
mp

4πΣc
(log(

r4

4σ4
) − 2Ei(− r2

2σ2
)), (30)

where Ei(x) = −
∫∞

x
exp(−x)/xdx, mp is the mass of the

particle, σ its extent and Σc the critical density. From the
deflection potential, expressions for the deflection angles α,
the shear components γ and the convergence κ can be easily
recovered (see Aubert, Amara & Metcalf (2007) for more
details). Knowing the lensing properties of a single particle,
one can recover the full signal at a given ray’s position on
the sky by summing the contributions of all the individual
deflectors:

φ(r) =
∑

i

φi(r) , ~α(r) =
∑

i

~αi(r) , (31)

κ(r) =
∑

i

κi(r) , ~γ(r) =
∑

i

~γi(r), (32)

where, e.g. ~γi(r) is the contribution of the i-th particle to
the shear at ray’s position r. This summations are per-
formed efficiently by means of 2D-Tree based algorithm, in
the spirit of N-body calculations. The tree calculations are
restricted to monopolar approximations where an opening
angle of 0.5 − 0.7 is found to give results accurate at the
percent level on analytical models. Finally, Aubert, Amara
& Metcalf (2007) found that an adaptative resolution (i.e.
an adaptative extent σ for the particles) provides a signifi-
cant improvement in the calculations in terms of accuracy.
For this reason, the smoothing σ depends on the rays lo-
cation: particles shrink in high density regions in order to
increase the resolution while they expand in low-density re-
gions, smoothing the signal in undersampled areas. For all
simulations, we use 1024 × 1024 rays within a square of size
2 × 2RE , an opening angle of 0.7 and Nσ = 256 (where
Nσ is the number of particles over which the smoothing is
applied).

3.3.1 Lenses from the toy model

We present in this section characteristic examples of arc re-
construction. Three lenses L0, L1 and L2 belonging to sam-
ples A, B2 and C2 respectively are considered. They have a
common mass, density profile, axis ratios and random orien-
tation in 3D space. They only differ via the presence or not
of substructures as well as via the inner density profile of
substructures: L0 has no substructure whereas L1 has sub-
structures with a central cusp while a core describe the inner
density profiles of substructures in L2. In the present case,
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Numerical investigation of lenses with substructures using the perturbative method. 7

Figure 2. Projected density maps of lenses modelled by toy halos and their associated arcs reconstructions when considering an elliptical
source contour with a Gaussian luminosity. Panels (a) and (e) show respectively the projected density map of the lens L0 and the resulting
image obtained from ray-tracing when the source is placed at the origin. Both red and light blue dashed lines represent the Einstein
radius. The solid white line is the predicted arc reconstruction for isophotes 0.01Imax. Similar plots are shown in panels (b) and (f) but
for L3. Columns 3 and 4 show arc reconstructions for the lens L2. The solution from ray-tracing is given in the panel (c) while the other
last panels present a direct comparison between the isophotal contour (red) and the arc reconstruction (blue) for 0.01Imax (g), 0.2Imax

(d) and 0.6Imax (h).

the source is at a redshift z ∼ 2.9, has an elliptical contour
with η0 = 0.2 and a radius R0 ∼ 0.05RE , characterizing a
Gaussian luminosity profile (see figure 1).

For the arc reconstructions presented below, we shall
consider 3 different radii R1, R2 and R3 corresponding to
3 specific isophotal contours defined by I(R1) = 0.6 Imax,
I(R2) = 0.2 Imax and I(R3) = 0.01 Imax (see figure 1).

In Figure (2), we show the projected mass density of
lenses L0 and L1 near the Einstein radius, the image’s so-
lution obtained from ray-tracing and the contours predicted
by the perturbative method when the source is placed at
the origin. When no substructure is considered, both pro-
jected density and potential are nearly elliptical. As ex-
pected, we obtain four distinct arcs in a cross configuration.
The predicted arcs reconstruction are in good agreement
with the numerical solution obtained via the ray-tracing al-
gorithm. From a theoretical point of view, it is easy to show
that the functions f̃1(θ) and df̃0(θ)/dθ are proportional to
∝ cos(2θ + ψ) and ∝ sin(2θ + ψ) respectively. These func-
tionnal form are recovered in our experiment and shown in
Figure (3).

When substructures are present, the shape of images is
significantly altered. First, we notice that the positions of
substructure tend to break the ellipticity of the halo center.
Thus, it is not surprising that the shape of the image is ap-
proaching a ring in that case. Moreover, it is interesting to
see that the position of one substructure (at the top left of
the figure) is exactly at the Einstein radius. This produces
an alteration of the luminosity, while the effects is more vi-

olent when substructures present a cups profile. This effect
can be clearly seen when comparing the perturbative fields
f̃1(θ) and df̃0(θ)/dθ relative to the lens L1 in Figure (3).
For instance, we can see two clear bumps in the evolution of
df̃0(θ)/dθ . The second one (θ > 2π/3) is produced by sub-
structures in the lower right part and induced an alteration
of the luminosity again.

To estimate the systematic error between the theoreti-
cal contours provided by the ray-tracing and those predicted
from equation (28), we use a simple procedure with a low
computational cost. First, each predicted contour is divided
into a sample of N points. Each of them is defined by po-
lar coordinates (ri, θi) which coincide with a luminosity
value of the image corresponding to an unique radius Ri

in the source frame. By using relation (28), we then com-
pute 1 + dr(Ri) which gives the image contour radius of
the isophotal contour I(Ri) of the source in Einstein radius
unit. By defining 1 + dri the radial distance of point i, the
mean error err (in Einstein radius unit) is then computed
by err =

∑N
i |dr(Ri) − dri|/N .

For illustration, we have estimated the mean error
reached for the lenses L1 and L2 using three luminosity
contours source (see fig. 1). For L1, the mean errors are
respectively 0.67%, 0.71%, 0.95% of the Einstein radius for
isophotes 0.6, 0.2 and 0.01Imax respectively, while we obtain
0.74%, 0.86% and 1.04% RE for lens L2 and for same lumi-
nosities. We have also studied how the mean error evolves
for random positions of the source inside an area limited by
the caustic lines. To do that, we have used the lens L1 and
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Figure 3. Variations of the fields f1 and df0(θ)/dθ as a function
of θ for the lens L0 (panels a and b), lens L1 (panels c and d)
and lens L2 (panels e and f).

have studied 100 realizations with different impact parame-
ters. We found err = (1.01 ± 0.12)%RE for isophotes equal
to 0.01Imax.

3.3.2 Lenses from cosmological simulation halos

In this section, lenses are modelled by dark matter ha-
los extracted from a cosmological simulation of the Projet

HORIZON2. The simulation was run with Gadget-2 (Springel
2005) for a ΛCDM universe with ΩM = 0.3, ΩΛ = 0.7,
ΩB = 0.045, H0 = 70 km/s/Mpc, σ8 = 0.92 in a periodic
box of 20 h−1Mpc. We use 5123 particles corresponding to
a mass resolution of mpart. ≃ 4× 106M⊙ and a spatial reso-
lution of 2 kpc (physical). Initial conditions has been gener-
ated from the MPgrafic code (Prunet et al. 2008), a parallel
(MPI) version of Grafic (Bertschinger 2001). In this simu-
lation, we selected two regions. In the first one, the lens is a
typical halo of total mass 2.6 × 1013M⊙ at redshift z = 0.5.
The source is at z = 1.2, assumed to be elliptical (η0 = 0.2)

2 http://www.projet-horizon.fr/

Figure 4. Projected density map (panel a) of a lens modelled
by a dark matter halo extracted from the N-body simulation and
the associated arc reconstructions. The solution from the ray-
tracing is plotted in the panel (b) with the Einstein radius (blue
line) and the predicted arc reconstruction for isophote 0.01Imax.
The second line compares the isophote contours 0.01Imax (panel
c) and 0.2Imax (panel d) represented by the blue lines with the
predicted contour (red lines). The same results are presented in
the panel e for isophote 0.6Imax. Finally, variations of f̃1(θ) (red
line) and df̃0(θ)/dθ (black line) are plotted in the panel (f)).

with R0 = 0.05RE and placed near a caustic in order to ob-
tain a giant arc. Fig. (4) shows the projected density of the
lens near the Einstein radius; both the ray-tracing solution
and the predicted contours by the perturbative method are
shown. Here again, the three different contours are well re-
constructed since the error are 0.76%, 0.83% and 0.91% RE

for isophotes 0.6, 0.2 and 0.01Imax respectively. For illustra-
tion, the angular variation of the perturbative fields are also
representated in the figure (4).

The second example is a lens modelled by another
halo from the same N-body simulation. Its total mass is
6.6×1013M⊙ at z = 0.5. This is an extreme case since a sig-
nificant number of substructures are still falling toward the
center of the host halo which suggests that the dynamical
relaxation is still operating. This strongly affects the po-
tential and the perturbative fields (see figure 5). However,
mean errors remain small of the order of 1.11%, 1.20% and
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Figure 5. same as Figure 4 for another dark matter halo ex-
tracted from the N-body simulation.

1.26% RE for isophotes 0.6, 0.2 and 0.01Imax respectively,
which proves the accuracy of the method to deal with more
complex systems. We may reasonably think that lenses in
our different samples at z = 0.2 tend to be more relaxed
that the present configuration, and, consequently, the mean
errors in our arc reconstruction should be less pronounced.

4 FOURIER SERIES EXPANSION

4.1 Motivation

Given Eq. (28), it is straightforward, for a given lensed im-
age and an assumed underlying spherical lense and elliptical
source, to invert it for f̃1(θ) and df̃0(θ)/dθ as

df̃0
dθ

=
±S

2
√

1 − η2
0

√
4R2

0/S − κ2
2[dr

+(θ) − dr−(θ)]2 (33)

f̃1(θ) =
1

2

(
κ2[dr

+(θ) + dr−(θ)] − 2
df̃0
dθ

η0 sin 2θ̃

S

)
, (34)

where S, θ̃ and κ2 are given by Eq. (28). This inversion for-
mula depends explicitly on the source parameters, (η0, θ0)
which are unknown. However using Eqs ( 33, 34) it is pos-

sible to compute the two functions f̃1(θ) and df̃0(θ)/dθ for

each couple of parameters (η0, θ0). The proper solution cor-
responding to the true parameter (η0, θ0) has minimal prop-
erties. Consider for instance a circular solution (η0 = 0), if
the inversion formula is used with η0 6= 0 additional Fourier
terms with order n > 2 will appear in the inversion formulae.
Thus, it is clear that minimizing the power in higher order
Fourier modes is a criteria that will allow to select the best
solution when exploring the plane (η0, θ0). This criteria has
also a very interesting property, considering that power at
order n > 2 usually reveal the presence of substructures (see
Table 3 for instance), the solution with minimum power at
higher order is also the one that puts the more robust con-
straint on the presence of substructure. Thus the elliptical
inversion can be performed by exploring the plane (η0, θ0)
in a given parameter range, computing the corresponding
fields f̃1(θ) and df̃0(θ)/dθ and their Fourier expansion, and
selecting the solution with minimum power at n > 2. For non
elliptical sources, one can use the general inversion method
presented in Alard (2008). This inversion method remaps
the images to the source plane using local fields models (ba-
sically the scale of the images). The solution is selected by
requiring maximum similaritiy of the images in the source
plane. Image similarity is evaluated by comparing the im-
age moments up to order N . Provided the number of image
moments equations exceed the number of model parame-
ters, the system is closed and has a definite solution. Note
that the local models may be replaced with general Fourier
expansion in the interval 0 < θ < π, but in this case, the
additional constraint that no image are formed in dark areas
must be implemented (Diego et al. 2005). In the perturba-

tive approach this requirement can be reduced to df̃0(θ)/dθ
> RC in dark areas, where RC is the radius of the smallest
circular contour that contains the source. We may therefore
assume for now that observational data may be inverted,
and that an observationnal survey of arcs should provide
us with a statistical distribution of the perturbatives fields.
Hence we may use our different samples of halos presented
in paragraph 2.3 in order to measure the relative influence
on arc formation of the different free parameters such as
the inner profile of substructures or their radial distribution
within the host halo. To conduct this general analysis the
fields will be represented by Fourier models, due to the direct
correspondance between Fourier models of the fields and the
multipolar expansion of the potential at r = 1 (Alard 2008).

4.2 Results

The angular functions f̃1(θ) and df̃0(θ)/dθ can be charac-
terized by their Fourier expansion:

df̃0(θ)

dθ
=

∑

n

〈a0
n〉 cos

(
nθ + φ0

n

)
, (35)

f̃1(θ) =
∑

n

〈a1
n〉 cos

(
nθ + φ1

n

)
, (36)

Pi(n) = 〈(ai
n)

2〉, where i = 0, 1, (37)

where Pi(n), i = 1, 2 correspond to associated power spec-

tra. We have derived the multipole expansion of f̃1(θ) and

df̃0(θ)/dθ for each halo of the different catalogues and we
focus in the following on the mean amplitudes 〈a0

n〉 and 〈a1
n〉

obtained.
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Lens 1 2 3 4 5 6 7

L0 0.07 4.21 0.02 0.20 0.04 0.07 0.03

L1 1.62 3.80 0.42 0.18 0.29 0.20 0.33

L2 1.38 2.86 0.18 0.20 0.10 0.11 0.11

Table 2. Power spectra of f̃1(θ) shown in the first column of
Figure 3 .

Lens 1 2 3 4 5 6 7

L0 0.08 8.17 0.04 0.39 0.02 0.08 0.03

L1 1.14 4.12 0.32 1.50 0.28 0.59 0.24

L2 1.54 5.36 0.20 0.74 0.07 0.14 0.18

Table 3. Power spectra of df̃0(θ)/dθ shown in the second column
of Figure 3 .

Tables (2) and (3) respectively summarise the seven first

orders of the power spectrum of f̃1(θ) and df̃0(θ)/dθ for the
3 lenses L0, L1 and L2.

When substructures are absent, both harmonic power
spectra of f̃1(θ) and df̃0(θ)/dθ are dominated by the second
order mode, which is characteristic of a projected elliptical
potential. The situation is totally different when substruc-
tures are taken into account. First, we notice that first mode
(n = 1) increase for lenses L1 and L2. This is due to the fact
that we kept the same definition of the mass center between
the three lenses. The random position of subtructures gener-
ates a non zero impact parameter which affect the first order
mode according the relation (29). Moreover, since substruc-
tures tend to break the ellipticity of the halo center in the
present case, one expects that the second mode decreases.
However, the most interesting feature is that modes corre-
sponding to n ≥ 3 increase when substructures are present.

4.3 Practical limitations

A fraction of the error is produced by the ray-tracing simu-
lation as well as the limitation of the considered resolution.
Let us therefore consider a toy halo with an isothermal pro-
file:

ρ =
ρ0

r2
, (38)

where ρ0 is evaluated so that the mass enclosed inside a ra-
dius r = 957 kpc is M = 1014M⊙. An isothermal profile
is appropriate to estimate systematic error since it leads to
exact solution with the perturbative method. Here again, we
have evaluated the quantity err by considering 100 realiza-
tions with different impact parameters. Sources have circu-
lar contour with R0 ∼ 0.05RE and 15 millions particles have
been used. For isophotes 0.6Imax, which is supposed to have
the higher error values, we have obtained err = (0.30±0.03)
% RE . Thus, in the following, we will consider that both
ray-tracing method and the resolution limitation induce to
a mean error of 0.3 % RE in contours reconstructions. More-
over, as we shall see in section 4, f̃1(θ) and df̃0(θ)/dθ can be

characterized by their multipole expansion and their associ-
ated power spectrum (see equations 37). In Figure (6), we
plot the amplitudes 〈a0

n〉 and 〈a1
n〉 as a function of n derived

from the present experiments. These values for the ampli-
tude (σ ∼ 0.06%RE) correspond to a noise that we have to
take into account below. For this reason, we put a confident
limit to ∼ 2.0σ.

In Aubert et al. 2007, the influence of smoothing Nσ,
number of particles Npart and opening angles θ have been
extensively investigated on softened isothermal spheres. The
number of particles and the models used here are similar
and the parameters used in the current study can be con-
sidered as the most appropriate considering these previous
tests (Nσ = 256, θ = 0.7, Npart = 15 × 109). For instance
a re-analysis of the Aubert et al. tests case present an aver-
age error in the deflection angle of 0.3-0.4 % at the Einstein
radius. Considering that the profiles and the number of par-
ticles are similar, the current error estimation is in good
agreement.

In the same studies, the (inverse) magnification recon-
struction was also previously tested and the critical lines
fluctuates around their theoretical location because of Pois-
son noise and ray-shooting artefacts. By increasing the num-
ber of particles and by means of adaptive smoothing, these
errors can be limited. Again, the re-analysis of these tests
cases allows an estimation of the error on magnification µ
of δµ/µ ∼ 0.02µ close to the Einstein’s radius. The inverse
magnification is obtained from the joint calculation of the
convergence and the shear through the same ray-shooting
technique. Hence, the error estimation does not rely on some
propagation procedure but on the effective calculation and
thereby includes Poisson sampling effects and ray-shoot er-
rors.

To finish, it’s interesting to determine how the error of
0.3 % RE in arc reconstruction is reflected in error in the
image length. Let’s consider again the configuration studied
in Sect. 3.2 and taking equations (14) and (17), one obtains:

|dθ| = 2∆θ0
dα

α0

= 2
dα R0

α2
0

(39)

Taking dα = 0.3/100 with the same typical value, R0 = η =
0.05, and α0 = η = 0.1 we have:

|dθ| =
3

100
(40)

As in the previous calculation, the actual size of the pertur-
bation due to the error dE is obtained by direct multiplica-
tion with the Einstein radius. We take the same numerical
value, RE = 1.4 arcsec, thus:

dE = 0.04 arcsec (41)

Given the amplitude of morphological effects, this noise is
not a source of concern, but had we considered astrometric
effects, this noise would become be a real problem.

4.4 Statistics

Figures (7) and (8) show respectively the variations of the
mean amplitudes 〈a0

n〉 and 〈a1
n〉 as a function of n derived

from our different samples of lenses. As mentioned above, we
put a confident limit (∼ 2.0σ = 0.12%RE) and we exclude in
our calculation all amplitudes below. First, when substruc-
tures are disregarded, power spectra are dominated by the
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Figure 6. Variations of the mean amplitudes, 〈a0
n〉 (left panel),

and 〈a1
n〉 (right panel), as a function of the harmonic order, n,

derived from 100 lenses modelled by an isothermal profile.

second harmonic which just reflects the fact that our simu-
lated lenses have a mean ellipticity. However, values of the
fourth orders appear to be not negligible. This is probably
due to the 2D projection which can lead to boxy projected
densities. On the other hand, odd orders are negligible, as
expected. When substructures are present, we can notice
that the amplitudes of first harmonic, 〈ai

1〉, have rather high
values. As emphasized before, this is simply due to the fact
the position of the lenses center is assumed to be the same
for all objects. In fact, subtructures tend to modify the po-
sition of the mass center or, equivalently, tend to generate
a non zero impact parameter which affect first harmonic co-
eficient according to the relation (29). However, the most
interesting and important result is the presence of a tail in
the power spectra which clearly suggests that the amplitude
of high order harmonics (n ≥ 3) are not negligible anymore.
Note that these effects are clearer when the density profile of
substructures is modelled by a cusp as was the case for sam-
ple B2. Note that the power spectra of high orders harmonic
(n ≥ 3) can be fitted by power-laws:

P0(n ≥ 3) = k0n
α0 , P1(n ≥ 3) = k1n

α1 , (42)

where the relevant fitting parameters are shown in the Ta-
ble 4.

Having estimated the statistical contribution of sub-
structures to the perturbative fields, and we may now ad-
dress the problem of defining observational signatures of
substructures. The observational effects are of two types:
(i) an effect on the position of images which is controlled by

the field f̃1(θ) , and (ii) effects on the image morphology, for
instance its size in the orthoradial direction which depends
on the structure of the field df̃0(θ)/dθ . An interesting point

is that effects of type (i) are directly related to f̃1(θ) , while

type (ii) effets is not related directly to df̃0(θ)/dθ but to its
derivative (at least for images of small extension). Indeed,
let us consider a source with circular contour; provided the
image is small enough, a local linear expansion of the field
df̃0(θ)/dθ will be sufficient to estimate the image morphol-
ogy. We make the following field model:

df̃0
dθ

∼ d2f̃0
dθ2

(θ − θ0) , (43)

where θ0 is a position angle which should be close to the
image center. At the edge of the images, we have:

R0 =
df̃0
dθ

. (44)

Sample k0 α0 k1 α1 Q

A - - - - -

B1 3.57 -1.84 2.21 -1.69 0.113 ± 0.057

B2 7.33 -2.07 6.65 -2.21 0.179 ± 0.097

C1 0.74 -0.950 0.546 -0.845 0.083 ± 0.040

C2 2.08 -1.575 1.462 -1.468 0.095 ± 0.049

Table 4. Fit parameter of the statistical distribution of the har-
monics of the two fields.

By defining ∆θ = θ − θ0, it follows that:

d2f̃0
dθ2

∆θ = R0 . (45)

Thus, (d2f̃0(θ)/dθ
2)−1 scales like the orthoradial image size

∆θ and can be directly related to observational quantities.
The main difference with effects of types (i), which are re-
lated to the field rather than the field derivative, is that
the derivative introduce heavy weights on the higher orders
of the Fourier serie expansion of the field, where the sub-
structure contribution is dominant. Indeed, the derivative
of the Fourier serie introduce a factor n at order n, which
translates in a factor n2 on the components of the power
spectrum. Thus the image morphology (and in particular its
orthoradial extension for smaller images) will be much more
sensitive to substructure than the average image position.
To illustrate this, we have plotted in Figure (9) the ampli-
tudes 〈a0

n〉 for lenses samples B1, B2, C1 and C2. Moreover,
to study the contribution of order n ≥ 3, it is convenient to
define the following quantities:

P1 = 〈(a0
1)

2〉 + 4 × 〈(a0
2)

2〉

P2 =
∑

n≥3

n2 × 〈(a0
n)2〉

Q =

√
P2

P1

, (46)

Table 4 summarize mean values of Q relative to each cat-
alogue of lenses. As expected, Q has higher values when
substructure have a cusp profile. The total contribution
of high order vary between ∼ 8 and 18% according the
model of lenses used, which is quite significant. In clos-
ing, for the sample C2, mean errors between predicted con-
tours from the perturbative method and ray-tracing solution
are err = (0.95 ± 0.47)%RE , err = (0.97 ± 0.48)%RE and
err = (1.11 ± 0.49)%RE for isophotes 0.6, 0.2 and 0.01Imax

respectively.

5 CONCLUSIONS

The structuration of matter on galactic scales remains a
privileged framework to test cosmological models. In partic-
ular, the large number of dark matter subhalos predicted by
the ΛCDM cosmology is still a matter of debate. In this pa-
per, potential signatures of substructures in the strong lens-
ing regime were considered. This investigation makes use of
the perturbative solution presented by Alard (2007, 2008),
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12 S. Peirani et al.

 0  2  4  6  8  10
0.01

0.1

1.0

10.0
A

 0  2  4  6  8  10
0.01

0.1

1.0

10.0
B2

 0  2  4  6  8  10
0.01

0.1

1.0

10.0
C2

 0  2  4  6  8  10
0.01

0.1

1.0

10.0
C1

 0  2  4  6  8  10
0.01

0.1

1.0

10.0
B1

<
a 

>
   

(%
 E

in
st

ei
n 

ra
di

us
 u

ni
ts

)
n0

Order n

Figure 7. Variation of mean amplitudes 〈a0
n〉 derived from multipole expansions of df̃0(θ)/dθ and for each lenses catalogue. The dashed

line represent limits at 1σ.
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n〉 derived from multipole expansions of f̃1(θ) and for each lenses catalogue. The dashed lines

represent limits at 1σ.

in which small deviations from the “perfect ring” configu-
ration are treated as perturbations. In this framework, all
informations on the deflection potential are contained in two
one-dimensionnal fields, f1(θ) and df0(θ)/dθ which are re-
lated to the radial expansion of the perturbed aspherical
potential. The analysis of the properties of these two fields
via their harmonic decomposition represents a simple and
efficient way to track back possible signatures of subtruc-
tures. For instance, the perturbative method offer a simple
and clear explanation of the multiplicity of the images. As
shown in Alard (2008), the unperturbed image is a long arc
for a cusp caustic configuration, but when a substructure is
introduced near the arc, this latter is broken in 3 images.
This effect is also illustrated in the present work in the ex-
ample shown in the figure (2). Basically the breaking of the
image and the change in image mutiplicity is due to the per-
turbative terms introduced by the substructure on the field
df0(θ)/dθ. In the case of a circular source with radius R0,
the image is broken when df0(θ)/dθ > R0.

In this paper, lenses were modelled either by dark mat-
ter halos extracted from cosmological simulations or via toy
models. The advantage of toy models is to reach a higher
resolution and to allow us to study the influence of free pa-
rameters such as the inner profiles of substructures which
are expected to play a central role here. We have first esti-
mated the accuracy of the perturbative predictions by com-
paring the mean error between predicted contours images
and theoretical ones derived via ray-tracing. We found that
in general, the relative mean error is ∼ 1% of the Einstein ra-
dius (RE) when different impact parameters configurations
and different source redshifts are considered. We also found
that both resolution limitation and ray-tracing procedure
lead to a systematic error of ∼ 0.3%RE . Furthermore, al-

though the accuracy of this approach for elliptical lenses is
demonstrated in Alard (2007), we have checked and shown
in the present study that the method works for the range of
ellipticities derived from realistic 3D dark matter halos. This
implies that the numerical evaluation of the coefficient of the
perturbed potential, f̃1(θ) and df̃0(θ)/dθ at the Einstein ra-
dius is accurate enough to carry a statistical investigation.

We have generated several mock catalogues of lenses
in which all objects have a total mass of 1014M⊙ and are
at redshift z = 0.2. This value is motivated by comparison
with observational surveys, and is close to where the strong
lensing efficiency of clusters is the largest for sources zs ≥ 1
(Li et al. 2005). The first catalogue represents our reference
sample since all lenses are modelled by dark matter halos
without substructures. In the other ones, substructures are
described by either a cusp profile or a core profile. Their ra-
dial distribution is also a free parameter and we have used
Csub = Chost and Csub = 5. Our statistical investigation in-
volves a Monte-Carlo draw: the ellipticity of host halos, po-
sition of substructures, sources redshift for instance are ran-
domly derived according to specific distributions. We found
that the harmonic power spectra of f̃1(θ) and df̃0(θ)/dθ tend
to develop a tail towards the large harmonics when substruc-
ture are accounted for. This effect is more pronounced when
substructures have a cusp profile.

Several improvements of the present investigation are
envisioned since the ultimate goal of the method is to pro-
vide a clear estimate of the amount of substructures in ob-
servations.

• Statistically, the properties of the cross-power spectrum
of df̃0(θ)/dθ and f̃1(θ) will be instructive. A clear charac-
terisation of the covariance of these fields observed in Fig.
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n〉 for each lenses catalogue. The dashed line represents the confident limit.

3 along with the result of Alard (2008) upon which, as high
multipole order n, about the same power is contained in
each of the fields, would allow us to reduce the dimension-
ality of the problem and perhaps only consider either f̃1(θ)

or df̃0(θ)/dθ .

• In this vein, it remains to be shown to which extent the
statistical properties of f̃1(θ) and df̃0(θ)/dθ can be ap-
proximated as Gaussian random fields. If so, the realization
of mock giant arcs would be greatly simplified. Concerning
this point, the number of experiments of the present work
must be increased to provide a clear diagnostic.

• A natural extension of this work would be to consider
more realistic lenses while taking into account the dynam-
ics of substructures inside the host halo, its connection to
cosmology via the expected statistical distribution of sub-
structures (see e.g. Pichon & Aubert 2006), as well as star
formation mechanisms. Indeed, stripping proccesses caused
by tidal forces may lead to more complex structures. For in-
stance, the study of some merger events in the phase-space
(radial velocity versus radial distance) reveals the formation
of structures quite similar to caustics generated in secondary
infall models of halo formation (Peirani & de Freitas Pacheco
2007). On the other hand, cooling processes and subsequent
star formation may lead to steeper dark matter profile due
to adiabatic contraction. Then, such processes should have
an impact in the amplitude of high orders of our study.

• Obviously a perturbation of the simple circularly sym-
metrical case needs not lie in the same lens plane as the
main deflecting halo. Uncorrelated halos superposed along
the line of sight to the background source may well introduce
perturbations on top of substructures belonging to the main
halo. This will contribute to some additional shot noise back-
ground in the power spectra of f̃1(θ) and df̃0(θ)/dθ , which
has to be quantified and subtracted off using ray-tracing
through large simulated volumes. This work is beyond the
scope of the present analysis.

• On the path to a possible inversion yielding f̃1(θ) and

df̃0(θ)/dθ from observed arcs shapes and locations, several
unknowns left on the rhs of Eq. (33) have to be controlled
and will need to be fitted for in a non-linear way in order
to attempt a reconstruction of fields f̃1(θ) and df̃0(θ)/dθ
. In addition, we only have considered a simple representa-
tion of the background source. A lumpier background source
will translate into a less regular arc with some small scale
signature in the observable quantities such as dr±. How-

ever, the replication of these internal fluctuations along the
arcs and, possibly, in the counter image, as well as the in-
formation contained in the various isophotes could allow us
to reconstruct f̃1(θ) and df̃0(θ)/dθ directly from the ob-
servations. In this respect, Alard (2008) provides a general
inversion method when two circular sources are considered
for instance.

To conclude, the upcoming generation of high spatial
resolution instruments dedicated to cosmology (e.g. JWST,
DUNE, SNAP, ALMA) will provide us with an unprece-
dented number of giant arcs at all scales. The large samples
expected will make standard lens modellings untractable
and require the development of new methods able to capture
the most relevant source of constraints for cosmology. In this
respect, the perturbative method we present here may turn
out to be a promising research line.
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