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HOCHSCHILD COHOMOLOGY OF KLEIN SURFACES
Frédéric BUTIN'

Abstract

Given a mechanical system (M, F(M)), where M is a Poisson manifold and F (M) the algebra of regular functions
on M, it is important to be able to quantize it, in order to obtain more precise results than through classical
mechanics. An available method is the deformation quantization, which consists in constructing a star-product
on the algebra of formal power series F(M)[[h]]. A first step toward study of star-products is the calculation of
Hochschild cohomology of F(M).

The aim of this article is to determine this Hochschild cohomology in the case of singular curves of the plane —
so we rediscover, by a different way, a result proved by Fronsdal and make it more precise — and in the case of
Klein surfaces. The use of a complex suggested by Kontsevich and the help of Grébner bases allow us to solve the
problem.

Résumé

Etant donné un systéme physique (M, F(M)), ot M est une variété de Poisson et F(M) algébre des fonctions
réguliéres sur M, il est important de pouvoir le quantifier pour obtenir des résultats plus corrects que ceux donnés
par la mécanique classique. Une solution est fournie par la quantification par déformation qui consiste & construire
un star-produit sur lalgébre des séries formelles F(M)[[h]]. Un premier pas vers 1'étude des star-produits est le
calcul de la cohomologie de Hochschild de F(M).

Le but de l'article est de déterminer cette cohomologie de Hochschild dans le cas des courbes singulieres du plane
— on précise ainsi, par une démarche différente, un résultat démontré par Fronsdal — et dans le cas des surfaces
de Klein. L’utilisation d’un complexe proposé par Kontsevich et 'emploi des bases de Grébner permettent de
résoudre le probleme.
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1 Introduction

1.1 Deformation quantization

We consider a mechanical system given by a Poisson manifold M, endowed with a Poisson bracket {-}. In
classical mechanics, we study the (commutative) algebra F (M) of regular functions (ie, for example, C*°,
holomorphic or polynomial) on M, that is to say the observables of the classical system. But quantum
mechanics, where the physical system is described by a (non commutative) algebra of operators on a
Hilbert space, gives more correct results than its classical analogous. Hence the importance to get a
quantum description of the classical system (M, F(M)) : such an operation is called a quantization.
One option is geometric quantization, which allows to construct in an explicit way a Hilbert space and
an algebra of operators on this space. This very interesting method presents the drawback of being
seldom applicable. That’s why have been introduced other methods such as asymptotic quantization
and deformation quantization. The latter, described in 1978 by F. Bayen, M. Flato, C. Fronsdal, A.
Lichnerowicz and D. Sternheimer in the article ], is a good alternative : instead of an algebra
of operators on a Hilbert space, a formal deformation of F(M). This is given by the algebra of formal
power series F(M)[[]], endowed with some associative, but not commutative, star-product :

Frg=>_m(f gl (1)

=0

where the maps m; are bilinear and where mo(f, g) = fg. Then quantization is given by the map f — f,
where the operator fsatisﬁes f(g) = fxg.

In which cases does a Poisson manifold admit such a quantization ? The answer was given by Kontsevich in
his article [@] :in fact he constructed a star-product on every Poisson manifold. Besides he proved that if
M is a smooth manifold, then the equivalence classes of formal deformations of the zero Poisson bracket
are in bijection with equivalence classes of star-products. Moreover, as a consequence of Hochschild-
Kostant-Rosenberg theorem, every abelian star-product is equivalent to a trivial one.

In the case where M is a singular algebraic variety, say

M={zeC" [ f(z) =0}

with n = 2 or 3, where f belongs to C[z] — and this is the case which we shall study — we shall consider
the algebra of functions on M, ie the quotient algebra C[z] / (f). So the above mentioned result is no more
valid. However, the deformations of the algebra F (M), defined by the formula (m), are always classified
by the Hochschild cohomology of F(M), and we are led to the study of the Hochschild cohomology of

Clz] / {f)-

1.2 Cohomologies and quotients of polynomial algebras

We shall now consider R = Clz1, ..., z,] = C[z] the polynomial algebra with complex coefficients
and n variables. We also fix m elements f1, ..., f,, of R, and we define the quotient algebra A :=

R/ (fi, -y fm)=Clz1, ..o, zn] / (f1s --os fm)-

Several articles were devoted to the study of particular cases, for Hochschild as well as for Poisson coho-
mology :



C. Roger and P. Vanhaecke, in the article ], consider the case where n = 2 and m = 1, and
where f; is an homogeneous polynomial. They calculate Poisson cohomology in terms of the number
of irreducible components of the singular locus {z € C? / fi(z) = 0} (in this case, we have a
symplectic structure outside the singular locus).

M. Van den Bergh and A. Pichereau, in the articles W B93, m and W], are interested in the
case where n = 3 and m = 1, and where f; is a weighted homogeneous polynomial with an isolated
singularity at the origin. They compute the Poisson homology and cohomology, which in particular
can be expressed in terms of the Milnor number of the space Clz1, 22, 23] / (02 f1, 02y f1, 025 f1) (the

definition of this number is given in [AVGZS8H)]).

Once more in the case where n = 3 and m = 1, in the article ], J. Alev and T. Lambre compare
the Poisson homology in 0 degree of Klein surfaces with the Hochschild homology in 0 degree of
A1 (C)%, where A;(C) is the Weyl algebra and G the group associated to the Klein surface. We shall
give more details about those surfaces in section 4.1.

C. Fronsdal studies in the article [] Hochschild homology and cohomology in two particular
cases : the case where n = 1 and m = 1, and the case where n = 2 and m = 1. Besides, the appendix
of this article gives another way to calculate the Hochschild cohomology in the more general case of
complete intersections.

In this paper, we propose to calculate the Hochschild cohomology in two particularly important cases :
the case of the singular curves of the plane, with polynomials f; which correspond to their normal forms
(this case already held C. Fronsdal’s attention) ; and the case of Klein surfaces At which are the quotients
C? /T, where T is a finite subgroup of SLyC (this case corresponds to n = 3 and m = 1). These latter
have been the subject of many works; their link with the finite subgroups of SLyC, with the Platonic
polyhedra, and with McKay correspondence explain this large interest. Moreover, the preprojective alge-
bras, to which the article is devoted, constitute a family of deformations of the Klein surfaces,
parametered by the group which is associated to them : this fact justifies once again the calculation of
their cohomology.

The main result of the article is given by two propositions :

Proposition 1
Let be a singular curve of the plane, defined by a polynomial f1 € C[z], of the type Ay, Dy or Ey. Then
H° ~Cl[z]/ (f1), H' ~Clz] / {f1) © C*, and for all j > 2, H ~ CF.

Proposition 2

Let T be a finite subgroup of SLoC and f1 € Clz] such that Clx, y)'' ~ Clz] / (f1). Then H° ~ Clz] / {f1),
H' ~Vfi A(C[z]/{f1))® ® CH, H? ~ C[z]/{(f1) ® CH, and for all j > 3, H? ~ CH, where u is the
Milnor number of Xr.

For explicit computations, we shall use methods suggested by M. Kontsevich in the appendix of [] ;
we will develop a little bit that method.

We will first study the case of singular curves of the plane in section 3 : we will use this method to
rediscover the result that C. Fronsdal proved by direct calculations. Then we will refine it by determining
the dimensions of the cohomology spaces by means of the multivariate division and of the Grébner bases.
Next, in section 4, we will consider the case of Klein surfaces Xr. We will first prove that H identifies
with the space of polynomial functions on the singular surface Xr. We will then prove that H' and H?
are infinite-dimensional. We will also determine, for j greater or equal to 3, the dimension of H7, by
showing that it is equal to the Milnor number of the surface Ap.

Now, section 1.3 will recall important classical results about deformations.



1.3 Hochschild cohomology and deformations of algebras

e Given an associative C—algebra, denoted by A, the Hochschild complex of A is the following

do dy da ds dy

C?(A) —= C*(A) —= C*HA) — - --

C°(4) C'(4)
where the space CP(A) of p—cochains is defined by CP(A4) = 0 for p € —N*, C%(4) = A and V p €
N*, CP(A) = L(A®P  A), where L(A®P, A) defines the space of C—linear maps from A®? to A, and
where differential d = @;- d, is given by

i

V f € CP(A), dy flao,. .., ap) = aof(ar,. .., ap)= Y (=1)'f(ao,. .., @iait1,. .., ap)+(=1)""" f(ao, ..., ap-1)ap.
=0

We can write it in terms of Gerstenhaber bracket [-]¢ as follows :

dpf = (=", fle,

where g is the product of the algebra A, and [-]¢ the Gerstenhaber brachet.
Then we define the Hochschild cohomology of A as the cohomology of the Hochschild complex associated
to A. We note HH°(A) = Ker dp and V p € N*, HHP(A) = Ker d,, / Im d},_;.

e We denote by C[[A]] (resp. A[[R]]) the algebra of formal power series in the parameter A, with coefficients
in C (resp. A). A deformation of the algebra A is defined as a map m from A[[A]] x A[[A]] to A[[A]] which
is C[[A]]—bilinear and such that

V (s, t) € A[[D)]?, m(s, t) =st mod hA[[A]],
V (s, t, u) € A[[A]]3, m(s, m(t, u)) = m(m(s, t), u).

This means that there exists a sequence of bilinear maps m; from A x A to A of which the first term mg
is the product of A and such that

VY (a, b) € A%, m(a, b) = ij(a, bYW,
=0

VneN, Z mi(a, m;(b, ¢)) = Z m;(m;(a, b), c), that is to say Z m; em; =0,
i+j=n i+j=n i+j=n
by using the notation e for the Gerstenhaber product.
We talk about deformation of order p if the previous formula is satisfied (only) for n < p.

Two deformations m and m’ of A are called equivalent if there exists a C[[fi]]—automorphism of A[[A]],
denoted by ¢, such that

V (s, t) € A[[R], @(m(s, 1)) = m'(¢(s), @(t))
Vs e Alh], p(s)=s mod hA[[H]],

that is to say if there exists a sequence of linear maps ¢; from A to A of which the first term ¢ is the
identity of A and such that

VaeA pa)=)Y @)k,
§=0
VneN, Y gi(mila,b)= Y mipa), pkb)).
i+j=n i+j+k=n

e One of the advantages of Hochschild cohomology is its classification of deformations of the algebra A.
In fact, if 7 € C?(A), we can construct a first order deformation m of A such that m; = 7 if and only
if m € Kerdsy. Moreover, two first order deformations are equivalent if and only if their difference is an



element of Imd;. So the set of classes of first order deformations is in bijection with HH? (A).
If m is a deformation of order p, then we can extend m to a deformation of order p + 1 if and only if
there exists mp41 such that

p
¥ (a, b, ¢) € A3, Y (mi(a, mpi1-i(b, €)) = mi(mps1-i(a, b), €)) = —damp41(a, b, ©),

i=1

Wp (a7 b, C)

p

ie E m; ®Mpyri1—; = dgmp+1.
i=1

But w,, belongs to Kerds, as an easy computation shows, so H H3(A) contains the obstructions to extend
a deformation of order p to a deformation of order p + 1.

2 Presentation of the Koszul complex

We recall in this section some results about the Koszul complex used in the following and which are given
in the appendix of the article [FK07.

2.1 Kontsevich theorem and notations

e As indicated in section 1.2, we consider R = Clz] and (fi, ..., fim) € R™, and we note A =
R/ {(f1, ..., fm). We suppose that there is a complete intersection, ie the dimension of the solution set
of the system {f1 =---= f,, =0} isn —m.

e We also define the super-commutative super-algebrag =ReN{a;, j=1...m}=Clz1, ..., zn, 01, ...

0
60tj :

We denote the even variables by roman letters and the odd variables by greek letters.

Then we introduce 7; = B%i and b; =

e We consider the differential graded algebra

~ (C[Zl, ey Zn]

T:A[nl, ey 7’]7“ bl, ceey bm]:ﬁ[nh ey 77n7 bl, ey bm],

endowed with the differential

df_zzazjbza—m

j=11i=1

and the Hodge grading, defined by deg(z;) = 0, deg(n;) =1, deg(a;) = —1, deg(b;) = 2.

Then we can set forth the main theorem which allows us the calculation of the Hochschild cohomology :

Theorem 3 (Kontsevich)
Under the previous assumptions, the Hochschild cohomology of A is isomorphic to the cohomology of the
complex (T, dz) associated to the differential graded algebra T

Remark 4
Theorem E’ can be seen as a generalization of Hochschild-Kostant-Rosenberg theorem to the case of non-
smooth spaces.

; Q)



e There is no element of negative degree. So the complex is as follows :

~ pre 4@ FO)
T(0) —— T(1) — T(2) — T(3) —— T(4)

For each degree p, we choose a basis B), of Tv(p) For example for p =0...3, let’s take :

T(0)=A
T()=Am @ - & An,
T(2) = Aby © - @ Aby, © @D Anin;
1<J
73)= @ Abin;o @ Anmim
73::117:{, i<j<k

Then we can make matrices Matg,, 5,,, (d;f)) explicit.

e We note p : Clz]| — A=Clz]/{f1,..., fm) the canonical projection.

For each ideal J of Clz], we denote by J the image of this ideal by the canonical projection.
Similarly if (g1,..., gr) € A" we denote by {(g1,..., gr)a the ideal of A generated by (g1,..., gr)
Besides, if g € C[z], and if J is an ideal of C[z], then we note

Annj(g) :={h €Clz] / hg=0 mod J}.

In particular, g doesn’t divide 0 in C[z]/J if and only if Ann;(g) = J.
Finally, let’s denote by Vg the gradient of a polynomial g € C[z].

2.2 Particular case where n =1 and m =1

e In the case where n = 1 and m = 1, according to what we have seen, we have for p € N*,

T(2p) = AW |and | T(2p + 1) = Abln,.

We deduce
H°=A, H" ={gim [/ g1 € A and g, 0., f1 = 0}

AbP
N*, H? = L d HP+ = {4, VP A and ¢1 0,, f1 = 0}.
and V p € N*, O 0 T E AT an {g1m / g1 € A and g1 9, f1 = 0}

e Now if f; = 2¥, then

H° = A=Clz] / (2f) = CF !

H'={gim / g1 € A and k912571 =0} ~Ck!
* 2 Abzf

andVpe N HP = y— o~

{91(kz{ )b [/ g1 € A}

and H*t = {g1b/n1 / g1 € A and kglzf_l =0} ~CF 1L,

k—1

3 Case n =2, m = 1. — singular curves of the plane

3.1 Description of the cohomology spaces

With the help of theorem E we calculate the Hochschild cohomology of A. We begin by making cochains
and differentials explicit.



e The various spaces of the complex are given by

T(0) = 4 T(5) = Abn, © Abi,
T(1) = Am @ Anp T(6) = Ab} & Ab3mi
T(2) = Aby ® Amina T(?) = Ab?nl &) Abi’ng
T(4) = Ab} @ Abym | T(9) = Abim @ Abin,

ie, in the generic case, | T(2p) = AbY & AP 'nins |and | T(2p + 1) = APy & AbPn, |

We have 57— (77;C Am)=1An =—mn A1, hence dg) (memy) = 6f1 Lbim + 821 b1m.

From now on, we note 6— = 0., = 0;.
-

The matrices of ds are therefore given by

ey _ (0 Ofi
Mat62p762p+1 (df )_ ( 0 781f1 )

2p+1 0 O
Mot @) = (O 020,

e We deduce a simpler expression for the cohomology spaces :
H°=A

H' = {gim + g2m2 / (91, g2) € A* and g1 D1 f1 + g2 Do f1 = 0} =~ {g: ( g; ) €A’ /g-Vh 20}
VvV pe N,

{ —( 9 >€A2 / g2 01f1=g2 32f1—0}
H2» = {9167 +9207 " 'mnz / (91,92)€A® and g5 01 fi=g2 Do fr1= U 92
- {(g1 01 f1+92 02£1)b7 / (g1,92)€A?} g-Vfi
0 / geA?
By @lo€ A/ goifi = g0 fr =0}
{ _< 91 ) a2/ gvp=o
g2+l — {g1bn1+g2b8n2 / (g1,92)€EA® and g1 01 f1+g2 2 fi= 0} 92
{92(02 /107 — 01 frbTn2) / g2€A} s f1
g2 / g2€A
=01 f1

It remains to determine these spaces more explicitly. It will be done in the two following sections.

3.2 Explicit calculations in the particular case where f; has separate variables

In this section, we consider the polynomial f; = a2} + aszb, with 2 <1 < k and (a1, as) € (C*)2.
The partial derivative of fi are 01 f1 = kalszl and Oy f1 = lagzéfl

e We already have
H® = Clz1, 29]/{a12¥ + az2b).

1 1
e Besides, as f is of homogeneous weight, Euler’s formula gives Ezl o1 f1 + 7x282f1 = f1. So we have the

inclusion (f1) C (01 f1, O2f1), hence (621]017‘%2#1” (621][01,1 ajz]f1> ~ Vect( t2y ) ie0,k—2], j€[0,1— QH)
But 01 f1 and f; are relatively prime, just as d2 f1 and f; are, hence if g € A satisfies 01 f1 =0 mod (f1),

then g € (f1), ie g is zero in A.
So,

H?P ~ Vect (2122 1€[0,k—2], je[0,1— 2]]) ~ k=D (-1)



e Now we determine the set {g: ( zl ) €A’ /g-Vfi ZO} :
2

First we have (f1, 01 f1) = (a12F +agz2b, 2871 = (24, 2%=1). So the only monomials which are not in this
ideal are the elements zi2J with i € [0, k — 2] and j € [0, [ — 1].
Every polynomial P € CJ[z] can be written in the form

P=afi+Boifi+ > aiziz.
1=0...k—2
j=0...1—1

The polynomials P € C[z] such that Pdaf1 € (f1, O1f1) are hence the elements

P = Oéfl + ﬁ@lfl + Z aijzizg.

i=0...k—2
j=1..1—1
So we have calculated Ann s, o, #,)(02f1).
The equation
g-Vfi=0 mod (f1) (2)
yields
9202 f1 =0 mod (f1, O f1), (3)
ie g2 € Anny, 5, 1,)(02f1), ie again
g2=afi +Bfi+ Y, aiziz, (4)
i=0...k—2
j=1..1—1
with (a, 3) € C[z]*.
It follows that o
G0 fr + afidafi + BOLFO L+ Y, ay2iZdafi € (fi). ()
i=0...k—2
j=1..1-1

And, from the equality 20021 = 1f1 — %zlalfl, one deduces :

o fr 91+532f1*]i > ayatHTH e (). (6)

i=0...k—2
j=1...1-1

. l , i

1e g1 = 7682f1 + E . Z aijZiJrlZ% ! —+ 5f1,
i=0...k—2
j=1..1-1

with § € C[z].
Then we verify that the elements g; and go obtained in this way are indeed solutions of the equation (E)
Finally, we have :

o L
et remnon={(3)0-a( 5 ) 5 e () fwnnecermn co
1=0...k—2
A—

j=1...1-1

We immediately deduce the cohomology spaces of odd degree :

C(k=1)(1-1)
Ck=D(-1) g Clz1, z2]/{a12F + axzb).

Vp>1, HPH
Hl

~
~



Remark 5
We obtain in particular the cohomology for the cases where f1 = zf"'l +22, f1 =2} +25 and f1 = 2} +25.
These cases correspond respectively to the weight homogeneous functions of types Ay, Eg and Eg given

in [AVGZS8q] p. 181.

The table below summarizes the results obtained for the three particular cases we have just obtained :

L7 | 1 | | o
A, [ Clz) / (FT1 4+ 23) | Cla]) / (P +23)@CFk [ CF | CF
Es || Clz] / (2§ + 23) Clz /(zl—i—zQ)EB(CS Cct | cC"
Es || Clz] / (28 + 23) Clz] / (z} +23) ¢ C® c® | c8

The cases where f; = 2329 + z§_1 and f; = 23 + 2123, ie respectively Dy and E7, will be studied in the
next section.

3.3 Explicit calculations for D, and F;

To study these particular cases, we use the following result about Grébner bases (theorem ﬁ) First, recall
the definition of a Grébner basis. For g € Clz], we denote by lt(g) its leading term (for the lexicographic
order). Given a non trivial ideal J of C[z], a Grdbner basis of .J is a finite subset Gy of J\{0} such that
for all f € J\{0}, there exists g € G s such that lt(g) divides lt(f).

Definition 6

1. Let J be a non trivial ideal of C[z] and G :=[¢1, - .., gr] a Grébner basis of J. A polynomial p € C[z]
is reduced relatively to Gy if it is zero or if none of the terms of p is divisible by the leading term lt(g;)
of one of the elements of G .

2. The set of the G j—standard terms is the set of all monomials of Clz] except the set of the leading
terms lt(f) of the polynomials f € J\{0}.

Theorem 7 (Macaulay)
The set of the G j—standard terms forms a basis of the quotient vector space Clz] / J.

3.3.1 Caseof f; = 2’122 + z§ L ie Dy,

Here we have f; = 2225 + z2_ , O1f1 = 22129 and Oq f1 = z% + (k- 1) .

A Grobner basis of the ideal (f1, d2f1) is B := [by, bo] = [27 + (k — 1)25 - 2, 251
So the set of the standard terms is{ziz} /i € {0, 1} and j € [0, k — QH}

Then we can solve the equation p 9y f1 = 0 in Clz] / (f1, O2f1).

In fact, by writing p := Z aij z{zg, the equation becomes
i=0,15=0...k—2
q:= Z GUZ;H jte € (f1, O2f1).

i=0,1j=0...k—2
So we look for the normal form of the element ¢ modulo the ideal (f1, O2f1).

The multivariate division of ¢ by B is ¢ = q1b1 + q2b2 + r with r = Zf O3a0 ]zlz§+ .

Thus the solution is

b = ao,k— 222 E a1,32122

But the equation
g-Vfi=0 mod (f1) (7)



yields

g101f1 =0 mod (f1, O2f1), (8)
ie
g1 = afi+Boaf1+azs 2+ bizmal, (9)
with (o, 3) € Clz]? and a, b; € C.
Hence
9202 f1 + BOLf102f1 + azy 201 f1 + Z bjz1250 f1 € (f1)- (10)
7=0
And with the equalities,
ey 1 1 k—2
22 = ﬂ('fl — Zgagfl) = —2 — k2282f1 mod <f1>, and B z181f1 + 2:282f1 = (k — 1)f1 (Euler),
we obtain
a 2 2
-
O2f1 | g2+ BOLf1 — 2_k2122+j;bjm25 € (f1). (11)

e, g2 = —POLf1 + 3 AT L6,

2122

J2

with ¢ € C[z]. So

{geAz/g‘Vfl—O}—{<§)f1+ﬁ<_aglf}l>+< ;:ZZ)-‘:-Esz(_i )/(aﬁ,é)eC[]Banda,bjEC}.

On the other hand, a Grébner basis of (01 f1, 82f1> is [27 + (k — 1)2572, 2120, 2571,
thus C[z] / (01 f1, 62f1> Vect (21, 1, 20 ..., 2577

Let’s summarize,

H® = Clz] / (232 + 25~ 1}
H'~Clz] / ({22 + 2 ') ®C
H2p Z(Ck

H2r+1 ~ CF.

3.3.2 Case of f; = 25 + 2123, ie Er

Here we have 0y f1 = 3z% + zg’ and 0y f1 = 32:122

A Grébner basis of the ideal (f1, 01f1) is [322 + 23, 2123, 25, and a Grébner basis of (9;f1, daf1) is
[32% + 23, 2123, 25].

By an analogous proof, we obtain :

H° =Clz] / (2§ + 2123)

H' ~Clz] / (2} + z123) & C"
H2p ~ C7

H?+l ~ 7,

10



4 Case n =3, m = 1. — Klein surfaces

4.1 Klein surfaces

Given a finite group G acting on C", we associate to it, according to Erlangen program of Klein, the quo-
tient space C™/G, ie the space whose points are the orbits under the action of G ; it is an algebraic variety,
and the polynomial functions on this variety are the polynomial functions on C™ which are G—invariant.
In the case of SLyC, invariant theory allows us to associate a polynomial to any finite subgroup, as
explained in proposition E Thus, to every finite subgroup of SLoC are associated the zero set of this
polynomial; it is an algebraic variety, called Klein surface.
In this section we recall some results about this surfaces. See the references [] and for more

details.

Proposition 8

Every finite subgroup of SLoC is conjugate to one of the following groups :

o A, (cyclic)yn>1 (JA,| =n)

e D, (dihedral), n>1 (|D,|=4n)
o Es (tetrahedral) (|Eg| = 24)

e E7 (octahedral) (|E7| = 48)

e Eg (icosahedral) (|Eg| = 120).

Proposition 9

Let G be one of the groups of the preceding list. The ring of invariants is the following :

Clz, y)° = Cley, €2, e3] = Clex, ea] @ esClex, ea] = Clz1, 22, 23)/(f1),

where the invariants e; are homogeneous polynomials, with e and ex algebraically independent, and where

f1 is a weighted homogeneous polynomial with an isolated singularity at the origin.

These polynomials are given in the following table.

| G || e1, €, €3 | fi Clz1, 22, 23]/(01 f1, Oa2f1, O3f1) |
‘1= " n—2
A, || e2=y" ez — 2) (Xi/'ectﬁl, 21,1. o 2879)
€3 = xy im=n—
2,2
el =z . . ., -
: , A (2P ()" 22+ (=1)"28) | Veet(1, 2, 21, ..., 2770

Dn €9 = :L.2n + (71)ny2n
e3 = :L.2n+1y + (71)n+1$y2n+1

with A, = 2n(—1)"*!

dim=n+1

e1 = 2%y — xy’°
Ee || 2= 1dy*zt + 28 + 48

€3 = 33y8$4 _ y12 +33y4$8 _ .I'12

4(2% — 25 +108z1)

2 2
Vect(1, za, 21, 2122, 27, 2722)
dim =6

ey = ldytat + 28 + 48

B €9 = 73y10:r2 + 6y6$6 _ 3y2$10
€3 = 734$5y137y$17+34y5$13+1.y17

8(325 — 1223 + 2023)

2 2 2
Vect(1, z2, 23, 21, 2122, 2125, 27)

dim =7

_522x5y25 + ySO

el = xuy + 11x6y6 — xyn
es = 220 — 22821595 + 494510410
E +2282°5y1° 4 %0
8 e3 = 230+ 5222%5°

—10 00522919 — 10 005219920

10(1 72827 + 25 — 23)

Vect(z{zg)i;o___ i

7=0...1
dim =8

11



We call Klein surface the algebraic hyper-surface defined by {z € C* / f1(z) = 0}.

Theorem 10 (Pichereau)
Consider the Poisson bracket defined on Clz1, z1, 23] by

{'}f1 = agfl 01 N\ Oy + 61f1 Oa N\ O3 + 62f1 O3 N0y = Z(dfl)(al A O A 63),

and denote by HP;, (resp. HPJI) the Poisson cohomology (resp. homology) for this bracket. Under the
previous assumptions, the Poisson cohomology H Pj, and the Poisson homology HP of (Clz1, 21, 23]/ (1), {-}p)
s gwen by
0 _ 1~ 2 _

HPf =C. HP), = HP}, = {0}

HPJ' ~ HPy' ~ Clz1, 22, 23]/{01f1, Oaf1, O3f1)

dim(HP{") = dim(HP{*) — 1

HP{' = HP] = {0} sij > 3.
The algebra C[z, y] is a Poisson algebra for the standard symplectic bracket {-}s:q. As G is a subgroup of
the symplectic group Sp,C (since Sp,C = SL,C), the invariant algebra C[z, y]© is a Poisson subalgebra

of C[z, y]. Then the following proposition allows us to deduce from theorem E the Poisson cohomology
and homology of Clz, y]¢ for the standard symplectic bracket.

Proposition 11
The isomorphism of associative algebras

m: (Clz, Y%, {}sta) —  (Cle, 21, 28]/ (1), {3n)

€ Tz
is a Poisson isomorphism.
Subsequently, we will calculate the Hochschild cohomology of Clz1, 21, z3]/(f1). Then we will deduce

immediately the Hochschild cohomology of C[z, y]©, with the help of the isomorphism of associative
algebras .

4.2 Description of the cohomology spaces

e In this case, we change the ordering of the basis : we shall use (n172, 7213, n3n1) instead of (192, M113, N2n3).
Then the different spaces of the complex are given by

TO)=A
T(1) = Am & Anz & Ans
T(2) = Aby ® Amine @ Ananz ® Anzm

ie, in the general case, for p € N*, | T(2p) = AbY & AP iy & AWY ™ ipams @ AWY ™ 'ngmy

and | T(2p + 1) = Ay @ AbYne ® AbEns @ ABE ™ ninans |

We have Bim(nl A2 Anz) = LAn2 Anz = n2 AnzAl, thus dg) (mm2m3) = g—£b1772773+g—251773771+g—£b1771772-

The matrices of ds are therefore given by

12



azlfl aZQfl angl
Oy _ 0 0 0
MatBth (df ) - 0 0 0
0 0 0
0 azz fl 0 7823‘/:1
* (2p)\ __ 0 7821‘/:1 azsfl 0
v pE N s Mat62p762p+1 (df ) - 0 0 _aZQfl aZI fl
0 0 0 0
azlfl azzfl azgfl 0
* (2p+1)y _ 0 0 0 9f1
VP EN, Matss b (Z770 = g 0 0 aLfy
0 0 0 0., f1
e We deduce
H°=4
9
H' = {gim+gom2+g3ns / (91, g2, 93) € A® and g1 0., f1+92 0z, f1+93 02, /1 =0}~ Sg=| g2 | €4® /g-Vfi=0
g3
02 = {gob1+gsmmz+tgimanz+gznsm / (9o, 91,92 93)EA* and gs 8zy f1 —g2 Ozg f1=01 D=5 f1 —g3 02y f1=g2 021 f1—g1 D=, f1=0}
B {(91 0=1 f1+92 025 f1+9g3 0=5 f1)b1 / (91,92,93)EA3}
g0 g1
g— zl cat / VAA| ga |=0
2
N g 93
g-Vfi / gead
03,1
~ A 3 _
T (021 f1, 025 /1, O25f1)a @{gGA /Vfl/\g—()}
Vp=>2,
- - - .91, 92 g3)EA* and
o {gobszrggbzf Yine 416 Tnans+g268 " Tnam / 98 02y f1—g 02y f1 :(:?7? 69213 ;]12_953) 92y flaim 82y Fr—g1 0, f1:0}
{(91 021 f14+92 0=y f1493 025 f1)b] +90 (825 f1 WP im0y f1 68 T ama 402y f1 65 'nami) / (g0, 91, g2, 93) EA3}
go a
g= gl €At / VAaA|l go |=0
2
N s 93
g-Vh
9o 621 fl .
/ g€A3 and go€A
go aZQfl 0
90 az;:,fl .
- A o {geA® / Vfing=0}
T {0z f1, 025 f1, Oz5f1)a {gVf1 / geA}
VvV pe N,
4 —
ok — 10211 +g2bP N2 +g3bP N3 +g0bt " tninans / (90,91, 92 92)06523 f?idgféiz}lfi;fzi?figga Oes 1=0
o {(93 0z f1—92 023 F1)VYN1+(g1 025 f1—93 021 f1)bY 12+ (92 D21 f1—9g1 O=5 1) N3 / (91,92, 93)EA3}
9
92 9
g= g cAt / Vfi-l g2 |[=0and go0:3f1=g00: f1=go 0z, f1=0
3
N 90 93
(751
Vian]l g2 / g A3
g3
0

€A% | Vf1-g=0
= {{gil/\g / gIEgAd}} D {g €A / gazsfl = ga—hfl = gafol = O}

The following section will allows us to make those various spaces more explicit.
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4.3 Explicit calculations in the particular case where f; has separate variables

In this section, we consider the polynomial f; = a2} + (ZQZ% +az2¥, with 2 <i <j <k and aj € C*.
Its partial derivative are 9y f1 = ialzifl, Oaf1 = jagz%'*l and 03f1 = k:agzg*l.

e We have already

HO = Clz1, 2, z3)/{a12} + az7) + asz) |

1 1
e Moreover, as f; is weight homogeneous, Euler’s formula gives =2101 f1 + =2202f1 + Ez363f1 = f1. So
1 J

we have the inclusion (f1) C (01 f1, O2f1, O5f1), thus

A __ Cle, 29, 23]
(O1f1, O2f1, O3f1)a  (O1f1, O2f1, O3f1)

2‘/eCt(Z:lDZng/pe[[oazf2ﬂa qE[[O,ij]], TG[[Oak*ﬂ])'

Finally, as 01 f1 and f; are relatively prime, if g € A verifies g01 f1 = 0 mod (f1), then g € (f1), ie g is
zero in A.

g1
e Now we determine theset { g = | go | €43 /g -Vfi =0

93
First we have (f1, 81 f1, 92 f1) = (a12} +agz)+aszh, 2071, 2371 = (2071, 237" 25). Thus the only monomi-
als which are not in this ideal are the elements 2! 2225 with p € [0, i—2], ¢ € [0, j—2] and r € [0, k—1].
So every polynomial P € C[z] can be written in the form :

P=afi+B0fr+v0fi+ D apgratzizl.

3 Q3
Iyl
eoo
ESNSES
NN

The polynomials P € C[z] such that P9sf1 € (f1, O1f1, O2f1) are therefore the following ones :

P=afi +pofi+y02fi+ Y. apgratzisl.

p=0...5—2
q=0...j—2
r=1...k—1
So we have calculated Ann s, o, #,, 0, £,)(93.f1)-
The equation
g-Vfi=0 mod (f1) (12)
leads to g3 € A?’L?’L(flyalfhazfl)(agfﬂ, ie
gs=afi+ PO fr+y02fr+ Y apgrtaizg, (13)
p=0...5—2
q=0...7—2
r=1...k—1
with (a, 8, v) € C[z]>.
Hence
9202 f1 + 702 f10s 1+ Y pgr2t 282505 f1 € (f1, O1f1). (14)
120
r=1...k—1

14



Thus, according to Euler’s formula,

k
A fr 92+733f1*; Y aprrt AT € (fr o). (15)

p
q
T

0...1—2
0...5—2
1...k—1

Since Ann s, a, 1,y(02f1) = (f1, O1f1), this equation is equivalent to

k
g2 = =03 f1 + i Z pgrb 23 T 25T+ 0 f1 + 01 fi,

RN

NIl

—eo

G s
|

— N

with d, € € C[z]. It follows that

k
9181f1 +681f183f1 +€(91f182f1+ Z apqrzfzgzgagflJr; Z apqrzlzéHl _183f1 c <f1> (16)

p=0...1—2 p=0...i—2
q=0...7—2 q=0...5—2
r=1..k—1 r=1..k—1
And, according to Euler’s formula,
k r—1
Ofi| g1+ B0sfr+edafi — = Z pgr 2} 2328 € (f1). (17)
v p=0...1—2
q=0...5—2
r=1...k—1
ie g1 = —B0sf1 — eda fy + = Y apged T 4 nf, (18)
p:O a—=2
q=0...7—2
r=1...k—1

with n € C[z]. Finally

k
A 7 - T2
{sca®/g-vr=0}= ( 5 >f1+Vf1A( B >+ ST apgrzbaiey” 1( LA
o .

—e 23

) /(04 B, 7, 8, &, m) € A® and apq, € C

=0...i—
=0...5j—
=1...k—

=N

P
q
r

f

J
k
We deduce immediately the cohomology spaces of odd degrees :

Vp>1, H?»t ~ CUG-DG-Dk-1)
H' ~ VfiA(Clz/(f1))’ e CiDE-DE-1),

2

Remark :

We also have V f1 A (Clz]/(f1))” ~ (C[2]/(f1))" / {g / V/ing=0} = (Clzl/{1))* / (Clal/(f1))V fi.

Moreover the map
(Cll/(f))? — Vi ACE/ ()

91 g
(1) - o5
92 0
is injective, thus | V.f1 A (Clz]/(f1))? is infinite-dimensional |
91
e It remains to determine theset < g = | g2 | € A3/ VfiAg=0
g3

15



O2f193—0sfiga = 0

Let g € A3 be such that V fiAg = 0. It means that, modulo (f;), g verifies the system ¢ 95f191 —d1figs = 0
hfiga—0figi = 0
The first equation gives, modulo (f1, d2f1), O5f1 g2 = 0.
Now Anns, o, 1y(03f1) = (f1, O2f1), therefore go = af1 + $0s f1. Hence
02f1(g3 — B03f1) =0 mod (f1),
le g3 =7f1+ 8Os f1.
Finally, we obtain
953 f1(g1 — BO1f1) =0 mod (f1),
ie g1 =0f1+ B0 f1.
)
SO,{g€A3/Vf1/\g:0}: fl « +6Vfl/a767’y)5614
v
We deduce the cohomology spaces of even degrees :
Vp>2, H* ~ A[(0ifr,0f1,001) =Cle] [ (17 257, ) o
~ Vect (212425 / pe[0,i—2], g€ [0, —2], r € [0, k—2]) ~ CiDU-LEG=D)
H? ~ {BVf/BeA}eCENU—DED) ~Clz] / (a12} + a2zl + azz) @ CO-DUE-D(k=1),
Remark 12
In particular, we obtain the cohomology for the cases where fi = 22 + 22 + z§+1, f1 =22+ 23+ 25 and
fi =22 4+ 23 + 23. These cases correspond respectively to the types Ay, Eg and Es of the Klein surfaces.
The following table sums up the results of those three special cases :
L A [ H | 7 EEE
A [ Cle / R4+ [ VAACE /(1) @CF [ Clel / (f+ 3+ )eCr [ CF | CF
B | Clzl /(3 +23+28) | VAA(CE/(F)’OC° |Clal /(23 +23+24)@CC | C5 | CS
Es [Cld/(i+28+25) | VAACE/ () @C [Cll/(H+4+:)eC [ [P

The cases where f; = 22 + 2323 + zé‘”’*l and f1 = 27 + 23 + 2023, ie respectively Dy and E7 are studied in
the following section.

4.4 Explicit calculations for D, and E;
4.4.1 Case of f, = 27 + 2323+ 257", ie Dy

In this section, we consider the polynomial f; = 2% + 2223 + z:],f*l.

Its partial derivatives are 01 f1 = 221, 02 f1 = 22223 and 03 f1 = z% + (k- 1)z§72.

e We already have

HC = Clz]/(23 + 2323 + z§_1>.

e Besides, since f; is of homogeneous weight, Euler’s formula gives

k—1 k—2
21011+

2o Oof1 + 2303f1 = (k—1)f1. (19)
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Thus, we have the inclusion (f1) C (01 f1, O2.f1, O5f1).
Moreover, a Grobner basis of (01 f1, 02 f1, 03f1) is [zg_l, 2923, 25 + (k — 1)z§_2, z1], therefore

A _ Clz, 2, 23]
(O1f1, O2f1, Osf1)a  (Oif1, Oaf1, O3 f1)

zVect(zz, 1, 23,..., z§ 2).

Finally, as 0 f1 are fi relatively prime, if g € A verifies g01 f1 = 0 mod (f1), then g € (f1), ie g is zero
in A, thus {g€ A/ g0.,f1=90.,f1 =90,/ =0} =0.

91
e Now we determine theset { g=| g2 | €43 /g-Vf1i=0

93
A Grébner basis of (f1, 91 f1, 93f1) is [z1, 2671, 23 + (k — 1)2572], thus a basis of C[z] / (f1, 01f1, O3f1)

is {zh2} / i €{0, 1}, j € [0, k—2]}.
We have already solved the equation p 02 fi = 0 in this space; its solution is p = ag k- 223 z 4 Z a1 ]z2z3

The equation

g-Vfi=0 mod (f1) (20)
leads to
g202f1 =0 mod (f1, 01 f1, Osf1), (21)
hence
g2 = afi + BOLfi + 703 f1 +azf T + Z bj 222, (22)
with (o, 8, 7) € Cla]®
And
k—2
9303 f1 + Y03 f102f1 4 azh 20sf1 + Zb 202500 f1 € (f1, 01 f1). (23)
7=0

Now according to Euler’s formula ) and the equality

1 1 1
2 ey = Gy (22f1 — 222303 f1 — 5222151f1) =5 k222353f1 mod (f1, 01f1), (24)
the equation (R3) becomes
a = 2
1
O3f1 | 93 +702f1 — 2_,{2223*;%‘2_ A € (fr, 0uf). (25)

As Anny, o, 1,)(03f1) = (f1, O1f1), this equation is equivalent to

g3 :—782f1+ 32 ]+1+5f1 + o f1,
with 0, e € C[z].
We find
g - 1 a
= —P02f1 —e0sf1 + ij 5t g T, (26)
with 7 € Clz].
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Finally, we have
J

5 n ol k—2 F=3717} 2221 .
{gEA /g‘Vf1:0}: ? i+ VA € + E bj zQz;Jrl +a 2z§’2 /(o¢7 B,7,6,e,m) €A” and a,b; €C, ,
ji=0 2 .7 a .
5= =

as well as cohomology spaces of odd degrees :

Vp>1, H>?»t ~ (CF
H' =~ VfiA(C/{f1)’ & Ck

e To show {g € A® / V/ing =0} = {fig+8Vfi/ge A3 B A}, we proceed as in the case of
separate variables.
We deduce the cohomology spaces of even degrees :

Vp>2 H?
H2

A / (alfl, 02 f1, 63f1> ~ Vect (22, 1, 23,..., 2572) ~ Ck
(BVfi ) BEAY®Cr ~Clz] / (27 + 2323 + 257 1) @ CF.

R

4.4.2 Case of f; = 27 + 235 + 2023, ie Ex

Here we have 01 f1 = 221, 0o f1 = 3z§ + zg,’ and 03 f1 = 3222%.

The proof is similar to the one of the previous cases.

A Grébuer basis of (91 f1, af1, Osf1) is [25, 2222, 323 + 23, z1).
Similarly, a Grébner basis of (f1, 01 f1, 2f1) is [25, 2023, 323 + 23, z1].
We obtain the following results :

Vp>1, H¥» ~ (C7
H' ~ VfiA(Cl2/{f1)’ eC.

H° = Clz] / (2 + 23 + 2223)
Vp>2 H? A [ (01 f1, Ozf1, O3f1) = Vect (22, 23, 1, 23, 23, 23, 23) =~ C”
H? {BVf1/BeEA®CF ~Clz] / (22 + 23 + 2223) @ C".

1R

Remark 13
In all the previously studied cases, there exists a triple (i, j, k) such that {i, j, k} = {1, 2, 3}, and such
that the map

Clz] / (O1f1, O2f1, Osf1) — {Solutions in Clz] / (f1, 0; f1, Or.f1) of the equation g9, f1 = 0}
P — 2z P mod {f1, 0jf1, Ofr)

s an isomorphism of vector spaces.
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