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HOCHSCHILD COHOMOLOGY OF KLEIN SURFACES

Frédéric BUTIN1

Abstract

Given a mechanical system (M, F(M)), where M is a Poisson manifold and F(M) the algebra of regular functions

on M , it is important to be able to quantize it, in order to obtain more precise results than through classical

mechanics. An available method is the deformation quantization, which consists in constructing a star-product

on the algebra of formal power series F(M)[[~]]. A first step toward study of star-products is the calculation of

Hochschild cohomology of F(M).

The aim of this article is to determine this Hochschild cohomology in the case of singular curves of the plane —

so we rediscover, by a different way, a result proved by Fronsdal and make it more precise — and in the case of

Klein surfaces. The use of a complex suggested by Kontsevich and the help of Gröbner bases allow us to solve the

problem.

Résumé

Etant donné un système physique (M, F(M)), où M est une variété de Poisson et F(M) l’algèbre des fonctions

régulières sur M , il est important de pouvoir le quantifier pour obtenir des résultats plus corrects que ceux donnés

par la mécanique classique. Une solution est fournie par la quantification par déformation qui consiste à construire

un star-produit sur l’algèbre des séries formelles F(M)[[~]]. Un premier pas vers l’étude des star-produits est le

calcul de la cohomologie de Hochschild de F(M).

Le but de l’article est de déterminer cette cohomologie de Hochschild dans le cas des courbes singulières du plane

— on précise ainsi, par une démarche différente, un résultat démontré par Fronsdal — et dans le cas des surfaces

de Klein. L’utilisation d’un complexe proposé par Kontsevich et l’emploi des bases de Gröbner permettent de

résoudre le problème.
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1 Introduction

1.1 Deformation quantization

We consider a mechanical system given by a Poisson manifold M , endowed with a Poisson bracket {·}. In
classical mechanics, we study the (commutative) algebra F(M) of regular functions (ie, for example, C∞,
holomorphic or polynomial) on M , that is to say the observables of the classical system. But quantum
mechanics, where the physical system is described by a (non commutative) algebra of operators on a
Hilbert space, gives more correct results than its classical analogous. Hence the importance to get a
quantum description of the classical system (M, F(M)) : such an operation is called a quantization.
One option is geometric quantization, which allows to construct in an explicit way a Hilbert space and
an algebra of operators on this space. This very interesting method presents the drawback of being
seldom applicable. That’s why have been introduced other methods such as asymptotic quantization
and deformation quantization. The latter, described in 1978 by F. Bayen, M. Flato, C. Fronsdal, A.
Lichnerowicz and D. Sternheimer in the article [BFFLS78], is a good alternative : instead of an algebra
of operators on a Hilbert space, a formal deformation of F(M). This is given by the algebra of formal
power series F(M)[[~]], endowed with some associative, but not commutative, star-product :

f ∗ g =

∞∑

j=0

mj(f, g)~j (1)

where the maps mj are bilinear and where m0(f, g) = fg. Then quantization is given by the map f 7→ f̂ ,

where the operator f̂ satisfies f̂(g) = f ∗ g.
In which cases does a Poisson manifold admit such a quantization ? The answer was given by Kontsevich in
his article [K97] : in fact he constructed a star-product on every Poisson manifold. Besides he proved that if
M is a smooth manifold, then the equivalence classes of formal deformations of the zero Poisson bracket
are in bijection with equivalence classes of star-products. Moreover, as a consequence of Hochschild-
Kostant-Rosenberg theorem, every abelian star-product is equivalent to a trivial one.
In the case where M is a singular algebraic variety, say

M = {z ∈ C
n / f(z) = 0}

with n = 2 or 3, where f belongs to C[z] — and this is the case which we shall study — we shall consider
the algebra of functions on M , ie the quotient algebra C[z] / 〈f〉. So the above mentioned result is no more
valid. However, the deformations of the algebra F(M), defined by the formula (1), are always classified
by the Hochschild cohomology of F(M), and we are led to the study of the Hochschild cohomology of
C[z] / 〈f〉.

1.2 Cohomologies and quotients of polynomial algebras

We shall now consider R = C[z1, . . . , zn] = C[z] the polynomial algebra with complex coefficients
and n variables. We also fix m elements f1, . . . , fm of R, and we define the quotient algebra A :=
R / 〈f1, . . . , fm〉 = C[z1, . . . , zn] / 〈f1, . . . , fm〉.

Several articles were devoted to the study of particular cases, for Hochschild as well as for Poisson coho-
mology :
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C. Roger and P. Vanhaecke, in the article [RV02], consider the case where n = 2 and m = 1, and
where f1 is an homogeneous polynomial. They calculate Poisson cohomology in terms of the number
of irreducible components of the singular locus {z ∈ C2 / f1(z) = 0} (in this case, we have a
symplectic structure outside the singular locus).

M. Van den Bergh and A. Pichereau, in the articles [VB94], [P05] and [P06], are interested in the
case where n = 3 and m = 1, and where f1 is a weighted homogeneous polynomial with an isolated
singularity at the origin. They compute the Poisson homology and cohomology, which in particular
can be expressed in terms of the Milnor number of the space C[z1, z2, z3] / 〈∂z1f1, ∂z2f1, ∂z3f1〉 (the
definition of this number is given in [AVGZ86]).

Once more in the case where n = 3 and m = 1, in the article [AL98], J. Alev and T. Lambre compare
the Poisson homology in 0 degree of Klein surfaces with the Hochschild homology in 0 degree of
A1(C)G, where A1(C) is the Weyl algebra and G the group associated to the Klein surface. We shall
give more details about those surfaces in section 4.1.

C. Fronsdal studies in the article [FK07] Hochschild homology and cohomology in two particular
cases : the case where n = 1 and m = 1, and the case where n = 2 and m = 1. Besides, the appendix
of this article gives another way to calculate the Hochschild cohomology in the more general case of
complete intersections.

In this paper, we propose to calculate the Hochschild cohomology in two particularly important cases :
the case of the singular curves of the plane, with polynomials f1 which correspond to their normal forms
(this case already held C. Fronsdal’s attention) ; and the case of Klein surfaces XΓ which are the quotients
C2 / Γ, where Γ is a finite subgroup of SL2C (this case corresponds to n = 3 and m = 1). These latter
have been the subject of many works ; their link with the finite subgroups of SL2C, with the Platonic
polyhedra, and with McKay correspondence explain this large interest. Moreover, the preprojective alge-
bras, to which the article [CBH98] is devoted, constitute a family of deformations of the Klein surfaces,
parametered by the group which is associated to them : this fact justifies once again the calculation of
their cohomology.
The main result of the article is given by two propositions :

Proposition 1

Let be a singular curve of the plane, defined by a polynomial f1 ∈ C[z], of the type Ak, Dk or Ek. Then
H0 ≃ C[z] / 〈f1〉, H1 ≃ C[z] / 〈f1〉 ⊕ Ck, and for all j ≥ 2, Hj ≃ Ck.

Proposition 2

Let Γ be a finite subgroup of SL2C and f1 ∈ C[z] such that C[x, y]Γ ≃ C[z] / 〈f1〉. Then H0 ≃ C[z] / 〈f1〉,
H1 ≃ ∇f1 ∧ (C[z] / 〈f1〉)

3 ⊕ Cµ, H2 ≃ C[z] / 〈f1〉 ⊕ Cµ, and for all j ≥ 3, Hj ≃ Cµ, where µ is the
Milnor number of XΓ.

For explicit computations, we shall use methods suggested by M. Kontsevich in the appendix of [FK07] ;
we will develop a little bit that method.
We will first study the case of singular curves of the plane in section 3 : we will use this method to
rediscover the result that C. Fronsdal proved by direct calculations. Then we will refine it by determining
the dimensions of the cohomology spaces by means of the multivariate division and of the Gröbner bases.
Next, in section 4, we will consider the case of Klein surfaces XΓ. We will first prove that H0 identifies
with the space of polynomial functions on the singular surface XΓ. We will then prove that H1 and H2

are infinite-dimensional. We will also determine, for j greater or equal to 3, the dimension of Hj , by
showing that it is equal to the Milnor number of the surface XΓ.
Now, section 1.3 will recall important classical results about deformations.
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1.3 Hochschild cohomology and deformations of algebras

• Given an associative C−algebra, denoted by A, the Hochschild complex of A is the following

C0(A)
d0

// C1(A)
d1

// C2(A)
d2

// C3(A)
d3

// C4(A)
d4

// . . .

where the space Cp(A) of p−cochains is defined by Cp(A) = 0 for p ∈ −N∗, C0(A) = A and ∀ p ∈
N∗, Cp(A) = L(A⊗p, A), where L(A⊗p, A) defines the space of C−linear maps from A⊗p to A, and
where differential d =

⊕∞
i=0 dp is given by

∀ f ∈ Cp(A), dp f(a0, . . . , ap) = a0f(a1, . . . , ap)−

p−1∑

i=0

(−1)if(a0, . . . , aiai+1, . . . , ap)+(−1)p−1f(a0, . . . , ap−1)ap.

We can write it in terms of Gerstenhaber bracket [·]G as follows :

dpf = (−1)p+1[µ, f ]G,

where µ is the product of the algebra A, and [·]G the Gerstenhaber brachet.
Then we define the Hochschild cohomology of A as the cohomology of the Hochschild complex associated
to A. We note HH0(A) = Ker d0 and ∀ p ∈ N∗, HHp(A) = Ker dp / Im dp−1.

• We denote by C[[~]] (resp. A[[~]]) the algebra of formal power series in the parameter ~, with coefficients
in C (resp. A). A deformation of the algebra A is defined as a map m from A[[~]]×A[[~]] to A[[~]] which
is C[[~]]−bilinear and such that

∀ (s, t) ∈ A[[~]]2, m(s, t) ≡ st mod ~A[[~]],
∀ (s, t, u) ∈ A[[~]]3, m(s, m(t, u)) = m(m(s, t), u).

This means that there exists a sequence of bilinear maps mj from A×A to A of which the first term m0

is the product of A and such that

∀ (a, b) ∈ A2, m(a, b) =
∞∑

j=0

mj(a, b)~j,

∀ n ∈ N,
∑

i+j=n

mi(a, mj(b, c)) =
∑

i+j=n

mi(mj(a, b), c), that is to say
∑

i+j=n

mi • mj = 0,

by using the notation • for the Gerstenhaber product.
We talk about deformation of order p if the previous formula is satisfied (only) for n ≤ p.
Two deformations m and m′ of A are called equivalent if there exists a C[[~]]−automorphism of A[[~]],
denoted by ϕ, such that

∀ (s, t) ∈ A[[~]]2, ϕ(m(s, t)) = m′(ϕ(s), ϕ(t))
∀ s ∈ A[~], ϕ(s) ≡ s mod ~A[[~]],

that is to say if there exists a sequence of linear maps ϕj from A to A of which the first term ϕ0 is the
identity of A and such that

∀ a ∈ A, ϕ(a) =

∞∑

j=0

ϕj(a)~j ,

∀ n ∈ N,
∑

i+j=n

ϕi(mj(a, b)) =
∑

i+j+k=n

m′
i(ϕj(a), ϕk(b)).

• One of the advantages of Hochschild cohomology is its classification of deformations of the algebra A.
In fact, if π ∈ C2(A), we can construct a first order deformation m of A such that m1 = π if and only
if π ∈ Ker d2. Moreover, two first order deformations are equivalent if and only if their difference is an
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element of Im d1. So the set of classes of first order deformations is in bijection with HH2(A).
If m is a deformation of order p, then we can extend m to a deformation of order p + 1 if and only if
there exists mp+1 such that

∀ (a, b, c) ∈ A3,

p∑

i=1

(mi(a, mp+1−i(b, c)) − mi(mp+1−i(a, b), c))

︸ ︷︷ ︸
ωp(a, b, c)

= −d2 mp+1(a, b, c),

ie

p∑

i=1

mi • mp+1−i = d2mp+1.

But ωp belongs to Kerd3, as an easy computation shows, so HH3(A) contains the obstructions to extend
a deformation of order p to a deformation of order p + 1.

2 Presentation of the Koszul complex

We recall in this section some results about the Koszul complex used in the following and which are given
in the appendix of the article [FK07].

2.1 Kontsevich theorem and notations

• As indicated in section 1.2, we consider R = C[z] and (f1, . . . , fm) ∈ Rm, and we note A =
R / 〈f1, . . . , fm〉. We suppose that there is a complete intersection, ie the dimension of the solution set
of the system {f1 = · · · = fm = 0} is n − m.

• We also define the super-commutative super-algebra Ã = R⊗
∧
{αj , j = 1 . . .m} = C[z1, . . . , zn, α1, . . . , αm].

Then we introduce ηi = ∂
∂zi

and bj = ∂
∂αj

.

We denote the even variables by roman letters and the odd variables by greek letters.

• We consider the differential graded algebra

T̃ = A[η1, . . . , ηn, b1, . . . , bm] =
C[z1, . . . , zn]

〈f1, . . . , fm〉
[η1, . . . , ηn, b1, . . . , bm],

endowed with the differential

dT̃ =

n∑

j=1

m∑

i=1

∂fi

∂zj
bi

∂

∂ηj

and the Hodge grading, defined by deg(zi) = 0, deg(ηi) = 1, deg(αj) = −1, deg(bj) = 2.

Then we can set forth the main theorem which allows us the calculation of the Hochschild cohomology :

Theorem 3 (Kontsevich)
Under the previous assumptions, the Hochschild cohomology of A is isomorphic to the cohomology of the
complex (T̃ , dT̃ ) associated to the differential graded algebra T̃ .

Remark 4

Theorem 3 can be seen as a generalization of Hochschild-Kostant-Rosenberg theorem to the case of non-
smooth spaces.
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• There is no element of negative degree. So the complex is as follows :

T̃ (0)
0̃

// T̃ (1)
d
(1)

T̃
// T̃ (2)

d
(2)

T̃
// T̃ (3)

d
(3)

T̃
// T̃ (4)

d
(4)

T̃
// . . .

For each degree p, we choose a basis Bp of T̃ (p). For example for p = 0 . . . 3, let’s take :

T̃ (0) = A

T̃ (1) = Aη1 ⊕ · · · ⊕ Aηn

T̃ (2) = Ab1 ⊕ · · · ⊕ Abm ⊕
⊕

i<j

Aηiηj

T̃ (3) =
⊕

i=1...m
j=1...n

Abiηj ⊕
⊕

i<j<k

Aηiηjηk

Then we can make matrices MatBp,Bp+1(d
(p)

T̃
) explicit.

• We note p : C[z] → A = C[z]/〈f1, . . . , fm〉 the canonical projection.
For each ideal J of C[z], we denote by JA the image of this ideal by the canonical projection.
Similarly if (g1, . . . , gr) ∈ Ar we denote by 〈g1, . . . , gr〉A the ideal of A generated by (g1, . . . , gr).
Besides, if g ∈ C[z], and if J is an ideal of C[z], then we note

AnnJ(g) := {h ∈ C[z] / hg = 0 mod J}.

In particular, g doesn’t divide 0 in C[z]/J if and only if AnnJ(g) = J .
Finally, let’s denote by ∇g the gradient of a polynomial g ∈ C[z].

2.2 Particular case where n = 1 and m = 1

• In the case where n = 1 and m = 1, according to what we have seen, we have for p ∈ N∗,

T̃ (2p) = Abp
1 and T̃ (2p + 1) = Abp

1η1.

We deduce
H0 = A, H1 = {g1η1 / g1 ∈ A and g1 ∂z1f1 = 0}

and ∀ p ∈ N∗, H2p =
Abp

1

{g1(∂z1f1)b
p
1 / g1 ∈ A}

, and H2p+1 = {g1 bp
1η1 / g1 ∈ A and g1 ∂z1f1 = 0}.

• Now if f1 = zk
1 , then

H0 = A = C[z1] / 〈zk
1 〉 ≃ Ck−1

H1 = {g1η1 / g1 ∈ A and kg1z
k−1
1 = 0} ≃ C

k−1

and ∀ p ∈ N∗, H2p =
Abp

1

{g1(kzk−1
1 )bp

1 / g1 ∈ A}
≃ C

k−1

and H2p+1 = {g1 bp
1η1 / g1 ∈ A and kg1z

k−1
1 = 0} ≃ Ck−1.

3 Case n = 2, m = 1. — singular curves of the plane

3.1 Description of the cohomology spaces

With the help of theorem 3 we calculate the Hochschild cohomology of A. We begin by making cochains
and differentials explicit.
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• The various spaces of the complex are given by

T̃ (0) = A T̃ (5) = Ab2
1η1 ⊕ Ab2

1η2

T̃ (1) = Aη1 ⊕ Aη2 T̃ (6) = Ab3
1 ⊕ Ab2

1η1η2

T̃ (2) = Ab1 ⊕ Aη1η2 T̃ (7) = Ab3
1η1 ⊕ Ab3

1η2

T̃ (3) = Ab1η1 ⊕ Ab1η2 T̃ (8) = Ab4
1 ⊕ Ab3

1η1η2

T̃ (4) = Ab2
1 ⊕ Ab1η1η2 T̃ (9) = Ab4

1η1 ⊕ Ab4
1η2,

ie, in the generic case, T̃ (2p) = Abp
1 ⊕ Abp−1

1 η1η2 and T̃ (2p + 1) = Abp
1η1 ⊕ Abp

1η2 .

We have ∂
∂ηk

(ηk ∧ ηl) = 1 ∧ ηl = −ηl ∧ 1, hence d
(2)

T̃
(ηkηl) = − ∂f1

∂zk
b1ηl + ∂f1

∂zl
b1ηk.

From now on, we note ∂
∂zj

= ∂zj
= ∂j .

The matrices of dT̃ are therefore given by

MatB2p,B2p+1(d
(2p)

T̃
) =

(
0 ∂2f1

0 −∂1f1

)

MatB2p+1,B2p+2(d
(2p+1)

T̃
) =

(
∂1f1 ∂2f1

0 0

)
.

• We deduce a simpler expression for the cohomology spaces :

H0 = A

H1 = {g1η1 + g2η2 / (g1, g2) ∈ A2 and g1 ∂1f1 + g2 ∂2f1 = 0} ≃

{
g =

(
g1

g2

)
∈ A2 / g · ∇f1 = 0

}

∀ p ∈ N∗,

H2p =
{g1bp

1+g2bp−1
1 η1η2 / (g1, g2)∈A2 and g2 ∂1f1=g2 ∂2f1=0}

{(g1 ∂1f1+g2 ∂2f1)bp
1 / (g1, g2)∈A2}

≃



g=



 g1

g2



∈A2 / g2 ∂1f1=g2 ∂2f1=0











 g · ∇f1

0


 / g∈A2






≃ A
〈∂1f1, ∂2f1〉A

⊕ {g ∈ A / g ∂1f1 = g ∂2f1 = 0}

H2p+1 =
{g1bp

1η1+g2bp
1η2 / (g1, g2)∈A2 and g1 ∂1f1+g2 ∂2f1=0}

{g2(∂2f1bp
1η1−∂1f1bp

1η2) / g2∈A}
≃




g=


 g1

g2


∈A2 / g·∇f1=0








g2


 ∂2f1

−∂1f1


 / g2∈A






.

It remains to determine these spaces more explicitly. It will be done in the two following sections.

3.2 Explicit calculations in the particular case where f1 has separate variables

In this section, we consider the polynomial f1 = a1z
k
1 + a2z

l
2, with 2 ≤ l ≤ k and (a1, a2) ∈ (C∗)2.

The partial derivative of f1 are ∂1f1 = ka1z
k−1
1 and ∂2f1 = la2z

l−1
2 .

• We already have
H0 = C[z1, z2]/〈a1z

k
1 + a2z

l
2〉.

• Besides, as f1 is of homogeneous weight, Euler’s formula gives
1

k
x1∂1f1 +

1

l
x2∂2f1 = f1. So we have the

inclusion 〈f1〉 ⊂ 〈∂1f1, ∂2f1〉, hence A
〈∂z1f1, ∂z2f1〉A

≃ C[z1, z2]
〈∂z1f1, ∂z2f1〉

≃ V ect
(
zi
1z

j
2 / i ∈ J0, k − 2K, j ∈ J0, l − 2K

)
.

But ∂1f1 and f1 are relatively prime, just as ∂2f1 and f1 are, hence if g ∈ A satisfies g∂1f1 = 0 mod 〈f1〉,
then g ∈ 〈f1〉, ie g is zero in A.
So,

H2p ≃ V ect
(
zi
1z

j
2 / i ∈ J0, k − 2K, j ∈ J0, l − 2K

)
≃ C

(k−1)(l−1).
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• Now we determine the set

{
g =

(
g1

g2

)
∈ A2 / g · ∇f1 = 0

}
:

First we have 〈f1, ∂1f1〉 = 〈a1z
k
1 + a2z

l
2, zk−1

1 〉 = 〈zl
2, zk−1

1 〉. So the only monomials which are not in this

ideal are the elements zi
1z

j
2 with i ∈ J0, k − 2K and j ∈ J0, l − 1K.

Every polynomial P ∈ C[z] can be written in the form

P = αf1 + β∂1f1 +
∑

i=0...k−2
j=0...l−1

aijz
i
1z

j
2.

The polynomials P ∈ C[z] such that P∂2f1 ∈ 〈f1, ∂1f1〉 are hence the elements

P = αf1 + β∂1f1 +
∑

i=0...k−2
j=1...l−1

aijz
i
1z

j
2.

So we have calculated Ann〈f1, ∂1f1〉(∂2f1).
The equation

g · ∇f1 = 0 mod 〈f1〉 (2)

yields
g2∂2f1 = 0 mod 〈f1, ∂1f1〉, (3)

ie g2 ∈ Ann〈f1, ∂1f1〉(∂2f1), ie again

g2 = αf1 + β∂1f1 +
∑

i=0...k−2
j=1...l−1

aijz
i
1z

j
2, (4)

with (α, β) ∈ C[z]2.
It follows that

g1∂1f1 + αf1∂2f1 + β∂1f1∂2f1 +
∑

i=0...k−2
j=1...l−1

aijz
i
1z

j
2∂2f1 ∈ 〈f1〉. (5)

And, from the equality z2∂2f1 = lf1 −
l
k z1∂1f1, one deduces :

∂1f1


g1 + β∂2f1 −

l

k

∑

i=0...k−2
j=1...l−1

aijz
i+1
1 zj−1

2


 ∈ 〈f1〉. (6)

ie g1 = −β∂2f1 +
l

k

∑

i=0...k−2
j=1...l−1

aijz
i+1
1 zj−1

2 + δf1,

with δ ∈ C[z].
Then we verify that the elements g1 and g2 obtained in this way are indeed solutions of the equation (2).
Finally, we have :

{
g ∈ A2 / g · ∇f1 = 0

}
=





(
α
δ

)
f1 − β

(
∂2f1

−∂1f1

)
+

∑

i=0...k−2
j=1...l−1

aijz
i
1z

j−1

2

(
l

k
z1

z2

) /
(α, β, δ) ∈ C[z]3 and aij ∈ C





.

We immediately deduce the cohomology spaces of odd degree :

∀ p ≥ 1, H2p+1 ≃ C(k−1)(l−1)

H1 ≃ C(k−1)(l−1) ⊕ C[z1, z2]/〈a1z
k
1 + a2z

l
2〉.
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Remark 5

We obtain in particular the cohomology for the cases where f1 = zk+1
1 +z2

2, f1 = z3
1 +z4

2 and f1 = z3
1 +z5

2.
These cases correspond respectively to the weight homogeneous functions of types Ak, E6 and E8 given
in [AVGZ86] p. 181.

The table below summarizes the results obtained for the three particular cases we have just obtained :

H0 H1 H2p H2p+1

Ak C[z] / 〈zk+1
1 + z2

2〉 C[z] / 〈zk+1
1 + z2

2〉 ⊕ Ck Ck Ck

E6 C[z] / 〈z3
1 + z4

2〉 C[z] / 〈z3
1 + z4

2〉 ⊕ C6 C6 C6

E8 C[z] / 〈z3
1 + z5

2〉 C[z] / 〈z3
1 + z5

2〉 ⊕ C8 C8 C8

The cases where f1 = z2
1z2 + zk−1

2 and f1 = z3
1 + z1z

3
2 , ie respectively Dk and E7, will be studied in the

next section.

3.3 Explicit calculations for Dk and E7

To study these particular cases, we use the following result about Gröbner bases (theorem 7). First, recall
the definition of a Gröbner basis. For g ∈ C[z], we denote by lt(g) its leading term (for the lexicographic
order). Given a non trivial ideal J of C[z], a Gröbner basis of J is a finite subset GJ of J\{0} such that
for all f ∈ J\{0}, there exists g ∈ GJ such that lt(g) divides lt(f).

Definition 6

1. Let J be a non trivial ideal of C[z] and GJ := [g1, . . . , gr] a Gröbner basis of J . A polynomial p ∈ C[z]
is reduced relatively to GJ if it is zero or if none of the terms of p is divisible by the leading term lt(gj)
of one of the elements of GJ .
2. The set of the GJ−standard terms is the set of all monomials of C[z] except the set of the leading
terms lt(f) of the polynomials f ∈ J\{0}.

Theorem 7 (Macaulay)
The set of the GJ−standard terms forms a basis of the quotient vector space C[z] / J .

3.3.1 Case of f1 = z2
1z2 + zk−1

2 , ie Dk

Here we have f1 = z2
1z2 + zk−1

2 , ∂1f1 = 2z1z2 and ∂2f1 = z2
1 + (k − 1)zk−2

2 .
A Gröbner basis of the ideal 〈f1, ∂2f1〉 is B := [b1, b2] = [z2

1 + (k − 1)zk−2
2 , zk−1

2 ].

So the set of the standard terms is{zi
1z

j
2 / i ∈ {0, 1} and j ∈ J0, k − 2K}.

Then we can solve the equation p ∂1f1 = 0 in C[z] / 〈f1, ∂2f1〉.

In fact, by writing p :=
∑

i=0,1j=0...k−2

aijz
i
1z

j
2, the equation becomes

q :=
∑

i=0,1j=0...k−2

aijz
i+1
1 zj+1

2 ∈ 〈f1, ∂2f1〉.

So we look for the normal form of the element q modulo the ideal 〈f1, ∂2f1〉.

The multivariate division of q by B is q = q1b1 + q2b2 + r with r =
∑k−3

j=0 a0,jz1z
j+1
2 .

Thus the solution is

p = a0,k−2z
k−2
2 +

k−2∑

j=0

a1,jz1z
j
2.

But the equation
g · ∇f1 = 0 mod 〈f1〉 (7)
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yields
g1∂1f1 = 0 mod 〈f1, ∂2f1〉, (8)

ie

g1 = αf1 + β∂2f1 + azk−2
2 +

k−2∑

j=0

bjz1z
j
2, (9)

with (α, β) ∈ C[z]2 and a, bj ∈ C.
Hence

g2∂2f1 + β∂1f1∂2f1 + azk−2
2 ∂1f1 +

k−2∑

j=0

bjz1z
j
2∂1f1 ∈ 〈f1〉. (10)

And with the equalities,

zk−1
2 =

1

2 − k
(f1 − z2∂2f1) = −

1

2 − k
z2∂2f1 mod 〈f1〉, and

k − 2

2
z1∂1f1 + z2∂2f1 = (k − 1)f1 (Euler),

we obtain

∂2f1



g2 + β∂1f1 −
2a

2 − k
z1z2 +

k−2∑

j=0

bj
2

2 − k
zj+1
2



 ∈ 〈f1〉. (11)

ie, g2 = −β∂1f1 +
2a

2 − k
z1z2 −

k−2∑

j=0

bj
2

2 − k
zj+1
2 + δf1,

with δ ∈ C[z]. So

{
g ∈ A2 / g · ∇f1 = 0

}
=






(
α
δ

)
f1 + β

(
∂2f1

−∂1f1

)
+

(
zk−2
2

2
2−k

z1z2

)
+

k−2∑

j=0

bjzj
2

(
z1

− 2
2−k

z2

) /
(α, β, δ) ∈ C[z]3 and a, bj ∈ C




 .

On the other hand, a Gröbner basis of 〈∂1f1, ∂2f1〉 is [z2
1 + (k − 1)zk−2

2 , z1z2, zk−1
2 ],

thus C[z] / 〈∂1f1, ∂2f1〉 ≃ V ect
(
z1, 1, z2 . . . , zk−2

2

)
.

Let’s summarize,

H0 = C[z] / 〈z2
1z2 + zk−1

2 〉

H1 ≃ C[z] / 〈z2
1z2 + zk−1

2 〉 ⊕ C
k

H2p ≃ Ck

H2p+1 ≃ Ck.

3.3.2 Case of f1 = z3
1 + z1z

3
2, ie E7

Here we have ∂1f1 = 3z2
1 + z3

2 and ∂2f1 = 3z1z
2
2 .

A Gröbner basis of the ideal 〈f1, ∂1f1〉 is [3z2
1 + z3

2 , z1z
3
2 , z6

2 ], and a Gröbner basis of 〈∂1f1, ∂2f1〉 is
[3z2

1 + z3
2 , z1z

2
2 , z5

2 ].
By an analogous proof, we obtain :

H0 = C[z] / 〈z3
1 + z1z

3
2〉

H1 ≃ C[z] / 〈z3
1 + z1z

3
2〉 ⊕ C7

H2p ≃ C7

H2p+1 ≃ C
7.
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4 Case n = 3, m = 1. — Klein surfaces

4.1 Klein surfaces

Given a finite group G acting on Cn, we associate to it, according to Erlangen program of Klein, the quo-
tient space Cn/G, ie the space whose points are the orbits under the action of G ; it is an algebraic variety,
and the polynomial functions on this variety are the polynomial functions on C

n which are G−invariant.
In the case of SL2C, invariant theory allows us to associate a polynomial to any finite subgroup, as
explained in proposition 9. Thus, to every finite subgroup of SL2C are associated the zero set of this
polynomial ; it is an algebraic variety, called Klein surface.
In this section we recall some results about this surfaces. See the references [S77] and [CCK99] for more
details.

Proposition 8

Every finite subgroup of SL2C is conjugate to one of the following groups :
• An (cyclic), n ≥ 1 (|An| = n)
• Dn (dihedral), n ≥ 1 (|Dn| = 4n)
• E6 (tetrahedral) (|E6| = 24)
• E7 (octahedral) (|E7| = 48)
• E8 (icosahedral) (|E8| = 120).

Proposition 9

Let G be one of the groups of the preceding list. The ring of invariants is the following :

C[x, y]G = C[e1, e2, e3] = C[e1, e2] ⊕ e3C[e1, e2] ≃ C[z1, z2, z3]/〈f1〉,

where the invariants ej are homogeneous polynomials, with e1 and e2 algebraically independent, and where
f1 is a weighted homogeneous polynomial with an isolated singularity at the origin.
These polynomials are given in the following table.

G e1, e2, e3 f1 C[z1, z2, z3]/〈∂1f1, ∂2f1, ∂3f1〉

An

e1 = xn

e2 = yn

e3 = xy
−n(z1z2 − zn

3 ) V ect(1, z1, . . . , zn−2
3 )

dim = n − 1

Dn

e1 = x2y2

e2 = x2n + (−1)ny2n

e3 = x2n+1y + (−1)n+1xy2n+1

λn(4zn+1

1 +(−1)n+1z1z
2
2+(−1)nz2

3)

with λn = 2n(−1)n+1
V ect(1, z2, z1, . . . , zn−1

1 )
dim = n + 1

E6

e1 = x5y − xy5

e2 = 14y4x4 + x8 + y8

e3 = 33y8x4 − y12 +33y4x8−x12
4(z2

3 − z3
2 + 108z4

1)
V ect(1, z2, z1, z1z2, z2

1 , z2
1z2)

dim = 6

E7

e1 = 14y4x4 + x8 + y8

e2 = −3y10x2 + 6y6x6 − 3y2x10

e3 = −34x5y13−yx17+34y5x13+xy17
8(3z2

3 − 12z3
2 + z2z

3
1) V ect(1, z2, z2

2 , z1, z1z2, z1z
2
2 , z2

1)
dim = 7

E8

e1 = x11y + 11x6y6 − xy11

e2 = x20 − 228x15y5 + 494x10y10

+228x5y15 + y20

e3 = x30 + 522x25y5

−10 005x20y10 − 10 005x10y20

−522x5y25 + y30

10(1 728z5
1 + z3

2 − z2
3)

V ect(zi
1z

j
2)i=0...3,

j=0...1

dim = 8
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We call Klein surface the algebraic hyper-surface defined by {z ∈ C3 / f1(z) = 0}.

Theorem 10 (Pichereau)
Consider the Poisson bracket defined on C[z1, z1, z3] by

{·}f1 = ∂3f1 ∂1 ∧ ∂2 + ∂1f1 ∂2 ∧ ∂3 + ∂2f1 ∂3 ∧ ∂1 = i(df1)(∂1 ∧ ∂2 ∧ ∂3),

and denote by HP ∗
f1

(resp. HP f1
∗ ) the Poisson cohomology (resp. homology) for this bracket. Under the

previous assumptions, the Poisson cohomology HP ∗
f1

and the Poisson homology HP f1
∗ of (C[z1, z1, z3]/〈f1〉, {·}f1)

is given by

HP 0
f1

= C, HP 1
f1

≃ HP 2
f1

= {0}

HP f1

0 ≃ HP f1

2 ≃ C[z1, z2, z3]/〈∂1f1, ∂2f1, ∂3f1〉

dim(HP f1

1 ) = dim(HP f1

0 ) − 1

HP f1

j = HP j
f1

= {0} si j ≥ 3.

The algebra C[x, y] is a Poisson algebra for the standard symplectic bracket {·}std. As G is a subgroup of
the symplectic group Sp2C (since Sp2C = SL2C), the invariant algebra C[x, y]G is a Poisson subalgebra
of C[x, y]. Then the following proposition allows us to deduce from theorem 10 the Poisson cohomology
and homology of C[x, y]G for the standard symplectic bracket.

Proposition 11

The isomorphism of associative algebras

π : (C[x, y]G, {·}std) → (C[z1, z1, z3]/〈f1〉, {·}f1)
ej 7→ zj

is a Poisson isomorphism.

Subsequently, we will calculate the Hochschild cohomology of C[z1, z1, z3]/〈f1〉. Then we will deduce
immediately the Hochschild cohomology of C[x, y]G, with the help of the isomorphism of associative
algebras π.

4.2 Description of the cohomology spaces

• In this case, we change the ordering of the basis : we shall use (η1η2, η2η3, η3η1) instead of (η1η2, η1η3, η2η3).
Then the different spaces of the complex are given by

T̃ (0) = A

T̃ (1) = Aη1 ⊕ Aη2 ⊕ Aη3

T̃ (2) = Ab1 ⊕ Aη1η2 ⊕ Aη2η3 ⊕ Aη3η1

T̃ (3) = Ab1η1 ⊕ Ab1η2 ⊕ Ab1η3 ⊕ Aη1η2η3

T̃ (4) = Ab2
1 ⊕ Ab1η1η2 ⊕ Ab1η2η3 ⊕ Ab1η3η1

T̃ (5) = Ab2
1η1 ⊕ Ab2

1η2 ⊕ Ab2
1η3 ⊕ Ab1η1η2η3

ie, in the general case, for p ∈ N∗, T̃ (2p) = Abp
1 ⊕ Abp−1

1 η1η2 ⊕ Abp−1
1 η2η3 ⊕ Abp−1

1 η3η1

and T̃ (2p + 1) = Abp
1η1 ⊕ Abp

1η2 ⊕ Abp
1η3 ⊕ Abp−1

1 η1η2η3 .

We have ∂
∂η1

(η1∧η2∧η3) = 1∧η2∧η3 = η2∧η3∧1, thus d
(3)

T̃
(η1η2η3) = ∂f1

∂z1
b1η2η3+ ∂f1

∂z2
b1η3η1+ ∂f1

∂z3
b1η1η2.

The matrices of dT̃ are therefore given by
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MatB1,B2(d
(1)

T̃
) =




∂z1f1 ∂z2f1 ∂z3f1

0 0 0
0 0 0
0 0 0




∀ p ∈ N∗, MatB2p,B2p+1(d
(2p)

T̃
) =




0 ∂z2f1 0 −∂z3f1

0 −∂z1f1 ∂z3f1 0
0 0 −∂z2f1 ∂z1f1

0 0 0 0




∀ p ∈ N∗, MatB2p+1,B2p+2(d
(2p+1)

T̃
) =




∂z1f1 ∂z2f1 ∂z3f1 0
0 0 0 ∂z3f1

0 0 0 ∂z1f1

0 0 0 ∂z2f1


 .

• We deduce

H0 = A

H1 = {g1η1+g2η2+g3η3 / (g1, g2, g3) ∈ A3 and g1 ∂z1f1+g2 ∂z2f1+g3 ∂z3f1 = 0} ≃




g =




g1

g2

g3


 ∈ A3 / g · ∇f1 = 0






H2 =
{g0b1+g3η1η2+g1η2η3+g2η3η1 / (g0, g1, g2 g3)∈A4 and g3 ∂z2f1−g2 ∂z3f1=g1 ∂z3f1−g3 ∂z1f1=g2 ∂z1f1−g1 ∂z2f1=0}

{(g1 ∂z1f1+g2 ∂z2f1+g3 ∂z3f1)b1 / (g1, g2, g3)∈A3}

≃





g=




g0

g1

g2

g3



∈A4

/
∇f1∧




g1

g2

g3


=0












 g · ∇f1

03,1



 / g∈A3






≃ A
〈∂z1f1, ∂z2f1, ∂z3f1〉A

⊕ {g ∈ A3 / ∇f1 ∧ g = 0}

∀ p ≥ 2,

H2p =

{
g0bp

1+g3bp−1
1 η1η2+g1bp−1

1 η2η3+g2bp−1
1 η3η1

/
(g0, g1, g2 g3)∈A4 and

g3 ∂z2f1−g2 ∂z3f1=g1 ∂z3f1−g3 ∂z1f1=g2 ∂z1f1−g1 ∂z2f1=0

}

{(g1 ∂z1f1+g2 ∂z2f1+g3 ∂z3f1)b
p
1+g0(∂z3f1 bp−1

1 η1η2+∂z1f1 bp−1
1 η2η3+∂z2f1 bp−1

1 η3η1) / (g0, g1, g2, g3)∈A3}

≃






g=




g0

g1

g2

g3



∈A4

/
∇f1∧




g1

g2

g3


=0












g · ∇f1

g0 ∂z1f1

g0 ∂z2f1

g0 ∂z3f1




/ g∈A3 and g0∈A





≃ A
〈∂z1f1, ∂z2f1, ∂z3f1〉A

⊕ {g∈A3 / ∇f1∧g=0}
{g∇f1 / g∈A}

∀ p ∈ N∗,

H2p+1 =

{
g1bp

1η1+g2bp
1η2+g3bp

1η3+g0bp−1
1 η1η2η3

/
(g0, g1, g2 g3)∈A4 and g1 ∂z1f1+g2 ∂z2f1+g3 ∂z3f1=0

g0 ∂z3f1=g0 ∂z1f1=g0 ∂z2f1=0

}

{(g3 ∂z2f1−g2 ∂z3f1)bp
1η1+(g1 ∂z3f1−g3 ∂z1f1)bp

1η2+(g2 ∂z1f1−g1 ∂z2f1)bp
1η3 / (g1, g2, g3)∈A3}

≃






g=




g1

g2

g3

g0



∈A4

/
∇f1·




g1

g2

g3


=0 and g0 ∂z3f1=g0 ∂z1f1=g0 ∂z2f1=0












∇f1 ∧




g1

g2

g3




0




/
g∈A3





≃
{g∈A3 / ∇f1·g=0}
{∇f1∧g / g∈A3} ⊕ {g ∈ A / g ∂z3f1 = g ∂z1f1 = g ∂z2f1 = 0}.

The following section will allows us to make those various spaces more explicit.
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4.3 Explicit calculations in the particular case where f1 has separate variables

In this section, we consider the polynomial f1 = a1z
i
1 + a2z

j
2 + a3z

k
3 , with 2 ≤ i ≤ j ≤ k and aj ∈ C∗.

Its partial derivative are ∂1f1 = ia1z
i−1
1 , ∂2f1 = ja2z

j−1
2 and ∂3f1 = ka3z

k−1
3 .

• We have already

H0 = C[z1, z2, z3]/〈a1z
i
1 + a2z

j
2 + a3z

k
3 〉 .

• Moreover, as f1 is weight homogeneous, Euler’s formula gives
1

i
z1∂1f1 +

1

j
z2∂2f1 +

1

k
z3∂3f1 = f1. So

we have the inclusion 〈f1〉 ⊂ 〈∂1f1, ∂2f1, ∂3f1〉, thus

A

〈∂1f1, ∂2f1, ∂3f1〉A
≃

C[z1, z2, z3]

〈∂1f1, ∂2f1, ∂3f1〉
≃ V ect (zp

1zq
2z

r
3 / p ∈ J0, i − 2K, q ∈ J0, j − 2K, r ∈ J0, k − 2K) .

Finally, as ∂1f1 and f1 are relatively prime, if g ∈ A verifies g∂1f1 = 0 mod 〈f1〉, then g ∈ 〈f1〉, ie g is
zero in A.

• Now we determine the set




g =




g1

g2

g3


 ∈ A3 / g · ∇f1 = 0




 :

First we have 〈f1, ∂1f1, ∂2f1〉 = 〈a1z
i
1+a2z

j
2+a3z

k
2 , zi−1

1 , zj−1
2 〉 = 〈zi−1

1 , zj−1
2 zk

3 〉. Thus the only monomi-
als which are not in this ideal are the elements zp

1zq
2z

r
3 with p ∈ J0, i−2K, q ∈ J0, j−2K and r ∈ J0, k−1K.

So every polynomial P ∈ C[z] can be written in the form :

P = αf1 + β∂1f1 + γ∂2f1 +
∑

p=0...i−2
q=0...j−2
r=0...k−1

apqrz
p
1zq

2z
r
3 .

The polynomials P ∈ C[z] such that P∂3f1 ∈ 〈f1, ∂1f1, ∂2f1〉 are therefore the following ones :

P = αf1 + β∂1f1 + γ∂2f1 +
∑

p=0...i−2
q=0...j−2
r=1...k−1

apqrz
p
1zq

2z
r
3 .

So we have calculated Ann〈f1, ∂1f1, ∂2f1〉(∂3f1).
The equation

g · ∇f1 = 0 mod 〈f1〉 (12)

leads to g3 ∈ Ann〈f1, ∂1f1, ∂2f1〉(∂3f1), ie

g3 = αf1 + β∂1f1 + γ∂2f1 +
∑

p=0...i−2
q=0...j−2
r=1...k−1

apqrz
p
1zq

2z
r
3 , (13)

with (α, β, γ) ∈ C[z]3.
Hence

g2∂2f1 + γ∂2f1∂3f1 +
∑

p=0...i−2
q=0...j−2
r=1...k−1

apqrz
p
1zq

2z
r
3∂3f1 ∈ 〈f1, ∂1f1〉. (14)
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Thus, according to Euler’s formula,

∂2f1




g2 + γ∂3f1 −
k

j

∑

p=0...i−2
q=0...j−2
r=1...k−1

apqrz
p
1zq+1

2 zr−1
3




∈ 〈f1, ∂1f1〉. (15)

Since Ann〈f1, ∂1f1〉(∂2f1) = 〈f1, ∂1f1〉, this equation is equivalent to

g2 = −γ∂3f1 +
k

j

∑

p=0...i−2
q=0...j−2
r=1...k−1

apqrz
p
1zq+1

2 zr−1
3 + δf1 + ε∂1f1,

with δ, ε ∈ C[z]. It follows that

g1∂1f1 +β∂1f1∂3f1 + ε∂1f1∂2f1 +
∑

p=0...i−2
q=0...j−2
r=1...k−1

apqrz
p
1zq

2z
r
3∂3f1 +

k

j

∑

p=0...i−2
q=0...j−2
r=1...k−1

apqrz
p
1zq+1

2 zr−1
3 ∂3f1 ∈ 〈f1〉. (16)

And, according to Euler’s formula,

∂1f1




g1 + β∂3f1 + ε∂2f1 −
k

i

∑

p=0...i−2
q=0...j−2
r=1...k−1

apqrz
p+1
1 zq

2z
r−1
3




∈ 〈f1〉. (17)

ie g1 = −β∂3f1 − ε∂2f1 +
k

i

∑

p=0...i−2
q=0...j−2
r=1...k−1

apqrz
p+1
1 zq

2z
r−1
3 + ηf1, (18)

with η ∈ C[z]. Finally

{
g ∈ A3 / g · ∇f1 = 0

}
=









η
δ
α



 f1 + ∇f1 ∧




−γ
β
−ε



 +
∑

p=0...i−2
q=0...j−2
r=1...k−1

apqrzp
1zq

2zr−1
3




k
i
z1

k
j

z2

z3




/

(α, β, γ, δ, ε, η) ∈ A6 and apqr ∈ C






.

We deduce immediately the cohomology spaces of odd degrees :

∀ p ≥ 1, H2p+1 ≃ C(i−1)(j−1)(k−1)

H1 ≃ ∇f1 ∧ (C[z]/〈f1〉)
3
⊕ C(i−1)(j−1)(k−1).

Remark :
We also have ∇f1 ∧ (C[z]/〈f1〉)

3
≃ (C[z]/〈f1〉)

3
/ {g / ∇f1 ∧ g = 0} = (C[z]/〈f1〉)

3
/ (C[z]/〈f1〉)∇f1.

Moreover the map

(C[z]/〈f1〉)
2 → ∇f1 ∧ (C[z]/〈f1〉)

3

(
g1

g2

)
7→ ∇f1 ∧




g1

g2

0





is injective, thus ∇f1 ∧ (C[z]/〈f1〉)
3

is infinite-dimensional .

• It remains to determine the set




g =




g1

g2

g3


 ∈ A3 / ∇f1 ∧ g = 0




 :
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Let g ∈ A3 be such that ∇f1∧g = 0. It means that, modulo 〈f1〉, g verifies the system






∂2f1 g3 − ∂3f1 g2 = 0
∂3f1 g1 − ∂1f1 g3 = 0
∂1f1 g2 − ∂2f1 g1 = 0

The first equation gives, modulo 〈f1, ∂2f1〉, ∂3f1 g2 = 0.
Now Ann〈f1, ∂2f1〉(∂3f1) = 〈f1, ∂2f1〉, therefore g2 = αf1 + β∂2f1. Hence

∂2f1(g3 − β∂3f1) = 0 mod 〈f1〉,

ie g3 = γf1 + β∂3f1.
Finally, we obtain

∂3f1(g1 − β∂1f1) = 0 mod 〈f1〉,

ie g1 = δf1 + β∂1f1.

So, {g ∈ A3 / ∇f1 ∧ g = 0} =



f1




δ
α
γ


 + β∇f1 / α, β, γ, δ ∈ A



.

We deduce the cohomology spaces of even degrees :

∀ p ≥ 2, H2p ≃ A / 〈∂1f1, ∂2f1, ∂3f1〉 ≃ C[z] / 〈zi−1
1 , zj−1

2 , zk−1
3 〉

≃ V ect (zp
1zq

2z
r
3 / p ∈ J0, i − 2K, q ∈ J0, j − 2K, r ∈ J0, k − 2K) ≃ C(i−1)(j−1)(k−1)

H2 ≃ {β ∇f1 / β ∈ A} ⊕ C(i−1)(j−1)(k−1) ≃ C[z] / 〈a1z
i
1 + a2z

j
2 + a3z

k
3 〉 ⊕ C(i−1)(j−1)(k−1).

Remark 12

In particular, we obtain the cohomology for the cases where f1 = z2
1 + z2

2 + zk+1
3 , f1 = z2

1 + z3
2 + z4

3 and
f1 = z2

1 + z3
2 + z5

3 . These cases correspond respectively to the types Ak, E6 and E8 of the Klein surfaces.

The following table sums up the results of those three special cases :

H0 H1 H2 H2p H2p+1

Ak C[z] / 〈z2
1 + z2

2 + zk+1
3 〉 ∇f1 ∧ (C[z] / 〈f1〉)

3
⊕ Ck C[z] / 〈z2

1 + z2
2 + zk+1

3 〉 ⊕ Ck Ck Ck

E6 C[z] / 〈z2
1 + z3

2 + z4
3〉 ∇f1 ∧ (C[z] / 〈f1〉)

3
⊕ C6 C[z] / 〈z2

1 + z3
2 + z4

3〉 ⊕ C6 C6 C6

E8 C[z] / 〈z2
1 + z3

2 + z5
3〉 ∇f1 ∧ (C[z] / 〈f1〉)

3
⊕ C

8
C[z] / 〈z2

1 + z3
2 + z5

3〉 ⊕ C
8

C
8

C
8

The cases where f1 = z2
1 + z2

2z3 + zk−1
3 and f1 = z2

1 + z3
2 + z2z

3
3 , ie respectively Dk and E7 are studied in

the following section.

4.4 Explicit calculations for Dk and E7

4.4.1 Case of f1 = z2
1 + z2

2z3 + zk−1
3 , ie Dk

In this section, we consider the polynomial f1 = z2
1 + z2

2z3 + zk−1
3 .

Its partial derivatives are ∂1f1 = 2z1, ∂2f1 = 2z2z3 and ∂3f1 = z2
2 + (k − 1)zk−2

3 .

• We already have

H0 = C[z]/〈z2
1 + z2

2z3 + zk−1
3 〉.

• Besides, since f1 is of homogeneous weight, Euler’s formula gives

k − 1

2
z1 ∂1f1 +

k − 2

2
z2 ∂2f1 + z3 ∂3f1 = (k − 1)f1. (19)
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Thus, we have the inclusion 〈f1〉 ⊂ 〈∂1f1, ∂2f1, ∂3f1〉.
Moreover, a Gröbner basis of 〈∂1f1, ∂2f1, ∂3f1〉 is [zk−1

3 , z2z3, z2
2 + (k − 1)zk−2

3 , z1], therefore

A

〈∂1f1, ∂2f1, ∂3f1〉A
≃

C[z1, z2, z3]

〈∂1f1, ∂2f1, ∂3f1〉
≃ V ect

(
z2, 1, z3, . . . , zk−2

3

)
.

Finally, as ∂1f1 are f1 relatively prime, if g ∈ A verifies g∂1f1 = 0 mod 〈f1〉, then g ∈ 〈f1〉, ie g is zero
in A, thus {g ∈ A / g ∂z3f1 = g ∂z1f1 = g ∂z2f1 = 0} = 0.

• Now we determine the set



g =




g1

g2

g3



 ∈ A3 / g · ∇f1 = 0



 :

A Gröbner basis of 〈f1, ∂1f1, ∂3f1〉 is [z1, zk−1
3 , z2

2 + (k − 1)zk−2
3 ], thus a basis of C[z] / 〈f1, ∂1f1, ∂3f1〉

is {zi
2z

j
3 / i ∈ {0, 1}, j ∈ J0, k − 2K}.

We have already solved the equation p ∂2f1 = 0 in this space ; its solution is p = a0,k−2z
k−2
3 +

k−2∑

j=0

a1,jz2z
j
3.

The equation
g · ∇f1 = 0 mod 〈f1〉 (20)

leads to
g2∂2f1 = 0 mod 〈f1, ∂1f1, ∂3f1〉, (21)

hence

g2 = αf1 + β∂1f1 + γ∂3f1 + azk−2
3 +

k−2∑

j=0

bjz2z
j
3, (22)

with (α, β, γ) ∈ C[z]3.
And

g3∂3f1 + γ∂3f1∂2f1 + azk−2
3 ∂2f1 +

k−2∑

j=0

bjz2z
j
3∂2f1 ∈ 〈f1, ∂1f1〉. (23)

Now according to Euler’s formula (19) and the equality

zk−1
3 z2 =

1

2 − k

(
z2f1 − z2z3∂3f1 −

1

2
z2z1∂1f1

)
= −

1

2 − k
z2z3∂3f1 mod 〈f1, ∂1f1〉, (24)

the equation (23) becomes

∂3f1


g3 + γ∂2f1 −

2a

2 − k
z2z3 −

k−2∑

j=0

bj
2

2 − k
zj+1
3


 ∈ 〈f1, ∂1f1〉. (25)

As Ann〈f1, ∂1f1〉(∂3f1) = 〈f1, ∂1f1〉, this equation is equivalent to

g3 = −γ∂2f1 +
2a

2 − k
z2z3 +

k−2∑

j=0

bj
2

2 − k
zj+1
3 + δf1 + ε∂1f1,

with δ, ε ∈ C[z].
We find

g1 = −β∂2f1 − ε∂3f1 +

k−2∑

j=0

bj
k − 1

k − 2
z1 +

a

2 − k
z2z1 + ηf1, (26)

with η ∈ C[z].
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Finally, we have

{
g ∈ A3 / g · ∇f1 = 0

}
=








η
α
δ



 f1 + ∇f1 ∧




γ
ε

−β



 +

k−2∑

j=0

bj




k−1
k−2 z1zj

3

z2zj
3

− 2
2−k

zj+1
3


 + a




1

2−k
z2z1

zk−2
3

2a
2−k

z2z3




/

(α, β, γ, δ, ε, η) ∈ A6 and a, bj ∈ C





,

as well as cohomology spaces of odd degrees :

∀ p ≥ 1, H2p+1 ≃ Ck

H1 ≃ ∇f1 ∧ (C[z]/〈f1〉)
3
⊕ Ck.

• To show {g ∈ A3 / ∇f1 ∧ g = 0} =
{
f1 g + β∇f1 / g ∈ A3, β ∈ A

}
, we proceed as in the case of

separate variables.
We deduce the cohomology spaces of even degrees :

∀ p ≥ 2, H2p ≃ A / 〈∂1f1, ∂2f1, ∂3f1〉 ≃ V ect
(
z2, 1, z3, . . . , zk−2

3

)
≃ Ck

H2 ≃ {β∇f1 / β ∈ A} ⊕ Ck ≃ C[z] / 〈z2
1 + z2

2z3 + zk−1
3 〉 ⊕ Ck.

4.4.2 Case of f1 = z2
1 + z3

2 + z2z
3
3 , ie E7

Here we have ∂1f1 = 2z1, ∂2f1 = 3z2
2 + z3

3 and ∂3f1 = 3z2z
2
3 .

The proof is similar to the one of the previous cases.
A Gröbner basis of 〈∂1f1, ∂2f1, ∂3f1〉 is [z5

3 , z2z
2
3 , 3z2

2 + z3
3 , z1].

Similarly, a Gröbner basis of 〈f1, ∂1f1, ∂2f1〉 is [z6
3 , z2z

3
3 , 3z2

2 + z3
3 , z1].

We obtain the following results :

∀ p ≥ 1, H2p+1 ≃ C7

H1 ≃ ∇f1 ∧ (C[z]/〈f1〉)
3
⊕ C7.

H0 = C[z] / 〈z2
1 + z3

2 + z2z
3
3〉

∀ p ≥ 2, H2p ≃ A / 〈∂1f1, ∂2f1, ∂3f1〉 ≃ V ect
(
z2, z2

2 , 1, z3, z2
3 , z3

3 , z4
3

)
≃ C7

H2 ≃ {β ∇f1 / β ∈ A} ⊕ Ck ≃ C[z] / 〈z2
1 + z3

2 + z2z
3
3〉 ⊕ C7.

Remark 13

In all the previously studied cases, there exists a triple (i, j, k) such that {i, j, k} = {1, 2, 3}, and such
that the map

C[z] / 〈∂1f1, ∂2f1, ∂3f1〉 → {Solutions in C[z] / 〈f1, ∂jf1, ∂kf1〉 of the equation g ∂if1 = 0}
P 7→ zi P mod 〈f1, ∂jf1, ∂kf1〉

is an isomorphism of vector spaces.
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