HOCHSCHILD COHOMOLOGY OF KLEIN SURFACES

Frédéric Butin

To cite this version:

| Frédéric Butin. HOCHSCHILD COHOMOLOGY OF KLEIN SURFACES. 2008. hal-00276008

HAL Id: hal-00276008

https://hal.science/hal-00276008
Preprint submitted on 26 Apr 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HOCHSCHILD COHOMOLOGY OF KLEIN SURFACES

Frédéric BUTIN ${ }^{1}$

Abstract

Given a mechanical system $(M, \mathcal{F}(M))$, where M is a Poisson manifold and $\mathcal{F}(M)$ the algebra of regular functions on M, it is important to be able to quantize it, in order to obtain more precise results than through classical mechanics. An available method is the deformation quantization, which consists in constructing a star-product on the algebra of formal power series $\mathcal{F}(M)[[\hbar]]$. A first step toward study of star-products is the calculation of Hochschild cohomology of $\mathcal{F}(M)$. The aim of this article is to determine this Hochschild cohomology in the case of singular curves of the plane so we rediscover, by a different way, a result proved by Fronsdal and make it more precise - and in the case of Klein surfaces. The use of a complex suggested by Kontsevich and the help of Gröbner bases allow us to solve the problem.

Résumé

Etant donné un système physique $(M, \mathcal{F}(M))$, où M est une variété de Poisson et $\mathcal{F}(M)$ l'algèbre des fonctions régulières sur M, il est important de pouvoir le quantifier pour obtenir des résultats plus corrects que ceux donnés par la mécanique classique. Une solution est fournie par la quantification par déformation qui consiste à construire un star-produit sur l'algèbre des séries formelles $\mathcal{F}(M)[[\hbar]]$. Un premier pas vers l'étude des star-produits est le calcul de la cohomologie de Hochschild de $\mathcal{F}(M)$.
Le but de l'article est de déterminer cette cohomologie de Hochschild dans le cas des courbes singulières du plane

- on précise ainsi, par une démarche différente, un résultat démontré par Fronsdal - et dans le cas des surfaces de Klein. L'utilisation d'un complexe proposé par Kontsevich et l'emploi des bases de Gröbner permettent de résoudre le problème.

Keywords

cohomology ; Hochschild ; Klein surfaces; Gröbner bases; quantization; star-products.

Table des matières

1 Introduction 2
1.1 Deformation quantization 2
1.2 Cohomologies and quotients of polynomial algebras 2
1.3 Hochschild cohomology and deformations of algebras 4
2 Presentation of the Koszul complex 5
2.1 Kontsevich theorem and notations 5
2.2 Particular case where $n=1$ and $m=1$ 6
3 Case $n=2, m=1$. - singular curves of the plane 6
3.1 Description of the cohomology spaces 6
3.2 Explicit calculations in the particular case where f_{1} has separate variables 7
3.3 Explicit calculations for D_{k} and E_{7} 9
3.3.1 Case of $f_{1}=z_{1}^{2} z_{2}+z_{2}^{k-1}$, ie D_{k} 9
3.3.2 Case of $f_{1}=z_{1}^{3}+z_{1} z_{2}^{3}$, ie E_{7} 10
4 Case $n=3, m=1$. - Klein surfaces 11
4.1 Klein surfaces 11
4.2 Description of the cohomology spaces 12
4.3 Explicit calculations in the particular case where f_{1} has separate variables 14
4.4 Explicit calculations for D_{k} and E_{7} 16
4.4.1 Case of $f_{1}=z_{1}^{2}+z_{2}^{2} z_{3}+z_{3}^{k-1}$, ie D_{k} 16
4.4.2 Case of $f_{1}=z_{1}^{2}+z_{2}^{3}+z_{2} z_{3}^{3}$, ie E_{7} 18

[^0]
1 Introduction

1.1 Deformation quantization

We consider a mechanical system given by a Poisson manifold M, endowed with a Poisson bracket $\{\cdot\}$. In classical mechanics, we study the (commutative) algebra $\mathcal{F}(M)$ of regular functions (ie, for example, \mathcal{C}^{∞}, holomorphic or polynomial) on M, that is to say the observables of the classical system. But quantum mechanics, where the physical system is described by a (non commutative) algebra of operators on a Hilbert space, gives more correct results than its classical analogous. Hence the importance to get a quantum description of the classical system $(M, \mathcal{F}(M))$: such an operation is called a quantization. One option is geometric quantization, which allows to construct in an explicit way a Hilbert space and an algebra of operators on this space. This very interesting method presents the drawback of being seldom applicable. That's why have been introduced other methods such as asymptotic quantization and deformation quantization. The latter, described in 1978 by F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer in the article BFFLS78, is a good alternative : instead of an algebra of operators on a Hilbert space, a formal deformation of $\mathcal{F}(M)$. This is given by the algebra of formal power series $\mathcal{F}(M)[[\hbar]]$, endowed with some associative, but not commutative, star-product :

$$
\begin{equation*}
f * g=\sum_{j=0}^{\infty} m_{j}(f, g) \hbar^{j} \tag{1}
\end{equation*}
$$

where the maps m_{j} are bilinear and where $m_{0}(f, g)=f g$. Then quantization is given by the map $f \mapsto \widehat{f}$, where the operator \widehat{f} satisfies $\widehat{f}(g)=f * g$.
In which cases does a Poisson manifold admit such a quantization? The answer was given by Kontsevich in his article K97 : in fact he constructed a star-product on every Poisson manifold. Besides he proved that if M is a smooth manifold, then the equivalence classes of formal deformations of the zero Poisson bracket are in bijection with equivalence classes of star-products. Moreover, as a consequence of Hochschild-Kostant-Rosenberg theorem, every abelian star-product is equivalent to a trivial one.
In the case where M is a singular algebraic variety, say

$$
M=\left\{\mathbf{z} \in \mathbb{C}^{n} / f(\mathbf{z})=0\right\}
$$

with $n=2$ or 3 , where f belongs to $\mathbb{C}[\mathbf{z}]$ - and this is the case which we shall study - we shall consider the algebra of functions on M, ie the quotient algebra $\mathbb{C}[\mathbf{z}] /\langle f\rangle$. So the above mentioned result is no more valid. However, the deformations of the algebra $\mathcal{F}(M)$, defined by the formula (11), are always classified by the Hochschild cohomology of $\mathcal{F}(M)$, and we are led to the study of the Hochschild cohomology of $\mathbb{C}[\mathbf{z}] /\langle f\rangle$.

1.2 Cohomologies and quotients of polynomial algebras

We shall now consider $R=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]=\mathbb{C}[\mathbf{z}]$ the polynomial algebra with complex coefficients and n variables. We also fix m elements f_{1}, \ldots, f_{m} of R, and we define the quotient algebra $A:=$ $R /\left\langle f_{1}, \ldots, f_{m}\right\rangle=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right] /\left\langle f_{1}, \ldots, f_{m}\right\rangle$.

Several articles were devoted to the study of particular cases, for Hochschild as well as for Poisson cohomology :
C. Roger and P. Vanhaecke, in the article RV02], consider the case where $n=2$ and $m=1$, and where f_{1} is an homogeneous polynomial. They calculate Poisson cohomology in terms of the number of irreducible components of the singular locus $\left\{\mathbf{z} \in \mathbb{C}^{2} / f_{1}(\mathbf{z})=0\right\}$ (in this case, we have a symplectic structure outside the singular locus).
M. Van den Bergh and A. Pichereau, in the articles VB94, P05 and P06, are interested in the case where $n=3$ and $m=1$, and where f_{1} is a weighted homogeneous polynomial with an isolated singularity at the origin. They compute the Poisson homology and cohomology, which in particular can be expressed in terms of the Milnor number of the space $\mathbb{C}\left[z_{1}, z_{2}, z_{3}\right] /\left\langle\partial_{z_{1}} f_{1}, \partial_{z_{2}} f_{1}, \partial_{z_{3}} f_{1}\right\rangle$ (the definition of this number is given in AVGZ86).

Once more in the case where $n=3$ and $m=1$, in the article AL98, J. Alev and T. Lambre compare the Poisson homology in 0 degree of Klein surfaces with the Hochschild homology in 0 degree of $A_{1}(\mathbb{C})^{G}$, where $A_{1}(\mathbb{C})$ is the Weyl algebra and G the group associated to the Klein surface. We shall give more details about those surfaces in section 4.1.
C. Fronsdal studies in the article FK07 Hochschild homology and cohomology in two particular cases : the case where $n=1$ and $m=1$, and the case where $n=2$ and $m=1$. Besides, the appendix of this article gives another way to calculate the Hochschild cohomology in the more general case of complete intersections.

In this paper, we propose to calculate the Hochschild cohomology in two particularly important cases : the case of the singular curves of the plane, with polynomials f_{1} which correspond to their normal forms (this case already held C. Fronsdal's attention) ; and the case of Klein surfaces \mathcal{X}_{Γ} which are the quotients \mathbb{C}^{2} / Γ, where Γ is a finite subgroup of $\mathbf{S L}_{2} \mathbb{C}$ (this case corresponds to $n=3$ and $m=1$). These latter have been the subject of many works; their link with the finite subgroups of $\mathbf{S L}_{2} \mathbb{C}$, with the Platonic polyhedra, and with McKay correspondence explain this large interest. Moreover, the preprojective algebras, to which the article CBH98 is devoted, constitute a family of deformations of the Klein surfaces, parametered by the group which is associated to them : this fact justifies once again the calculation of their cohomology.
The main result of the article is given by two propositions :

Proposition 1

Let be a singular curve of the plane, defined by a polynomial $f_{1} \in \mathbb{C}[\mathbf{z}]$, of the type A_{k}, D_{k} or E_{k}. Then $H^{0} \simeq \mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle, H^{1} \simeq \mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle \oplus \mathbb{C}^{k}$, and for all $j \geq 2, H^{j} \simeq \mathbb{C}^{k}$.

Proposition 2

Let Γ be a finite subgroup of $\mathbf{S L}_{2} \mathbb{C}$ and $f_{1} \in \mathbb{C}[\mathbf{z}]$ such that $\mathbb{C}[x, y]^{\Gamma} \simeq \mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle$. Then $H^{0} \simeq \mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle$, $H^{1} \simeq \nabla f_{1} \wedge\left(\mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle\right)^{3} \oplus \mathbb{C}^{\mu}, H^{2} \simeq \mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle \oplus \mathbb{C}^{\mu}$, and for all $j \geq 3, H^{j} \simeq \mathbb{C}^{\mu}$, where μ is the Milnor number of \mathcal{X}_{Γ}.

For explicit computations, we shall use methods suggested by M. Kontsevich in the appendix of FK07; we will develop a little bit that method.
We will first study the case of singular curves of the plane in section 3 : we will use this method to rediscover the result that C. Fronsdal proved by direct calculations. Then we will refine it by determining the dimensions of the cohomology spaces by means of the multivariate division and of the Gröbner bases. Next, in section 4, we will consider the case of Klein surfaces \mathcal{X}_{Γ}. We will first prove that H^{0} identifies with the space of polynomial functions on the singular surface \mathcal{X}_{Γ}. We will then prove that H^{1} and H^{2} are infinite-dimensional. We will also determine, for j greater or equal to 3 , the dimension of H^{j}, by showing that it is equal to the Milnor number of the surface \mathcal{X}_{Γ}.
Now, section 1.3 will recall important classical results about deformations.

1.3 Hochschild cohomology and deformations of algebras

- Given an associative \mathbb{C}-algebra, denoted by A, the Hochschild complex of A is the following

$$
C^{0}(A) \xrightarrow{d_{0}} C^{1}(A) \xrightarrow{d_{1}} C^{2}(A) \xrightarrow{d_{2}} C^{3}(A) \xrightarrow{d_{3}} C^{4}(A) \xrightarrow{d_{4}} \cdots
$$

where the space $C^{p}(A)$ of p-cochains is defined by $C^{p}(A)=0$ for $p \in-\mathbb{N}^{*}, C^{0}(A)=A$ and $\forall p \in$ $\mathbb{N}^{*}, C^{p}(A)=L\left(A^{\otimes p}, A\right)$, where $L\left(A^{\otimes p}, A\right)$ defines the space of \mathbb{C}-linear maps from $A^{\otimes p}$ to A, and where differential $d=\bigoplus_{i=0}^{\infty} d_{p}$ is given by
$\forall f \in C^{p}(A), d_{p} f\left(a_{0}, \ldots, a_{p}\right)=a_{0} f\left(a_{1}, \ldots, a_{p}\right)-\sum_{i=0}^{p-1}(-1)^{i} f\left(a_{0}, \ldots, a_{i} a_{i+1}, \ldots, a_{p}\right)+(-1)^{p-1} f\left(a_{0}, \ldots, a_{p-1}\right) a_{p}$.
We can write it in terms of Gerstenhaber bracket $[\cdot]_{G}$ as follows :

$$
d_{p} f=(-1)^{p+1}[\mu, f]_{G},
$$

where μ is the product of the algebra A, and $[\cdot]_{G}$ the Gerstenhaber brachet.
Then we define the Hochschild cohomology of A as the cohomology of the Hochschild complex associated to A. We note $H H^{0}(A)=\operatorname{Ker} d_{0}$ and $\forall p \in \mathbb{N}^{*}, H H^{p}(A)=\operatorname{Ker} d_{p} / \operatorname{Im} d_{p-1}$.

- We denote by $\mathbb{C}[[\hbar]]$ (resp. $A[[\hbar]])$ the algebra of formal power series in the parameter \hbar, with coefficients in $\mathbb{C}($ resp. $A)$. A deformation of the algebra A is defined as a map m from $A[[\hbar]] \times A[[\hbar]]$ to $A[[\hbar]]$ which is $\mathbb{C}[[\hbar]]$-bilinear and such that

$$
\begin{aligned}
& \forall(s, t) \in A[[\hbar]]^{2}, \quad m(s, t) \equiv s t \bmod \hbar A[[\hbar]], \\
& \forall(s, t, u) \in A[\hbar \hbar]]^{3}, \quad m(s, m(t, u))=m(m(s, t), u) .
\end{aligned}
$$

This means that there exists a sequence of bilinear maps m_{j} from $A \times A$ to A of which the first term m_{0} is the product of A and such that

$$
\begin{aligned}
& \forall(a, b) \in A^{2}, m(a, b)=\sum_{j=0}^{\infty} m_{j}(a, b) \hbar^{j}, \\
& \forall n \in \mathbb{N}, \quad \sum_{i+j=n} m_{i}\left(a, m_{j}(b, c)\right)=\sum_{i+j=n} m_{i}\left(m_{j}(a, b), c\right), \text { that is to say } \sum_{i+j=n} m_{i} \bullet m_{j}=0,
\end{aligned}
$$

by using the notation \bullet for the Gerstenhaber product.
We talk about deformation of order p if the previous formula is satisfied (only) for $n \leq p$.
Two deformations m and m^{\prime} of A are called equivalent if there exists a $\mathbb{C}[[\hbar]]$-automorphism of $A[[\hbar]]$, denoted by φ, such that

$$
\begin{aligned}
& \forall(s, t) \in A[[\hbar]]^{2}, \varphi(m(s, t))=m^{\prime}(\varphi(s), \varphi(t)) \\
& \forall s \in A[\hbar], \varphi(s) \equiv s \bmod \hbar A[[\hbar]],
\end{aligned}
$$

that is to say if there exists a sequence of linear maps φ_{j} from A to A of which the first term φ_{0} is the identity of A and such that

$$
\begin{aligned}
& \forall a \in A, \quad \varphi(a)=\sum_{j=0}^{\infty} \varphi_{j}(a) \hbar^{j}, \\
& \forall n \in \mathbb{N}, \quad \sum_{i+j=n} \varphi_{i}\left(m_{j}(a, b)\right)=\sum_{i+j+k=n} m_{i}^{\prime}\left(\varphi_{j}(a), \varphi_{k}(b)\right) .
\end{aligned}
$$

- One of the advantages of Hochschild cohomology is its classification of deformations of the algebra A. In fact, if $\pi \in C^{2}(A)$, we can construct a first order deformation m of A such that $m_{1}=\pi$ if and only if $\pi \in \operatorname{Ker} d_{2}$. Moreover, two first order deformations are equivalent if and only if their difference is an
element of $\operatorname{Im} d_{1}$. So the set of classes of first order deformations is in bijection with $H H^{2}(A)$.
If m is a deformation of order p, then we can extend m to a deformation of order $p+1$ if and only if there exists m_{p+1} such that

$$
\begin{gathered}
\forall(a, b, c) \in A^{3}, \underbrace{\sum_{i=1}^{p}\left(m_{i}\left(a, m_{p+1-i}(b, c)\right)-m_{i}\left(m_{p+1-i}(a, b), c\right)\right)}_{\omega_{p}(a, b, c)}=-d_{2} m_{p+1}(a, b, c), \\
\text { ie } \sum_{i=1}^{p} m_{i} \bullet m_{p+1-i}=d_{2} m_{p+1} .
\end{gathered}
$$

But ω_{p} belongs to $\operatorname{Ker} d_{3}$, as an easy computation shows, so $H H^{3}(A)$ contains the obstructions to extend a deformation of order p to a deformation of order $p+1$.

2 Presentation of the Koszul complex

We recall in this section some results about the Koszul complex used in the following and which are given in the appendix of the article FK07.

2.1 Kontsevich theorem and notations

- As indicated in section 1.2 , we consider $R=\mathbb{C}[\mathbf{z}]$ and $\left(f_{1}, \ldots, f_{m}\right) \in R^{m}$, and we note $A=$ $R /\left\langle f_{1}, \ldots, f_{m}\right\rangle$. We suppose that there is a complete intersection, ie the dimension of the solution set of the system $\left\{f_{1}=\cdots=f_{m}=0\right\}$ is $n-m$.
- We also define the super-commutative super-algebra $\widetilde{A}=R \otimes \bigwedge\left\{\alpha_{j}, j=1 \ldots m\right\}=\mathbb{C}\left[z_{1}, \ldots, z_{n}, \alpha_{1}, \ldots, \alpha_{m}\right]$. Then we introduce $\eta_{i}=\frac{\partial}{\partial z_{i}}$ and $b_{j}=\frac{\partial}{\partial \alpha_{j}}$.
We denote the even variables by roman letters and the odd variables by greek letters.
- We consider the differential graded algebra

$$
\widetilde{T}=A\left[\eta_{1}, \ldots, \eta_{n}, b_{1}, \ldots, b_{m}\right]=\frac{\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]}{\left\langle f_{1}, \ldots, f_{m}\right\rangle}\left[\eta_{1}, \ldots, \eta_{n}, b_{1}, \ldots, b_{m}\right]
$$

endowed with the differential

$$
d_{\widetilde{T}}=\sum_{j=1}^{n} \sum_{i=1}^{m} \frac{\partial f_{i}}{\partial z_{j}} b_{i} \frac{\partial}{\partial \eta_{j}}
$$

and the Hodge grading, defined by $\operatorname{deg}\left(z_{i}\right)=0, \operatorname{deg}\left(\eta_{i}\right)=1, \operatorname{deg}\left(\alpha_{j}\right)=-1, \operatorname{deg}\left(b_{j}\right)=2$.
Then we can set forth the main theorem which allows us the calculation of the Hochschild cohomology :
Theorem 3 (Kontsevich)
Under the previous assumptions, the Hochschild cohomology of A is isomorphic to the cohomology of the complex $\left(\widetilde{T}, d_{\widetilde{T}}\right)$ associated to the differential graded algebra \widetilde{T}.

Remark 4

Theorem 3 can be seen as a generalization of Hochschild-Kostant-Rosenberg theorem to the case of nonsmooth spaces.

- There is no element of negative degree. So the complex is as follows :

$$
\widetilde{T}(0) \xrightarrow{\tilde{0}} \widetilde{T}(1) \xrightarrow{d_{\widetilde{T}}^{(1)}} \widetilde{T}(2) \xrightarrow{d_{\widetilde{T}}^{(2)}} \widetilde{T}(3) \xrightarrow{d_{\widetilde{T}}^{(3)}} \widetilde{T}(4) \xrightarrow{d_{\tilde{T}}^{(4)}} \cdots
$$

For each degree p, we choose a basis \mathcal{B}_{p} of $\widetilde{T}(p)$. For example for $p=0 \ldots 3$, let's take :
$\widetilde{T}(0)=A$
$\widetilde{T}(1)=A \eta_{1} \oplus \cdots \oplus A \eta_{n}$
$\widetilde{T}(2)=A b_{1} \oplus \cdots \oplus A b_{m} \oplus \bigoplus_{i<j} A \eta_{i} \eta_{j}$
$\widetilde{T}(3)=\bigoplus_{\substack{i=1 \ldots m \\ j=1 \ldots n}} A b_{i} \eta_{j} \oplus \bigoplus_{i<j<k} A \eta_{i} \eta_{j} \eta_{k}$
Then we can make matrices $\operatorname{Mat}_{\mathcal{B}_{p}, \mathcal{B}_{p+1}}\left(d_{\tilde{T}}^{(p)}\right)$ explicit.

- We note $p: \mathbb{C}[\mathbf{z}] \rightarrow A=\mathbb{C}[\mathbf{z}] /\left\langle f_{1}, \ldots, f_{m}\right\rangle$ the canonical projection.

For each ideal J of $\mathbb{C}[\mathbf{z}]$, we denote by J_{A} the image of this ideal by the canonical projection.
Similarly if $\left(g_{1}, \ldots, g_{r}\right) \in A^{r}$ we denote by $\left\langle g_{1}, \ldots, g_{r}\right\rangle_{A}$ the ideal of A generated by $\left(g_{1}, \ldots, g_{r}\right)$.
Besides, if $g \in \mathbb{C}[\mathbf{z}]$, and if J is an ideal of $\mathbb{C}[\mathbf{z}]$, then we note

$$
\operatorname{Ann}_{J}(g):=\{h \in \mathbb{C}[\mathbf{z}] / h g=0 \quad \bmod J\}
$$

In particular, g doesn't divide 0 in $\mathbb{C}[\mathbf{z}] / J$ if and only if $A n n_{J}(g)=J$.
Finally, let's denote by ∇g the gradient of a polynomial $g \in \mathbb{C}[\mathbf{z}]$.

2.2 Particular case where $n=1$ and $m=1$

- In the case where $n=1$ and $m=1$, according to what we have seen, we have for $p \in \mathbb{N}^{*}$,

$$
\widetilde{T}(2 p)=A b_{1}^{p} \text { and } \widetilde{T}(2 p+1)=A b_{1}^{p} \eta_{1}
$$

We deduce
$H^{0}=A, H^{1}=\left\{g_{1} \eta_{1} / g_{1} \in A\right.$ and $\left.g_{1} \partial_{z_{1}} f_{1}=0\right\}$
and $\forall p \in \mathbb{N}^{*}, H^{2 p}=\frac{A b_{1}^{p}}{\left\{g_{1}\left(\partial_{z_{1}} f_{1}\right) b_{1}^{p} / g_{1} \in A\right\}}$, and $H^{2 p+1}=\left\{g_{1} b_{1}^{p} \eta_{1} / g_{1} \in A\right.$ and $\left.g_{1} \partial_{z_{1}} f_{1}=0\right\}$.

- Now if $f_{1}=z_{1}^{k}$, then
$H^{0}=A=\mathbb{C}\left[z_{1}\right] /\left\langle z_{1}^{k}\right\rangle \simeq \mathbb{C}^{k-1}$
$H^{1}=\left\{g_{1} \eta_{1} / g_{1} \in A\right.$ and $\left.k g_{1} z_{1}^{k-1}=0\right\} \simeq \mathbb{C}^{k-1}$
and $\forall p \in \mathbb{N}^{*}, H^{2 p}=\frac{A b_{1}^{p}}{\left\{g_{1}\left(k z_{1}^{k-1}\right) b_{1}^{p} / g_{1} \in A\right\}} \simeq \mathbb{C}^{k-1}$
and $H^{2 p+1}=\left\{g_{1} b_{1}^{p} \eta_{1} / g_{1} \in A\right.$ and $\left.k g_{1} z_{1}^{k-1}=0\right\} \simeq \mathbb{C}^{k-1}$.

3 Case $n=2, m=1$. - singular curves of the plane

3.1 Description of the cohomology spaces

With the help of theorem 3 we calculate the Hochschild cohomology of A. We begin by making cochains and differentials explicit.

- The various spaces of the complex are given by

$$
\begin{array}{l|l}
\widetilde{T}(0)=A & \widetilde{T}(5)=A b_{1}^{2} \eta_{1} \oplus A b_{1}^{2} \eta_{2} \\
\widetilde{T}(1)=A \eta_{1} \oplus A \eta_{2} & \widetilde{T}(6)=A b_{1}^{3} \oplus A b_{1}^{2} \eta_{1} \eta_{2} \\
\widetilde{T}(2)=A b_{1} \oplus A \eta_{1} \eta_{2} & \widetilde{T}(7)=A b_{1}^{3} \eta_{1} \oplus A b_{1}^{3} \eta_{2} \\
\widetilde{T}(3)=A b_{1} \eta_{1} \oplus A b_{1} \eta_{2} & \widetilde{T}(8)=A b_{1}^{4} \oplus A b_{1}^{3} \eta_{1} \eta_{2} \\
\widetilde{T}(4)=A b_{1}^{2} \oplus A b_{1} \eta_{1} \eta_{2} & \widetilde{T}(9)=A b_{1}^{4} \eta_{1} \oplus A b_{1}^{4} \eta_{2},
\end{array}
$$

ie, in the generic case, $\widetilde{T}(2 p)=A b_{1}^{p} \oplus A b_{1}^{p-1} \eta_{1} \eta_{2}$ and $\widetilde{T}(2 p+1)=A b_{1}^{p} \eta_{1} \oplus A b_{1}^{p} \eta_{2}$.
We have $\frac{\partial}{\partial \eta_{k}}\left(\eta_{k} \wedge \eta_{l}\right)=1 \wedge \eta_{l}=-\eta_{l} \wedge 1$, hence $d_{\tilde{T}}^{(2)}\left(\eta_{k} \eta_{l}\right)=-\frac{\partial f_{1}}{\partial z_{k}} b_{1} \eta_{l}+\frac{\partial f_{1}}{\partial z_{l}} b_{1} \eta_{k}$.
From now on, we note $\frac{\partial}{\partial_{z_{j}}}=\partial_{z_{j}}=\partial_{j}$.
The matrices of $d_{\widetilde{T}}$ are therefore given by

$$
\begin{aligned}
& \operatorname{Mat}_{\mathcal{B}_{2 p}, \mathcal{B}_{2 p+1}}\left(d_{\widetilde{T}}^{(2 p)}\right)=\left(\begin{array}{cc}
0 & \partial_{2} f_{1} \\
0 & -\partial_{1} f_{1}
\end{array}\right) \\
& \operatorname{Mat}_{\mathcal{B}_{2 p+1}, \mathcal{B}_{2 p+2}}\left(d_{\widetilde{T}}^{(2 p+1)}\right)=\left(\begin{array}{cc}
\partial_{1} f_{1} & \partial_{2} f_{1} \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

- We deduce a simpler expression for the cohomology spaces :

$$
\begin{aligned}
& H^{0}=A \\
& H^{1}=\left\{g_{1} \eta_{1}+g_{2} \eta_{2} /\left(g_{1}, g_{2}\right) \in A^{2} \text { and } g_{1} \partial_{1} f_{1}+g_{2} \partial_{2} f_{1}=0\right\} \simeq\left\{\mathbf{g}=\binom{g_{1}}{g_{2}} \in A^{2} / \mathbf{g} \cdot \nabla f_{1}=0\right\}
\end{aligned}
$$

$$
\forall p \in \mathbb{N}^{*}
$$

$$
H^{2 p}=\frac{\left\{g_{1} b_{1}^{p}+g_{2} b_{1}^{p-1} \eta_{1} \eta_{2} /\left(g_{1}, g_{2}\right) \in A^{2} \text { and } g_{2} \partial_{1} f_{1}=g_{2} \partial_{2} f_{1}=0\right\}}{\left\{\left(g_{1} \partial_{1} f_{1}+g_{2} \partial_{2} f_{1}\right) b_{1}^{p} /\left(g_{1}, g_{2}\right) \in A^{2}\right\}} \simeq \frac{\left\{\mathbf{g}=\binom{g_{1}}{g_{2}} \in A^{2} / g_{2} \partial_{1} f_{1}=g_{2} \partial_{2} f_{1}=0\right\}}{\left\{\binom{\mathbf{g} \cdot \nabla f_{1}}{0} / \mathbf{g} \in A^{2}\right\}}
$$

$$
\simeq \frac{A}{\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}\right\rangle_{A}} \oplus\left\{g \in A / g \partial_{1} f_{1}=g \partial_{2} f_{1}=0\right\}
$$

$$
H^{2 p+1}=\frac{\left\{g_{1} b_{1}^{p} \eta_{1}+g_{2} b_{1}^{p} \eta_{2} /\left(g_{1}, g_{2}\right) \in A^{2} \text { and } g_{1} \partial_{1} f_{1}+g_{2} \partial_{2} f_{1}=0\right\}}{\left\{g_{2}\left(\partial_{2} f_{1} b_{1}^{p} \eta_{1}-\partial_{1} f_{1} b_{1}^{p} \eta_{2}\right) / g_{2} \in A\right\}} \simeq \frac{\left\{\mathbf{g}=\binom{g_{1}}{g_{2}} \in A^{2} / \mathbf{g} \cdot \nabla f_{1}=0\right\}}{\left\{g_{2}\binom{\partial_{2} f_{1}}{-\partial_{1} f_{1}} / g_{2} \in A\right\}} .
$$

It remains to determine these spaces more explicitly. It will be done in the two following sections.

3.2 Explicit calculations in the particular case where f_{1} has separate variables

In this section, we consider the polynomial $f_{1}=a_{1} z_{1}^{k}+a_{2} z_{2}^{l}$, with $2 \leq l \leq k$ and $\left(a_{1}, a_{2}\right) \in\left(\mathbb{C}^{*}\right)^{2}$. The partial derivative of f_{1} are $\partial_{1} f_{1}=k a_{1} z_{1}^{k-1}$ and $\partial_{2} f_{1}=l a_{2} z_{2}^{l-1}$.

- We already have

$$
H^{0}=\mathbb{C}\left[z_{1}, z_{2}\right] /\left\langle a_{1} z_{1}^{k}+a_{2} z_{2}^{l}\right\rangle
$$

- Besides, as f_{1} is of homogeneous weight, Euler's formula gives $\frac{1}{k} x_{1} \partial_{1} f_{1}+\frac{1}{l} x_{2} \partial_{2} f_{1}=f_{1}$. So we have the inclusion $\left\langle f_{1}\right\rangle \subset\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}\right\rangle$, hence $\frac{A}{\left\langle\partial_{z_{1}} f_{1}, \partial_{z_{2}} f_{1}\right\rangle_{A}} \simeq \frac{\mathbb{C}\left[z_{1}, z_{2}\right]}{\left\langle\partial_{z_{1}} f_{1}, \partial_{z_{2}} f_{1}\right\rangle} \simeq V e c t\left(z_{1}^{i} z_{2}^{j} / i \in \llbracket 0, k-2 \rrbracket, j \in \llbracket 0, l-2 \rrbracket\right)$. But $\partial_{1} f_{1}$ and f_{1} are relatively prime, just as $\partial_{2} f_{1}$ and f_{1} are, hence if $g \in A$ satisfies $g \partial_{1} f_{1}=0 \bmod \left\langle f_{1}\right\rangle$, then $g \in\left\langle f_{1}\right\rangle$, ie g is zero in A.
So,

$$
H^{2 p} \simeq V e c t\left(z_{1}^{i} z_{2}^{j} / i \in \llbracket 0, k-2 \rrbracket, j \in \llbracket 0, l-2 \rrbracket\right) \simeq \mathbb{C}^{(k-1)(l-1)}
$$

- Now we determine the set $\left\{\mathbf{g}=\binom{g_{1}}{g_{2}} \in A^{2} / \mathbf{g} \cdot \nabla f_{1}=0\right\}$:

First we have $\left\langle f_{1}, \partial_{1} f_{1}\right\rangle=\left\langle a_{1} z_{1}^{k}+a_{2} z_{2}^{l}, z_{1}^{k-1}\right\rangle=\left\langle z_{2}^{l}, z_{1}^{k-1}\right\rangle$. So the only monomials which are not in this ideal are the elements $z_{1}^{i} z_{2}^{j}$ with $i \in \llbracket 0, k-2 \rrbracket$ and $j \in \llbracket 0, l-1 \rrbracket$.
Every polynomial $P \in \mathbb{C}[\mathbf{z}]$ can be written in the form

$$
P=\alpha f_{1}+\beta \partial_{1} f_{1}+\sum_{\substack{i=0 \ldots k-2 \\ j=0 \ldots l-1}} a_{i j} z_{1}^{i} z_{2}^{j}
$$

The polynomials $P \in \mathbb{C}[\mathbf{z}]$ such that $P \partial_{2} f_{1} \in\left\langle f_{1}, \partial_{1} f_{1}\right\rangle$ are hence the elements

$$
P=\alpha f_{1}+\beta \partial_{1} f_{1}+\sum_{\substack{i=0 \ldots k-2 \\ j=1 \ldots l-1}} a_{i j} z_{1}^{i} z_{2}^{j}
$$

So we have calculated $\operatorname{Ann}_{\left\langle f_{1}, \partial_{1} f_{1}\right\rangle}\left(\partial_{2} f_{1}\right)$.
The equation

$$
\begin{equation*}
\mathbf{g} \cdot \nabla f_{1}=0 \quad \bmod \left\langle f_{1}\right\rangle \tag{2}
\end{equation*}
$$

yields

$$
\begin{equation*}
g_{2} \partial_{2} f_{1}=0 \quad \bmod \left\langle f_{1}, \partial_{1} f_{1}\right\rangle \tag{3}
\end{equation*}
$$

ie $g_{2} \in A n n_{\left\langle f_{1}, \partial_{1} f_{1}\right\rangle}\left(\partial_{2} f_{1}\right)$, ie again

$$
\begin{equation*}
g_{2}=\alpha f_{1}+\beta \partial_{1} f_{1}+\sum_{\substack{i=0 \ldots k-2 \\ j=1 \ldots l-1}} a_{i j} z_{1}^{i} z_{2}^{j} \tag{4}
\end{equation*}
$$

with $(\alpha, \beta) \in \mathbb{C}[\mathbf{z}]^{2}$.
It follows that

$$
\begin{equation*}
g_{1} \partial_{1} f_{1}+\alpha f_{1} \partial_{2} f_{1}+\beta \partial_{1} f_{1} \partial_{2} f_{1}+\sum_{\substack{i=0 \ldots k-2 \\ j=1 \ldots l-1}} a_{i j} z_{1}^{i} z_{2}^{j} \partial_{2} f_{1} \in\left\langle f_{1}\right\rangle \tag{5}
\end{equation*}
$$

And, from the equality $z_{2} \partial_{2} f_{1}=l f_{1}-\frac{l}{k} z_{1} \partial_{1} f_{1}$, one deduces :

$$
\begin{gather*}
\partial_{1} f_{1}\left(g_{1}+\beta \partial_{2} f_{1}-\frac{l}{k} \sum_{\substack{i=0 \ldots k-2 \\
j=1 \ldots l-1}} a_{i j} z_{1}^{i+1} z_{2}^{j-1}\right) \in\left\langle f_{1}\right\rangle . \tag{6}\\
\text { ie } g_{1}=-\beta \partial_{2} f_{1}+\frac{l}{k} \sum_{\substack{i=0 \ldots k-2 \\
j=1 \ldots l-1}} a_{i j} z_{1}^{i+1} z_{2}^{j-1}+\delta f_{1},
\end{gather*}
$$

with $\delta \in \mathbb{C}[\mathbf{z}]$.
Then we verify that the elements g_{1} and g_{2} obtained in this way are indeed solutions of the equation (2).
Finally, we have :
$\left\{\mathbf{g} \in A^{2} / \mathbf{g} \cdot \nabla f_{1}=0\right\}=\left\{\binom{\alpha}{\delta} f_{1}-\beta\binom{\partial_{2} f_{1}}{-\partial_{1} f_{1}}+\sum_{\substack{i=0 \ldots k-2 \\ j=1 \ldots l-1}} a_{i j} z_{1}^{i} z_{2}^{j-1}\binom{\frac{l}{k} z_{1}}{z_{2}} /(\alpha, \beta, \delta) \in \mathbb{C}[\mathbf{z}]^{3}\right.$ and $\left.a_{i j} \in \mathbb{C}\right\}$.
We immediately deduce the cohomology spaces of odd degree :

$$
\begin{aligned}
\forall p \geq 1, H^{2 p+1} & \simeq \mathbb{C}^{(k-1)(l-1)} \\
H^{1} & \simeq \mathbb{C}^{(k-1)(l-1)} \oplus \mathbb{C}\left[z_{1}, z_{2}\right] /\left\langle a_{1} z_{1}^{k}+a_{2} z_{2}^{l}\right\rangle
\end{aligned}
$$

Remark 5

We obtain in particular the cohomology for the cases where $f_{1}=z_{1}^{k+1}+z_{2}^{2}, f_{1}=z_{1}^{3}+z_{2}^{4}$ and $f_{1}=z_{1}^{3}+z_{2}^{5}$. These cases correspond respectively to the weight homogeneous functions of types A_{k}, E_{6} and E_{8} given in AVGZ86 p. 181.

The table below summarizes the results obtained for the three particular cases we have just obtained :

	H^{0}	H^{1}	$H^{2 p}$	$H^{2 p+1}$
A_{k}	$\mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{k+1}+z_{2}^{2}\right\rangle$	$\mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{k+1}+z_{2}^{2}\right\rangle \oplus \mathbb{C}^{k}$	\mathbb{C}^{k}	\mathbb{C}^{k}
E_{6}	$\mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{3}+z_{2}^{4}\right\rangle$	$\mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{3}+z_{2}^{4}\right\rangle \oplus \mathbb{C}^{6}$	\mathbb{C}^{6}	\mathbb{C}^{6}
E_{8}	$\mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{3}+z_{2}^{5}\right\rangle$	$\mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{3}+z_{2}^{5}\right\rangle \oplus \mathbb{C}^{8}$	\mathbb{C}^{8}	\mathbb{C}^{8}

The cases where $f_{1}=z_{1}^{2} z_{2}+z_{2}^{k-1}$ and $f_{1}=z_{1}^{3}+z_{1} z_{2}^{3}$, ie respectively D_{k} and E_{7}, will be studied in the next section.

3.3 Explicit calculations for D_{k} and E_{7}

To study these particular cases, we use the following result about Gröbner bases (theorem (7). First, recall the definition of a Gröbner basis. For $g \in \mathbb{C}[\mathbf{z}]$, we denote by $l t(g)$ its leading term (for the lexicographic order). Given a non trivial ideal J of $\mathbb{C}[\mathbf{z}]$, a Gröbner basis of J is a finite subset G_{J} of $J \backslash\{0\}$ such that for all $f \in J \backslash\{0\}$, there exists $g \in G_{J}$ such that $l t(g)$ divides $l t(f)$.

Definition 6

1. Let J be a non trivial ideal of $\mathbb{C}[\mathbf{z}]$ and $G_{J}:=\left[g_{1}, \ldots, g_{r}\right]$ a Gröbner basis of J. A polynomial $p \in \mathbb{C}[\mathbf{z}]$ is reduced relatively to G_{J} if it is zero or if none of the terms of p is divisible by the leading term $l t\left(g_{j}\right)$ of one of the elements of G_{J}.
2. The set of the G_{J}-standard terms is the set of all monomials of $\mathbb{C}[\mathbf{z}]$ except the set of the leading terms $l t(f)$ of the polynomials $f \in J \backslash\{0\}$.

Theorem 7 (Macaulay)
The set of the G_{J}-standard terms forms a basis of the quotient vector space $\mathbb{C}[\mathbf{z}] / J$.

3.3.1 Case of $f_{1}=z_{1}^{2} z_{2}+z_{2}^{k-1}$, ie D_{k}

Here we have $f_{1}=z_{1}^{2} z_{2}+z_{2}^{k-1}, \partial_{1} f_{1}=2 z_{1} z_{2}$ and $\partial_{2} f_{1}=z_{1}^{2}+(k-1) z_{2}^{k-2}$.
A Gröbner basis of the ideal $\left\langle f_{1}, \partial_{2} f_{1}\right\rangle$ is $B:=\left[b_{1}, b_{2}\right]=\left[z_{1}^{2}+(k-1) z_{2}^{k-2}, z_{2}^{k-1}\right]$.
So the set of the standard terms is $\left\{z_{1}^{i} z_{2}^{j} / i \in\{0,1\}\right.$ and $\left.j \in \llbracket 0, k-2 \rrbracket\right\}$.
Then we can solve the equation $p \partial_{1} f_{1}=0$ in $\mathbb{C}[\mathbf{z}] /\left\langle f_{1}, \partial_{2} f_{1}\right\rangle$.
In fact, by writing $p:=\sum_{i=0,1 j=0 \ldots k-2} a_{i j} z_{1}^{i} z_{2}^{j}$, the equation becomes

$$
q:=\sum_{i=0,1} a_{j=0 \ldots k-2} z_{1}^{i+1} z_{2}^{j+1} \in\left\langle f_{1}, \partial_{2} f_{1}\right\rangle .
$$

So we look for the normal form of the element q modulo the ideal $\left\langle f_{1}, \partial_{2} f_{1}\right\rangle$.
The multivariate division of q by B is $q=q_{1} b_{1}+q_{2} b_{2}+r$ with $r=\sum_{j=0}^{k-3} a_{0, j} z_{1} z_{2}^{j+1}$.
Thus the solution is

$$
p=a_{0, k-2} z_{2}^{k-2}+\sum_{j=0}^{k-2} a_{1, j} z_{1} z_{2}^{j} .
$$

But the equation

$$
\begin{equation*}
\mathbf{g} \cdot \nabla f_{1}=0 \quad \bmod \left\langle f_{1}\right\rangle \tag{7}
\end{equation*}
$$

yields

$$
\begin{equation*}
g_{1} \partial_{1} f_{1}=0 \quad \bmod \left\langle f_{1}, \partial_{2} f_{1}\right\rangle \tag{8}
\end{equation*}
$$

ie

$$
\begin{equation*}
g_{1}=\alpha f_{1}+\beta \partial_{2} f_{1}+a z_{2}^{k-2}+\sum_{j=0}^{k-2} b_{j} z_{1} z_{2}^{j} \tag{9}
\end{equation*}
$$

with $(\alpha, \beta) \in \mathbb{C}[\mathbf{z}]^{2}$ and $a, b_{j} \in \mathbb{C}$.
Hence

$$
\begin{equation*}
g_{2} \partial_{2} f_{1}+\beta \partial_{1} f_{1} \partial_{2} f_{1}+a z_{2}^{k-2} \partial_{1} f_{1}+\sum_{j=0}^{k-2} b_{j} z_{1} z_{2}^{j} \partial_{1} f_{1} \in\left\langle f_{1}\right\rangle \tag{10}
\end{equation*}
$$

And with the equalities,
$z_{2}^{k-1}=\frac{1}{2-k}\left(f_{1}-z_{2} \partial_{2} f_{1}\right)=-\frac{1}{2-k} z_{2} \partial_{2} f_{1} \quad \bmod \left\langle f_{1}\right\rangle$, and $\frac{k-2}{2} z_{1} \partial_{1} f_{1}+z_{2} \partial_{2} f_{1}=(k-1) f_{1}($ Euler $)$, we obtain

$$
\begin{gather*}
\partial_{2} f_{1}\left(g_{2}+\beta \partial_{1} f_{1}-\frac{2 a}{2-k} z_{1} z_{2}+\sum_{j=0}^{k-2} b_{j} \frac{2}{2-k} z_{2}^{j+1}\right) \in\left\langle f_{1}\right\rangle \tag{11}\\
\text { ie, } g_{2}=-\beta \partial_{1} f_{1}+\frac{2 a}{2-k} z_{1} z_{2}-\sum_{j=0}^{k-2} b_{j} \frac{2}{2-k} z_{2}^{j+1}+\delta f_{1}
\end{gather*}
$$

with $\delta \in \mathbb{C}[\mathbf{z}]$. So

$$
\left\{\mathbf{g} \in A^{2} / \mathbf{g} \cdot \nabla f_{1}=0\right\}=\left\{\binom{\alpha}{\delta} f_{1}+\beta\binom{\partial_{2} f_{1}}{-\partial_{1} f_{1}}+\binom{z_{2}^{k-2}}{\frac{2^{2}}{2-k} z_{1} z_{2}}+\sum_{j=0}^{k-2} b_{j} z_{2}^{j}\binom{z_{1}}{-\frac{2}{2-k} z_{2}} /(\alpha, \beta, \delta) \in \mathbb{C}[\mathbf{z}]^{3} \text { and } a, b_{j} \in \mathbb{C}\right\} .
$$

On the other hand, a Gröbner basis of $\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}\right\rangle$ is $\left[z_{1}^{2}+(k-1) z_{2}^{k-2}, z_{1} z_{2}, z_{2}^{k-1}\right]$,
thus $\mathbb{C}[\mathbf{z}] /\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}\right\rangle \simeq \operatorname{Vect}\left(z_{1}, 1, z_{2} \ldots, z_{2}^{k-2}\right)$.
Let's summarize,

$$
\begin{array}{|l|}
H^{0}=\mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{2} z_{2}+z_{2}^{k-1}\right\rangle \\
H^{1} \simeq \mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{2} z_{2}+z_{2}^{k-1}\right\rangle \oplus \mathbb{C}^{k} \\
H^{2 p} \simeq \mathbb{C}^{k} \\
H^{2 p+1} \simeq \mathbb{C}^{k}
\end{array}
$$

3.3.2 Case of $f_{1}=z_{1}^{3}+z_{1} z_{2}^{3}$, ie E_{7}

Here we have $\partial_{1} f_{1}=3 z_{1}^{2}+z_{2}^{3}$ and $\partial_{2} f_{1}=3 z_{1} z_{2}^{2}$.
A Gröbner basis of the ideal $\left\langle f_{1}, \partial_{1} f_{1}\right\rangle$ is $\left[3 z_{1}^{2}+z_{2}^{3}, z_{1} z_{2}^{3}, z_{2}^{6}\right]$, and a Gröbner basis of $\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}\right\rangle$ is $\left[3 z_{1}^{2}+z_{2}^{3}, z_{1} z_{2}^{2}, z_{2}^{5}\right]$.
By an analogous proof, we obtain :

$$
\begin{aligned}
& H^{0}=\mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{3}+z_{1} z_{2}^{3}\right\rangle \\
& H^{1} \simeq \mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{3}+z_{1} z_{2}^{3}\right\rangle \oplus \mathbb{C}^{7} \\
& H^{2 p} \simeq \mathbb{C}^{7} \\
& H^{2 p+1} \simeq \mathbb{C}^{7}
\end{aligned}
$$

4 Case $n=3, m=1$. - Klein surfaces

4.1 Klein surfaces

Given a finite group G acting on \mathbb{C}^{n}, we associate to it, according to Erlangen program of Klein, the quotient space \mathbb{C}^{n} / G, ie the space whose points are the orbits under the action of G; it is an algebraic variety, and the polynomial functions on this variety are the polynomial functions on \mathbb{C}^{n} which are G-invariant. In the case of $\mathbf{S L}_{2} \mathbb{C}$, invariant theory allows us to associate a polynomial to any finite subgroup, as explained in proposition 6. Thus, to every finite subgroup of $\mathbf{S L}_{2} \mathbb{C}$ are associated the zero set of this polynomial; it is an algebraic variety, called Klein surface.
In this section we recall some results about this surfaces. See the references \$77] and CCK99 for more details.

Proposition 8

Every finite subgroup of $\mathbf{S L}_{2} \mathbb{C}$ is conjugate to one of the following groups :

- A_{n} (cyclic), $n \geq 1$ ($\left.\left|A_{n}\right|=n\right)$
- D_{n} (dihedral), $n \geq 1\left(\left|D_{n}\right|=4 n\right)$
- E_{6} (tetrahedral) $\left(\left|E_{6}\right|=24\right)$
- E_{7} (octahedral) $\left(\left|E_{7}\right|=48\right)$
- E_{8} (icosahedral) $\left(\left|E_{8}\right|=120\right)$.

Proposition 9

Let G be one of the groups of the preceding list. The ring of invariants is the following :

$$
\mathbb{C}[x, y]^{G}=\mathbb{C}\left[e_{1}, e_{2}, e_{3}\right]=\mathbb{C}\left[e_{1}, e_{2}\right] \oplus e_{3} \mathbb{C}\left[e_{1}, e_{2}\right] \simeq \mathbb{C}\left[z_{1}, z_{2}, z_{3}\right] /\left\langle f_{1}\right\rangle
$$

where the invariants e_{j} are homogeneous polynomials, with e_{1} and e_{2} algebraically independent, and where f_{1} is a weighted homogeneous polynomial with an isolated singularity at the origin.
These polynomials are given in the following table.

G	e_{1}, e_{2}, e_{3}	f_{1}	$\mathbb{C}\left[z_{1}, z_{2}, z_{3}\right] /\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}, \partial_{3} f_{1}\right\rangle$
A_{n}	$\begin{aligned} & e_{1}=x^{n} \\ & e_{2}=y^{n} \\ & e_{3}=x y \end{aligned}$	$-n\left(z_{1} z_{2}-z_{3}^{n}\right)$	$\begin{aligned} & \operatorname{Vect}\left(1, z_{1}, \ldots, z_{3}^{n-2}\right) \\ & \operatorname{dim}=n-1 \end{aligned}$
D_{n}	$\begin{aligned} & e_{1}=x^{2} y^{2} \\ & e_{2}=x^{2 n}+(-1)^{n} y^{2 n} \\ & e_{3}=x^{2 n+1} y+(-1)^{n+1} x y^{2 n+1} \end{aligned}$	$\begin{aligned} & \lambda_{n}\left(4 z_{1}^{n+1}+(-1)^{n+1} z_{1} z_{2}^{2}+(-1)^{n} z_{3}^{2}\right) \\ & \text { with } \lambda_{n}=2 n(-1)^{n+1} \end{aligned}$	$\begin{aligned} & \operatorname{Vect}\left(1, z_{2}, z_{1}, \ldots, z_{1}^{n-1}\right) \\ & \operatorname{dim}=n+1 \end{aligned}$
E_{6}	$\begin{aligned} & e_{1}=x^{5} y-x y^{5} \\ & e_{2}=14 y^{4} x^{4}+x^{8}+y^{8} \\ & e_{3}=33 y^{8} x^{4}-y^{12}+33 y^{4} x^{8}-x^{12} \end{aligned}$	$4\left(z_{3}^{2}-z_{2}^{3}+108 z_{1}^{4}\right)$	$\begin{aligned} & \operatorname{Vect}\left(1, z_{2}, z_{1}, z_{1} z_{2}, z_{1}^{2}, z_{1}^{2} z_{2}\right) \\ & \operatorname{dim}=6 \end{aligned}$
E_{7}	$\begin{aligned} & e_{1}=14 y^{4} x^{4}+x^{8}+y^{8} \\ & e_{2}=-3 y^{10} x^{2}+6 y^{6} x^{6}-3 y^{2} x^{10} \\ & e_{3}=-34 x^{5} y^{13}-y x^{17}+34 y^{5} x^{13}+x y^{17} \end{aligned}$	$8\left(3 z_{3}^{2}-12 z_{2}^{3}+z_{2} z_{1}^{3}\right)$	$\begin{aligned} & \operatorname{Vect}\left(1, z_{2}, z_{2}^{2}, z_{1}, z_{1} z_{2}, z_{1} z_{2}^{2}, z_{1}^{2}\right) \\ & \operatorname{dim}=7 \end{aligned}$
E_{8}	$\begin{aligned} e_{1}= & x^{11} y+11 x^{6} y^{6}-x y^{11} \\ e_{2}= & x^{20}-228 x^{15} y^{5}+494 x^{10} y^{10} \\ & +228 x^{5} y^{15}+y^{20} \\ e_{3}= & x^{30}+522 x^{25} y^{5} \\ & -10005 x^{20} y^{10}-10005 x^{10} y^{20} \\ & -522 x^{5} y^{25}+y^{30} \end{aligned}$	$10\left(1728 z_{1}^{5}+z_{2}^{3}-z_{3}^{2}\right)$	$\begin{aligned} & \operatorname{Vect}\left(z_{1}^{i} z_{2}^{j}\right)_{\substack{i=0 \ldots 3, j=0 \ldots 1}} \\ & \operatorname{dim}=8 \end{aligned}$

We call Klein surface the algebraic hyper-surface defined by $\left\{\mathbf{z} \in \mathbb{C}^{3} / f_{1}(\mathbf{z})=0\right\}$.

Theorem 10 (Pichereau)
Consider the Poisson bracket defined on $\mathbb{C}\left[z_{1}, z_{1}, z_{3}\right]$ by

$$
\{\cdot\}_{f_{1}}=\partial_{3} f_{1} \partial_{1} \wedge \partial_{2}+\partial_{1} f_{1} \partial_{2} \wedge \partial_{3}+\partial_{2} f_{1} \partial_{3} \wedge \partial_{1}=i\left(d f_{1}\right)\left(\partial_{1} \wedge \partial_{2} \wedge \partial_{3}\right)
$$

and denote by $H P_{f_{1}}^{*}$ (resp. $H P_{*}^{f_{1}}$) the Poisson cohomology (resp. homology) for this bracket. Under the previous assumptions, the Poisson cohomology $H P_{f_{1}}^{*}$ and the Poisson homology $H P_{*}^{f_{1}}$ of $\left(\mathbb{C}\left[z_{1}, z_{1}, z_{3}\right] /\left\langle f_{1}\right\rangle,\{\cdot\}_{f_{1}}\right)$ is given by

$$
\begin{aligned}
& H P_{f_{1}}^{0}=\mathbb{C}, \quad H P_{f_{1}}^{1} \simeq H P_{f_{1}}^{2}=\{0\} \\
& H P_{0}^{f_{1}} \simeq H P_{2}^{f_{1}} \simeq \mathbb{C}\left[z_{1}, z_{2}, z_{3}\right] /\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}, \partial_{3} f_{1}\right\rangle \\
& \operatorname{dim}\left(H P_{1}^{f_{1}}\right)=\operatorname{dim}\left(H P_{0}^{f_{1}}\right)-1 \\
& H P_{j}^{f_{1}}=H P_{f_{1}}^{j}=\{0\} \text { si } j \geq 3
\end{aligned}
$$

The algebra $\mathbb{C}[x, y]$ is a Poisson algebra for the standard symplectic bracket $\{\cdot\}_{s t d}$. As G is a subgroup of the symplectic group $\mathbf{S p}_{2} \mathbb{C}$ (since $\mathbf{S p}_{2} \mathbb{C}=\mathbf{S L}_{2} \mathbb{C}$), the invariant algebra $\mathbb{C}[x, y]^{G}$ is a Poisson subalgebra of $\mathbb{C}[x, y]$. Then the following proposition allows us to deduce from theorem 10 the Poisson cohomology and homology of $\mathbb{C}[x, y]^{G}$ for the standard symplectic bracket.

Proposition 11

The isomorphism of associative algebras

$$
\begin{aligned}
\pi:\left(\mathbb{C}[x, y]^{G},\{\cdot\}_{s t d}\right) & \left.\rightarrow \frac{(\mathbb{C}}{}\left[z_{1}, z_{1}, z_{3}\right] /\left\langle f_{1}\right\rangle,\{\cdot\}_{f_{1}}\right) \\
e_{j} & \mapsto \overline{z_{j}}
\end{aligned}
$$

is a Poisson isomorphism.

Subsequently, we will calculate the Hochschild cohomology of $\mathbb{C}\left[z_{1}, z_{1}, z_{3}\right] /\left\langle f_{1}\right\rangle$. Then we will deduce immediately the Hochschild cohomology of $\mathbb{C}[x, y]^{G}$, with the help of the isomorphism of associative algebras π.

4.2 Description of the cohomology spaces

- In this case, we change the ordering of the basis: we shall use $\left(\eta_{1} \eta_{2}, \eta_{2} \eta_{3}, \eta_{3} \eta_{1}\right)$ instead of $\left(\eta_{1} \eta_{2}, \eta_{1} \eta_{3}, \eta_{2} \eta_{3}\right)$. Then the different spaces of the complex are given by

$$
\begin{aligned}
& \widetilde{T}(0)=A \\
& \widetilde{T}(1)=A \eta_{1} \oplus A \eta_{2} \oplus A \eta_{3} \\
& \widetilde{T}(2)=A b_{1} \oplus A \eta_{1} \eta_{2} \oplus A \eta_{2} \eta_{3} \oplus A \eta_{3} \eta_{1} \\
& \widetilde{T}(3)=A b_{1} \eta_{1} \oplus A b_{1} \eta_{2} \oplus A b_{1} \eta_{3} \oplus A \eta_{1} \eta_{2} \eta_{3} \\
& \widetilde{T}(4)=A b_{1}^{2} \oplus A b_{1} \eta_{1} \eta_{2} \oplus A b_{1} \eta_{2} \eta_{3} \oplus A b_{1} \eta_{3} \eta_{1} \\
& \widetilde{T}(5)=A b_{1}^{2} \eta_{1} \oplus A b_{1}^{2} \eta_{2} \oplus A b_{1}^{2} \eta_{3} \oplus A b_{1} \eta_{1} \eta_{2} \eta_{3}
\end{aligned}
$$

ie, in the general case, for $p \in \mathbb{N}^{*}, \widetilde{T}(2 p)=A b_{1}^{p} \oplus A b_{1}^{p-1} \eta_{1} \eta_{2} \oplus A b_{1}^{p-1} \eta_{2} \eta_{3} \oplus A b_{1}^{p-1} \eta_{3} \eta_{1}$
and $\widetilde{T}(2 p+1)=A b_{1}^{p} \eta_{1} \oplus A b_{1}^{p} \eta_{2} \oplus A b_{1}^{p} \eta_{3} \oplus A b_{1}^{p-1} \eta_{1} \eta_{2} \eta_{3}$.
We have $\frac{\partial}{\partial \eta_{1}}\left(\eta_{1} \wedge \eta_{2} \wedge \eta_{3}\right)=1 \wedge \eta_{2} \wedge \eta_{3}=\eta_{2} \wedge \eta_{3} \wedge 1$, thus $d_{\widetilde{T}}^{(3)}\left(\eta_{1} \eta_{2} \eta_{3}\right)=\frac{\partial f_{1}}{\partial z_{1}} b_{1} \eta_{2} \eta_{3}+\frac{\partial f_{1}}{\partial z_{2}} b_{1} \eta_{3} \eta_{1}+\frac{\partial f_{1}}{\partial z_{3}} b_{1} \eta_{1} \eta_{2}$.
The matrices of $d_{\widetilde{T}}$ are therefore given by

$$
\begin{aligned}
\operatorname{Mat}_{\mathcal{B}_{1}, \mathcal{B}_{2}}\left(d_{\widetilde{T}}^{(1)}\right)=\left(\begin{array}{ccc}
\partial_{z_{1}} f_{1} & \partial_{z_{2}} f_{1} & \partial_{z_{3}} f_{1} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\forall p \in \mathbb{N}^{*}, \operatorname{Mat}_{\mathcal{B}_{2 p}, \mathcal{B}_{2 p+1}}\left(d_{\widetilde{T}}^{(2 p)}\right)=\left(\begin{array}{cccc}
0 & \partial_{z_{2}} f_{1} & 0 & -\partial_{z_{3}} f_{1} \\
0 & -\partial_{z_{1}} f_{1} & \partial_{z_{3}} f_{1} & 0 \\
0 & 0 & -\partial_{z_{2}} f_{1} & \partial_{z_{1}} f_{1} \\
0 & 0 & 0 & 0 \\
\forall p \in \mathbb{N}^{*}, \operatorname{Mat}_{\mathcal{B}_{2 p+1}, \mathcal{B}_{2 p+2}}\left(d_{\widetilde{T}}^{(2 p+1)}\right)=\left(\begin{array}{cccc}
\partial_{z_{1}} f_{1} & \partial_{z_{2}} f_{1} & \partial_{z_{3}} f_{1} & 0 \\
0 & 0 & 0 & \partial_{z_{3}} f_{1} \\
0 & 0 & 0 & \partial_{z_{1}} f_{1} \\
0 & 0 & 0 & \partial_{z_{2}} f_{1}
\end{array}\right) .
\end{array} . .\right.
\end{aligned}
$$

- We deduce

$$
\begin{aligned}
& H^{0}=A \\
& \begin{aligned}
H^{1} & =\left\{g_{1} \eta_{1}+g_{2} \eta_{2}+g_{3} \eta_{3} /\left(g_{1}, g_{2}, g_{3}\right) \in A^{3} \text { and } g_{1} \partial_{z_{1}} f_{1}+g_{2} \partial_{z_{2}} f_{1}+g_{3} \partial_{z_{3}} f_{1}=0\right\} \simeq\left\{\mathbf{g}=\left(\begin{array}{c}
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right) \in A^{3} / \mathbf{g} \cdot \nabla f_{1}=0\right\} \\
H^{2} & =\frac{\left\{g_{0} b_{1}+g_{3} \eta_{1} \eta_{2}+g_{1} \eta_{2} \eta_{3}+g_{2} \eta_{3} \eta_{1} /\left(g_{0}, g_{1}, g_{2} g_{3}\right) \in A^{4} \text { and } g_{3} \partial_{z_{2}} f_{1}-g_{2} \partial_{z_{3}} f_{1}=g_{1} \partial_{z_{3}} f_{1}-g_{3} \partial_{z_{1}} f_{1}=g_{2} \partial_{z_{1}} f_{1}-g_{1} \partial_{z_{2}} f_{1}=0\right\}}{\left\{\left(g_{1} \partial_{z_{1}} f_{1}+g_{2} \partial_{z_{2}} f_{1}+g_{3} \partial_{z_{3}} f_{1}\right) b_{1} /\left(g_{1}, g_{2}, g_{3}\right) \in A^{3}\right\}} \\
& \simeq \frac{\left\{\mathbf{g}=\left(\begin{array}{l}
g_{0} \\
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right) \in A^{4} / \nabla f_{1} \wedge\left(\begin{array}{c}
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right)=0\right\}}{\left\{\binom{\mathbf{g} \cdot \nabla f_{1}}{\mathbf{0}_{3,1}} / \mathbf{g} \in A^{3}\right\}} \\
& \simeq \frac{A}{\left\langle\partial_{z_{1}} f_{1}, \partial_{z_{2}} f_{1}, \partial_{z_{3}} f_{1}\right\rangle_{A}} \oplus\left\{\mathbf{g} \in A^{3} / \nabla f_{1} \wedge \mathbf{g}=0\right\}
\end{aligned}
\end{aligned}
$$

$\forall p \geq 2$,

$$
\begin{aligned}
H^{2 p} & =\frac{\left\{g_{0} b_{1}^{p}+g_{3} b_{1}^{p-1} \eta_{1} \eta_{2}+g_{1} b_{1}^{p-1} \eta_{2} \eta_{3}+g_{2} b_{1}^{p-1} \eta_{3} \eta_{1} / g_{3} \partial_{z_{2}} f_{1}-g_{2} \partial_{z_{3}} f_{1}=g_{1} \partial_{0}, g_{1}, g_{2} g_{3}\right) \in A^{4} \text { and }}{\left\{\left(g_{1} \partial_{z_{1}} f_{1}+g_{2} \partial_{z_{2}} f_{1}+g_{3} \partial_{z_{3}} f_{1}\right) b_{1}^{p}+g_{0}\left(\partial_{z_{3}} f_{1} b_{1}^{p-1} \eta_{1} \eta_{2}+\partial_{z_{1}} f_{1} b_{1}^{p-1} \eta_{2} \eta_{3}+\partial_{z_{2}} f_{1} b_{1}^{p-1} \eta_{3} \eta_{1}\right) /\left(g_{0}, g_{1}, g_{2}, g_{3}\right) \in A^{3}\right\}} \\
& \simeq \frac{\left\{\mathbf{g}=\left(\begin{array}{l}
g_{0} \\
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right) \in A^{4} / \nabla f_{1} \wedge\left(\begin{array}{c}
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right)=0\right\}}{\left\{\left(\begin{array}{c}
\mathbf{g} \cdot \nabla f_{1} \\
g_{0} \partial_{z_{1}} f_{1} \\
g_{0} \partial_{z_{2}} f_{1} \\
g_{0} \partial_{z_{3}} f_{1}
\end{array}\right) / \mathbf{g} \in A^{3} \text { and } g_{0} \in A\right\}} \\
& \simeq \frac{A}{\left\langle\partial_{z_{1}} f_{1}, \partial_{z_{2}} f_{1}, \partial_{z_{3}} f_{1}\right\rangle_{A}} \oplus \frac{\left\{\mathbf{g} \in A^{3} / \nabla f_{1} \wedge \mathbf{g}=0\right\}}{\left\{g \nabla f_{1} / g \in A\right\}}
\end{aligned}
$$

$$
\begin{aligned}
& \forall p \in \mathbb{N}^{*}, \\
& H^{2 p+1}=\frac{\left\{\begin{array}{c}
g_{1} b_{1}^{p} \eta_{1}+g_{2} b_{1}^{p} \eta_{2}+g_{3} b_{1}^{p} \eta_{3}+g_{0} b_{1}^{p-1} \eta_{1} \eta_{2} \eta_{3} /\left(g_{0}, g_{1}, g_{2} g_{3}\right) \in A^{4} \text { and } g_{1} \partial_{z_{1}} f_{1}+g_{2} \partial_{z_{2}} f_{1}+g_{3} \partial_{z_{3}} f_{1}=0 \\
g_{0} \partial_{z_{3}} f_{1}=g_{0} \partial_{z_{1}} f_{1}=g_{0} \partial_{z_{2}} f_{1}=0
\end{array}\right\}}{\left\{\left(g_{3} \partial_{z_{2}} f_{1}-g_{2} \partial_{z_{3}} f_{1}\right) b_{1}^{p} \eta_{1}+\left(g_{1} \partial_{z_{3}} f_{1}-g_{3} \partial_{z_{1}} f_{1}\right) b_{1}^{p} \eta_{2}+\left(g_{2} \partial_{z_{1}} f_{1}-g_{1} \partial_{z_{2}} f_{1}\right) b_{1}^{p} \eta_{3} /\left(g_{1}, g_{2}, g_{3}\right) \in A^{3}\right\}} \\
& \simeq \frac{\left\{\mathbf{g}=\left(\begin{array}{c}
g_{1} \\
g_{2} \\
g_{3} \\
g_{0}
\end{array}\right) \in A^{4} / \nabla f_{1} \cdot\left(\begin{array}{l}
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right)=0 \text { and } g_{0} \partial_{z_{3}} f_{1}=g_{0} \partial_{z_{1}} f_{1}=g_{0} \partial_{z_{2}} f_{1}=0\right\}}{\left\{\binom{\left.\left.\nabla f_{1} \wedge\left(\begin{array}{l}
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right)\right) / \mathbf{g} \in A^{3}\right\}}{0}\right.} \\
& \simeq \frac{\left\{\mathbf{g} \in A^{3} / \nabla f_{1} \cdot \mathbf{g}=0\right\}}{\left\{\nabla f_{1} \wedge \mathbf{g} / \mathbf{g} \in A^{3}\right\}} \oplus\left\{g \in A / g \partial_{z_{3}} f_{1}=g \partial_{z_{1}} f_{1}=g \partial_{z_{2}} f_{1}=0\right\} .
\end{aligned}
$$

The following section will allows us to make those various spaces more explicit.

4.3 Explicit calculations in the particular case where f_{1} has separate variables

In this section, we consider the polynomial $f_{1}=a_{1} z_{1}^{i}+a_{2} z_{2}^{j}+a_{3} z_{3}^{k}$, with $2 \leq i \leq j \leq k$ and $a_{j} \in \mathbb{C}^{*}$.
Its partial derivative are $\partial_{1} f_{1}=i a_{1} z_{1}^{i-1}, \partial_{2} f_{1}=j a_{2} z_{2}^{j-1}$ and $\partial_{3} f_{1}=k a_{3} z_{3}^{k-1}$.

- We have already

$$
H^{0}=\mathbb{C}\left[z_{1}, z_{2}, z_{3}\right] /\left\langle a_{1} z_{1}^{i}+a_{2} z_{2}^{j}+a_{3} z_{3}^{k}\right\rangle
$$

- Moreover, as f_{1} is weight homogeneous, Euler's formula gives $\frac{1}{i} z_{1} \partial_{1} f_{1}+\frac{1}{j} z_{2} \partial_{2} f_{1}+\frac{1}{k} z_{3} \partial_{3} f_{1}=f_{1}$. So we have the inclusion $\left\langle f_{1}\right\rangle \subset\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}, \partial_{3} f_{1}\right\rangle$, thus

$$
\frac{A}{\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}, \partial_{3} f_{1}\right\rangle_{A}} \simeq \frac{\mathbb{C}\left[z_{1}, z_{2}, z_{3}\right]}{\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}, \partial_{3} f_{1}\right\rangle} \simeq \operatorname{Vect}\left(z_{1}^{p} z_{2}^{q} z_{3}^{r} / p \in \llbracket 0, i-2 \rrbracket, q \in \llbracket 0, j-2 \rrbracket, r \in \llbracket 0, k-2 \rrbracket\right) .
$$

Finally, as $\partial_{1} f_{1}$ and f_{1} are relatively prime, if $g \in A$ verifies $g \partial_{1} f_{1}=0 \bmod \left\langle f_{1}\right\rangle$, then $g \in\left\langle f_{1}\right\rangle$, ie g is zero in A.

- Now we determine the set $\left\{\mathbf{g}=\left(\begin{array}{l}g_{1} \\ g_{2} \\ g_{3}\end{array}\right) \in A^{3} / \mathbf{g} \cdot \nabla f_{1}=0\right\}$:

First we have $\left\langle f_{1}, \partial_{1} f_{1}, \partial_{2} f_{1}\right\rangle=\left\langle a_{1} z_{1}^{i}+a_{2} z_{2}^{j}+a_{3} z_{2}^{k}, z_{1}^{i-1}, z_{2}^{j-1}\right\rangle=\left\langle z_{1}^{i-1}, z_{2}^{j-1} z_{3}^{k}\right\rangle$. Thus the only monomials which are not in this ideal are the elements $z_{1}^{p} z_{2}^{q} z_{3}^{r}$ with $p \in \llbracket 0, i-2 \rrbracket, q \in \llbracket 0, j-2 \rrbracket$ and $r \in \llbracket 0, k-1 \rrbracket$. So every polynomial $P \in \mathbb{C}[\mathbf{z}]$ can be written in the form :

$$
P=\alpha f_{1}+\beta \partial_{1} f_{1}+\gamma \partial_{2} f_{1}+\sum_{\substack{p=0 \ldots i-2 \\ q=0 \ldots j-2 \\ r=0 \ldots k-1}} a_{p q r} z_{1}^{p} z_{2}^{q} z_{3}^{r}
$$

The polynomials $P \in \mathbb{C}[\mathbf{z}]$ such that $P \partial_{3} f_{1} \in\left\langle f_{1}, \partial_{1} f_{1}, \partial_{2} f_{1}\right\rangle$ are therefore the following ones :

$$
P=\alpha f_{1}+\beta \partial_{1} f_{1}+\gamma \partial_{2} f_{1}+\sum_{\substack{p=0 \ldots i-2 \\ q=0 \ldots j-2 \\ r=1 \ldots k-1}} a_{p q r} z_{1}^{p} z_{2}^{q} z_{3}^{r}
$$

So we have calculated $A n n_{\left\langle f_{1}, \partial_{1} f_{1}, \partial_{2} f_{1}\right\rangle}\left(\partial_{3} f_{1}\right)$.
The equation

$$
\begin{equation*}
\mathbf{g} \cdot \nabla f_{1}=0 \quad \bmod \left\langle f_{1}\right\rangle \tag{12}
\end{equation*}
$$

leads to $g_{3} \in A n n_{\left\langle f_{1}, \partial_{1} f_{1}, \partial_{2} f_{1}\right\rangle}\left(\partial_{3} f_{1}\right)$, ie

$$
\begin{equation*}
g_{3}=\alpha f_{1}+\beta \partial_{1} f_{1}+\gamma \partial_{2} f_{1}+\sum_{\substack{p=0 \ldots i-2 \\ q=\ldots \ldots j-2 \\ r=1 \ldots k-1}} a_{p q r} z_{1}^{p} z_{2}^{q} z_{3}^{r} \tag{13}
\end{equation*}
$$

with $(\alpha, \beta, \gamma) \in \mathbb{C}[\mathbf{z}]^{3}$.
Hence

$$
\begin{equation*}
g_{2} \partial_{2} f_{1}+\gamma \partial_{2} f_{1} \partial_{3} f_{1}+\sum_{\substack{p=0 \ldots i-2 \\ q=0 \ldots j-2 \\ r=1 \ldots k-1}} a_{p q r} z_{1}^{p} z_{2}^{q} z_{3}^{r} \partial_{3} f_{1} \in\left\langle f_{1}, \partial_{1} f_{1}\right\rangle \tag{14}
\end{equation*}
$$

Thus, according to Euler's formula,

$$
\begin{equation*}
\partial_{2} f_{1}\left(g_{2}+\gamma \partial_{3} f_{1}-\frac{k}{j} \sum_{\substack{p=0 \ldots i-2 \\ q=0 \ldots j-2 \\ r=1 \ldots k-1}} a_{p q r} z_{1}^{p} z_{2}^{q+1} z_{3}^{r-1}\right) \in\left\langle f_{1}, \partial_{1} f_{1}\right\rangle \tag{15}
\end{equation*}
$$

Since $A n n_{\left\langle f_{1}, \partial_{1} f_{1}\right\rangle}\left(\partial_{2} f_{1}\right)=\left\langle f_{1}, \partial_{1} f_{1}\right\rangle$, this equation is equivalent to

$$
g_{2}=-\gamma \partial_{3} f_{1}+\frac{k}{j} \sum_{\substack{p=0 \ldots i-2 \\ q=0 \ldots j-2 \\ r=1 \ldots k-1}} a_{p q r} z_{1}^{p} z_{2}^{q+1} z_{3}^{r-1}+\delta f_{1}+\varepsilon \partial_{1} f_{1},
$$

with $\delta, \varepsilon \in \mathbb{C}[\mathbf{z}]$. It follows that

$$
\begin{equation*}
g_{1} \partial_{1} f_{1}+\beta \partial_{1} f_{1} \partial_{3} f_{1}+\varepsilon \partial_{1} f_{1} \partial_{2} f_{1}+\sum_{\substack{p=0 \ldots i-2 \\ q=0 \ldots j-2 \\ r=1 \ldots k-1}} a_{p q r} z_{1}^{p} z_{2}^{q} z_{3}^{r} \partial_{3} f_{1}+\frac{k}{j} \sum_{\substack{p=0 \ldots i-2 \\ q=0 \ldots j-2 \\ r=1 \ldots k-1}} a_{p q r} z_{1}^{p} z_{2}^{q+1} z_{3}^{r-1} \partial_{3} f_{1} \in\left\langle f_{1}\right\rangle \tag{16}
\end{equation*}
$$

And, according to Euler's formula,

$$
\partial_{1} f_{1}\left(g_{1}+\beta \partial_{3} f_{1}+\varepsilon \partial_{2} f_{1}-\frac{k}{i} \sum_{\begin{array}{l}
p=0 \ldots i-2 \tag{17}\\
q=0 . \ldots j-2 \\
r=1 \ldots k-1
\end{array}} a_{p q r} z_{1}^{p+1} z_{2}^{q} z_{3}^{r-1}\right) \in\left\langle f_{1}\right\rangle
$$

$$
\begin{equation*}
\text { ie } g_{1}=-\beta \partial_{3} f_{1}-\varepsilon \partial_{2} f_{1}+\frac{k}{i} \sum_{\substack{p=0 \ldots i-2 \\ q=0 \ldots j-2 \\ r=1 \ldots k-1}} a_{p q r} z_{1}^{p+1} z_{2}^{q} z_{3}^{r-1}+\eta f_{1}, \tag{18}
\end{equation*}
$$

with $\eta \in \mathbb{C}[\mathbf{z}]$. Finally
$\left\{\mathbf{g} \in A^{3} / \mathbf{g} \cdot \nabla f_{1}=0\right\}=\left\{\left(\begin{array}{c}\eta \\ \delta \\ \alpha\end{array}\right) f_{1}+\nabla f_{1} \wedge\left(\begin{array}{c}-\gamma \\ \beta \\ -\varepsilon\end{array}\right)+\sum_{\substack{p=0 \ldots i-2 \\ q=0 . \ldots j-2 \\ r=1 \ldots k-1}} a_{p q r} z_{1}^{p} z_{2}^{q} z_{3}^{r-1}\left(\begin{array}{c}\frac{k}{\frac{k}{j}} z_{1} \\ \frac{k}{j} z_{2} \\ z_{3}\end{array}\right) /(\alpha, \beta, \gamma, \delta, \varepsilon, \eta) \in A^{6}\right.$ and $\left.a_{p q r} \in \mathbb{C}\right\}$.
We deduce immediately the cohomology spaces of odd degrees :

$$
\begin{aligned}
\forall p \geq 1, H^{2 p+1} & \simeq \mathbb{C}^{(i-1)(j-1)(k-1)} \\
H^{1} & \simeq \nabla f_{1} \wedge\left(\mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle\right)^{3} \oplus \mathbb{C}^{(i-1)(j-1)(k-1)}
\end{aligned}
$$

Remark:

We also have $\nabla f_{1} \wedge\left(\mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle\right)^{3} \simeq\left(\mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle\right)^{3} /\left\{\mathbf{g} / \nabla f_{1} \wedge \mathbf{g}=0\right\}=\left(\mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle\right)^{3} /\left(\mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle\right) \nabla f_{1}$.
Moreover the map

$$
\begin{array}{rll}
\left(\mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle\right)^{2} & \rightarrow \nabla f_{1} \wedge\left(\mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle\right)^{3} \\
\binom{g_{1}}{g_{2}} & \mapsto & \nabla f_{1} \wedge\left(\begin{array}{c}
g_{1} \\
g_{2} \\
0
\end{array}\right)
\end{array}
$$

is injective, thus $\nabla f_{1} \wedge\left(\mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle\right)^{3}$ is infinite-dimensional

- It remains to determine the set $\left\{\mathbf{g}=\left(\begin{array}{l}g_{1} \\ g_{2} \\ g_{3}\end{array}\right) \in A^{3} / \nabla f_{1} \wedge \mathbf{g}=0\right\}$:

Let $\mathbf{g} \in A^{3}$ be such that $\nabla f_{1} \wedge \mathbf{g}=0$. It means that, modulo $\left\langle f_{1}\right\rangle, \mathbf{g}$ verifies the system $\begin{cases}\partial_{2} f_{1} g_{3}-\partial_{3} f_{1} g_{2}=0 \\ \partial_{3} f_{1} g_{1}-\partial_{1} f_{1} g_{3}=0 \\ \partial_{1} f_{1} g_{2}-\partial_{2} f_{1} g_{1} & =0\end{cases}$
The first equation gives, modulo $\left\langle f_{1}, \partial_{2} f_{1}\right\rangle, \partial_{3} f_{1} g_{2}=0$.
Now $A n n_{\left\langle f_{1}, \partial_{2} f_{1}\right\rangle}\left(\partial_{3} f_{1}\right)=\left\langle f_{1}, \partial_{2} f_{1}\right\rangle$, therefore $g_{2}=\alpha f_{1}+\beta \partial_{2} f_{1}$. Hence

$$
\partial_{2} f_{1}\left(g_{3}-\beta \partial_{3} f_{1}\right)=0 \bmod \left\langle f_{1}\right\rangle,
$$

ie $g_{3}=\gamma f_{1}+\beta \partial_{3} f_{1}$.
Finally, we obtain

$$
\partial_{3} f_{1}\left(g_{1}-\beta \partial_{1} f_{1}\right)=0 \bmod \left\langle f_{1}\right\rangle,
$$

ie $g_{1}=\delta f_{1}+\beta \partial_{1} f_{1}$.
So, $\left\{\mathbf{g} \in A^{3} / \nabla f_{1} \wedge \mathbf{g}=0\right\}=\left\{f_{1}\left(\begin{array}{c}\delta \\ \alpha \\ \gamma\end{array}\right)+\beta \nabla f_{1} / \alpha, \beta, \gamma, \delta \in A\right\}$.
We deduce the cohomology spaces of even degrees :

$$
\begin{aligned}
\forall p \geq 2, H^{2 p} & \simeq A /\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}, \partial_{3} f_{1}\right\rangle \simeq \mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{i-1}, z_{2}^{j-1}, z_{3}^{k-1}\right\rangle \\
& \simeq V e c t\left(z_{1}^{p} z_{2}^{q} z_{3}^{r} / p \in \llbracket 0, i-2 \rrbracket, q \in \llbracket 0, j-2 \rrbracket, r \in \llbracket 0, k-2 \rrbracket\right) \simeq \mathbb{C}^{(i-1)(j-1)(k-1)} \\
H^{2} & \simeq\left\{\beta \nabla f_{1} / \beta \in A\right\} \oplus \mathbb{C}^{(i-1)(j-1)(k-1)} \simeq \mathbb{C}[\mathbf{z}] /\left\langle a_{1} z_{1}^{i}+a_{2} z_{2}^{j}+a_{3} z_{3}^{k}\right\rangle \oplus \mathbb{C}^{(i-1)(j-1)(k-1)} .
\end{aligned}
$$

Remark 12

In particular, we obtain the cohomology for the cases where $f_{1}=z_{1}^{2}+z_{2}^{2}+z_{3}^{k+1}$, $f_{1}=z_{1}^{2}+z_{2}^{3}+z_{3}^{4}$ and $f_{1}=z_{1}^{2}+z_{2}^{3}+z_{3}^{5}$. These cases correspond respectively to the types A_{k}, E_{6} and E_{8} of the Klein surfaces.

The following table sums up the results of those three special cases :

	H^{0}	H^{1}	H^{2}	$H^{2 p}$	$H^{2 p+1}$
A_{k}	$\mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{2}+z_{2}^{2}+z_{3}^{k+1}\right\rangle$	$\nabla f_{1} \wedge\left(\mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle\right)^{3} \oplus \mathbb{C}^{k}$	$\mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{2}+z_{2}^{2}+z_{3}^{k+1}\right\rangle \oplus \mathbb{C}^{k}$	\mathbb{C}^{k}	\mathbb{C}^{k}
E_{6}	$\mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{2}+z_{2}^{3}+z_{3}^{4}\right\rangle$	$\nabla f_{1} \wedge\left(\mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle\right)^{3} \oplus \mathbb{C}^{6}$	$\mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{2}+z_{2}^{3}+z_{3}^{4}\right\rangle \oplus \mathbb{C}^{6}$	\mathbb{C}^{6}	\mathbb{C}^{6}
E_{8}	$\mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{2}+z_{2}^{3}+z_{3}^{5}\right\rangle$	$\nabla f_{1} \wedge\left(\mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle\right)^{3} \oplus \mathbb{C}^{8}$	$\mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{2}+z_{2}^{3}+z_{3}^{5}\right\rangle \oplus \mathbb{C}^{8}$	\mathbb{C}^{8}	\mathbb{C}^{8}

The cases where $f_{1}=z_{1}^{2}+z_{2}^{2} z_{3}+z_{3}^{k-1}$ and $f_{1}=z_{1}^{2}+z_{2}^{3}+z_{2} z_{3}^{3}$, ie respectively D_{k} and E_{7} are studied in the following section.

4.4 Explicit calculations for D_{k} and E_{7}

4.4.1 Case of $f_{1}=z_{1}^{2}+z_{2}^{2} z_{3}+z_{3}^{k-1}$, ie D_{k}

In this section, we consider the polynomial $f_{1}=z_{1}^{2}+z_{2}^{2} z_{3}+z_{3}^{k-1}$.
Its partial derivatives are $\partial_{1} f_{1}=2 z_{1}, \partial_{2} f_{1}=2 z_{2} z_{3}$ and $\partial_{3} f_{1}=z_{2}^{2}+(k-1) z_{3}^{k-2}$.

- We already have

$$
H^{0}=\mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{2}+z_{2}^{2} z_{3}+z_{3}^{k-1}\right\rangle
$$

- Besides, since f_{1} is of homogeneous weight, Euler's formula gives

$$
\begin{equation*}
\frac{k-1}{2} z_{1} \partial_{1} f_{1}+\frac{k-2}{2} z_{2} \partial_{2} f_{1}+z_{3} \partial_{3} f_{1}=(k-1) f_{1} . \tag{19}
\end{equation*}
$$

Thus, we have the inclusion $\left\langle f_{1}\right\rangle \subset\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}, \partial_{3} f_{1}\right\rangle$.
Moreover, a Gröbner basis of $\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}, \partial_{3} f_{1}\right\rangle$ is $\left[z_{3}^{k-1}, z_{2} z_{3}, z_{2}^{2}+(k-1) z_{3}^{k-2}, z_{1}\right]$, therefore

$$
\frac{A}{\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}, \partial_{3} f_{1}\right\rangle_{A}} \simeq \frac{\mathbb{C}\left[z_{1}, z_{2}, z_{3}\right]}{\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}, \partial_{3} f_{1}\right\rangle} \simeq \operatorname{Vect}\left(z_{2}, 1, z_{3}, \ldots, z_{3}^{k-2}\right) .
$$

Finally, as $\partial_{1} f_{1}$ are f_{1} relatively prime, if $g \in A$ verifies $g \partial_{1} f_{1}=0 \bmod \left\langle f_{1}\right\rangle$, then $g \in\left\langle f_{1}\right\rangle$, ie g is zero in A, thus $\left\{g \in A / g \partial_{z_{3}} f_{1}=g \partial_{z_{1}} f_{1}=g \partial_{z_{2}} f_{1}=0\right\}=0$.

- Now we determine the set $\left\{\mathbf{g}=\left(\begin{array}{l}g_{1} \\ g_{2} \\ g_{3}\end{array}\right) \in A^{3} / \mathbf{g} \cdot \nabla f_{1}=0\right\}$:

A Gröbner basis of $\left\langle f_{1}, \partial_{1} f_{1}, \partial_{3} f_{1}\right\rangle$ is $\left[z_{1}, z_{3}^{k-1}, z_{2}^{2}+(k-1) z_{3}^{k-2}\right]$, thus a basis of $\mathbb{C}[\mathbf{z}] /\left\langle f_{1}, \partial_{1} f_{1}, \partial_{3} f_{1}\right\rangle$ is $\left\{z_{2}^{i} z_{3}^{j} / i \in\{0,1\}, j \in \llbracket 0, k-2 \rrbracket\right\}$.
We have already solved the equation $p \partial_{2} f_{1}=0$ in this space ; its solution is $p=a_{0, k-2} z_{3}^{k-2}+\sum_{j=0}^{k-2} a_{1, j} z_{2} z_{3}^{j}$. The equation

$$
\begin{equation*}
\mathbf{g} \cdot \nabla f_{1}=0 \quad \bmod \left\langle f_{1}\right\rangle \tag{20}
\end{equation*}
$$

leads to

$$
\begin{equation*}
g_{2} \partial_{2} f_{1}=0 \quad \bmod \left\langle f_{1}, \partial_{1} f_{1}, \partial_{3} f_{1}\right\rangle \tag{21}
\end{equation*}
$$

hence

$$
\begin{equation*}
g_{2}=\alpha f_{1}+\beta \partial_{1} f_{1}+\gamma \partial_{3} f_{1}+a z_{3}^{k-2}+\sum_{j=0}^{k-2} b_{j} z_{2} z_{3}^{j} \tag{22}
\end{equation*}
$$

with $(\alpha, \beta, \gamma) \in \mathbb{C}[\mathbf{z}]^{3}$.
And

$$
\begin{equation*}
g_{3} \partial_{3} f_{1}+\gamma \partial_{3} f_{1} \partial_{2} f_{1}+a z_{3}^{k-2} \partial_{2} f_{1}+\sum_{j=0}^{k-2} b_{j} z_{2} z_{3}^{j} \partial_{2} f_{1} \in\left\langle f_{1}, \partial_{1} f_{1}\right\rangle \tag{23}
\end{equation*}
$$

Now according to Euler's formula (19) and the equality

$$
\begin{equation*}
z_{3}^{k-1} z_{2}=\frac{1}{2-k}\left(z_{2} f_{1}-z_{2} z_{3} \partial_{3} f_{1}-\frac{1}{2} z_{2} z_{1} \partial_{1} f_{1}\right)=-\frac{1}{2-k} z_{2} z_{3} \partial_{3} f_{1} \quad \bmod \left\langle f_{1}, \partial_{1} f_{1}\right\rangle \tag{24}
\end{equation*}
$$

the equation (23) becomes

$$
\begin{equation*}
\partial_{3} f_{1}\left(g_{3}+\gamma \partial_{2} f_{1}-\frac{2 a}{2-k} z_{2} z_{3}-\sum_{j=0}^{k-2} b_{j} \frac{2}{2-k} z_{3}^{j+1}\right) \in\left\langle f_{1}, \partial_{1} f_{1}\right\rangle \tag{25}
\end{equation*}
$$

As $A n n_{\left\langle f_{1}, \partial_{1} f_{1}\right\rangle}\left(\partial_{3} f_{1}\right)=\left\langle f_{1}, \partial_{1} f_{1}\right\rangle$, this equation is equivalent to

$$
g_{3}=-\gamma \partial_{2} f_{1}+\frac{2 a}{2-k} z_{2} z_{3}+\sum_{j=0}^{k-2} b_{j} \frac{2}{2-k} z_{3}^{j+1}+\delta f_{1}+\varepsilon \partial_{1} f_{1}
$$

with $\delta, \varepsilon \in \mathbb{C}[\mathbf{z}]$.
We find

$$
\begin{equation*}
g_{1}=-\beta \partial_{2} f_{1}-\varepsilon \partial_{3} f_{1}+\sum_{j=0}^{k-2} b_{j} \frac{k-1}{k-2} z_{1}+\frac{a}{2-k} z_{2} z_{1}+\eta f_{1} \tag{26}
\end{equation*}
$$

with $\eta \in \mathbb{C}[\mathbf{z}]$.

Finally, we have
$\left\{\mathbf{g} \in A^{3} / \mathbf{g} \cdot \nabla f_{1}=0\right\}=\left\{\left(\begin{array}{c}\eta \\ \alpha \\ \delta\end{array}\right) f_{1}+\nabla f_{1} \wedge\left(\begin{array}{c}\gamma \\ \varepsilon \\ -\beta\end{array}\right)+\sum_{j=0}^{k-2} b_{j}\left(\begin{array}{c}\frac{k-1}{k-2} z_{1} z_{3}^{j} \\ z_{2} z_{3}^{j} \\ -\frac{2}{2-k} z_{3}^{j+1}\end{array}\right)+a\left(\begin{array}{c}\frac{1}{2-k} z_{2} z_{1} \\ z_{3}^{k-2} \\ \frac{2 a}{2-k} z_{2} z_{3}\end{array}\right) /(\alpha, \beta, \gamma, \delta, \varepsilon, \eta) \in A^{6}\right.$ and $\left.a, b_{j} \in \mathbb{C}\right\}$,
as well as cohomology spaces of odd degrees :

$$
\begin{aligned}
\forall p \geq 1, H^{2 p+1} & \simeq \mathbb{C}^{k} \\
H^{1} & \simeq \nabla f_{1} \wedge\left(\mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle\right)^{3} \oplus \mathbb{C}^{k}
\end{aligned}
$$

- To show $\left\{\mathbf{g} \in A^{3} / \nabla f_{1} \wedge \mathbf{g}=0\right\}=\left\{f_{1} \mathbf{g}+\beta \nabla f_{1} / \mathbf{g} \in A^{3}, \beta \in A\right\}$, we proceed as in the case of separate variables.
We deduce the cohomology spaces of even degrees :

$$
\begin{aligned}
\forall p \geq 2, H^{2 p} & \simeq A /\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}, \partial_{3} f_{1}\right\rangle \simeq V e c t\left(z_{2}, 1, z_{3}, \ldots, z_{3}^{k-2}\right) \simeq \mathbb{C}^{k} \\
H^{2} & \simeq\left\{\beta \nabla f_{1} / \beta \in A\right\} \oplus \mathbb{C}^{k} \simeq \mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{2}+z_{2}^{2} z_{3}+z_{3}^{k-1}\right\rangle \oplus \mathbb{C}^{k}
\end{aligned}
$$

4.4.2 Case of $f_{1}=z_{1}^{2}+z_{2}^{3}+z_{2} z_{3}^{3}$, ie E_{7}

Here we have $\partial_{1} f_{1}=2 z_{1}, \partial_{2} f_{1}=3 z_{2}^{2}+z_{3}^{3}$ and $\partial_{3} f_{1}=3 z_{2} z_{3}^{2}$.
The proof is similar to the one of the previous cases.
A Gröbner basis of $\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}, \partial_{3} f_{1}\right\rangle$ is $\left[z_{3}^{5}, z_{2} z_{3}^{2}, 3 z_{2}^{2}+z_{3}^{3}, z_{1}\right]$.
Similarly, a Gröbner basis of $\left\langle f_{1}, \partial_{1} f_{1}, \partial_{2} f_{1}\right\rangle$ is $\left[z_{3}^{6}, z_{2} z_{3}^{3}, 3 z_{2}^{2}+z_{3}^{3}, z_{1}\right]$.
We obtain the following results :

$$
\begin{aligned}
\forall p \geq 1, H^{2 p+1} & \simeq \mathbb{C}^{7} \\
H^{1} & \simeq \nabla f_{1} \wedge\left(\mathbb{C}[\mathbf{z}] /\left\langle f_{1}\right\rangle\right)^{3} \oplus \mathbb{C}^{7}
\end{aligned}
$$

$$
\begin{aligned}
H^{0} & =\mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{2}+z_{2}^{3}+z_{2} z_{3}^{3}\right\rangle \\
\forall p \geq 2, H^{2 p} & \simeq A /\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}, \partial_{3} f_{1}\right\rangle \simeq \operatorname{Vect}\left(z_{2}, z_{2}^{2}, 1, z_{3}, z_{3}^{2}, z_{3}^{3}, z_{3}^{4}\right) \simeq \mathbb{C}^{7} \\
H^{2} & \simeq\left\{\beta \nabla f_{1} / \beta \in A\right\} \oplus \mathbb{C}^{k} \simeq \mathbb{C}[\mathbf{z}] /\left\langle z_{1}^{2}+z_{2}^{3}+z_{2} z_{3}^{3}\right\rangle \oplus \mathbb{C}^{7} .
\end{aligned}
$$

Remark 13

In all the previously studied cases, there exists a triple (i, j, k) such that $\{i, j, k\}=\{1,2,3\}$, and such that the map

$$
\begin{aligned}
\mathbb{C}[\mathbf{z}] /\left\langle\partial_{1} f_{1}, \partial_{2} f_{1}, \partial_{3} f_{1}\right\rangle & \rightarrow\left\{\text { Solutions in } \mathbb{C}[\mathbf{z}] /\left\langle f_{1}, \partial_{j} f_{1}, \partial_{k} f_{1}\right\rangle \text { of the equation } g \partial_{i} f_{1}=0\right\} \\
P & \mapsto z_{i} P \bmod \left\langle f_{1}, \partial_{j} f_{1}, \partial_{k} f_{1}\right\rangle
\end{aligned}
$$

is an isomorphism of vector spaces.

Références

[AL98] Jacques Alev, Thierry Lambre, Comparaison de l'homologie de Hochschild et de l'homologie de Poisson pour une déformation des surfaces de Klein. In Algebra and operator theory (Tashkent, 1997), pp. 25-38. Kluwer Acad. Publ., Dordrecht, 1998.
[AVGZ86] V. Arnold, A. Varchenko, S. Goussein-Zadé, Singularités des applications différentiables, première partie, éditions Mir, Moscou, 1986.
[BCKT05] Alain Bruguières, Alberto Cattaneo, Bernhard Keller, Charles Torossian, Déformation, Quantification, Théorie de Lie, Panoramas et Synthèses, SMF, 2005.
[BFFLS78] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and quantization. I and II. Physical applications, Ann. Physics 111, no. 1, p. 61-110 and 111-151, 1978.
[CBH98] William Crawley-Boevey, Martin P. Holland, Noncommutative Deformations of Kleinian Singularities, Duke Mathematical Journal, Vol. 92, No. 3, 1998.
[CCK99] Li Chiang, Huah Chu, Ming-chang Kang, Generation of Invariants, Journal of Algebra, Volume 221, Issue 1, pp. 232-241, 1999.
[FK07] Christian Fronsdal, avec un appendice de Maxim Kontsevich, Quantization on Curves, Mathph/0507021. Lett. Math. Phys. 79, pp. 109-129, 2007.
[GRS07] Laurent Guieu, Claude Roger, avec un appendice de Vlad Sergiescu, L'Algèbre et le Groupe de Virasoro : aspects géométriques et algébriques, généralisations, Publication du Centre de Recherches Mathématiques de Montréal, série "Monographies, notes de cours et Actes de conférences", PM28, 2007.
[K97] Maxim Kontsevich, Deformation quantization of Poisson manifolds, I, Preprint IHES, arXiv : q-alg/9709040, 1997.
[L98] Jean-Louis Loday, Cyclic homology, Springer-Verlag, Berlin, Heidelberg, 1998.
[P05] Anne Pichereau, Cohomologie de Poisson en dimension trois, C. R. Acad. Sci. Paris, Ser. I 340, 2005.
[P06] Anne Pichereau, Poisson (co)homology and isolated singularities, Journal of Algebra, Volume 299, Issue 2, pp. 747-777, 2006.
[RSP02] Eric Rannou, Philippe Saux-Picart, Cours de calcul formel, partie II, éditions Ellipses, 2002.
[RV02] Claude Roger, Pol Vanhaecke, Poisson cohomology of the affine plane. Journal of Algebra, Volume 251, Issue 1, pp. 448-460, 2002.
[S77] T. A. Springer, Invariant theory, Lecture Notes in Math., 585, Springer-Verlag, 1977.
[VB94] Michel Van den Bergh, Noncommutative homology of some three-dimensional quantum spaces. Proceedings of Conference on Algebraic Geometry and Ring Theory in honor of Michael Artin, Part III (Antwerp, 1992), volume 8, pp. 213-230, 1994.

[^0]: ${ }^{1}$ butin@math.univ-lyon1.fr

